first analysis steps o quality control and optimization o calibration and error modeling o data...

53
First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome Analysis (A. Poustka)

Post on 18-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

First analysis stepsFirst analysis stepso quality control and optimizationo calibration and error modelingo data transformations

Wolfgang Huber

Dep. of Molecular Genome Analysis (A. Poustka)

DKFZ Heidelberg

Page 2: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Acknowledgements

Anja von HeydebreckGünther Sawitzki

Holger Sültmann, Andreas Buness, Markus Ruschhaupt, Klaus Steiner, Jörg Schneider, Katharina Finis, Stephanie Süß, Anke Schroth, Friederike Wilmer, Judith Boer, Martin Vingron, Annemarie Poustka

Sandrine Dudoit, Robert Gentleman, Rafael Irizarry and Yee Hwa Yang: Bioconductor short course, summer 2002

and many others

Page 3: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

4 x 4 or 8x4 sectors

17...38 rows and columns per sector

ca. 4600…46000probes/array

sector: corresponds to one print-tip

a microarray slideSlide: 25x75 mm

Spot-to-spot: ca. 150-350 m

Page 4: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Terminologysample: RNA (cDNA) hybridized to the array,

aka target, mobile substrate.

probe: DNA spotted on the array, aka spot, immobile substrate.

sector: rectangular matrix of spots printed using the same print-tip (or pin), aka print-tip-group

plate: set of 384 (768) spots printed with DNA from the same microtitre plate of clones

slide, array

channel: data from one color (Cy3 = cyanine 3 = green, Cy5 = cyanine 5 = red).

batch: collection of microarrays with the same probe layout.

Page 5: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Raw datascanner signal

resolution:5 or 10 m spatial, 16 bit (65536) dynamical per channel

ca. 30-50 pixels per probe (60 m spot size)40 MB per array

Image Analysis

spot intensities2 numbers per probe (~100-300 kB)… auxiliaries: background, area, std dev, …

Page 6: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Image analysis

1. Addressing. Estimate location of spot centers.

2. Segmentation. Classify pixels as foreground (signal) or background.

3. Information extraction. For each spot on the array and each dye

• foreground intensities;• background intensities; • quality measures.

R and G for each spot on the array.

Page 7: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Segmentation

adaptive segmentationseeded region growing

fixed circle segmentation

Spots may vary in size and shape.

Page 8: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

spot intensity dataspot intensity data

two-color spotted arrays

Pro

bes (

gen

es)

n one-color arrays (Affymetrix, nylon)

conditions (samples)

Page 9: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Which genes are differentially transcribed?

Which genes are differentially transcribed?

same-same tumor-normal

log-ratio

Page 10: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

ratios and fold changes

Fold changes are useful to describe continuous changes in expression

10001500

3000

x3

x1.5

A B C

0200

3000

?

?

A B C

But what if the gene is “off” (below detection limit) in one condition?

Page 11: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

ratios and fold changes

Many interesting genes will be off in some of the conditions of interest

1.If you want expression measure (“net normalized spot intensity”) to be an unbiased estimator of abundance

many values 0 need something more than

(log)ratio

2. If you let expression measure be biased

can keep ratios. how do you chose the bias?

Page 12: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Raw data are not mRNA concentrations

o tissue contamination

o clone identification and mapping

o image segmentation

o RNA degradation

o PCR yield, contamination

o signal quantification

o amplification efficiency

o spotting efficiency

o ‘background’ correction

o reverse transcription efficiency

o DNA-support binding

o hybridization efficiency and specificity

o other array manufacturing-related issues

The problem is less that these steps are ‘not perfect’; it is that they may vary from gene to gene, array to array, experiment to experiment.

