first and second-order transient...

48
FIRST AND SECOND-ORDER TRANSIENT CIRCUITS IN CIRCUITS WITH INDUCTORS AND CAPACITORS VOLTAGES AND CURRENTS CANNOT CHANGE INSTANTANEOUSLY. EVEN THE APPLICATION, OR REMOVAL, OF CONSTANT SOURCES CREATES A TRANSIENT BEHAVIOR LEARNING GOALS FIRST ORDER CIRCUITS Circuits that contain a single energy storing elements. Either a capacitor or an inductor SECOND ORDER CIRCUITS Circuits with two energy storing elements in any combination

Upload: others

Post on 30-Jan-2021

12 views

Category:

Documents


2 download

TRANSCRIPT

  • FIRST AND SECOND-ORDER TRANSIENT CIRCUITS

    IN CIRCUITS WITH INDUCTORS AND CAPACITORS VOLTAGES AND CURRENTS CANNOT CHANGE INSTANTANEOUSLY. EVEN THE APPLICATION, OR REMOVAL, OF CONSTANT SOURCES CREATES A TRANSIENT BEHAVIOR

    LEARNING GOALS

    FIRST ORDER CIRCUITS Circuits that contain a single energy storing elements. Either a capacitor or an inductor

    SECOND ORDER CIRCUITS Circuits with two energy storing elements in any combination

  • THE CONVENTIONAL ANALYSIS USING MATHEMATICAL MODELS REQUIRES THE DETERMINATION OF (A SET OF) EQUATIONS THAT REPRESENT THE CIRCUIT. ONCE THE MODEL IS OBTAINED ANALYSIS REQUIRES THE SOLUTION OF THE EQUATIONS FOR THE CASES REQUIRED.

    FOR EXAMPLE IN NODE OR LOOP ANALYSIS OF RESISTIVE CIRCUITS ONE REPRESENTS THE CIRCUIT BY A SET OF ALGEBRAIC EQUATIONS

    WHEN THERE ARE INDUCTORS OR CAPACITORS THE MODELS BECOME LINEAR ORDINARY DIFFERENTIAL EQUATIONS (ODEs). HENCE, IN GENERAL, ONE NEEDS ALL THOSE TOOLS IN ORDER TO BE ABLE TO ANALYZE CIRCUITS WITH ENERGY STORING ELEMENTS.

    ANALYSIS OF LINEAR CIRCUITS WITH INDUCTORS AND/OR CAPACITORS

    THE GENERAL APPROACH CAN BE SIMPLIFIED IN SOME SPECIAL CASES WHEN THE FORM OF THE SOLUTION CAN BE KNOWN BEFOREHAND. THE ANALYSIS IN THESE CASES BECOMES A SIMPLE MATTER OF DETERMINING SOME PARAMETERS. TWO SUCH CASES WILL BE DISCUSSED IN DETAIL FOR THE CASE OF CONSTANT SOURCES. ONE THAT ASSUMES THE AVAILABILITY OF THE DIFFERENTIAL EQUATION AND A SECOND THAT IS ENTIRELY BASED ON ELEMENTARY CIRCUIT ANALYSIS… BUT IT IS NORMALLY LONGER

    A METHOD BASED ON THEVENIN WILL BE DEVELOPED TO DERIVE MATHEMATICAL MODELS FOR ANY ARBITRARY LINEAR CIRCUIT WITH ONE ENERGY STORING ELEMENT.

    WE WILL ALSO DISCUSS THE PERFORMANCE OF LINEAR CIRCUITS TO OTHER SIMPLE INPUTS

    THE MODEL

  • AN INTRODUCTION

    INDUCTORS AND CAPACITORS CAN STORE ENERGY. UNDER SUITABLE CONDITIONS THIS ENERGY CAN BE RELEASED. THE RATE AT WHICH IT IS RELEASED WILL DEPEND ON THE PARAMETERS OF THE CIRCUIT CONNECTED TO THE TERMINALS OF THE ENERGY STORING ELEMENT

    With the switch on the left the capacitor receives charge from the battery.

    Switch to the right and the capacitor discharges through the lamp

  • dxxfetxetxet

    tTH

    xtt

    )(1)()(0

    0

    0 ∫=− τττ τ

    GENERAL RESPONSE: FIRST ORDER CIRCUITS

    0)0(; xxfxdtdx

    TH =+=+τ

    Including the initial conditions the model for the capacitor voltage or the inductor current will be shown to be of the form

    Solving the differential equation using integrating factors, one tries to convert the LHS into an exact derivative

