finite size scaling and quantum criticality

Upload: liakman

Post on 10-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    1/67

    Finite Size Scaling andFinite Size Scaling and

    Quantum CriticalityQuantum Criticality

    Sabre Kais

    Department of ChemistryBirck Nanotechnology Center

    Purdue UniversityWest Lafayette, IN 47907

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    2/67

    Kais

    Research GroupDepartment of ChemistryPurdue University

    Finite Size Scalingin

    Quantum Mechanics

    Quantum Computingand

    Quantum InformationTheory

    Qi WeiWinton Moy

    Dr. Pablo Serra

    Zhen Huang

    Hefeng WangXu Qing

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    3/67

    IntroductionIntroduction

    Finite Size Scaling In Quantum MechanicsFinite Size Scaling In Quantum Mechanics

    ApplicationsApplications

    (A)(A) Stability of atoms, molecules and quantum dotsStability of atoms, molecules and quantum dots

    (B)(B) Atomic and molecular stabilization in superintenseAtomic and molecular stabilization in superintenselaser fieldslaser fields

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    4/67

    Statistical Mechanics

    Classical Quantum

    Phase Transitions

    Free EnergyF(Ki)=-KBT log(Z)

    Phase Transitions

    T 0Ground State :)(0 iE

    Critical Phenomena

    Correlation Length )(~ CTT

    Critical Phenomena

    Mass Gap of H )(~

    1CE

    Finite Size ScalingThermodynamic Limit

    N

    Finite Size ScalingNumber of Basis Functions

    M

    Applications Applications

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    5/67

    Phase Transitions

    Classical:Classical: Classical phase transitions are driven by thermal energyClassical phase transitions are driven by thermal energyfluctuationsfluctuations

    Like the melting of an ice cube:Like the melting of an ice cube:

    Solid GasLiquid

    P

    T

    SolidLiquid

    Gas

    CP

    Quantum:Quantum: Quantum phase transitions, at T=0, are driven by theQuantum phase transitions, at T=0, are driven by theHeisenberg uncertainty principleHeisenberg uncertainty principle

    Like the melting of a Wigner crystal: Two dimensional electLike the melting of a W igner crystal: Two dimensional electronron

    layer trapped in a quantum w elllayer trapped in a quantum well

    crystalWigner liquidFermi

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    6/67

    Quantum Phase Transitions

    Transitions that take place at the absolute zero oftemperature, T=0, where crossing the phaseboundary means that the quantum ground state

    energy , of the system changes in somefundamental way.

    This is accomplished by changing some parameterin the Hamiltonian of the system .

    We shall identify any point of non-analyticity in theground state energy , as a quantum phase

    transition.

    )(0 E

    )(0 H

    C =

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    7/67

    Phase Transition

    Free energy: f[K]=-kBT log[Z]

    Coupling Constants: {K1, K2; KD}

    As a function of [K], f[K] is analytic almost everywhere

    Possible non-analyticities of f[K] are points (DS=0),

    lines (DS=1), planes (DS=2),

    Regions of analyticity of f[K] are called phases

    PartitionFunction

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    8/67

    Phase Transitions

    First-order:

    is discontinuous across a phase boundaryiKf

    Continuous Phase Transition:

    All are continuous across the phase boundary.But, second derivatives or higher derivatives arediscontinuous or divergent

    iKf

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    9/67

    Phase Transitions

    P

    TCT

    CP

    SolidLiquid

    Gas

    CP

    T

    CT

    Liquid

    PhaseOne

    Gas

    PhasesTwo

    327.0 =

    +

    CTT

    CriticalExponentOrder

    Parameter

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    10/67

    Critical Exponents

    The critical exponents describe the nature of the singularities in various measurablequantities at the critical point ],,,,,[

    In the limit CTT

    Heat Capacity:

    Order Parameter:

    Susceptibility:

    Equation of State:

    Correlation Length:

    Scaling Laws: Fisher:

    Rushbrooke:

    Widom:

    Josephson:

    )2( =

    22 =++

    )1( =

    = 2d

    CTTC~

    CTTM ~

    CTT~

    1~

    CTT~

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    11/67

    Critical Exponents],,,,,[

    ExponentExponent THTH EXPTEXPT MFTMFT ISING2ISING2 ISING3ISING3 HEIS3HEIS3

    00--0.140.14 00 00 0.120.12 --0.140.14

    0.320.32--0.390.39 1/81/8 0.310.31 0.30.3

    1.31.3--1.41.4 11 7/47/4 1.251.25 1.41.4

    44--55 33 1515 55

    0.60.6--0.70.7 11 0.640.64 0.70.7

    0.050.05 00 0.050.05 0.040.04

    22 2.002.000.010.01 22 22 22 22

    11 0.930.930.080.08 11 11 11

    11 1.021.020.050.05 11 11 11 11

    11 4/d4/d 11 11 11

    ++ 2

    )(

    )2( d)2(

    TH. Theoretical values (from scaling laws); EXPT. Experimental values (from a variety of

    systems); MFT. Mean field theory; ISINGd. Ising model in d dimension; HEIS3. classicalHeisenberg model. D=3