Page 13: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Sources of variationSources of variationamount of RNA in the biopsy efficiencies of-RNA extraction-reverse transcription -labeling-photodetection

PCR yieldDNA qualityspotting efficiency, spot sizecross-/unspecific hybridizationstray signal

Calibration Error model

Systematic o similar effect on many measurementso corrections can be estimated from data

Stochastico too random to be ex-plicitely accounted for o “noise”

Page 14: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

iik ika a

ai per-sample offset

ik ~ N(0, bi2s1

2)

“additive noise”

bi per-sample normalization factor

bk sequence-wise probe efficiency

ik ~ N(0,s22)

“multiplicative noise”

exp( )iik k ikb b b

ik ik ik ky a b x

modeling ansatz

measured intensity = offset + gain true abundance

Page 15: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

The two-component model

raw scale log scale

“additive” noise

“multiplicative” noise

B. Durbin, D. Rocke, JCB 2001

Page 16: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Calibration ("normalization")

Calibration ("normalization")

Correct for systematic variations.To do: fit appropriate "correction parameters" ai, bi (and possibly more…) and apply to the data."Heteroskedasticity" (unequal variances) weighted regression or variance stabilizing transformation

Outliers: use a robust method

Page 17: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

the variance-mean dependence

the variance-mean dependence

data (cDNA slide):

relation between

mean u=E(Yik)

andvariance

v=Var(Yik):2 2 2

0( ) ( )v u c u u s

Page 18: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

variance stabilization

variance stabilization

Xu a family of random variables with

EXu=u, VarXu=v(u).

Define

var f(Xu ) independent of u

1( )

v( )

x

f x duu

derivation: linear approximation

Page 19: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

0 20000 40000 60000

8.0

8.5

9.0

9.5

10

.01

1.0

raw scale

tra

nsf

orm

ed

sca

le

variance stabilization

f(x)

x

Page 20: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

variance stabilizing transformations

variance stabilizing transformations

1( )

v( )

x

f x duu

1.) constant variance

( ) constv u f u

2.) const. coeff. of variation

2( ) logv u u f u

4.) microarray

2 2 00( ) ( ) arsinh

u uv u u u s f

s

3.) offset2

0 0( ) ( ) log( )v u u u f u u

Page 21: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

the arsinh transformationthe arsinh transformation

- - - log u

——— arsinh((u+uo)/c)

2arsinh( ) log 1

arsinh log log2 0limx

x x x

x x

intensity-200 0 200 400 600 800 1000

Page 22: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

parameter estimationparameter estimation

2Yarsinh , (0, )iki

k ki kii

aN c

b

:

o maximum likelihood estimator: straightforward – but sensitive to deviations from normality

o model holds for genes that are unchanged; differentially transcribed genes act as outliers.

o robust variant of ML estimator, à la Least Trimmed Sum of Squares regression.

o works as long as <50% of genes are differentially transcribed

ii k i k i ka a L a i p e r - s a m p l e o ff s e t

L i k l o c a l b a c k g r o u n d p r o v i d e d b y i m a g e a n a l y s i s

i k ~ N ( 0 , b i2 s 1

2 )

“ a d d i t i v e n o i s e ”

b i p e r - s a m p l en o r m a l i z a t i o n f a c t o r

b k s e q u e n c e - w i s el a b e l i n g e ffi c i e n c y

i k ~ N ( 0 , s 22 )

“ m u l t i p l i c a t i v e n o i s e ”

e x p ( )ii k k i kb b b

i k i k i k i ky a b x

m e a s u r e d i n t e n s i t y = o ff s e t + g a i n * t r u e a b u n d a n c e

Page 23: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Least trimmed sum of squares regression

Least trimmed sum of squares regression

0 2 4 6 8

02

46

8

x

y 2n/2

( ) ( )i=1

( )i iy f x

minimize

- least sum of squares - least trimmed sum of squares

Page 24: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

evaluation: effects of different data transformations

evaluation: effects of different data transformations

diff

ere

nce r

ed

-g

reen

rank(average)