    τ

    ττ

    t

    TH efxdtdx 1/*=+

    TH

    ttt

    fexedtdxe τττ

    ττ11

    =+

    TH

    tt

    fexedtd ττ

    τ1

    =

    ∫t

    t0

    dxxfetxetxt

    tTH

    xttt

    )(1)()(0

    0

    0 ∫−

    −−

    −+= τττ

    0)0();()()( xxtftaxtdtdx

    =+=+

    THIS EXPRESSION ALLOWS THE COMPUTATION OF THE RESPONSE FOR ANY FORCING FUNCTION. WE WILL CONCENTRATE IN THE SPECIAL CASE WHEN THE RIGHT HAND SIDE IS CONSTANT

    τt

    e−

    /*

    circuitthe of speed reaction the on ninformatio

    tsignifican provide to shown be willit constant." time" the called is τ

    .switchings sequentialstudy to used be can expression general The arbitrary. is , time, initial The ot

  • FIRST ORDER CIRCUITS WITH CONSTANT SOURCES

    dxxfetxetxt

    tTH

    xttt

    )(1)()(0

    0

    0 ∫−

    −−

    −+= τττ

    0)0(; xxfxdtdx

    TH =+=+τ

    If the RHS is constant

    dxeftxetxt

    t

    xtTH

    tt

    ∫−

    −−

    −+=

    0

    0

    )()( 0 ττ τ

    ⇒=−

    −−

    τττxtxt

    eee

    dxeeftxetxt

    t

    xtTH

    tt

    ∫−

    −−

    +=0

    0

    )()( 0 τττ τ

    t

    t

    xtTH

    tt

    eeftxetx0

    0

    )()( 0

    +=

    −−

    −τττ τ

    τ

    −+=

    −−

    −ττττ00

    )()( 0ttt

    TH

    tt

    eeeftxetx

    ( ) τ0

    )()( 0tt

    THTH eftxftx−

    −−+=

    0tt ≥The form of the solution is

    021 ;)(0

    tteKKtxtt

    ≥+=−

    −τ

    Any variable in the circuit is of the form

    021 ;)(0

    tteKKtytt

    ≥+=−

    −τ

    Only the values of the constants K_1, K_2 will change

    TRANSIENT

    TIME CONSTANT

  • EVOLUTION OF THE TRANSIENT AND INTERPRETATION OF THE TIME CONSTANT

    A QUALITATIVE VIEW: THE SMALLER THE THE TIME CONSTANT THE FASTER THE TRANSIENT DISAPPEARS

    With less than 2% error transient is zero beyond this point

    Drops 0.632 of initial value in one time constant

    Tangent reaches x-axis in one time constant

  • CRTH=τ

    THE TIME CONSTANT

    The following example illustrates the physical meaning of time constant

    −+vS

    RS a

    b

    C

    +

    vc_

    Charging a capacitor

    THCC

    TH vvdtdvCR =+

    The model

    0)0(, == CSS vVvAssume

    The solution can be shown to be

    τt

    SSC eVVtv−

    −=)(

    CRTH=τ

    transient

    For practical purposes the capacitor is charged when the transient is negligible

    0067.00183.00498.0135.0

    5432

    368.0

    τττττ

    τt

    et−

    With less than 1% error the transient is negligible after five time constants

    dtdvC C

    S

    SC

    Rvv −

    0=−+S

    SCc

    Rvv

    dtdvC

    : KCL@a

  • 1. THE CIRCUIT HAS ONLY CONSTANT INDEPENDENT SOURCES

    THE DIFFERENTIAL EQUATION APPROACH

    CIRCUITS WITH ONE ENERGY STORING ELEMENT

    CONDITIONS

    2. THE DIFFERENTIAL EQUATION FOR THE VARIABLE OF INTEREST IS SIMPLE TO OBTAIN. NORMALLY USING BASIC ANALYSIS TOOLS; e.g., KCL, KVL. . . OR THEVENIN

    3. THE INITIAL CONDITION FOR THE DIFFERENTIAL EQUATION IS KNOWN, OR CAN BE OBTAINED USING STEADY STATE ANALYSIS

    SOLUTION STRATEGY: USE THE DIFFERENTIAL EQUATION AND THE INITIAL CONDITIONS TO FIND THE PARAMETERS τ,, 21 KK

    ( )

    1 2

    FACT: WHEN ALL INDEPENDENT SOURCES ARE CONSTANTFOR ANY VARIABLE, ( ), IN THE CIRCUIT THESOLUTION IS OF THE FORM

    ( ) ,Ot t

    O

    y t

    y t K K e t tτ−

    = + >

  • If the diff eq for y is known in the form

    Use the diff eq to find two more equations by replacing the form of solution into the differential equation

    0

    01

    )0( yy

    fyadtdya

    =+

    =+ We can use this info to find the unknowns

    feKKaeKatt

    =

    ++

    −−ττ

    τ 2102

    1

    0110 a

    fKfKa =⇒=

    0

    120

    1 0aaeKaa

    t

    =⇒=

    +−

    −τ

    ττ

    ττ

    t

    eKdtdy −

    −= 2⇒>+=−

    0,)( 21 teKKtytτ

    21)0( KKy +=+

    Use the initial condition to get one more equation

    12 )0( KyK −+=

    SHORTCUT: WRITE DIFFERENTIAL EQ. IN NORMALIZED FORM WITH COEFFICIENT OF VARIABLE = 1.

