finite element simulations with ansys workbench 13.pdf

249
8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 1/249 Chapter 1 Introduction  1 Chapter 1 Introduction 1.1 Case Study: Pneumatically Actuated PDMS Fingers 1.2 Structural Mechanics: A Quick Review 1.3 Finite Element Methods: A Conceptual Introduction 1.4 Failure Criteria of Materials 1.5 Review

Upload: erik-walker

Post on 02-Jun-2018

297 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 1/249

Chapter 1 Introduction  1

Chapter 1Introduction

1.1  Case Study: Pneumatically Actuated PDMS Fingers

1.2  Structural Mechanics: A Quick Review

1.3  Finite Element Methods: A Conceptual Introduction

1.4  Failure Criteria of Materials

1.5  Review

Page 2: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 2/249

Chapter 1 Introduction  Section 1.1 Case Study: Pneumatically Actuated PDMS Fingers  2

Section 1.1Case Study: Pneumatically Actuated

PDMS Fingers

[1] The pneumatic

fingers are part of a

surgical parallel robot

system remotely

controlled by a surgeon

through the Internet.

[2] A single

finger is studied in

this case.

Problem Description

Page 3: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 3/249

Chapter 1 Introduction  Section 1.1 Case Study: Pneumatically Actuated PDMS Fingers  3

[6] Undeformedshape.

[5] As air pressureapplies, the finger bends

downward.

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1.0

   S  t  r  e  s  s   (   M   P  a   )

Strain (Dimensionless)

[4] The strain-stresscurve of the PDMSelastomer used in

this case.

[3]Geometric

model.

Page 4: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 4/249

Chapter 1 Introduction  Section 1.1 Case Study: Pneumatically Actuated PDMS Fingers  4

Static Structural Simulations

[1] Preparematerial

properties.

[2] Creategeometric model.

[3] Generate finiteelement mesh.

[4] Set up loadsand supports.

[5] Solve themodel.

[6] View theresults.

Page 5: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 5/249

Chapter 1 Introduction  Section 1.1 Case Study: Pneumatically Actuated PDMS Fingers  5

[7] Displacements.

[8] Strains.

Page 6: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 6/249

Chapter 1 Introduction  Section 1.1 Case Study: Pneumatically Actuated PDMS Fingers  6

Buckling and Stress-Stiffening

[2] The upper surface wouldundergo compressive stress.

It in turn reduces the bendingstiffness.

[1] If we applyan upward

force here...

• Stress-stiffening : bending stiffness increases with increasing axial tensile stress, e.g., guitar string.

• The opposite also holds: bending stiffness decreases with increasing axial compressive stress.

• Buckling : phenomenon when bending stiffness reduces to zero, i.e., the structure is unstable.

Usually occurs in slender columns, thin walls, etc.

• Purpose of a buckling analysis is to find buckling loads and buckling modes.

Page 7: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 7/249

Chapter 1 Introduction  Section 1.1 Case Study: Pneumatically Actuated PDMS Fingers  7

Dynamic Simulations

• When the bodies move and

deform very fast, inertia effect 

and damping effect must beconsidered.

• When including these

dynamic effects, it is called a

dynamic simulation.

Page 8: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 8/249

Chapter 1 Introduction  Section 1.1 Case Study: Pneumatically Actuated PDMS Fingers  8

Modal Analysis

• A special case of dynamic

simulations is the simulation of free

vibrations, the vibrations of astructure without any loading.

• It is called a modal analysis.

• Purpose of a modal analysis is to

find natural frequencies and mode

shapes.

Page 9: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 9/249

Chapter 1 Introduction  Section 1.1 Case Study: Pneumatically Actuated PDMS Fingers  9

Structural Nonlinearities

-30

-25

-20

-15

-10

-5

0

0 40 80 120 160 200

   D  e   f   l  e  c  t   i  o  n

   (  m  m   )

Pressure (kPa)

[1] Solution of thenonlinear simulationof the PDMS finger.

[2] Solution of thelinear simulation pfthe PDMS finger.

• Linear simulations assume that

the response is linearly

proportional to the loading.

• When the solution deviates from

the reality, a nonlinear simulation

is needed.

• Structural nonlinearities come

from large deformation, topology

changes, nonlinear stress-strain

relationship, etc.

Page 10: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 10/249

Chapter 1 Introduction  Section 1.2 Structural Mechanics: A Quick Review  10

Section 1.2Structural Mechanics: A Quick Review

• Engineering simulation: finding the responses of a problem domain subject to

environmental conditions.

• Structural simulation: finding the responses of bodies subject to

environmental conditions.

• The bodies are described by geometries and materials.

• Environment conditions include support and loading conditions.

• Responses can be described by displacements, strains, and stresses.

Page 11: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 11/249

Chapter 1 Introduction  Section 1.2 Structural Mechanics: A Quick Review  11

Displacements

  X 

 Y 

[1] The body beforedeformation.

[2] The body afterdeformation.

[4] After thedeformation, the

particle moves to anew position.

[5] The displacementvector {u} of the particle isformed by connecting thepositions before and after

the deformation.

[3] An arbitrary particleof position ( X, Y, Z ), before

the deformation. 

u{ } = u X 

uY 

u Z { }

Page 12: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 12/249

Chapter 1 Introduction  Section 1.2 Structural Mechanics: A Quick Review  12

Stresses

  X  Y 

  Z 

 ! 

 ! YX 

 ! YZ 

 !  X 

 !  XY 

 !  XZ 

 ! 

 Z 

 !  ZX 

 !  ZY 

[1] The referenceframe XYZ .

[2] This face iscalled X-face, since the X -direction is normal

to this face.

[4] The X -componentof the stress on X -face.

[3] This face is callednegative X -face.

[5] The Y -

component of thestress on X -face.

[6] The Z -componentof the stress on X -face.

! { } =!  X 

  "  XY 

  "  XZ 

" YX 

  ! Y 

  " YZ 

"  ZX 

  "  ZY 

  !  Z 

#

$%%

&%%

'

(%%

)%%

 

!  XY 

  = ! YX 

,   ! YZ 

  = !  ZY 

,   !  XZ 

  = !  ZX 

 

! { } =   !  X 

  ! Y 

  !  Z 

  "  XY 

  " YZ 

  "  ZX { }

Page 13: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 13/249

Chapter 1 Introduction  Section 1.2 Structural Mechanics: A Quick Review  13

Strains

  X 

 Y 

  ! A   !B

  !C 

  !!B

  !!C 

  A  B

 C 

  !!!C 

  !!!B

 D

[2] Original

configuration ABC .

[3] Afterdeformation,

 ABC  moves to! A   !B   !C  .

[4] To compare withoriginal configuration,rotate ! A   !B   !C  to a new

configuration ! A   !!B   !!C  .

[5] Translate  ! A   !!B   !!C   so

that  ! A coincides with A.

The new configuration is A   !!!B   !!!C  . Now C   !!!C  is the

amount of stretch of ABC  inY -face.

[6] The vector BD describes the stretch of

 ABC  in X -face.

[7] And the vectorD   !!!B  describes the twist

of ABC  in X-face.

[1] The referenceframe.

 

Strain on X -face =B   !!!B

 AB

 

!  X 

  =

BD

 AB,   "  

 XY   =

D   ###B

 AB

Page 14: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 14/249

Chapter 1 Introduction  Section 1.2 Structural Mechanics: A Quick Review  14

 

! { } =!  X 

  "   XY 

  "   XZ 

"  YX 

  ! Y 

  "  YZ 

"   ZX 

  "   ZY 

  !  Z 

#

$%%

&%%

'

(%%

)%%

 

!   XY 

  = !  YX 

,   !  YZ 

  = !   ZY 

,   !   XZ 

  = !   ZX 

 

! { } =   !  X 

  ! Y 

  !  Z 

  "   XY 

  "  YZ 

  "   ZX { }

• Physical meaning of strains:

• The normal strain !  X 

is the

percentage of stretch of a fiber which

lies along X -direction.

• The shear strain !   XY 

 is the angle

change (in radian) of two fibers lying

on XY -plane and originally forming a

right angle.

• We can define other strain components

in a similar way.

Page 15: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 15/249

Chapter 1 Introduction  Section 1.2 Structural Mechanics: A Quick Review  15

Governing Equations

 

u{ } = u X 

uY 

u Z { }

 

! { } =   !  X 

  ! Y 

  !  Z 

  "  XY 

  " YZ 

  "  ZX { }

 ! { }

=  !  X    ! Y    !  Z    "   XY    "  YZ    "   ZX 

{ }Totally 15 quantities

• Equilibrium Equations (3 Equations)

• Strain-Displacement Relations (6 Equations)

• Stress-Strain Relations (6 Equations)

Page 16: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 16/249

Chapter 1 Introduction  Section 1.2 Structural Mechanics: A Quick Review  16

Stress-Strain Relations: Hooke's Law

 

!  X 

  =

"  X 

E# $ 

" Y 

E# $ 

"  Z 

E

! Y   =

" Y 

E# $ 

"  Z 

E# $ 

"  X 

E

!  Z 

  =

"  Z 

E

# $ "  X 

E

# $ " 

E

%   XY 

  =

&  XY 

G ,   %  

YZ   =

& YZ 

G ,   %  

 ZX   =

&  ZX 

 

G  =E

2(1+! )

• For isotropic , linearly elastic  materials,

Young's modulus (E) and Poisson's ratio (!  )

can be used to fully describe the stress-

strain relations.