    Kenneth G. Wilson (1982)

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    12/67

    Renormalization GroupRenormalization Group

    The Nobel Prize in Physics 1982The Nobel Prize in Physics 1982

    " for his theory for critical phenomena inconnection w ith phase transitions"

    Kenneth G. Wilson

    Cornell University

    Q t P titi F ti Z

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    13/67

    Z=Tr exp[-H]

    [ ]N

    ee NHH

    ==

    andintervaltimeis

    Quantum Partition Function Z

    =

    n mmmm

    HNHHH

    N

    nemmemmemmenZ,...,,,

    32211

    321

    )(

    Has the form of a classical partition function, i.e. a sum over

    configurations expressed in terms of a transfer matrix, if we think

    about the imaging time as an additional spatial dimension

    dimensions1)(dClassical

    itdimensionsdQuantum

    +

    +

    iT

    ee iHTH

    operator)evolution(Time:matrixdensityOperator

    FeynmanPath-Integral

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    14/67

    Analogies

    Classical (KT)Classical (KT) Quantum (T 0)Quantum (T 0)

    (D+1) space dimension(D+1) space dimension D space, 1 timeD space, 1 time

    Transfer MatrixTransfer Matrix Quantum HQuantum HPartition FunctionPartition Function Generating FunctionalGenerating Functional

    EqualibriumEqualibrium StateState Ground StateGround State

    Ensemble AverageEnsemble Average Expectation ValuesExpectation Values

    Free EnergyFree Energy Ground State of HGround State of H

    TemperatureTemperature Coupling ConstantCoupling ConstantCorrelation FunctionsCorrelation Functions PropagatorsPropagators

    Correlation length ( )Correlation length ( ) Mass Gap of HMass Gap of H )( E1

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    15/67

    Finite Size Scaling

    In statistical mechanics, the finite size scaling method provides a

    systematic way to extrapolate information obtained from a finite

    system to the thermodynamic limit

    Importance

    The existence of phase transitions is associated w ith singularities

    of the free energy. These singularities occur only in the

    thermodynamic limit.

    Yan g an d Lee Phy s. Rev . 87 , 40 4 ( 19 52 )

    The Nobel Prize inPhysics 1957

    Fi it i ff t i

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    16/67

    Finite-size effects inStatistical Mechanics

    Cv

    TC

    N'''

    N

    N'

    N''

    T

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    17/67

    In the present approach, the finite size corresponds not to the

    spatial dimension, as in statistics, but to the number of elementsin a complete basis set used to expand the exact eigenfunction of a

    given Hamiltonian.

    Quantum Mechanics

    =

    ==

    M

    n

    nn

    n

    nn aa00

    (Variational Calculations)

    )(

    Classical

    N )(

    Quantum

    M

    Kais et . a l Phys. Rev. Letters 79, 3142 (1997)

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    18/67

    Finite Size Scaling: Quantum Mechanics

    VHH += 0

    =)(

    )()( )(NM

    n

    nN

    nN

    a

    The FSS ansatz

    CON

    NFOO ~)(

    )ln(

    ln

    ),;(

    )()(

    NN

    OO

    NN

    NN

    O =

    The curves intersect at the critical point

    ),;(),;( NNNN COCO =

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    19/67

    Short Range PotentialsYukawa Potential

    reH

    r

    = 221)(

    Basis Set

    )()()2)(1(

    1),( ,

    )2(2/ ++

    =

    mllnr

    n YrLelnln

    r

    Where is the Laguerre polynomial of degreen and order 2 and are the spherical harmonic

    functions of the solid angle

    )(, mlY

    )()2( rL ln

    Hamiltonian

    Yukawa

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    20/67

    839903.0=C

    Yukawa

    =

    VH

    H 839908.0=exact

    C

    Phys. Rev. A 57, R1481 (1998)

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    21/67

    Gaussians Slater

    Finite Size Scaling : Data

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    22/67

    Finite Size Scaling : DataCollapse

    )(~

    CC

    O +

    CON NFOO ~

    /

    0~)(

    xxFx

    /~ NO

    NN

    )(~ /1/ CN NGNO

    )(~/1/

    0 CNGNE

    Data Collapse ( )~/ GNE ( ) /1N

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    23/67

    Data Collapse

    1,2 ==

    ( ) /1NC

    Chem. Phys. Letters 319, 273 (2000)