    00

    101 a

    fydtdy

    aafya

    dtdya =+⇒=+

    τ1K

  • ASSUME FIND 2)0(.0),(SVvttv =>

    )(tv @KCL USE 0.t FORMODEL >

    0)()( =+− tdtdvC

    RVtv S

    2/)0( SVv = condition initial

    (DIFF. EQ. KNOWN, INITIAL CONDITION KNOWN)

    STEP 1 TIME CONSTANT

    fydtdy

    =+τ

    Get time constant as coefficient of derivative

    STEP 2 STEADY STATE ANALYSIS

    value)state(steady ,t and 0for IS SOLUTION

    1

    21 0,)(Kv(t)

    teKKtvt

    →∞→>>+=

    τ

    τ

    IN STEADY STATE THE SOLUTION IS A CONSTANT. HENCE ITS DERIVATIVE IS ZERO. FROM DIFF EQ.

    SVvdtdv

    =⇒= 0 Steady state value from diff. eq.

    SVK =∴

    1

    values)statesteady (equating

    fKfydtdy

    ==+ 1 THEN ISMODEL THE IF τ

    STEP 3 USE OF INITIAL CONDITION

    1221 )0()0(0

    KvKKKvt

    −=⇒+== AT

    fvK −= )0(22/2/)0( 2 SS VKVv −=⇒=

    0,)2/()( >−=−

    teVVtv RCt

    SS :ANSWER

    LEARNING EXAMPLE

    sVtvtdtdvRC =+ )()(

    R/*

    )0();(0,)(

    211

    21

    +=+∞=>+=

    xKKxKteKKtx

  • 0),( >tti FIND

    0t FORKVL USE MODEL. >

    −+ Rv

    +

    Lv)(ti

    KVL

    )()( tdtdiLtRivvV LRS +=+=

    0)0()0()0(

    0)0(0=+

    +=−⇒=−⇒<

    iii

    itinductor

    CONDITIONINITIAL

    STEP 1 R

    Vtitdtdi

    RL S=+ )()( R

    L=τ

    STEP 2 STEADY STATE R

    VKi S==∞ 1)(

    STEP 3 INITIAL CONDITION

    21)0( KKi +=+

    −=

    −R

    Lt

    S eR

    Vti 1)( :ANS

    LEARNING EXAMPLE

    )0();(0,)(

    211

    21

    +=+∞=>+=

    xKKxKteKKtx

    1 2( ) , 0t

    i t K K e tτ−

    = + >

  • 0t FORKCL MODEL. >

    )()( tiRtvIS +=

    )(tv

    ⇒= )()( tdtdiLtv )()( tit

    dtdi

    RLIS +=

    STEP 1

    STEP 2 SS IKIi =⇒=∞ 1)(

    STEP 3 210)0( KKi +==+

    −=

    −R

    Lt

    S eIti 1)( :ANS

    0)0( =+i :CONDITIONINITIAL

    RL

    LEARNING BY DOING

    1 2( ) , 0t

    i t K K e tτ−

    = + >

  • 0t FORMODEL >

    2

    )()(R

    tvti =

    IT IS SIMPLER TO DETERMINE MODEL FOR CAPACITOR VOLTAGE

    INITIAL CONDITIONS

    VvVkk

    kvC 4)0(4)12(633)0( =+⇒=+

    =−

    0)()(

    ||;0)()()( 2121

    =+

    ==++

    P

    P

    Rtvt

    dtdvC

    RRRR

    tvtdtdvC

    Rtv

    Ω== kkkRP 26||3

    sFCRP 2.0)10100)(102(63 =×Ω×== −τ

    STEP 1

    STEP 2 0)( 1 ==∞ Kv

    STEP 3 VKVKKv 44)0( 221 =⇒=+=+

    0],[4)( 2.0 >=−

    tVetvt

    0],[34)( 2.0 >=

    −tmAeti

    t

    :ANS

    0,)( 21 >+=−

    teKKtitτ

    0t FOR STATESTEADY IN CIRCUIT

  • Vtvtdt

    dvO

    O 6)()(5.0 =+

    ][3)()(5.0

    12)(4)(2

    Atitdtdi

    titdtdi

    =+

    =+ ])[(2)( VtitvO =

    0),( >ttvO FIND

    KVL(t>0)