• The Hooke's law is called a material

model .

• The Young's modulus and the Poisson's

ratio are called the material parameters

of the material model.

Page 17: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 17/249

Chapter 1 Introduction  Section 1.2 Structural Mechanics: A Quick Review  17

 

!  X   =

"  X 

E#$ 

" Y 

E#$ 

"  Z 

E+% &T 

! Y   =

" Y 

E#$ 

"  Z 

E#$ 

"  X 

E+% &T 

!  Z   =

"  Z 

E

#$ "  X 

E

#$ " 

E

+% &T 

'   XY 

  =

(  XY 

G ,   '  

YZ   =

( YZ 

G ,   '  

 ZX   =

(  ZX 

• If temperature changes (thermal loads)

are involved, the coefficient of thermal

expansion, (CTE, !  ) must be included.

• If inertia forces (e.g., dynamicsimulations) are involved, the mass

density must be included.

Page 18: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 18/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  18

Section 1.3Finite Element Methods: A Conceptual

Introduction

• A basic idea of finite element methods is to divide the structural body into small and

geometrically simple bodies, called elements, so that equilibrium equations of each

element can be written, and all the equilibrium equations are solved simultaneously

• The elements are assumed to be connected by nodes located on the elements' edges

and vertices.

Basic Ideas

Page 19: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 19/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  19

In case of the pneumatic finger, thestructural body is divided into 1842

elements. The elements are connected by10856 nodes. There are 3x10856 unknown

displacement values to be solved.

•Another idea is to solve unknown

discrete values (displacements at the

nodes) rather than to solve unknown

functions (displacement fields).

• Since the displacement on each node

is a vector and has three components

(in 3D cases), the number of total

unknown quantities to be solved is

three times the number of nodes.

• The nodal displacement components

are called the degrees of freedom (DOF's) of the structure.

Page 20: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 20/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  20

• In static cases, the system of equilibrium equations has following form:

K !"   #$ D{ } = F { }

• The displacement vector {D} contains displacements of all degrees of

freedom.

• The force vector {F } contains forces acting on all degrees of freedom.

• The matrix [K ] is called the stiffness matrix  of the structure. In a special

case when the structure is a spring, {F } as external force, and {D} as the

deformation of the spring, then [K ] is the spring constant.

Page 21: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 21/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  21

Basic Procedure of Finite Element Method

1. Given the bodies' geometries, material properties, support conditions, and loading

conditions.

2. Divide the bodies into elements.

3. Establish the equilibrium equation: [K ] {D} = {F }

3.1 Construct the [K ] matrix, according to the elements' geometries and the material

properties.

3.2 Most of components in {F } can be calculated, according to the loading conditions.

3.3 Most of components in {D} are unknown. Some component, however, are known,

according to the support conditions.

3.4 The total number of unknowns in {D} and {F } should be equal to the total number

of degrees of freedom of the structure.

Page 22: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 22/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  22

4. Solve the equilibrium equation. Now, the nodal displacements {d} of each element are

known.

5. For each element:

5.1 Calculate displacement fields {u}, using an interpolating method, {u} = [N] {d }. The

interpolating functions in [N] are called the shape functions.

5.2 Calculate strain fields according to the strain-displacement relations.

5.3 Calculate stress fields according to the stress-strain relations (Hooke's law).

Page 23: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 23/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  23

Shape Functions

 d 1

 d 

2

 d 

3

 d 

4

 d 

5

 d 

6

 d 

7

 d 

8

  X 

 Y 

[1] A 2D 4-nodequadrilateral element

[2] This element'snodes locate atvertices.

• Shape functions serve as interpolating

functions, allowing the calculation of

displacement fields (functions of X , Y ,

 Z ) from nodal displacements (discrete

values).

 u{ } = N!"   #$ d { }

• For elements with nodes at vertices,

the interpolation must be linear and

thus the shape functions are linear (of

 X, Y, Z ).

Page 24: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 24/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  24

• For elements with nodes at vertices as well as at middles of edges, the interpolation

must be quadratic and thus the shape functions are quadratic (of X, Y, Z ).

• Elements with linear shape functions are called linear elements, first-order elements, or

lower-order elements.

• Elements with quadratic shape functions are called quadratic elements, second-order

elements, or higher-order elements.

• ANSYS Workbench supports only first-order and second-order elements.

Page 25: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 25/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  25

Workbench Elements

[1] 3D 20-nodestructural solid.Each node has 3

translationaldegrees of

freedom: D X  , DY  ,and D Z .

[2] Triangle-based

prism.

[3] Quadrilateral-based pyramid.

[4] Tetrahedron.3D Solid Bodies

Page 26: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 26/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  26

2D Solid Bodies

[5] 2D 8-nodestructural solid.Each node has 2

translationaldegrees of

freedom: D X  and DY .

[6] DegeneratedTriangle.

Page 27: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 27/249

Chapter 1 Introduction  Section 1.3 Finite Element Methods: A Conceptual Introduction  27

3D Surface Bodies

[7] 3D 4-nodestructural shell.Each node has 3

translational and 3rotational degreesof freedom: D X  , DY  ,

D Z , R X  , RY  , and R Z .

[8] DegeneratedTriangle

3D Line Bodies

[9] 3D 2-Node

beam. Each node has3 translational and 3rotational degrees offreedom: D X  , DY  , D Z ,

R X  , RY  , R Z .

Page 28: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 28/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  28

Section 1.4Failure Criteria of Materials

Ductile versus Brittle Materials

•  A Ductile material  exhibits a large amount of strain before it

fractures.

• The fracture strain of a brittle material  is relatively small.

• Fracture strain is a measure of ductility.

Page 29: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 29/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  29

   S  t  r  e  s  s

Strain

 ! 

 y 

[3] Yieldpoint.

[2] Fracturepoint.

[1] Stress-straincurve for a ductile

material.

• Mild steel is a typical ductile material.

• For ductile materials, there often exists an

obvious yield point, beyond which the

deformation would be too large so that the

material is no longer reliable or functional;

the failure is accompanied by excess

deformation.

• Therefore, for these materials, we are most

concerned about whether the material

reaches the yield point !  y 

.

Failure Points for Ductile Materials

Page 30: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 30/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  30

[2] Fracturepoint.

[1] Stress-straincurve for a

brittle material.

Failure Points for Brittle Materials

• Cast iron and ceramics are two examples

of brittle materials.

• For brittle materials, there usually doesn'texist obvious yield point, and we are

concerned about their fracture point ! f .

   S  t  r  e  s  s

Strain

 ! 

Page 31: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 31/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  31

Failure Modes

• The fracture of brittle materials is mostly due to

tensile failure.

•The yielding of ductile materials is mostly due to shear

failure

Page 32: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 32/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  32

Principal Stresses

 ! 

 X  ! 

 X 

 ! 

 ! 

 !  XY 

 !  XY 

 !  XY 

 !  XY 

  X 

 Y 

[1] Stressstate.

 (! 

 X ," 

 XY )

 (! 

Y ," 

 XY )

[2] Stress inthe basedirection.

[3] Stress in

the direction thatforms 90

o withthe basedirection.

[4] Other stresspairs could bedrawn.

[6] Point ofmaximumnormal

stress.

[7] Point ofminimum

normalstress.

[8] Point ofmaximum

shear stress.

[9] AnotherPoint of

maximum shearstress.

[5]Mohr'scircle.

• A direction in which the shear

stress vanishes is called a

principal direction.

• The corresponding normal stress

is called a principle stress.

Page 33: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 33/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  33

• At any point of a 3D solid, there are three principal directions and

three principal stresses.

• The maximum normal stress is called the maximum principal stress 

and denoted by ! 1.

• The minimum normal stress is called the minimum principal stress and

denoted by ! 3 .

• The medium principal stress is denoted by ! 2.

• The maximum principal stress is usually a positive value, a tension;

the minimum principal stress is often a negative value, a

compression.

Page 34: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 34/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  34

Failure Criterion for Brittle Materials

• The failure of brittle materials is a tensile failure. In other words, a

brittle material fractures because its tensile stress reaches the

fracture strength ! f  .

•We may state a failure criterion for brittle materials as follows: At a

certain point of a body, if the maximum principal stress reaches the

fracture strength of the material, it will fail.

• In short, a point of material fails if 

 ! 

1"! 

Page 35: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 35/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  35

Tresca Criterion for Ductile Materials

• The failure of ductile materials is a shear

failure. In other words, a ductile material yields

because its shear stress reaches the shear

strength !  y 

of the material.

• We may state a failure criterion for ductile

materials as follows: At a certain point of a

body, if the maximum shear stress reaches the

shear strength of the material, it will fail.

• In short, a point of material fails if 

 

! max

 " !  y 

• It is easy to show (using

Mohr's circle) that

 

! max

  =

" 1#" 

3

2

 

!  y   =

"  y 

2

• Thus, the material yields if 

 ! 

