finite triple integral representation for the polynomial set tn(x1 ,x2 ,x3 ,x4 )

6
IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 6 Ver. 1 (Nov. - Dec. 2015), PP 09-14 www.iosrjournals.org DOI: 10.9790/5728-11610914 www.iosrjournals.org 9 | Page Finite Triple Integral Representation For The Polynomial Set T n (x 1 ,x 2 ,x 3 ,x 4 ) Ahmad Quaisar Subhani, Brijendra Kumar Singh, Ahmad Quaisar Subhani, Dept. of Maths,Maulana Azad College of Engg and technology,Anisabad,Patna, Brijendra Kumar Singh,Department of Mathematics, J.P. University, Chapra,India Abstract:-Recently,we introduced “An unification of certain generalized Ge ometric polynomial Set T n (x 1 ,x 2 ,x 3 ,x 4 ) ,with the help of generating function which contains Appell function of four variables in the notation of Burchnall and Choundy [4] associated with Lauricella function. This generated hypergeometric polynomial Set covers as many as thirty four orthogonal and non-orthogonal polynomials.In the present paper an attempt has been made to express a Triple finite integral representation of the polynomial set T n (x 1 ,x 2 ,x 3 ,x 4 ). Key words:-Appell function, Lauricella form, Generalized hypergeometric polynomial . I. Introduction The generalized polynomial set T n (x 1 ,x 2 ,x 3 ,x 4 )is defined by means of generating relation 1 1 m t d e 3 2 4 3 2 4 1 2 4 2 3 4 ( ); ( ); ( ) , , , ( );( );( ) r u i m m m m m m s v i A C Eg F xt x t x t x t B D Fq 1 2 3 4 1 2 3 4 : : : : : : : 1 2 3 4 , : : : : :( ):( ):( ) 0 , , , r u g i s v i A C E n nmm m m m B D Fq n T x x x x t (1.1) where (i = 1, 2, 3, 4) and 1 2 3 4 , , , , are real and 1 2 3 4 , , , , mm m m m are positive integer. The left hand side of (1.1) contains the product of two generalized hypergeometric function which contains Appell function of four variables in the notation of Burchanall and Chaundy [4] associated with Lauricella function. The polynomial set contains a number of parameters for simplicity, it is denoted by T n (x 1 ,x 2 ,x 3 ,x 4 ), where n is the order of the polynomial set. After little ,simplification(1.1)gives, 1 2 3 4 ( , , , ) n T xx x x 11 22 11 22 33 11 3 1 2 4 1 2 3 4 0 0 0 0 n mP mP n mP mP mP n n mP m m m m P P P P 11 2 2 3 3 4 4 11 2 2 3 3 4 4 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( ) ( ) r n mP m P m P m P s n mP m P m P m P A B 1 2 3 1 2 3 1 2 3 1 2 3 11 2 2 3 3 4 4 11 2 2 3 3 4 4 ( ) ( ) ) ) u g g g P P P v q q q P P P C n mP mP mP mP E E E D n mP mP mP mP F F F 3 4 11 22 33 44 1 3 2 4 1 4 4 22 4 4 1 1 3 4 2 3 4 1 2 3 4 2 ! ! ! ! P P n mP mP mP mP P m P m P m g P mP q P E x x x F P P x P P …. ... (1.2)

Upload: iosrjce

Post on 09-Feb-2017

100 views

Category:

Science


2 download

TRANSCRIPT

Page 1: Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )

IOSR Journal of Mathematics (IOSR-JM)

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 6 Ver. 1 (Nov. - Dec. 2015), PP 09-14 www.iosrjournals.org

DOI: 10.9790/5728-11610914 www.iosrjournals.org 9 | Page

Finite Triple Integral Representation For The Polynomial Set

Tn(x1,x2,x3,x4)

Ahmad Quaisar Subhani, Brijendra Kumar Singh, Ahmad Quaisar Subhani, Dept. of Maths,Maulana Azad College of Engg and technology,Anisabad,Patna,

Brijendra Kumar Singh,Department of Mathematics, J.P. University, Chapra,India

Abstract:-Recently,we introduced “An unification of certain generalized Geometric polynomial Set Tn

(x1,x2,x3,x4) ,with the help of generating function which contains Appell function of four variables in

the notation of Burchnall and Choundy [4] associated with Lauricella function. This generated

hypergeometric polynomial Set covers as many as thirty four orthogonal and non -orthogonal

polynomials.In the present paper an attempt has been made to express a Triple finite integral

representation of the polynomial set Tn

(x1,x2,x3,x4).