    )(ti

    KVL USE 0.t FORMODEL >

    0)()()( 311 =+++− tiRtdtdiLtiRVS

    5.0=τ STEP 1

    0,)( 21 >+=−

    teKKtvt

    LEARNING EXAMPLE

    STEP 2: FIND K1 USING STEADY STATE ANALYSIS

    Vvtvtdt

    dvOO

    O 6)(6)()(5.0 =∞⇒=+

    1)( KvO =∞VK 61 =∴

    FOR THE INITIAL CONDITION ONE NEEDS THE INDUCTOR CURRENT FOR t

  • FOR EXAMPLE USE THEVENIN ASSUMING INDUCTOR IN STEADY STATE

    Ω== 12||2THR

    04412 1 =−+− I1I

    KVL

    KVL ][442 1 VIVV OCTH =−==

    ][41 AI =

    ][34)0()0( AiiL =+=−

    0,)( 21 >+=−

    teKKtvt

    ][38)0(

    34)0( Vvi O =+⇒=+

    0,353)( 5.0 >−=

    −teti

    t

    a

    b

    0],[3

    106)( 5.0 >−=−

    tVetvt

    O

    CIRCUIT IN STEADY STATE (t

  • 0),( >ttvO FIND

    C

    1R

    2R

    KCL USE 0.t FORMODEL >

    0)()(0)( 2121

    =++⇒=+

    + cCCC vt

    dtdvCRR

    RRvt

    dtdvC

    sFCRR 6.0)10100)(106()( 6321 =×Ω×=+=−τSTEP 1

    )(31)(

    422)( tvtvtv CCO =+

    =

    STEP 2 0,)( 21 >+=−

    teKKtvt

    Cτ 01 =K

    INITIAL CONDITIONS. CIRCUIT IN STEADY STATE t=−

    tVetvt

    C

    0],[38)( 6.0 >=

    −tVetv

    t

    O

    LEARNING EXTENSION

    )(tvc DETERMINE

    )0();(0,)(

    1211

    21

    +=+∞=>+=

    iKKvKteKKtv

    C

    t

  • 0),(1 >tti FIND

    KVL USE 0.t FORMODEL >

    ⇒=+ 0)(18 11 tidtdiL

    L

    0)()(91

    11 =+ tit

    dtdi

    )0();(0,)(

    12111

    211

    +=+∞=>+=

    iKKiKteKKti

    STEP 1 s91

    STEP 2 01 =K

    FOR INITIAL CONDITIONS ONE NEEDS INDUCTOR CURRENT FOR t==−

    tAeAeti tt

    :ANS

    )(1 ti

    +

    Lv

    LEARNING EXTENSION

  • USING THEVENIN TO OBTAIN MODELS

    Obtain the voltage across the capacitor or the current through the inductor

    Circuitwith

    resistancesand

    sources

    InductororCapacitor

    a

    b

    Representation of an arbitrarycircuit with one storage element

    Thevenin −+VTH

    RTH

    InductororCapacitor

    a

    b

    −+VTH

    RTH a

    b

    C

    +

    vc_

    Case 1.1Voltage across capacitor

    −+VTH

    RTH a

    b

    L

    iL

    Case 1.2Current through inductor

    KCL@ node a

    ciRi 0=+ Rc ii

    dtdvCi Cc =

    TH

    THCR R

    vvi −=

    0=−+TH

    THCC

    Rvv

    dtdvC

    THCC

    TH vvdtdvCR =+

    Use KVL

    −+ Rv

    +

    Lv

    THLR vvv =+

    LTHR iRv =

    dtdiLv LL =

    THLTHL viR

    dtdiL =+

    ==+

    TH

    THL

    L

    TH Rvi

    dtdi

    RL

    SCi

  • EXAMPLE

    Ω6Ω6

    Ω6

    Ω6

    H3

    V24 −+

    )(tiO

    0=t

    0>t;(t)iFind O

    The variable of interest is the inductor current. The model is

    TH

    THO

    O

    TH Rvi

    dtdi

    RL

    =+

    And the solution is of the form

    0;)( 21 >+=−

    teKKtit

    Ω6Ω6

    Ω6

    Ω6V24 −+

    0>t

    Thevenin for t>0at inductor terminals

    a

    b

    =THv 0 =THR ))66(||6(6 ++

    sHRLTH

    3.0103

    =Ω

    ==τ

    0;03.0 >=+ tidtdi

    OO

    03.0

    3.0 3.0213.02 =++

    −−tt

    eKKeK

    0;)( 3.02 >=−

    teKtit

    O⇒= 01KNext: Initial Condition

  • Ω6Ω6

    Ω6

    Ω6V24 −+

    )0()0( +=− OO ii

    0=−

    teKtit

    O

    Evaluating at 0+ 6

    322 =K

    0;6

    32)( 3.0 >=−

    tetit

    O

    Ω6Ω6

    Ω6

    Ω6

    H3

    V24 −+

    )(tiO

    0

  • +- 0=t

    k6

    k6

    k6

    k6

    Fµ100

    V12)(tiO

    0t(t),iFind O >EXAMPLE

    −+ Cv

    6kvi0tFor CO =>