1"! 

3 #! 

 y 

•  (! 1"! 3)  is called the stress

intensity.

Page 36: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 36/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  36

Von Mises Criterion for Ductile Materials

• In 1913, Richard von Mises proposed a theory for predicting the yielding of ductile

materials. The theory states that the yielding occurs when the deviatoric strain energy

density reaches a critical value, i.e.,

 w d !w  yd 

• It can be shown that the yielding deviatoric energy in uniaxial test is

 w  yd =

(1+! )"  y 2

3E

• And the deviatoric energy in general 3D cases is

 w 

d =

1+! 

6E  " 1#" 2( )

2

+   " 2 #" 3( )2

+   " 3 #" 1( )2$

%&'

()

Page 37: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 37/249

Chapter 1 Introduction  Section 1.4 Failure Criteria of Materials  37

•After substitution and simplification, the criterion reduces to that the yielding

occurs when

 

1

2  ! 

1"! 

2( )2

+   ! 2 "! 

3( )2

+   ! 3 "! 

1( )2#

$%

&

'( ) ! 

 y 

• The quantity on the left-hand-side is termed von Mises stress or effective stress, and

denoted by ! e ; in ANSYS, it is also referred to as equivalent stress,

 

! e  =

1

2  ! 

1"! 

2( )2

+   ! 2 "! 

3( )2

+   ! 3 "! 

1( )2#

$%

&

'(

• The equivalent strain, or effective strain ! eis defined by

 

! e  =

" e

E

Page 38: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 38/249

Chapter 2 Sketching 

Chapter 2

Sketching

2.1 

Step-by-Step: W16x50 Beam2.2  Step-by-Step: Triangular Plate

2.3 

More Details

2.4  More Exercise: M20x2.5 Threaded Bolt

Page 39: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 39/249

Chapter 2 Sketching 

Secti

Section 2.1

W16x50 Beam 7.07

Problem Description

Page 40: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 40/249

Chapter 2 Sketching 

Secti

•   Start up <D

•   Sketching/M

•   Draw>Rec

•   Draw>Poly

•   Dimension

•   Dimension

•   Dimension

•   Dimension

•   Modify>Co

•   Modify>Tr

•   Modify>Fil

Techniques/Concepts

Page 41: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 41/249

Chapter 2 Sketching 

Secti

[1] Click: singleselection

[2] Control-click: add/remove selection

[5] Rightbox

[6] Scroll-whee

in/out.

[7] Middle-click-drag:

rotation.

Basic Mouse Operations

Page 42: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 42/249

Chapter 2 Sketching 

Sectio

Section 2.2

Triangular Plate

Problem Description

Page 43: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 43/249

Chapter 2 Sketching 

Sectio

Techniques/Concepts

• Draw>A

• Dimensi

• Modify>

• Modify>

• Constra

• Weak/St

• Weak/St

• Selection

• Single/Bo

Page 44: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 44/249

Chapter 2 Sketching 

Sectio

2D Graphics Controls

[8] <Undo>.

[2] <Zoom to Fit>.

[4] <Box Zoom>.[5] <Zoom>.[6] <Previous View>.

[7] <Next View>.[3] <Pan>.

Page 45: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 45/249

Chapter 2 Sketching 

Sec

• Pull-down Menus

and Toolbars

• Mode Tabs

•Tree Outline

• Sketching

Toolboxes

• Graphics area

Section 2.3 More De

Page 46: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 46/249

Chapter 2 Sketching 

Sec

Model Tree

• A Model tree is a tree representation of a

geometric model.

• A model tree consists of features and a part 

branch.

• The parts are the only objects that will be

exported to <Mechanical>.

• The order of the objects is relevant.

<DesignModeler> renders the geometryA

Page 47: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 47/249

Chapter 2 Sketching 

Sec

[1] Currentlyactive plane.

Sketching Planes

• A sketch must be created on a

sketching plane; each plane may

contain multiple sketches.

• In the very beginning of a

<DesignModeler> session, three

planes are automatically created:

<XYPlane>, <YZPlane>, and

<ZXPlane>.

Page 48: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 48/249

Chapter 2 Sketching 

Sec

Sketches

•A sketch consists of

points and

edges; edges may be straight lines or

• Multiple sketches may be created on a plane.

[1] To create a new sthe active sketchin

click <New Sket

[2] Currentlyactive sketch.

Page 49: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 49/249

Chapter 2 Sketching 

Sec

Auto Constraints

• C 

- The cursor is coincident with a line.

• P  - The cursor is coincident with another point.

• T  - The cursor is a tangent point.

•   

- The cursor is a perpendicular foot.

• H 

- The line is horizontal.

• V  - The line is vertical.

• // 

- The line is parallel to another line.

Page 50: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 50/249

Chapter 2 Sketching 

Sec

Sketching Toolboxes

Page 51: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 51/249

Chapter 2 Sketching 

Section 2.4 M

Section 2.4

M20x2.5 Threaded Bolt

Problem Description

[1] Metricsystem.

[2] Nominaldiameter

d  = 20 mm.

[3] Pitchp = 2.5 mm.

Page 52: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 52/249

Chapter 2 Sketching 

Section 2.4 M

 32    1

   1      

   p

    =

   2   7 .   5

 d 1

 d 

Extern

thread(bolt

 

H

4

 p

Page 53: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 53/249

Chapter 2 Sketching 

Section 2.4 M

• Dimensions>Angle

• Modify>Replicate

•Revolve

Techniques/Concepts

Page 54: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 54/249

Chapter 2 Sketching 

Se

Section 2.5

Spur Gears

Problem Description

• To satisfy the fundamental law

Page 55: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 55/249

Chapter 2 Sketching 

Se

[6] Contactpoint (pitch

point).

[8no

T

[3] Pitch circler p = 2.5 in.

[9] Addendumr a = 2.75 in.

[1] The drivinggear rotatesclockwise.

[2] The driven

gear rotatescounter-

clockwise.

[5] Line ofcenters.

Page 56: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 56/249

Chapter 2 Sketching 

Se

Techniques/Concepts

• Draw>Construction Point

Page 57: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 57/249

Chapter 2 Sketching 

Sec

Section 2.6

Microgripper

Problem Description

[1] Grippingdirection.

[3] SMAactuator.

[4] Gbe

Page 58: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 58/249

Chapter 2 Sketching 

Sec

 144

 176     4   0   0

    1   4   0

    2   1   2

    7   7

    4   7

    8   7

 20

 R25R45

 32

 92

 D30

 

Unit: μ m

Thickness: 300 μ m

Page 59: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 59/249

Chapter 2 Sketching 

Sec

Techniques/Concepts

• Constraints>Equal Radius

• Copy bodies (Mirror)

• Create new sketch

• Constraints>Tangent

• Multiple parts

Page 60: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 60/249

Chapter 3 2D Simulations 

Chapter 3

2D Simulations

3.1 

Step-by-Step: Triangular Plate

3.2  Step-by-Step: Threaded Bolt-and-Nut

3.3 

More Details

3.4  More Exercise: Spur Gears

Page 61: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 61/249

Chapter 3 2D Simulations 

Sectio

Section 3.1

Triangular Plate

Problem Description

• The plate is made of steel and designed to

withstand a tensile force of 20,000 N on each

Page 62: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 62/249

Chapter 3 2D Simulations 

Sectio

Techniques/Concepts • Project Schematic

• Concepts>Surface

• Analysis Type (2D)

• Plane Stress Proble

• Generate 2D Mesh

• 2D Solid Elements

• <Relevance Cente

<Relevance>

• Loads>Pressure

• Weak Springs

• Solution>Total De

Page 63: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 63/249

Chapter 3 2D Simulations 

Section 3.2 T

Section 3.2

Threaded Bolt-and-Nut

Problem Description

[1] Bolt.[2] Nut.

Page 64: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 64/249

Chapter 3 2D Simulations 

Section 3.2 T

 The plane of symmetry

  T h  e a xi   s  of   s  y mm e t r  y 

 17 mm

[1] Thsimul

mod

Page 65: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 65/249

Chapter 3 2D Simulations 

Section 3.2 T

Techniques/Concepts

• Hide/Show Sketches

• Display Model/Plane

• Add Material/Frozen

• Axisymmetric Problems

• Contact/Target

• Frictional Contacts

• Edge Sizing

• Loads>Force

• Supports>Frictionless Support

Page 66: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 66/249

Chapter 3 2D Simulations 

Sec

Section 3.3

More Details

Plane-Stress Problems

• Plane stress

  

 Z   = 0,  

• The Hook's

 

  X 

  =

 Y   =

  Z 

  = 

   XY 

  =

  XY 

G ,  

• A problem m

plane-stress  

 X 

  X 

  

   XY 

   XY 

Page 67: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 67/249

Chapter 3 2D Simulations 

Sec

Plane-Strain Problems

  X 

 Y 

  Z 

  

   X 

    XY 

   X 

  

    XY 

• Plane strain condition

   Z 

  = 0,      ZX 

  =

• The Hook's law beco

 

  X   =

E

(1+  )(1 2 )

 Y   =

E

(1+ )(1 2 )

  Z 

  =E

(1+ )(1 2

  XY 

  = G    XY 

 ,    YZ 

• A problem may assum

condition if its  Z -direc

Page 68: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 68/249

Chapter 3 2D Simulations 

Sec

 

 R

  

R

   Z 

   Z 

  

  

   

RZ     

RZ 

  

R

  

 Z 

  

  RZ   

 RZ 

[1] Strain

state at apoint of aaxisymmetric

structure.