Key words:-Appell function, Lauricella form, Generalized hypergeometric polynomial.

I. Introduction

The generalized polynomial set Tn

(x1,x2,x3,x4)is defined by means of generating relation

11

mt d

e

32 432 41 2 42 3 4

( ); ( ); ( )

, , ,

( );( );( )

r u i

mm mmm m

s v i

A C Eg

F x t x t x t x t

B D Fq

1 2 3 4

1 2 3 4

: : : : : : :

1 2 3 4, : : : : : ( ) : ( ) : ( )0

, , ,

r u gi

s v i

A C E nn m m m m m B D Fq

n

T x x x x t

… (1.1)

where (i = 1, 2, 3, 4) and 1 2 3 4, , , , are real and 1 2 3 4, , , ,m m m m m are positive

integer. The left hand side of (1.1) contains the product of two generalized hypergeometric function which

contains Appell function of four variables in the notation of Burchanall and Chaundy [4] associated with

Lauricella function. The polynomial set contains a number of parameters for simplicity, it is denoted by Tn

(x1,x

2,x

3,x

4), where n is the order of the polynomial set.

After little ,simplification(1.1)gives,

1 2 3 4( , , , )nT x x x x1 1 2 2 1 1 2 2 3 31 1

31 2 4

1 2 3 40 0 0 0

n m P m P n m P m P m Pn n m P

mm m m

P P P P

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

( )

( )

r n m P m P m P m P

s n m P m P m P m P

A

B

1 2 3

1 2 3

1 2 31 2 3

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

( ) ( ) ) )

u g g gP P P

v q q qP P P

C n m P m P m P m P E E E

D n m P m P m P m P F F F

3 41 1 2 2 3 3 4 4 1 32 41

44

2 2

44

1 1 3 42 3 4

1 2 3 42! ! ! !

P Pn m P m P m P m P P mP mPmg

P

m Pq

P

E x x x

F P P x P P

…. ... (1.2)

Page 2: Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )

Finite Triple Integral Representation For The Polynomial Set Tn(x1,x2,x3,x4)

DOI: 10.9790/5728-11610914 www.iosrjournals.org 10 | Page

The polynomial Set Tn

(x1,x

2,x

3,x

4) happens to the generalization of as many thirty four orthogonal and non-

orthogonal polynomials.

Notations

a)

I. (m)=1.2.3…….m

II. (Ap

)=A1.A

2.A

3.…….A

p

III. [(Ap

)]=A1,A

2,A

3…….A

p

IV. [(Ap

)]n

=(A1)n

,(A2)n

,(A3

)n

…….(Ap)n

V. 1 1( , ) , , ......

b b b aa b

a a a

b)

I.

( ) ( )

( ) ( ) !

nm

r un n

s vn n

A C xM

B D n

2 Theorem : 2 31, 1m m and 4 1m , we have

1 2 3 4, , ,nT x x x x

1 1 1 1 1 11

0 0 0

1 a b ca b c M

a b c

1 2 3 4

1 2 3 4

1 2 3 41 v : : : :

: : : :

[ : , , , ], [( 1) :1],

___________, [( ) :1], [( ) :1], [( ) :1]

s g g g g

r u q q q q

n m m m m a b cF

a b c

1 2 3 4 v 1 2 3 4(1 ( ) ) : , 1, 1, 1 , (1 ( ) ) : , , , ,sB n m m m m D n m m m m

1 2 3 4 1 2 3 4(1 ( ) ) : , 1, 1, 1 , (1 ( ) ) : , , ,r uA n m m m m C n m m m m ,

1

1 2 3 4

1

1 2 3 4

( 1)

1

1

( ) :1 , ( ) :1 , ( ) :1 , ( ) :1 1;

( ) :1 , ( ) :1 , ( ) :1 , ( ) :1

m r s u vg g g g

mm

q q q q

E E E E

F F F F x

,

2 1 2

2

( 1)

2

1 2

1,

m r s u v r r

mmx x

33

3

( 1)

3 3

1

1,

m r s u v r sm

mm

x

x

44

4

( 1)

4 4

1

1m r s u v r sm

mm

x

x

d d d …… (2.1)

Proof :-We have

I

1 1 2 21 1 1 1 2 2 3 3

31 2 4

1 2 3 4

1 1 1 1 1 1

0 0 00 0 0 0

n m P m Pn n m P n m P m P m P

mm m ma b c

P P P P

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

( 1) ( 1) ( 1)

v( 1) ( 1) ( 1)