    Hence, if the capacitor voltage is known the problem is solved

    Model for v_c

    THCC

    TH vvdtdvCR =+

    +- 0>t

    k6

    k6

    k6

    k6V12)(tiO

    a b−+ THv

    kkkRTH 36||6 ==

    VvTH 6=

    sF 3.010*100*10*3 63 =Ω= −τ

    63.0 =+ CCC

    vdt

    dvvforModel

    3.021

    t

    C eKKv−

    +=

    65.1

    5.1 3.0215.12 =++

    −−tt

    eKKeK

    61 =K

    Now we need to determine the initial value v_c(0+) using continuity and the steady state assumption

  • +- 0= 0;6)( tVtvC

    0;16

    )( >== tmAk

    vti CO

  • ANALYSIS OF CIRCUITS WITH ONE ENERGY STORING ELEMENT CONSTANT INDEPENDENT SOURCES

    A STEP-BY-STEP APPROACH

    THIS APPROACH RELIES ON THE KNOWN FORM OF THE SOLUTION BUT FINDS THE CONSTANTS USING BASIC CIRCUIT ANALYSIS TOOLS AND FORGOES THE DETERMINATION OF THE DIFFERENTIAL EQUATION MODEL

    τ,, 21 KK

    0,)( 21 >+=−

    teKKtxtτ

    statesteady incircuit the analyzing determined be can and variablethe of valuestatesteady the is 1K

    21,)0(

    KKx

    constants the compute to equation second the provides and condition initial the is +

    element storingenergy the across Thevenin using determined be can andconstant time the is τ

  • Obtaining the time constant: A General Approach

    Circuitwith

    resistancesand

    sources

    InductororCapacitor

    a

    b

    Representation of an arbitrarycircuit with one storage element

    Thevenin −+VTH

    RTH

    InductororCapacitor

    a

    b

    −+VTH

    RTH a

    b

    C

    +

    vc_

    Case 1.1Voltage across capacitor

    −+VTH

    RTH a

    b

    L

    iL

    Case 1.2Current through inductor

    KCL@ node a

    ciRi 0=+ Rc ii

    dtdvCi Cc =

    TH

    THCR R

    vvi −=

    0=−+TH

    THCC

    Rvv

    dtdvC

    THCC

    TH vvdtdvCR =+

    Use KVL

    −+ Rv

    +

    Lv

    THLR vvv =+

    LTHR iRv =

    dtdiLv LL =

    THLTHL viR

    dtdiL =+

    ==+

    TH

    THL

    L

    TH Rvi

    dtdi

    RL

    SCi

    CIRCUITS WITH ONE ENERGY STORING ELEMENT

    TH

    TH

    RL

    CR

    =

    =

    τ

    τ

    Circuit Inductive

    Circuit Capacitive

  • THE STEPS

    )0();(0,)(

    211

    21

    +=+∞=>+=

    xKKxKteKKtx

    STEP 1. THE FORM OF THE SOLUTION

    STEP 2: DRAW THE CIRCUIT IN STEADY STATE PRIOR TO THE SWITCHING AND DETERMINE CAPACITOR VOLTAGE OR INDUCTOR CURRENT

    STEP 3: DRAW THE CIRCUIT AT 0+ THE CAPACITOR ACTS AS A VOLTAGE SOURCE. THE INDUCTOR ACTS AS A CURRENT SOURCE. DETERMINE THE VARIABLE AT t=0+

    STEP 4: DRAW THE CIRCUIT IN STEADY STATE AFTER THE SWITCHING AND DETERMINE THE VARIABLE IN STEADY STATE.

    )0( +x DETERMINE

    )(∞x DETERMINE

    STEP 5: DETERMINE THE TIME CONSTANT

    inductor one withcircuit

    capacitor one withcircuit

    TH

    TH

    RL

    CR

    =

    =

    τ

    τ

    STEP 6: DETERMINE THE CONSTANTS K1, K2

    )0(),( 211 +=+∞= xKKxK

  • 0),( >tti FIND

    0,)( 21 >+=−

    teKKtitτ :1 STEP

    USE CIRCUIT IN STEADY STATE PRIOR TO THE SWITCHING

    mAkVi 2

    1224

    =Ω

    =

    ][32)2)(2(36)0( VkmAVvc =−=−)0()0( −=+ cC vv

    )0( +i Determine :3 STEP

    USE A CIRCUIT VALID FOR t=0+. THE CAPACITOR ACTS AS SOURCE

    mAkVi

    316

    632)0( ==+

    capacitor across voltageInitial :2 STEP

    NOTES FOR INDUCTIVE CIRCUIT (1)DETERMINE INITIAL INDUCTOR CURRENT IN STEP 2 (2)FOR THE t=0+ CIRCUIT REPLACE INDUCTOR BY A CURRENT SOURCE