[2] Stress

Axisymmetric Problems

• If the geomet

loading of a s

axisymmetric

then all respo

independent

• In such a cas

  

 R  =

  

 R  =

• both   

and

Page 69: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 69/249

Chapter 3 2D Simulations 

Sec

Mechanical GUI

• Pull-down Menus

and Toolbars

• Outline of Project

Tree

•Details View

• Geometry

• Graph

• Tabular Data

Page 70: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 70/249

Chapter 3 2D Simulations 

Sec

Project Tree

• A project tree may contain one or more

simulation models.

• A simulation model may contain one or more

<Environment> branches, along with other

objects. Default name for the <Environment>

branch is the name of the analysis system.

• An <Environment> branch contains <Analysis

Settings>, environment conditions, and a

Page 71: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 71/249

Chapter 3 2D Simulations 

Sec

Unit Systems [1] Built-in unitsystems.

[2] Unfor c

pro

• Consistent versus Inconsistent

Unit Systems.

• Built-in versus User-Defined Unit

Systems.

•Project Unit System.

• Length Unit in <DesignModeler>.

• Unit System in <Mechanical>.

• Internal Consistent Unit System.

Page 72: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 72/249

Chapter 3 2D Simulations 

Sec

Environment Conditions

Page 73: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 73/249

Chapter 3 2D Simulations 

Sec

Results Objects

View Results

[5] You can controlhow the contour

displays.

[6] Some resultscan display with

vectors.

[3] Label.

Page 74: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 74/249

Chapter 3 2D Simulations 

Se

Section 3.4

Spur Gears

Problem Description

Page 75: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 75/249

Chapter 3 2D Simulations 

Se

Techniques/Concepts

• Copy bodies (Translate)

• Contacts

• Frictionless

•Symmetric (Contact/Target)

• Adjust to Touch

• Loads>Moment

• True Scale

Page 76: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 76/249

Chapter 3 2D Simulations 

Se

 100  100

 R15

Section 3.5

Filleted Bar

Problem Description

[1] The bar ismade of steel.

Page 77: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 77/249

Chapter 3 2D Simulations 

Se

Part A. Stress Discontinuity 

Displacement field iscontinuous over the

entire body.

Page 78: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 78/249

Chapter 3 2D Simulations 

Se

[2] Originalcalculated stresses

(unaveraged) are notcontinuous across

element boundaries,i.e., stress at boundary

has multiple values.

[4] By default, stresses areaveraged on the nodes, and thestress field is recalculated. That

way, the stress field iscontinuous over the body.

Page 79: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 79/249

Chapter 3 2D Simulations 

Se

Part B. Structural Error

• For an element, strain energies calculated using averaged stresses an

stresses respectively are different. The difference between these twocalled <Structural Error> of the element.

• The finer the mesh, the smaller the structural error. Thus, the struct

used as an indicator of mesh adequacy.

Page 80: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 80/249

Chapter 3 2D Simulations 

Se

Part C. Finite Element Convergence

0.0781

0.0782

0.0783

0.0784

0.0785

0.0786

0.0787

   D   i  s  p   l  a  c  e  m  e  n  t   (  m  m   )

[1] Quadrilateralelement.

[2] Triangularelement.

Page 81: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 81/249

Chapter 3 2D Simulations 

Se

Part D. Stress Concentration

[1] To accuratelyevaluate the

concentrated stress,finer mesh is needed,

particularly around thecorner.

Page 82: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 82/249

Chapter 3 2D Simulations 

Se

Part E. Stress Sigularity 

The stress in thiszero-radius filletis theoretically

infinite.

• Stress singu

to sharp co

• Any locatio

of infinity a

points.

• Besides a c

radius, a po

forces is al

Chapter 4 3D Solid Modeling 1

Page 83: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 83/249

Chapter 4 3D Solid Modeling  1

Chapter 43D Solid Modeling

4.1 

Step-by-Step: Beam Bracket

4.2  Step-by-Step: Cover of Pressure Cylinder

4.3  Step-by-Step: Lifting Fork 

4.4  More Details

4.5  More Exercise: LCD Display Support

4.6 

Review

Chapter 4 3D Solid Modeling Section 4.1 Beam Bracket 2

Page 84: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 84/249

Chapter 4 3D Solid Modeling  Section 4.1 Beam Bracket  2

Section 4.1Beam Bracket

Problem Description

The beam bracket ismade of WT8x25 steel.

X

Y

Z

Chapter 4 3D Solid Modeling Section 4.1 Beam Bracket 3

Page 85: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 85/249

Chapter 4 3D Solid Modeling  Section 4.1 Beam Bracket  3

• Local coordinate systems

• Sketching with plane view

versus in 3D view

• Use of Triad

• Add Material

• Rounds/Fillets

• Turn on/off edges display

Techniques/Concepts

Chapter 4 3D Solid Modeling  Section 4.2 Cover of Pressure Cylinder  4

Page 86: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 86/249

p g y

Section 4.2Cover of Pressure Cylinder

Problem Description

[1] Pressurecylinder.

[2] Cylinder

Cover.

[3] Back view ofthe cover.

Chapter 4 3D Solid Modeling  Section 4.2 Cover of Pressure Cylinder  5

Page 87: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 87/249

p g y

 30.3

 25.3

 21.0 1.3

    3   1 .   0

 3.010.0

 R8.5

 R7.5

 R19.0

 Unit: mm.62.0

 2.3  1.6 7.4

 R4.9

 R3.2

 R9.0 R14.5

 R18.1

 R25.4

 R27.8

 7.4

    6   2 .   0

 R3.4

Chapter 4 3D Solid Modeling  Section 4.2 Cover of Pressure Cylinder  6

Page 88: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 88/249

p g y

Techniques/Concepts

• Create new planes

• Set up local coordinate systems

• Plane with boundary

• Modify>Duplicate

• Cut Material

Chapter 4 3D Solid Modeling  Section 4.3 Lifting Fork   7

Page 89: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 89/249

p g g

Section 4.3Lifting Fork 

Problem Description

[1] Fork (steel).

[2] Glass panel (1.0mm).

Chapter 4 3D Solid Modeling  Section 4.3 Lifting Fork   8

Page 90: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 90/249

p g g

 Unit: mm.

    2   2   0   0

 2500

 2400

 200

 200

    1   6   0

   0

[1] The crosssection here is

160x40 mm.

[2] The crosssection here is

130x20 mm.

[3] The crosssection here is

100x10 mm.

Chapter 4 3D Solid Modeling  Section 4.3 Lifting Fork   9

Page 91: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 91/249

Techniques/Concepts

• Skin/Loft

• Lofting guide line

• Add Frozen

• Copy bodies (Pattern)

• Boolean

• Create 3D surface bodies

Chapter 4 3D Solid Modeling  Section 4.4 More Details  10

Page 92: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 92/249

• Triad

• Isometric View

• Rotation

• Selection Filters

• Extend Selection

• Selection Panes

• Edge Display

• Tools for 3D

features

Section 4.4 More Details

Chapter 4 3D Solid Modeling  Section 4.4 More Details  11

Page 93: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 93/249

Triad

[1] Click anarrow willorient the

view normalto that arrow.

[2] A black

arrow representsa negativedirection.

[4] Click thecyan sphere toreturn to the

isometric view.

[3] If the cyan spherecoincides with the origin,that means the view is an

isometric view.

Chapter 4 3D Solid Modeling  Section 4.4 More Details  12

Page 94: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 94/249

Rotations

[1] Hold the middle mouse buttondown while moving around the graphic

area, you can rotate the model.

[2] Freerotation.

[3] Roll,rotation aboutscreen Z-axis.

[4] Yaw,rotation about

screenY-axis.

[5] Pitch,rotation aboutscreen X-axis.

[6] The type of rotation depends onthe location of the cursor.

Chapter 4 3D Solid Modeling  Section 4.4 More Details  13

Page 95: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 95/249

Selection Aides

• Selection Filters

• Extend Selectin

• Selection Panes

Chapter 4 3D Solid Modeling  Section 4.4 More Details  14

Page 96: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 96/249

Bodies and Parts

• A body is entirely made of one kind of

material and is the basic building

blocks of a model.

• A 3D body is either a solid body, a

surface body, or a line body.

• A part is a collection of same type of

bodies. All bodies in a part areassumed to be bonded together with

one another.

• In <Mechanical>, parts are meshed

independently

• A model may consist of one or more

parts.

•In <Mechanical>, connections

(contacts, joints) among parts must be

established to complete a model.

This is the only

geometric

entities that will

be attached to

<Mechanical> for

simulations.

Chapter 4 3D Solid Modeling  Section 4.4 More Details  15

Page 97: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 97/249

FeaturesFeatures

•Based Features

• Extrude

• Revolve

• Sweep

• Skin/Loft

• Surface

• Lines

• Point

• etc.• Placed Features

• Thin/Surface

• Blend

• Chamfer

• etc.