( ) ( )

( ) ( )

r un m P m P m P m P n m P m P m P m P

s n m P m P m P m P n m P m P m P m P

A C

B D

1 1 2 2 3 3 4 4

1 2 3 41 2 43

1 2 3 41 2 43

1

1 1 2 2 3 3 4 4 !

n m P m P m P m P

g g g gP P PP

q q q qP P PP

E E E E x m

F F F F n m P m P m P m P

Page 3: Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )

Finite Triple Integral Representation For The Polynomial Set Tn(x1,x2,x3,x4)

DOI: 10.9790/5728-11610914 www.iosrjournals.org 11 | Page

4331 2 41

1

2 2

1 1 1

3 41 2 3 4 3

1 2 3 42

1

! ! ! ! ( ) ( ) ( )

PPmP P mP

P

m PP P P

x x a b c d d d

P x P P P a b c

1 1 2 21 1

31 2

1 1 1

1 2 3

1 1 1 1 1 1

0 0 00 0 0

n m P m Pn n m P

mm ma P b P c P

P P P

1 1 2 2 3 3

4

1 1 2 2 3 3 4 4

4 1 1 2 2 3 3 4 4

( 1) ( 1) ( 1)

0 ( 1) ( 1) ( 1)

( )

( )

n m P m P m P

mr n m P m P m P m P

sP n m P m P m P m P

A

B

1 2 3 41 1 2 2 3 3 4 4 1 2 43

1 2 3 41 1 2 2 3 3 4 4 1 2 43

v

( )

( )

u g g g gn m P m P m P m P P P PP

q q q qn m P m P m P m P P P PP

C E E E E

D F F F F

3 4131 2 4

1

22

1 1 1

3 41 2 3 3

1 2 3 42

1

! ! ! !

P PP mP P m

P

Pm

P P P

x x a b c

P x P P P a b c

1 1 2 2 3 3 4 4

1

1 1 2 2 3 3 4 4 !

n m P m P m P m Pmx

d d dn m P m P m P m P

1 1 2 21 1 1 1 2 2 3 3

31 2 4

1 2 3 40 0 0 0

n m P m Pn n m P n m P m P m P

mm m m

P P P P

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

( 1) ( 1) ( 1)

v( 1) ( 1) ( 1)

( ) ( )

( ) ( )

r un m P m P m P m P n m P m P m P m P

s n m P m P m P m P n m P m P m P m P

A C

B D

1 1 2 2 3 3 4 4

1 2 3 41 2 43

1 2 3 41 2 43

1

1 1 2 2 3 3 4 4 !

m P m P m P m Pm

g g g gP P PP

q q q qP P PP

E E E E x

F F F F n m P m P m P m P

43132 4

1

2 2

1 1 1

1 3 42 3 4 3

1 2 3 42

1

! ! ! !

PPP mP m

P

m P

P P P

x x a b c

P x P P P a b c

1 1 1

11 3

a P b P c P

a b c P

Page 4: Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )

Finite Triple Integral Representation For The Polynomial Set Tn(x1,x2,x3,x4)

DOI: 10.9790/5728-11610914 www.iosrjournals.org 12 | Page

1 1 2 2 3 3 4 4

1 2 3 4 1 1 2 2 3 3 4 4

( 1) ( 1) ( 1)

, , , 0 ( 1) ( 1) ( 1)

1 ( )

1 1 ( )

s m P m P m P m P

rP P P P m P m P m P m P

B na b c

a b c A n

1 1 1 2 2

1 1 2 2

( 1) ( 1)

1 2

1 1 1 2 2

1 1

! !

P m r s u v P m r s u v r s P

m P m Pm mx P x x P

… (2.2)

The single terminating factor 1 1 2 2 3 3 4 4m P m P m P m P

n

makes all

summation in (2.2) runs upto .

1 2 3 4, , ,1

n

a b cT x x x x

a b c

On using [16], hence the theorem.