    LEARNING EXAMPLE

    )0( −= i

    KVL

  • constant time Determine :5 STEPCRTH=τ :circuit Capacitive

    Ω== kkkRTH 5.16||2 FC µ100=

    sF 15.0)10100)(105.1( 63 =×Ω×= −τ

    21, KK Determine :6 STEP

    0,)( 21 >+=−

    teKKtitτ 1) (STEP

    mAi3

    16)0(( =+ 3) STEP 21 KK +=

    mAi836)( =∞ 4) (STEP 1K=

    )(∞i Determine :4 STEP

    USE CIRCUIT IN STEADY STATE AFTER SWITCHING

    mAi836)( =∞ 0,

    65

    836)( 15.0 >+=

    −teti

    t

    WERFINAL ANS

    NOTE: FOR INDUCTIVE CIRCUIT

    THRL

    ORIGINAL CIRCUIT

    65

    836

    316

    2 =−=∴K

  • USING MATLAB TO DISPLAY FINAL ANSWER

    >+

    ≤= −

    0,65

    836

    02)(

    15.0 te

    tmAti t » help linspace

    LINSPACE Linearly spaced vector. LINSPACE(x1, x2) generates a row vector of 100 linearly equally spaced points between x1 and x2. LINSPACE(x1, x2, N) generates N points between x1 and x2. See also LOGSPACE, :.

    %example6p3.m %commands used to display funtion i(t) %this is an example of MATLAB script or M-file %must be stored in a text file with extension ".m” %the commands are executed when the name of the M-file is typed at the %MATLAB prompt (without the extension) tau=0.15; %define time constant tini=-4*tau; %select left starting point tend=10*tau; %define right end point tminus=linspace(tini,0,100); %use 100 points for t=0 iminus=2*ones(size(tminus)); %define i for t=0 plot(tminus,iminus,'ro',tplus,iplus,'bd'), grid; %basic plot command specifying %color and marker title('VARIATION OF CURRENT i(t)'), xlabel('time(s)'), ylabel('i(t)(mA)') legend('prior to switching', 'after switching') axis([-0.5,1.5,1.5,6]);%define scales for axis [xmin,xmax,ymin,ymax]