• Planes

•Operations

• etc.

Chapter 4 3D Solid Modeling  Section 4.5 LCD Display Support  16

Page 98: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 98/249

Section 4.5LCD Display Support

Problem Description

Chapter 4 3D Solid Modeling  Section 4.5 LCD Display Support  17

Page 99: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 99/249

 200

 90

 60

 44

    1   0

    5   0

    4   2

    2   0

    1   7

Chapter 4 3D Solid Modeling  Section 4.5 LCD Display Support  18

Page 100: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 100/249

• Revolve

• Skin/loft

• Thin/Surface

Techniques/Concepts

Page 101: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 101/249

Chapter 5 3D Simulations 

Chapter 5

3D Simulations5.1

 

Step-by-Step: Beam Bracket

5.2  Step-by-Step: Cover of Pressure Cylinder

5.3 

More Details

5.4  More Exercise: LCD Display Support

Ch 5 3D S l S

Page 102: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 102/249

Chapter 5 3D Simulations 

Sect

Section 5.1

Beam Bracket

Problem Description[2] The

bracket is designedwithstand a load of 2uniformly distributed

the seat plate.

Ch 5 3D S l S

Page 103: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 103/249

Chapter 5 3D Simulations 

Sect

Techniques/Concepts

• Engineering Data

• Material Assignment

• Stress Tool>Safety Factor

• Structural Error

• Mesh Control>MultiZone

• 3D Solid Elements

Ch 5 3D Si l i S i 5 2 C

Page 104: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 104/249

Chapter 5 3D Simulations 

Section 5.2 Cove

Section 5.2

Cover of Pressure Cylinder

Problem Description

[2] The cover isdesigned to hold

up an internalpressure of 0.5

MPa.

Ch 5 3D Si l i S i 5 2 C

Page 105: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 105/249

Chapter 5 3D Simulations 

Section 5.2 Cove

Techniques/Concepts

• Add a new material in<Engineering Data>

• Isotropic Elasticity

• Material Assignment

• Loads>Pressure

• Create a new coordinate

system

Ch t 5 3D Si l ti S

Page 106: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 106/249

Chapter 5 3D Simulations 

Sec

Global Mesh Controls

• Relevance Center

• Relevance

Section 5.3

More Details

Ch t 5 3D Si l ti S

Page 107: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 107/249

Chapter 5 3D Simulations 

Sec

Mesh with MultiZone Method

• Generally, hexahedral elements are more

desirable than tetrahedral.

• A simple idea of creating hexahedra is to

mesh faces (source) of a body with

quadrilaterals and then "sweep" along a path

up to other end faces (target) of the body.

• Not all bodies are sweepable.

• The idea of <MultiZone> method is to

Cha ter 5 3D Sim lati ns Sec

Page 108: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 108/249

Chapter 5 3D Simulations 

Sec

Coordinate Systems

• When defining an environment

condition or a solution object by

<Components>, you need to refer

to a coordinate system. By default,

<Global Coordinate System> is

used, which is a Cartesian

coordinate system.

• To define a new coordinate

[1] Type ofthe coordinate

system.

[2] Origin.

[3] Axes.

Chapter 5 3D Simulations Sec

Page 109: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 109/249

Chapter 5 3D Simulations 

Sec

[1] Increase/

decrease contourbands.

[4] Number ofsignificant digits.

[3] Double-clickto edit value.

[5] T

the

[6ind

[2] The divider

can be dragged.

Legend Controls

Chapter 5 3D Simulations Sec

Page 110: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 110/249

Chapter 5 3D Simulations 

Sec

Adaptive Meshing

• Workbench provides a tool to

automate the mesh refinement

until a user-specified level of

accuracy is reached.

• This idea is termed adaptive

meshing .

• Internally, Workbench exploits

the structural errors to help

Chapter 5 3D Simulations Section 5 4

Page 111: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 111/249

Chapter 5 3D Simulations 

Section 5.4

Section 5.4

LCD Display Support

Problem Description[2] The design load(40 N) applies on

the trough.

Chapter 5 3D Simulations Section 5 4

Page 112: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 112/249

Chapter 5 3D Simulations 

Section 5.4

Techniques/Concepts

• Loads>Bearing Load

Chapter 6 Surface Models

Page 113: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 113/249

Chapter 6 Surface Models 

Chapter 6

Surface Models6.1

 

Step-by-Step: Bellows Joints

6.2 

Step-by-Step: Beam Bracket

6.3 

More Exercise: Gearbox

6.4  Review

Chapter 6 Surface Models Sect

Page 114: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 114/249

Chapter 6 Surface Models 

Sect

Section 6.1

Bellows Joints

Problem Description

• With the internal pressure, the

engineers are concerned about the

radial deformation (due to an

Chapter 6 Surface Models Sect

Page 115: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 115/249

Chapter 6 Surface Models 

Sect

 R315  R315  28

    2   0

Chapter 6 Surface Models Sect

Page 116: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 116/249

Chapter 6 Surface Models 

Sect

Techniques/Concepts

• Create surface bodies

using <Revolve>.

• Top/Bottom of a surface

body

• Shell Elements

Chapter 6 Surface Models Sect

Page 117: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 117/249

Chapter 6 Surface Models 

Sect

Section 6.2

Beam Bracket

Techniques/Concepts

• Create surface bodies

using <Mid-Surface>

Chapter 6 Surface Models

Page 118: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 118/249

Chapter 6 Surface Models 

Section 6.3

Gearbox

Problem Description

[1] The flangedbearing is madeof gray cast iron.

Chapter 6 Surface Models

Page 119: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 119/249

Chapter 6 Surface Models 

 Unit: mm.

    3   5   5

    1   5

    3   0

    1   7   0  R30

 R50

 R20

 R40

 170  200  70

 (R170)

 (R70)

Chapter 6 Surface Models

Page 120: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 120/249

Chapter 6 Surface Models 

Techniques/Concepts

• Create surface bodies by

<Thin/Surface>

• Loads>Bearing Loads

• Set up <Bonded>

connections.

Chapter 7 Line Models  1

Page 121: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 121/249

Chapter 7Line Models

7.1 

Step-by-Step: Flexible Gripper7.2  Step-by-Step: 3D Truss

7.3  More Exercise: Two-Story Building

7.4  Review

Chapter 7 Line Models  Section 7.1 Flexible Gripper  2

Page 122: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 122/249

Section 7.1Flexible Gripper

Problem Description

[3] Actuationdirection (input).

[2] The ends areconnected to a rigidground (preventing

translations androtations).

[4] Grippingdirection(output).

[1] The gripper is

made of POM.

 P 1(!70,0)

 P 2(!90,40)

 P 3(!69,120)

 P 4(

!35,160)

 P 5(!34,100)

 P 6(!24,60)

 P 7(0,50)

  X 

 Y 

Chapter 7 Line Models  Section 7.1 Flexible Gripper  3

Page 123: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 123/249

Techniques/Concepts

• Line bodies

• Cross Sections

• Cross Section Alignments

• Cross Section Solids

• Beam Elements

• Symmetry Conditions

• Geometric Advantage

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50   H  o  r   i  z  o  n  t  a   l   D   i  s  p   l  a  c  e  m  e  n  t   (  m  m   )

Input Displacement (mm)

Chapter 7 Line Models  Section 7.1 Flexible Gripper  4

Page 124: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 124/249

Convergence Study of Beam Elements

52.32

52.34

52.36

52.38

52.40

0 125 250 375 500 625

   O  u  t  p  u  t   D   i  s  p   l  a  c  e  m  e  n  t   (  m  m   )

Number of Elements

[1] In this exercise, wemeshed with 34

elements, resulting 52.335mm of displacement.

[2] The displacementconverges to 52.381 mm.

Chapter 7 Line Models  Section 7.2 3D Truss  5

Page 125: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 125/249

 200"

 200"

 75"

 P 1 P 2

 P 3

 P 4

 P 5  P 6

 P 7

 P 8

 P 9  P 10

 1

 2

 3 4

 5

 6 7  8 9

 10

 11

 12

 13

 14

 15

 16

 17

 18 19

 20

 21

 22

 23

 24

 25

    1   0   0

   "

    1   0   0

   "

  X  Y 

  Z 

 75"

Section 7.23D Truss

Problem Description

Design Loads for the Transmission Tower

 Joint   F X (lb)   F Y (lb)   F Z (lb)

P 1 1,000 -10,000 -10,000

P 2 0 -10,000 -10,000

P 3 500 0 0

P 6 600 0 0

Chapter 7 Line Models  Section 7.2 3D Truss  6

Page 126: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 126/249

Techniques/Concepts

• Create points

• Concepts>Lines From Points

• Convergence of straight beam

elements

Chapter 7 Line Models  Section 7.3 Two-Story Building  7

Page 127: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 127/249

Section 7.3Two-Story Building

Problem Description

[1] All beams andcolumns are madeof structural steel,

with a crosssection of W16x50. [2] The floor slabs

are made of reinforcedconcrete, with athickness of 5".