1 1 1 1 1 1 1

0 0 0

n x y l m m nx y z z dx dy dz

1

l m n

l m n

Where 1x y z

3 Particular Cases

I. On taking 10 r s u v q , 1 11 g m m ; 1 2 11 , 1 E

and y for x1 in (2.1), we achieve

2nA y

1 1 1 1 1 1

0 0 0

1

!

na b ca b c y

a b c n

2, 1 , 1; 1

, , ;

n a b cF d d d

a b c y

(ii)If we set 0 r s u v ; 1 1 1 11 g q m m ; 1 1( ), ( ) p qE a F b

and 1

1x

x in (2.1) we have

1 1 , ;F n b x

1 1 1 1 1 1

0 0 0

1 a b ca b c

a b c

Page 5: Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )

Finite Triple Integral Representation For The Polynomial Set Tn(x1,x2,x3,x4)

DOI: 10.9790/5728-11610914 www.iosrjournals.org 13 | Page

, , 1;

, , , ;

p

q

n a a b cF x d d d

b a b c

(iii) On setting 1 10r s v g q ; 1 11 u m m , 1 11, 1C

and 1

xy

in (2.1) we have

nA y

1 1 1 1 1 1

0 0 0

1 1 1

!

n

a b cna b c

a b c n

, 1;

, , , ;

n a b cF y d d d

n a b c

(iv) If we set 10r s u g ; 1 11 v q m m ;

1 1

11 , 1 ,

2D F and 1

1

1

xx

x

, in (2.1), we get

( , )nP x

1 1 1 1 1 1

0 0 0

1 1 1

! 2

n

a b cnn

a b c x

a b c n

, , 1; 1

1 , , , ; 1

n n a b c xF d d d

a b c x

(v) On taking 10r s u g ; 1 11 v q m m ; 1

1

2 ;

1 1 ,D 1 1F and writing 1

1

x

x

for x1, in (2.1), we get

,nP x

1 1 1 1 1 1

0 0 0

1 1 1

! 2

a b cnn

a b c x

a b c n

, ; 1; 1

1 , , , ; 1

n n a b c xF d d d

a b c x

(vi) On making the substitution 10r s u g ; 1 11 v q m m ; 1

1

2 ;

1 11 , 1D F and writing 1

1

x

x

for x1 in (2.1), we get

,nP x

1 1 1 1 1 1

0 0 0

1 1 1

! 2

n

a b cnn

a b c x

a b c n

, , 1; 1

1 , , , ; 1

n n a b c xF d d d

a b c x

Page 6: Finite Triple Integral Representation For The Polynomial Set Tn(x1 ,x2 ,x3 ,x4 )

Finite Triple Integral Representation For The Polynomial Set Tn(x1,x2,x3,x4)

DOI: 10.9790/5728-11610914 www.iosrjournals.org 14 | Page

(vii) If we take 1 10r s v g q ; 1 11u m m ; 1c and 1

x

for x, in (2.1), we get

nF x

1 1 1 1 1 1

0 0 0

1

!

a b cna b c

a b c n

, 1;

1 , , , ;

n a b cF x d d d

n a b c

References [1]. Agarwal, R.P. (1965):An extension of Meijer's G-function, Proc. Nat. Institute Sci. India, 31, a, 536-546.

[2]. Abdul Halim, N and:A characterization of Laguerre polynomials,

AI_Salam, W.A. (1964) Rend, Sem, Univ., padova, 34,176 -179.

[3]. Agarwal, B.D. and:On a multivariate polynomials system

[4]. Mukherjee, S. (1988)proceedings of national symposium on special functions and their applications. Gorakhpur (india) p. 153 -158.

[5]. Burchnall, J.L. and:Expansions of Appell's double hyper

[6]. Chaundy, T.W. (1941)geometric functions (ii), Quart. J. Math. Oxford ser. 12,112 -128

[7]. Carlitz, L. and : Some hyper geometric polynomials

[8]. Shrivastawa, H.M. (1976)associated with the Lauricella function ED of several variables

[9]. Edwards, J. (1964) :Treatise on integral Calculus, vols. I, II, Chelsea Publishing Company, New York.

[10]. Erdelyi, A. (1937) :Beitragzurtheorie der Konfluentenhypergeometrichenfuncktionen Von nehrerebveranderlichen, Akad. derWiss.

Wiss. Wien. Math. Nat. v. II a, 146 (7 and 8), p. 431- 467.

[11]. Rain ville,E.D. (1960):Special functions. Mac Millan Co. New York.

[12]. Kalla, Shymal (1988) :Integral of generalized Jacobi; Function, Proceedings of the national Academy of Sci. India. Sac A, Par t I,

127

[13]. Szego, G. (1948) :On an inequality ofP. Turan Concerning Legendre polynomials, Bull. Amer. Math. Soc., 54,401-405.