Page 25: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Coefficient of

variation

Coefficient of

variation

cDNA slide: H. Sueltmann

Page 26: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

evaluation: a benchmark for Affymetrix genechip expression measures

o Data: Spike-in series: from Affymetrix 59 x HGU95A, 16 genes, 14 concentrations, complex backgroundDilution series: from GeneLogic 60 x HGU95Av2,liver & CNS cRNA in different proportions and amounts

o Benchmark: 15 quality measures regarding-reproducibility-sensitivity -specificity Put together by Rafael Irizarry (Johns Hopkins) http://affycomp.biostat.jhsph.edu

Page 27: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

ROC curves

Page 28: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

affycomp results (28 Sep 2003) good

bad

Page 29: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

SummarySummary

log-ratio

'glog' (generalized log-ratio)

- interpretation as "fold change"

+ interpretation even in cases where genes are off in some conditions

+ visualization

+ can use standard statistical methods (hypothesis testing, ANOVA, clustering, classification…) without the worries about low-level variability that are often warranted on the log-scale

2 2

2 2

log

log

i

j

i i i

j j j

xx

x x c

x x c

Page 30: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Availability

o implementation in Ro open source package

vsn on www.bioconductor.org

o Bioconductor is an international collaboration on open source software for bioinformatics and statistical omics

Page 31: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Quality control:

diagnostic plots and artifacts

Page 32: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Scatterplot, colored by PCR-plateTwo RZPD Unigene II filters (cDNA nylon membranes)

PCR platesPCR plates

Page 33: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

PCR platesPCR plates

Page 34: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

PCR plates: boxplotsPCR plates: boxplots

Page 35: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

array batchesarray batches

Page 36: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

print-tip effectsprint-tip effects

-0.8 -0.6 -0.4 -0.2 0.0 0.2

0.0

0.2

0.4

0.6

0.8

1.0

41 (a42-u07639vene.txt) by spotting pin

log(fg.green/fg.red)

1:11:21:31:42:12:22:32:43:13:23:33:44:14:24:34:4

q (log-ratio)

F(q

)

Page 37: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

spotting pin quality declinespotting pin quality decline

after delivery of 3x105 spots

after delivery of 5x105 spots

H. Sueltmann DKFZ/MGA

Page 38: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

spatial effectsspatial effects

R Rb R-Rbcolor scale by rank

spotted cDNA arrays, Stanford-type

another array:

print-tip

color scale

~ log(G)

color scale

~ rank(

G)

Page 39: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

10 20 30 40 50 60

1020

3040

5060

1:nrhyb

1:nr

hyb

1 2 3 4 5 6 7 8 910111213141516171823242526272829303132333435363738737475767778798081828384858687888990919293949596979899100

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Batches: array to array differences dij = madk(hik -hjk)

arrays i=1…63; roughly sorted by time

Page 40: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Density representation of the scatterplot(76,000 clones, RZPD Unigene-II filters)

Page 41: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Oligonucleotide chips

Page 42: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Affymetrix files

Main software from Affymetrix: MAS - MicroArray Suite.

DAT file: Image file, ~10^7 pixels, ~50 MB.

CEL file: probe intensities, ~400000 numbers

CDF file: Chip Description File. Describes which probes go in which probe sets (genes, gene fragments, ESTs).

Page 43: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Image analysisDAT image files CEL filesEach probe cell: 10x10 pixels.Gridding: estimate location of probe cell

centers.Signal:

– Remove outer 36 pixels 8x8 pixels.– The probe cell signal, PM or MM, is the 75th

percentile of the 8x8 pixel values.Background: Average of the lowest 2% probe

cells is taken as the background value and subtracted.

Compute also quality values.

Page 44: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Data and notationData and notationPMijg , MMijg = Intensities for perfect match and

mismatch probe j for gene g in chip i

i = 1,…, n one to hundreds of chips

j = 1,…, J usually 11 or 16 probe pairs

g = 1,…, G 6…30,000 probe sets.

Tasks: calibrate (normalize) the measurements from different chips

(samples)summarize for each probe set the probe level data, i.e., 16 PM

and MM pairs, into a single expression measure.compare between chips (samples) for detecting differential

expression.