[3] Eachfloor-to-floorheight is 10'.

    2   0

   '

 20'  20'20'

Chapter 7 Line Models  Section 7.3 Two-Story Building  8

Page 128: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 128/249

Techniques/Concepts

• Adjust Cross Section

Alignments

• Concepts>Surface From

Edges

• Use of Selection Panes• Flip Surface Normal

• Form New Part

• Import Engineering Data

• Inertial>Standard Earth

Gravity

• Inertial>Acceleration

Chapter 8 Optimization 

Page 129: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 129/249

Chapter 8

Optimization8.1

 

Step-by-Step: Flexible Gripper

8.2 

More Exercise: Triangular Plate

8.3 

Review

Chapter 8 Optimization 

Section

Page 130: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 130/249

Section 8.1Flexible Gripper

Problem Description

P2( 90 40)

 P 

3(

69,120)

• Positions of the P 2, P 3, and P 6 are free to be changed.

• The idea is to fix the X-coordinates of these points and

adjust their Y-coordinates to achieve a better GA value.

Chapter 8 Optimization 

Section

Page 131: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 131/249

Techniques/Concepts

• Filtering Prefixes and Suf fixes

• Input Parameters

• Output Parameters

• Design Points

• Goal Driven Optimization

• Design of Experiments

• DOE Tables

• Response Surfaces

• Optimization

Chapter 8 Optimization 

Sectio

Page 132: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 132/249

Section 8.2Triangular Plate

Problem Description

      W

[2] The initial valueof the width of the

bridge is 30 mm andits allowable range is

20-30 mm.

[ch

red

Chapter 8 Optimization 

Sectio

Page 133: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 133/249

Techniques/Concepts

• No additional techniques/concepts are introduced.

Chapter 9 Meshing  1

Page 134: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 134/249

Chapter 9Meshing

9.1  Step-by-Step: Pneumatic Fingers

9.2  More Exercise: Cover of Pressure Cylinder

9.3  More Exercise: Convergence Study of 3D Solid Elements

9.4  Review

Chapter 9 Meshing  Section 9.1 Pneumatic Fingers  2

Page 135: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 135/249

Section 9.1Pneumatic Fingers

Problem Description

 Unit: mm.

 80

    5

    1

    2

 5.1

 4

 3  3.2 1  

(19.2)

Plane ofsymmetry.

Chapter 9 Meshing  Section 9.1 Pneumatic Fingers  3

Page 136: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 136/249

Techniques/Concepts

• Mesh Metric: Skewness

• Hex Dominant Method

• Sweep Method

• MultiZone Method

• Section View

• Tools>Freeze

• Create>Slice

• Nonlinear Simulations

• Line Search

•Displacement Convergence

Chapter 9 Meshing  Section 9.2 Cover of Pressure Cylinder  4

Page 137: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 137/249

Section 9.2Cover of Pressure Cylinder

Techniques/Concepts

• Patch Conforming Method

• Patch Independent Method

Chapter 9 Meshing  Section 9.3 Convergence Study of 3D Solid Elements  5

Page 138: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 138/249

Section 9.3Convergence Study of 3D Solid Elements

Problem Description

 100 mm

 10 mm

[1] The beam ismade of steel.

[2] The width of the beamis 10 mm. A uniform loadof 1 MPa applies on theupper face of the beam.

[3] We willrecord thevertical tipdeflection.

Chapter 9 Meshing  Section 9.3 Convergence Study of 3D Solid Elements  6

Page 139: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 139/249

Lower-Order Elements

0.60

0.64

0.68

0.72

0.76

0 3000 6000 9000 12000 15000

   T   i  p   D  e   f   l  e  c  t

   i  o  n   (  m  m   )

Number of Nodes

[1] Lower-ordertetrahedron.

[2] Lower-orderperpendicular

prism.

[3] Lower-orderparallel prism.

[4] Lower-orderhexahedron.

Chapter 9 Meshing  Section 9.3 Convergence Study of 3D Solid Elements  7

Page 140: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 140/249

Higher-Order Elements

0.746

0.747

0.748

0.749

0.750

0.751

0.752

0 2000 4000 6000 8000 10000

   T   i  p   D  e   f   l  e  c  t   i  o  n   (  m  m   )

Number of Nodes

[1] Higher-ordertetrahedron.

[2] Higher-orderperpendicular prism.

[3] Higher-orderparallel prism.

[4] Higher-orderhexahedron.

Chapter 9 Meshing  Section 9.3 Convergence Study of 3D Solid Elements  8

Page 141: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 141/249

Hexahedra

0.746

0.747

0.748

0.749

0.750

0.751

0.752

0 2000 4000 6000 8000 10000

   T   i  p   D  e   f   l  e  c  t   i  o

  n   (  m  m   )

Number of Nodes

[2] Higher-orderhexahedron.

[1] Lower-orderhexahedron.

Chapter 9 Meshing  Section 9.3 Convergence Study of 3D Solid Elements  9

Page 142: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 142/249

Tetrahedra

0.600

0.640

0.680

0.720

0.760

0 2000 4000 6000 8000 10000

   T   i  p   D  e   f   l  e  c

  t   i  o  n   (  m  m   )

Number of Nodes

[1] Lower-ordertetrahedron.

[2] Higher-ordertetrahedron.

Chapter 9 Meshing  Section 9.3 Convergence Study of 3D Solid Elements  10

Page 143: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 143/249

Parallel Prisms

0.66

0.68

0.70

0.72

0.74

0.76

0 2000 4000 6000 8000 10000

   T   i  p   D  e   f   l  e  c  t   i  o  n   (  m  m   )

Number of Nodes

[2] Higher-orderparallel prism.

[1] Lower-orderparallel prism.

Chapter 9 Meshing  Section 9.3 Convergence Study of 3D Solid Elements  11

Page 144: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 144/249

Perpendicular Prisms

0.66

0.68

0.70

0.72

0.74

0.76

0 2000 4000 6000 8000 10000

   T   i  p   D  e   f   l  e  c  t   i  o  n   (  m  m   )

Number of Nodes

[2] Higher-orderperpendicular prism.

[1] Lower-orderperpendicular prism.

Chapter 9 Meshing  Section 9.3 Convergence Study of 3D Solid Elements  12

Page 145: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 145/249

Guidelines

• Never use lower-order tetrahedra or triangles.

• Higher-order tetrahedra or triangles can be as good as other elements as long as

the mesh is fine enough. In cases of coarse mesh, however, they perform poorly

and are not recommended.

• Lower-order prisms are not recommended.

• Lower-order hexahedra and quadrilaterals can be used, but they are not as

efficient as their higher-order counterparts.

• Higher-order hexahedra, prisms, and quadrilaterals are among the most efficient

elements so far we have discussed. Mesh your models with these elements

whenever possible. If that is not possible, then at least try to achieve a higher-

order hexahedra-dominant or quadrilateral-dominant mesh.

Chapter 10 Buckling and Stress Stiffening 

Page 146: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 146/249

Chapter 10

Buckling and Stress Stiffen10.1

 

Step-by-Step: Stress Stiffening

10.2 

Step-by-Step: 3D Truss

10.3 

More Exercise: Beam Bracket

10.4  Review

Chapter 10 Buckling and Stress Stiffening 

Section

Page 147: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 147/249

Section 10.1Stress Stiffening

Problem Description

[1] The beam is made ofsteel and has a uniform

cross section of 10x10 mm.

[2] A uniformly distributedload of 0.1 N/mm appliesdownward on the beam.

[3] Anon thefree to

Chapter 10 Buckling and Stress Stiffening 

Section

Page 148: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 148/249

Stress Stiffening Effects

5

6

7

8

9

10

M  a  x   i  m  u  m    D

  e   f   l  e  c

  t   i  o  n   (  m  m   )

This is the point with zero axialforce. On the right, the beam issubject to tensile force. On the

left, the beam is subject tocompressive force.

Chapter 10 Buckling and Stress Stiffening 

Section

Page 149: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 149/249

Linear Buckling Analysis

Chapter 10 Buckling and Stress Stiffening 

Section

Page 150: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 150/249

Chapter 10 Buckling and Stress Stiffening 

Page 151: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 151/249

Section 10.23D Truss

Problem Description

2EI

2(29,000,000)(0.13852)

Chapter 10 Buckling and Stress Stiffening 

Page 152: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 152/249

Results

Buckling will occur

when 23% of designloads apply on the

structure. Themultiplier can be viewed

as safety factor. Thestructure is not safe.

Chapter 10 Buckling and Stress Stiffening 

Sectio

Page 153: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 153/249

Section 10.3Beam Bracket

Problem Description

• It is a good practice that an

engineer always checks the

t t l t bilit h

Chapter 10 Buckling and Stress Stiffening 

Sectio

Page 154: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 154/249

Results

The <LoadMultiplier> can beviewed as a safetyfactor. It predictsthat 203 times ofdesign load will

initiate a buckling.The structure is

!"#$%&' )) *+,#- ./#-0121 

)

Page 155: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 155/249

!"#$%&' ))!"#$% '($%)*+*

,,-, ./0123)2./014 50$63"7

,,-8  ./0123)2./014 9:"2./"6) ;<+%#+(=

,,-> !"60 ?706@+*04 A"B1$@/ C+*D 

,,-E !"60 ?706@+*04 5<+/$6 ./6+(=

,,-F G0H+0:

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))5) 6&#'7+8 

9

Page 156: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 156/249

!"#$%&' ))*)

!"#$%&'

!"#$%&' )) *+,#- ./#-0121  3&4%2+/ ))5) 6&#'7+8  9

! $ & *+ .