    ( )~0 GNE ( ) NC

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    24/67

    -0.30

    -0.20

    -0.10

    0.00

    0.10

    0.20

    0.30

    0.82 0.86 0.90 0.94 0.98

    840.0=c

    )Re(

    )Im(

    56

    4=N

    11

    Yukawa 4=N

    Kais et al. Chem. Phys. Letters 423, 45 (2006)

    Quantum Mechanics

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    25/67

    Quantum Mechanics

    ComplexAngular

    Momentum

    ComplexTime

    ComplexEnergy

    ComplexCharge

    Regge

    Theory

    Instanton

    Method

    Rotation

    ComplexCoordinates

    Variation

    Method

    ScatteringAmplitude

    Tunneling ResonancesStability

    ofIons

    Two Electrons Atoms

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    26/67

    1221

    2

    2

    2

    1

    11

    2

    1

    2

    1)(

    rrrH

    +=

    2112 rrr = r12

    r2

    r1

    e-

    e-

    Z

    ZC=0.911

    ET=-0.5

    He like system

    )(gsE

    H like +e-

    ZC=0.911

    H- He Z

    Z

    1=

    Fi it Si S li d

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    27/67

    Finite Size Scaling procedure

    Hamiltonian:

    Basis Set:

    Hamiltonian Matrix:

    Renormalization Equation:

    ZrrrH

    1;

    11

    2

    1

    2

    1

    1221

    2

    2

    2

    1 =+=

    ( ) +=kji

    krrijrrjikji rerrerrC

    ,,

    12

    21

    21,, 2

    12121

    Nkji ++

    10 E,Es,EigenvalueLeading

    1

    0

    1

    0

    1

    )1()1(

    )()(

    +

    ++=

    NN

    NENE

    NENE

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    28/67

    097.1=C

    Kais et . a l , Phys. Rev. Letters 80, 5293 (1998)

    Conditional Probability

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    29/67

    C>

    C=

    C2.5D

    c=0.655a.u

    FSS for Critical Conditions forS bl Q d l d

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    43/67

    Stable Quadrupole Bound Anions

    Hamiltonian: consists of a charge q at the origin and two charges q/2 atz = +1 & -1

    Where is the variational parameter used to optimize the numerical results

    and is the Legendre polynomial of order l.

    Slater Basis Set:

    )(2 lP

    q q=QR

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    44/67

    Journal of Chemical Physics, 120, 8412 (2004)

    qc=1.46 a.u

    +

    2,,

    2

    qq

    q

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    45/67

    Journal of Chemical Physics, 120, 8412 (2004)

    qc=3.9 a.u

    ++ 2,,2

    qq

    q

    KCl2- Qzz=10 a.u

    K2Cl- Qyy=27 a.u

    (BeO)2- (13,13,0.5)

    CS2- Qzz=4 a.u

    Hexagonal Lattice of Quantum Dots

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    46/67

    Hexagonal Lattice of Quantum Dots

    Hubbard Model

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    47/67

    Hubbard Model

    > denotes

    the nearest-neighbor pairs.

    )( ii cc+

    iii ccn+=

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    48/67

    Experimentally, one can prepare quantum dots with:

    Different metal and this primarily determines the chemical

    potential

    Different sizes and this primarily determines U

    Different packing distance and this primarily determines t

    So the experimental Hamiltonian has 3 different parameters,

    , U and t, each of which can be independently varied. Theessential physics are embodied in the Hubbard Hamiltonian

    Why do we need to useRG method?

    Why do we need to useRG method?

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    49/67

    RG method?RG method?

    210 States

    N=7, 784 states in total

    14 States420 States 140 States

    N=19, 2 billion states

    RG ProceduresRG Procedures

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    50/67

    1. Divide the N-site lattice into appropriate ns -site blocks

    labled by p (p=1,2,,N/ns) and separate the HamiltonianH

    into intrablock partHIB and interblockHB ,

    2. Solve HB exactly to get the eigenvalues, the

    eigenfunctions of

    3. Treat each block as one site on a new lattice and

    the correlations between blocks as hopping

    interactions

    >

    +',

    ',pp

    pp

    p

    pIBB VHHHH

    )4,....2,1( snpi iE =

    Triangular lattice withHexagonal Block

    Triangular lattice withHexagonal Block

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    51/67

    Hexagonal BlockHexagonal Block

    Calculation Results for Metal-Insulator Transition

    Calculation Results for Metal-Insulator Transition

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    52/67

    0 5 10 15 200

    2

    4

    6

    8

    10

    Metal Insulator

    (U/t)c=12.5

    U/t

    p

    /t

    Charge gap:)(2)1()1( NENENEg ++=

    Phys. Rev. B66, 081101 (2002)