Page 45: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

expression measures: MAS 4.0

expression measures: MAS 4.0

Affymetrix GeneChip MAS 4.0 software uses AvDiff, a trimmed mean:

o sort dj = PMj -MMj o exclude highest and lowest valueo J := those pairs within 3 standard

deviations of the average

1( )

# j jj J

AvDiff PM MMJ

Page 46: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Expression measures MAS 5.0

Expression measures MAS 5.0

Instead of MM, use "repaired" version CTCT= MM if MM<PM = PM / "typical log-ratio"if MM>=PM

"Signal" = Tukey.Biweight (log(PM-CT))

(… median)

Tukey Biweight: B(x) = (1 – (x/c)^2)^2 if |x|<c, 0 otherwise

Page 47: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Expression measures: Li & Wong

Expression measures: Li & Wong

dChip fits a model for each gene

where

– i: expression index for gene i

– j: probe sensitivity

Maximum likelihood estimate of MBEI is used as expression measure of the gene in chip i.

Need at least 10 or 20 chips.

Current version works with PMs only.

2, (0, )ij ij i j ij ijPM MM N

Page 48: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Affymetrix: IPM = IMM + Ispecific ?

log(PM/MM)0From: R. Irizarry et al.,

Biostatistics 2002

Page 49: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Chemistry

i

25

1

log log ( )i ii

Y x w s

wi

position- and sequence-specific effects wi(s):Naef et al., Phys Rev E 68 (2003)

Page 50: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Expression measures RMA: Irizarry et al. (2002)

Expression measures RMA: Irizarry et al. (2002)

o Estimate one global background value b=mode(MM). No probe-specific background!

o Assume: PM = strue + b

Estimate s0 from PM and b as a conditional expectation E[strue|PM, b].

o Use log2(s).

o Nonparametric nonlinear calibration ('quantile normalization') across a set of chips.

Page 51: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

AvDiff-like

with A a set of “suitable” pairs.

Li-Wong-like: additive model

Estimate RMA = ai for chip i using robust method median polish (successively remove row and column medians, accumulate terms, until convergence). Works with d>=2

2

1RMA log ( )j j

j A

PM BG

Robust expression measures RMA: Irizarry et al. (2002)

Robust expression measures RMA: Irizarry et al. (2002)

2log ( )ij i j ijPM BG a b

Page 52: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

Software for pre-processing of Affymetrix

data• Bioconductor R package affy.• Background estimation.• Probe-level normalization.• Expression measures• Two main functions: ReadAffy,

expresso.• Can use vsn as a normalization

method for expresso.

Page 53: First analysis steps o quality control and optimization o calibration and error modeling o data transformations Wolfgang Huber Dep. of Molecular Genome

ReferencesNormalization for cDNA microarray data: a robust composite method

addressing single and multiple slide systematic variation. YH Yang, S Dudoit, P Luu, DM Lin, V Peng, J Ngai and TP Speed.  Nucl. Acids Res. 30(4):e15, 2002.

Variance Stabilization Applied to Microarray Data Calibration and to the Quantification of Differential Expression. W.Huber, A.v.Heydebreck, H.Sültmann, A.Poustka, M.Vingron. Bioinformatics, Vol.18, Supplement 1, S96-S104, 2002.

A Variance-Stabilizing Transformation for Gene Expression Microarray Data. : Durbin BP, Hardin JS, Hawkins DM, Rocke DM. Bioinformatics, Vol.18, Suppl. 1, S105-110.

Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U, Speed, TP (2002). Accepted for publication in Biostatistics. http://biosun01.biostat.jhsph.edu/~ririzarr/papers/index.html

A more complete list of references is in:Elementary analysis of microarray gene expression data. W. Huber,

A. von Heydebreck, M. Vingron, manuscript. http://www.dkfz-heidelberg.de/abt0840/whuber/