Page 157: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 157/249

!"#$%&'(")*+,%#"-.)

!   "#$%&'(%&''&) +,)-.

/#-.0'1'

!   2%&'(%&''&) +,)-.

/#-.0'1'

!   3%&-(& +,)& 45-$&

6&'7.('

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))56 78+93%+'0 :;2-,2/< 

=

Page 158: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 158/249

!"#$%&' ))*+

!"#$%&#'( *+,-.,/0

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))56 78+93%+'0 :;2-,2/< 

=

! # # ' )* *

Page 159: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 159/249

!"#$#%&' )*"+,*+"-...

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))56 78+93%+'0 :;2-,2/< 

=

!"# ' *

Page 160: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 160/249

!"#$% '%()*+,---

!"#$%&' )) *+,#- ./#-0121  3&4%2+/ ))56 !+7$#4% 8219   :

Page 161: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 161/249

!"#$%&' )&*+",-.,#/

!   "#$  !"#$%&'#()' &'(($$)$) *+ &#,--$.*+/ 01& ,- &2$$)& 34 567888 .29: ;$ <,+- -3

!+) 3'- -#$ 9,=*9'9 &-.$&& *+ -#$ 01 )'$ -3 -#$ ($+-.*4'/,> 43.($ -3 ?'&-*4@ *4 -#$

&#,--$.*+/ *& *+)$$) )'$ -3 -#$ #*/# &-.$&&:

!   ;$ ,>&3 <,+- -3 *+A$&-*/,-$ -#$ 23&&*B*>*-@ 34 .$&3+,+- A*B.,-*3+&: ;$ <*>> (3+(>')$

-#,- -#$ 01 &#,--$.*+/ 9,@ B$ )'$ -3 A*B.,-*3+& .,-#$. -#,+ ($+-.*4'/,> &-.$&&:

!"#$%&' ))*+

0392,(- 1*&C 

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))56 !+7$#4% 8219  

:

!"#$%%$% '($ ") *$+"#,-(./0 1)#2$

Page 162: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 162/249

!"#$%%$% '($ ") *$+"#,-(./0 1)#2$

;"& 7#<27=7 %&/12-&1%'&11 21 >?5: *@#A B#'-&11 %"#/ %"& 7#%&'2#-C1

%&/12-& 1%'&/D%" EFG*@#H5

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))56 !+7$#4% 8219  

:

!"#$%"& (%)*$)+,-).

Page 163: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 163/249

!"#$%"& (%)*$)+,-).

;

);;

<;;

6;;

=;;

>;;

; ?;;; )<;;; )@;;; <=;;; 6;;;;

   A  #  %  B  '  #   -   C  '  &  D  B  &  /  4

   2  &  1   E   F  G   H

I+%#%2+/#- 3$&&, E'$7H

J)K L"& -+M&1%/#%B'#-

N'&DB&/405

J<K L"& 1&4+/,-+M&1% /#%B'#-

N'&DB&/405

J6K L"21 21 %"& O-2/& +N'&1+/#/4&PO M"24" "#1 #1-+$& +N B/2%0 E/+%& %"#%6;P;;; '$7 Q >;; FGH5 RN#/0 N'&DB&/42&1 N#-- +/ %"21-2/&P %"&0 M2-- S& &T42%&,#/, '&1+/#/4& M2-- +44B'5

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))56 782%#' 3%'2/9 

):

! $% )) +

Page 164: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 164/249

!"#$%&' ))*+

!"#$%& ($&#)*

+   ,%&-.)#/ (0&#01

+   2"1$ 3")#)* (41$0-

+   35067083.)0 9:"%664 30-;0&0< 3")#)* (41$0-

+   =0%$ >&0:"0)/4

!"#$%&'(')%"*

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))56 782%#' 3%'2/9 

))

!"#$%&'( *+#'+,

Page 165: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 165/249

!"#$%&'( *+#'+,

!   " !"#$%&'( $%*+ $%& %

'()*+),-. /$%/ 0& %, 0,/)1(%2

3+2/0420-%/05, 5' /$)

'+,6%3),/%2 '()*+),-.7

!   8' .5+ 42+-9 % &/(0,1: .5+ ;022

4(56+-) % /5,) 3%6) +4 5'

%22 $%(35,0- 356)&: /$)

!"#$%&'( $',+- 6)/)(30,)

/$) *+%20/. 5' /$) ,5/)7

!"#$%&' )) *+,#- ./#-0121 

3&4%2+/ ))56 782%#' 3%'2/9 

):

!"#$ &"'(') *+#$,-

Page 166: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 166/249

 !"#$ &"'(') *+#$,-

 "    "   "   "   "     "   "  " 

 "#  "#  "#   "#  "#$   "#  "#   "#

 " "

 ""

 "  "

 " "

  ""

 " "

 "#

 "#

 " #

  "#

 "#

 "#

 "

 

"

#  

"

#  

"

#  

"

#  

"

#  

"#

$  "

!   "# %&' '()*+ ,-%& .'#%/)+0 %&' 12/3%

%/#4#51 3+3%'63 7)'8(4* 4# %&' 6/34.

9:)*;<

!   "= 9' 7*(+ %&' #:%'3 !" (#; #"$  %:5'%&')0

%&' 3:/#; 43 7*'(34#5 %: :/) '()30 34#.'

%&'+ &(8' %&' 3467*'3% =)'>/'#.+ )(%4:<

!   ?&' 6(2:) .:); %  .:#343%3 := %&' #:%'3

!"& ()& #"$& !"0 %&' 3467*'3% =)'>/'#.+

)(%4:3<

!   ;"& $'+<-&= +> %"21 101%&= 21 %"#% 2% 21 #-=+1%

2=$+112<-& %+ $-#0 2/ #/+%"&' ?&05

!"#$%&' )) *+,#- ./#-0121  3&4%2+/ ))56 782%#' 3%'2/9  ):

!"#$%# !'(# *+,-$$. !#/0#1#2 !,(3(4 5.67#/

Page 167: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 167/249

!"#$%#&!'(# *+,-$$. !#/0#1#2 !,(3(4 5.67#/

!   "#$ &'$( &) *+ ,+-./+-&)$ +0 *#$

1/$23$0,4 /(*&+) 5$*6$$0 *#$

0+*$)7 )+ *#(* *#$4 ,(0 5$ .8(4$' &0

'&11$/$0* 9$4):

!   ;0 *#&) )4)*$-7 (0 +,*(<$ &) $23(884

'&<&'$' &0*+ => *+0$) ?&0,83'&0@

)$-&*+0$)A &0 8+@(/&*#-&, ),(8$:

!   ;0 +*#$/ 6+/')7 *#$ ('B(,$0* *+0$)

#(<$ ( 1/$23$0,4 /(*&+ +1 "##" :

;<=

:==

:<=

6==

6<=

<==

<<=

= ; 6 > ? )= );

   @  8  /   ,  #  A  &  /  %  #   -   @  '  &  B  8  &  /  4  0   C   D  E   F

G+%&

H)I J"& K'&B8&/42&1 2/%"& L81% %8/2/9 101%&A#'& A#'M&, N0 1A#--

42'4-&15

H;I J"& K'&B8&/42&1 +K %"&/+%&1 2/ %"& &B8#-

%&A$&'#A&/% 101%&A #'&$-+%%&, #1 # 1+-2, 48'O&5

 

"    "   "   "  "

 

" "

  ""

 " 

 " 

 "

 "

 " 

 "    "

 "

 " 

!"#$%&' )) *+,#- ./#-0121  3&4%2+/ ))56 782%#' 3%'2/9  )6

!"#$ &'"()"*+,

Page 168: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 168/249

!"#$ &'"()"*+, 

!   "#$% '() (*+$, )- ./--$0$%' -0$12$%3/$, *0$ 3)45/%$.6 '#$7 /%'$0-$0$ (/'# $*3# )'#$08

9#$ !23'2*'/)% /% *4:;/'2.$ )- '#$ 3)45/%$. (*+$ /, 3*;;$. !"#$%6 *%. '#$ -0$12$%37 /,

3*;;$. '#$ !"#$ '(")*"+,- 8

!   9#$ 5$*' -0$12$%37 /, $12*; ') '#$ -0$12$%37 ./--$0$%3$ )- '#$ '() (*+$,8

!   "#$% ($ :;*7 .  *%. / ')<$'#$06 '#$ 5$*' -0$12$%37 /, =>8?= @A :;<=5>> ? ;>)5>=@6 (#/3# /,

* #*0,# 52AA *%. 2%:;$*,*%' -)0 )20 $*0,8

!   "#$% ($ :;*7 .  *%. 0  ')<$'#$06 '#$ 5$*' -0$12$%37 /, B=?8=C @A :=<;5AA ? ;>)5>=@6 (#/3# /,

3;),$ ') * #*04)%/3 -0$12$%37 )- '#$ 4/..;$ .  D>EB8E= @AF8

Chapter 12 Structural Dynamics  1

Page 169: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 169/249

Chapter 12Structural Dynamics

12.1  Basics of Structural Dynamics

12.2  Step-by-Step: Lifting Fork 

12.3  Step-by-Step: Two-Story Building

12.4  More Exercise: Ball and Rod

12.5  More Exercise: Guitar String

12.6  Review

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  2

Section 12 1

Page 170: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 170/249

Section 12.1Basics of Structural Dynamics

Key Concepts

• Lumped Mass Model

• Single Degree of Freedom Model

• Undamped Free Vibration

• Damped Free Vibration

•Damping Coefficient

• Damping Mechanisms

• Viscous Damping

• Material Damping

• Coulomb Friction• Modal Analysis

• Harmonic Response Analysis

• Transient Structural Analysis

• Explicit Dynamics

• Response Spectrum Analysis• Random Vibration Analysis

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  3

Lumped Mass Model: The Two-Story Building

Page 171: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 171/249

p y g

 k1

 c 1

 k2

 c 2

 

m1

 

m

2

[1] A two-degrees-of-freedom model for findingthe lateral displacementsof the two-story building.