    Finite-size Scaling for Hubbardmodel on triangular lattice

    Finite-size Scaling for Hubbardmodel on triangular lattice

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    53/67

    6 8 10 12 14 16 18 20 2210

    -3

    10-2

    10-1

    100

    101

    102

    103

    104

    (U/t)c=12.52

    N=7,72,7

    3,7

    4,7

    5,7

    6,7

    7

    U/t

    g

    N0.4

    05/t

    -6000 -3000 0 3000 6000 900010

    -3

    10-2

    10-1

    100

    10

    1

    102

    103

    104

    (U-U c)N0.5

    /t

    g

    N0.4

    05/t

    model on triangular latticeode o t a gu a att ce

    J.X.Wang, S. Kais, Phys.Rev.B66,081101(2002)

    Atomic & Molecular Stabilizationby

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    54/67

    by

    Superintense Laser FieldswithProf. Dudley Herschbach

    Harvard University

    The Nobel Prize in Chemistry 1986

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    55/67

    Multiply charged negativeatomic ions

    in superintense laser fields

    The peak-power ofpulsed lasers hasincreased by 12 ordersf it d d i

    Superintense Laser Fields (I > a.u.)

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    56/67

    of magnitude during

    the past 4 decades.

    QUESTION: What is thehighest-level intensitypresently possible?

    ANSWER: The highestpossible focused laserintensity =1019 W/cm2

    This level of intensity canbe achieved withfemtosecond laser basedon Chirped PulseAmplification (CPA).

    The electric field of a monochromatic plane waveb

    Laser Atom Interaction

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    57/67

    can be written

    )sintancos()( 0 teteEtE yx +=

    ti

    rrtrp

    N

    i

    i

    j jii

    i=

    +

    ++

    =

    =1

    1

    1

    2 1

    )(

    1

    2

    1rr

    rr

    With ex and ey orthogonal to each other and to thepropagation direction

    )()()( 00 tEEtwherer

    r

    =

    0=E0/2, whereE0 and are the amplitude and frequency ofthe laser field.

    Moving frame of reference which follows the quiver motion of the classical electron

    on.polarizaticirculartoscorrespond/4

    onpolarizatilineartoscorrespond0

    =

    =

    High Frequency Floquet Theory

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    58/67

    Vo is the dressed Coulomb potential, is the time average of the shiftedCoulomb over one period of the laser

    ++=

    2

    0 000 )sintancos(2

    1),(

    yx eear

    draV

    v

    Hamiltonian of atomic system in super-intense laser fields

    ( ) =

    =

    ++=

    N

    i

    i

    j ji

    ioirr

    arVpH1

    1

    1

    02 1

    ,2

    1

    e-e termmlaser terermcoulomb trmkinetic teH +

    frequency.theisandintensitybeamaveraged-timetheisIwhere,2 Io =

    )(EH 0=Structure Equation:

    Hydrogen atom in super-intense linear laser fields

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    59/67

    J. H. Eberly, et alScience 262, 1229 (1993)M. Pont, et al. Phys. Rev. Lett. 61, 939 (1988)

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    60/67

    The electronic orbitals for the ground states. The presentation is given in a plane

    passing through the axis of the field taken as polar axis z

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    61/67

    Do atoms in superintense laser fields behavelike diatomic molecules ?

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    62/67

    Summary

    Symmetry breaking of electronic structure

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    63/67

    Symmetry breaking of electronic structure

    configurations resemble classical phase transitions.Phys. Rev. Letters 77, 466 (1996)

    J. Chem. Phys. 120, 2199 (2004)

    Phys. Rev. Letters 79, 3142 (1997)

    J. Chem. Phys. 120, 8412 (2004)

    Phys. Rev. Letters 80, 5293 (1998)Adv. Chem. Phys. 125, 1-100 (2003)

    Finite Size Scaling method can be used to obtaincritical parameters for the quantum Hamiltonian:Critical charges, critical dipole and quadrupole-bound

    anions,

    Quantum phase transitions can be used to explainand predict the stability of atoms, molecules andquantum dots.

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    64/67

    AtomicAtomic dianionsdianions are unstable in the gas phaseare unstable in the gas phase

    Multiply charged negative ions are stable inMultiply charged negative ions are stable in

    superintense laser fieldssuperintense laser fields

    (Intensity > 1(Intensity > 1 a.ua.u. ~. ~ 1016 W/cm2)

    J. Chem. Phys. 124, 201108 (2006)

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    65/67

    Thank You!Thank You!

    Question 1Question 1

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    66/67

    Question 2Question 2

  • 8/8/2019 Finite Size Scaling and Quantum Criticality

    67/67