    Command used to define linearly spaced arrays

    Script (m-file) with commands used. Prepared with the MATLAB Editor

  • 0),( >ttv FIND

    0,)( 21 >+=−

    teKKtvtτ :1 STEP

    currentinductor Initial :2 STEP

    Use circuit in steady state prior to switching

    kk 3||6

    mAI 4624

    1 == 1366)0( IiL +

    =−

    mAiL 38)0( =−

    )0( +v Determine :3 STEP

    Use circuit at t=0+. Inductor is replaced by current source

    1V

    038

    126424 111 =+++− VVV ][

    320

    1 VV =

    ][3

    52][24)0( 1 VVVv =−=+

    LEARNING EXAMPLE

  • )(∞v DETERMINE :4 STEP

    USE CIRCUIT IN STEADY STATE AFTER SWITCHING

    ][24)( Vv =∞

    CONSTANT TIME DETERMINE :5 STEP

    12||6||4=THR

    Ω= 2THR

    THRL

    =τ :Circuit InductivesH 2

    24

    =Ω

    21, KK DETERMINE :6 STEP4) (step ][24)(1 VvK =∞=

    3) (step 21352)0( KKv +==+

    ][32024

    352

    1 VK −=−=

    0,24320)( 2 >+−=

    −tetv

    t

    :ANS

    ORIGINAL CIRCUIT

  • 0),( >ttvO FIND

    0,)( 21 >+=−

    teKKtvt

    oτ :1 STEP

    VOLTAGECAPACITORINITIAL :2 STEP

    −−

    +)0(Cv

    0

  • )(∞Ov DETERMINE :4 STEP

    +

    )(Ov

    ][524)12(

    52)( VvO ==∞

    CONSTANT TIME DETERMINE :5 STEPCRTH=τ :Circuit Capacitive

    THRΩ==

    544||1THR

    sFC582 =⇒= τ

    21, KK DETERMINE :6 STEP

    ][524)(1 VvK O =∞=

    ][51][5)0( 221 VKKKVvO =⇒+==+

    0];[51

    524)( 5

    8>+=

    tVetvt

    O :ANS

    ORIGINAL CIRCUIT

  • 0,)( 21 >+=−

    teKKtvt

    Oτ :1 STEP

    CURRENT INDUCTORINITIAL :2 STEP

    )0( −LiOv 022

    )4(2

    12=+

    −−+

    − OOO vvv

    ][34)0()0(

    ][38

    Aii

    Vv

    LL

    O

    =+=−

    =

    )0( +Ov DETERMINE :3 STEP

    )0( +Li

    ][38)0(2)0( Viv LO =+=+

    )0( +Ov

    0),( >ttvO FIND

  • )(∞Ov DETERMINE :4 STEP

    ORIGINAL CIRCUIT

    )(∞Ov

    ][6)12(22

    2)( VvO =+=∞

    CONSTANT TIME DETERMINE :5 STEP

    THRL

    Circuit Inductive

    THR

    Ω= 4THR

    s5.042==τ

    21, KK DETERMINE :6 STEP

    4) (step ][6)(1 VvK O =∞=

    3) (step 2138)( KKvO +==+

    ][3

    10638

    2 VK −=−=

    0,3

    106)( 5.0 >−=−

    tetvt

    O :ANS

  • 0),( >ttvO FIND0,)( 21 >+=

    −teKKtv

    t

    Oτ :1 STEP

    )0( +Li DETERMINE :2 STEP

    AiA 3=

    +

    −][6 V

    ][18 V

    ][3)0()0( Aii LL =+=−

    )0( +Ov DETERMINE :3 STEP

    ][18)0( VvO =+

    LEARNING EXAMPLE

  • )(∞Ov DETERMINE :4 STEP

    ORIGINAL CIRCUIT

    Bv

    06

    )2(42

    36 '=

    −−++

    − ABBB ivvv

    4' BA

    vi =

    12/*

    636411 ' ×=+ AB iv ][5.4],[18' AiVv AB ==

    ][9 V

    ][27)( VvO =∞

    KVL

    CONSTANT TIME DETERMINE :5 STEP

    THRL

    circuit inductive

    SC

    OCTH i

    vR =

    sourcesdependent withCircuit

    OPEN CIRCUIT VOLTAGE

    AiA 6" =

    +

    −V12

    KVL

    ][361224 VvOC =+=

  • NOTE: FOR THE INDUCTIVE CASE THE CIRCUIT USED TO COMPUTE THE SHORT CIRCUIT CURRENT IS THE SAME USE TO DETERMINE )(∞Ov

    SHORT CIRCUIT CURRENT

    ORIGINAL CIRCUIT

    1i

    '''221

    121

    26)(236

    4)(236

    Aiiii

    iii

    −++=

    ++=

    '''1

    2

    A

    SC

    i ii i==

    ][836 AiSC =

    Ω=⇒

    ==

    8][8/36

    ][36TH

    SC

    OC RAi

    VvsHL

    833 =⇒= τ

    21, KK DETERMINE :6 STEP4) (step 127)( KvO ==∞

    3) (step ][918)0( 221 VKKKvO −=⇒+==+

    0,927)( 83

    >−=−

    tetvt

    O :ANS

  • 0),( >ttvo FIND0,)( 21 >+=

    −teKKtv

    t

    Oτ :1 STEP

    += 0t AT VOLTAGECAPACITOR DETERMINE :2 STEP

    ][12 VvA =

    +− ][24 V

    KVL ][60122424)0( VvC =++=−

    −−

    +)0(Cv

    )0( +Ov DETERMINE :3 STEP

    )0()0( −=+ CC vv

    ][60)0( Vvvv OCO =+⇒=)(∞Ov DETERMINE :4 STEP

    )(∞Ov0=i

    0=Av

    ][24)( VvO =∞

    LEARNING EXTENSION

  • CONSTANT TIME DETERMINE :5 STEP CRTH=⇒τcircuit capacitiveSC

    OCTH i

    vR =

    )(∞Ov][24)( Vvv OOC =∞=

    +

    OCv

    ORIGINAL CIRCUIT

    OPEN CIRCUIT VOLTAGE

    SHORT CIRCUIT CURRENT

    SCi

    Ω2

    KVL

    02242 =−− ASC viSCA iv 2−= ][4 AiSC =

    Ω== 6424

    THR

    sF 1226 =×Ω=τ21, KK DETERMINE :6 STEP

    4) (step 24)(1 =∞= OvK

    3) (step 2160)0( KKvO +==+ ][362 VK =

    0,3624)( 12 >+=−

    tetvt

    O :ANS

  • Inductor example

    STEP 1: Form of the solution

    τt

    O eKKtv−

    += 21)(

    STEP 2: Initial inductor current

    Ω2

    Ω2 Ω4

    V6

    0

  • STEP 4: Find output in steady state after the switching

    Ω2

    Ω2 Ω4

    V6

    0>t

    _)(∞

    +

    Ov

    −+

    0)( =∞Ov

    Ω2

    Ω2 Ω4

    H2V6

    0=t

    _)(tvO

    +

    −+

    STEP 5: Find time constant after switch

    Ω2

    Ω2 Ω4

    V6

    0>t

    −+

    THR

    THRL

    Ω= 8THR

    s25.0=τ

    STEP 6: Find the solution

    VvKK O 6)0(21 −=+=+0)(1 =∞= OvK

    0;6)( 25.0 >−=−

    tetvt

    O

    0;6)( 4 >−= − tetv tO

  • PULSE RESPONSE

    WE STUDY THE RESPONSE OF CIRCUITS TO A SPECIAL CLASS OF SINGULARITY FUNCTIONS

    ><

    =0100

    )(tt

    tu VOLTAGE STEP

    CURRENT STEP TIME SHIFTED STEP

  • PULSE SIGNAL

    PULSE AS SUM OF STEPS

    ))](01.0()([10)( mAtututi −−=

    LEARN BY DOING

    ))](2()1([10)( Vtututv −−−−=

  • NONZERO INITIAL TIME AND REPEATED SWITCHING

    dxxfetxetxt

    tTH

    xttt

    )(1)()(0

    0

    0 ∫−

    −−

    −+= τττ

    00 )(; xtxfxdtdx

    TH =+=+τ

    021 ;)(0

    tteKKtxtt

    ≥+=−

    −τ

    RESPONSE FOR CONSTANT SOURCES

    This expression will hold on ANY interval where the sources are constant. The values of the constants may be different and must be evaluated for each interval

    The values at the end of one interval will serve as initial conditions for the next interval

  • LEARNING EXAMPLE 0);( >ttvO VOLTAGEOUTPUT THE FIND

    0)(0)(0 =⇒=⇒< tvtvt O 0)0( =+Ov

    sFkkCRTH 4.0100)12||6( =×== µτ

    Vtvt 9)(0 =⇒>

    '1)9(810

    8)( Kvo =+=∞

    τt

    o eKKtv−

    += '2'1)(

    0)0( '2`1 =+=+ KKvo

    −=

    −4.014)(

    t

    o etv

    0)(3.0 =⇒> tvt

    ')3.0(

    "2

    "1)( τ

    −−

    +=t

    O eKKtv

    3.0=ot )1(4)3.0( 4.03.0

    −−=+ evo

    4.0' =τ

    00)( "1 =⇒=∞ Kvo )(11.2)3.0("2 VvK o =+=

    3.0;11.2)( 4.03.0

    >=−

    −tetv

    t

    o

  • +-

    Ωk10

    Fµ20

    +

    Ov

    ab

    V12

    THE SWITCH IS INITIALLY AT a. AT TIME t=0 IT MOVES TO b AND AT t=0.5 IT MOVES BACK TO a. FIND 0,)( >ttvO

    τt

    O eKKtv−

    += '2'1)(

    '2

    '1][12)0( KKVv +==+

    '10)( KvO ==∞

    5.00,12)( 2.0

  • %pulse1.m % displays the response to a pulse response tmin=linspace(-0.5,0,50); %negative time segment t1=linspace(0,0.5,50); %first segment t2=linspace(0.5, 1.5,100); %second segment vomin=12*ones(size(tmin)); vo1=12*exp(-t1/0.2); %after first switching vo2=12-11.015*exp(-(t2-0.5)/0.2); %after second switching plot(tmin,vomin,'bo',t1,vo1,'rx',t2,vo2,'md'),grid title('OUTPUT VOLTAGE'), xlabel('t(s)'),ylabel('Vo(V)')

    USING MATLAB TO DISPLAY OUTPUT VOLTAGE

    슬라이드 번호 1슬라이드 번호 2슬라이드 번호 3슬라이드 번호 4슬라이드 번호 5슬라이드 번호 6슬라이드 번호 7슬라이드 번호 8슬라이드 번호 9슬라이드 번호 10슬라이드 번호 11슬라이드 번호 12슬라이드 번호 13슬라이드 번호 14슬라이드 번호 15슬라이드 번호 16슬라이드 번호 17슬라이드 번호 18슬라이드 번호 19슬라이드 번호 20슬라이드 번호 21슬라이드 번호 22슬라이드 번호 23슬라이드 번호 24슬라이드 번호 25슬라이드 번호 26슬라이드 번호 27슬라이드 번호 28슬라이드 번호 29슬라이드 번호 30슬라이드 번호 31슬라이드 번호 32슬라이드 번호 33슬라이드 번호 34슬라이드 번호 35슬라이드 번호 36슬라이드 번호 37슬라이드 번호 38슬라이드 번호 39슬라이드 번호 40슬라이드 번호 41슬라이드 번호 42슬라이드 번호 43슬라이드 번호 44슬라이드 번호 45슬라이드 번호 46슬라이드 번호 47슬라이드 번호 48