[2] Totalmass lumped atthe first floor.

[3] Total masslumped at the roof

floor.

[4] Total bendingstiffness of the

first-floor's beamsand columns.

[5] Totalbending stiffnessof the second-floor's beamsand columns.

[6] Energy dissipatingmechanism of the first

floor.

[7] Energy dissipatingmechanism of the

second floor.

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  4

Single Degree of Freedom Model

Page 172: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 172/249

g g

 F !   = ma

 

p! kx ! c ! x   = m!! x 

 

m!! x + c ! x + kx  = p

 k

 c 

 m

 p

  x 

• We will use this single-degree-of-freedom lumped mass model to

explain some basic behavior of dynamic response.

• The results can be conceptually extended to general multiple-

degrees-of-freedom cases.

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  5

Undamped Free Vibration

Page 173: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 173/249

If no external forces exist, the equation for the

one-degree-of-freedom system becomes

 

m!! x + c ! x + kx  = 0

If the damping is negligible, then the equation

becomes 

m!! x + kx  = 0

The

  x  = Asin  ! t +B( )

Natural frequency: !   =k

m(rad/s) or f   =

2" (Hz)

Natural period: T   = 1f 

p

   D   i  s  p   l  a  c  e

  m  e  n  t   (  x   )

time (t)

 

T   =2! 

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  6

Damped Free Vibration

Page 174: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 174/249

p

   D   i  s  p   l  a  c  e  m  e  n

  t   (  x   )

time (t)

 

T d   =

2! 

" d 

 T d 

m!! x + c ! x + kx  = 0

If the damping c   is small (smaller than c c 

),

then the general solution is

  x  = Ae

!"# t sin # 

d t + B( )

Where

 ! 

d   =!  1"# 2 , !   =

c c 

, c c   = 2m! 

The quantity c c  is called the critical damping

coefficient and the quantity !   is called the

damping ratio.

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  7

Damping Mechanisms

Page 175: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 175/249

p g

• Damping is the collection of all energy dissipating mechanisms.

• In a structural system, all energy dissipating mechanisms come down

to one word: friction. Three categories of frictions can be identified:

• friction between the structure and its surrounding fluid, called

viscous damping ;

• internal friction in the material, called material damping , solid

damping, or elastic hysteresis;

• friction in the connection between structural members, called dry

friction or Coulomb friction.

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  8

Analysis System

Page 176: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 176/249

y y

The foregoing concepts may be generalized to multiple-degrees-of-freedom cases,

   M!"  #$  !!D{ }+ C !

"  #$

  !D{ }+ K !"  #$ D{ } = F { }

Where {D} is the nodal displacements vector, {F } is the

nodal external forces vector, [ M] is called the mass

matrix , [C ] is called the damping matrix , and [K ] is the

stiffness matrix.

  Note that when the dynamic effects (inertia effect

and damping effect) are neglected, it reduces to a static

structural analysis system,

 K !

"  #$ D{ } = F { }

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  9

Modal Analysis

Page 177: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 177/249

   M!"   #$   !!D{ }+ C !"   #$   !D{ }+ K !"   #$ D{ } = 0

For a problem of n degrees of freedom, it has at most n solutions, denoted by

{Di }, i =1,2,...,n . These solutions are called mode shapes of the structure. Each mode

shape {Di } can be excited by an external excitation of frequency

 ! 

i , called the natural

frequency of the mode.

  In a modal analysis, since we are usually interested only in the natural frequencies

and the shapes of the vibration modes, the damping effect is usually neglected to

simplify the calculation,

 

 M!"  #$  !!D{ }+ K !

"  #$ D{ } = 0

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  10

Harmonic Response Analysis

Page 178: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 178/249

   M!"  #$   !!D{ }+ C !

"  #$   !D{ }+ K !

"  #$ D{ } = F { }

<Harmonic Response> analysis solves a special form of the equation, in which the

external force on i th degree of freedom is of the form

 F i  = A

i sin(!t +" 

i )

where  Ai  is the amplitude of the force, ! 

i  is the phase angle of the force, and !  is

the angular frequency of the external force. The steady-state solution of the

equation will be of the form

 D

i   = B

i sin(!t +" 

i )

The goal of the harmonic response analysis to find the magnitude Bi  and the

phase angle ! i , under a range of frequencies of the external force.

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  11

Transient Structural Analysis

Page 179: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 179/249

   M!"  #$  !!D{ }+ C !

"  #$

  !D{ }+ K !"  #$ D{ } = F { }

<Transient Structural> analysis solves the general form of the equation. External

force {F } can be time-dependent forces. All nonlinearities can be included. It uses

a direct integration method  to calculate the dynamic response.

  The direct integration method used in <Transient Structural> analysis is

called an implicit integration method .

Chapter 12 Structural Dynamics  Section 12.1 Basics of Structural Dynamics  12

Explicit Dynamics

Page 180: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 180/249

   M!"  #$  !!D{ }+ C !

"  #$

  !D{ }+ K !"  #$ D{ } = F { }

Similar to <Transient Structural>, <Explicit Dynamics> also solves the general

form of equation. External force {F } can be time-dependent forces. All

nonlinearities can be included. It also uses a direct integration method to

calculate the dynamic response.

  The direct integration method used in <Explicit Dynamic> analysis is called

an explicit integration method .

Chapter 12 Structural Dynamics  Section 12.2 Lifting Fork   13

Section 12 2

Page 181: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 181/249

Section 12.2Lifting Fork 

Problem Description

During thehandling, the fork

accelerates upwardto a velocity of 6 m/s

in 0.3 second, andthen decelerates to

a full stop in another0.3 second, causingthe glass panel to

vibrate.

Chapter 12 Structural Dynamics  Section 12.2 Lifting Fork   14

Static Structural Simulation

Page 182: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 182/249

The maximumstatic deflection

is 15 mm.

Chapter 12 Structural Dynamics  Section 12.2 Lifting Fork   15

Transient Structural Simulation

Page 183: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 183/249

[2] Themaximumdeflection.

[3] The vibration damps

out fast and reduces toless than 7 mm in about

0.6 second.

[1] History oftip-deflection.

Chapter 12 Structural Dynamics  Section 12.3 Two-Story Building  16

Section 12.3

Page 184: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 184/249

Section 12.3Two-Story Building

Problem DescriptionHarmonic loadswill apply on this

floor deck.

Two scenarios are investigated:

• Harmonic load of magnitude of 10

psf due to the dancing on the floor.

• Harmonic load of magnitude of 0.1

psf due to rotations of a machine.

Chapter 12 Structural Dynamics  Section 12.3 Two-Story Building  17

Modal Analysis

Page 185: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 185/249

[1] The firstmode (1.55 Hz).

[2] The sixth

mode (9.59 Hz).

[3] The eighthmode (10.33

Hz)

Chapter 12 Structural Dynamics  Section 12.3 Two-Story Building  18

Page 186: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 186/249

• The dancing frequency is close to the fundamental mode

(1.55 Hz), that's why we pay attention to this mode,

which is a side sway mode (in X-direction).

• For the rotatory machine, we are concerned about the

floor vibrations in vertical direction. That's why we pay

attention on the sixth and eighth modes.

Chapter 12 Structural Dynamics  Section 12.3 Two-Story Building  19

Side Sway Due to Dancing

Page 187: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 187/249

At dancing frequency of

1.55 Hz, the structure is

excited such that the

maximum X-displacement

is 0.0174 in (0.44 mm).

This value is too small to

be worried about.

Amplitude of side swaydue to harmonic loadof magnitude of 1 psf.

Chapter 12 Structural Dynamics  Section 12.3 Two-Story Building  20

Vertical Deflection of the Floor Due to Rotatory

Page 188: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 188/249

Machine

Amplitude of verticaldeflection of the floordue to harmonic loadof magnitude of 1 psf.

Although high frequencies do excite the floor, but the values are

very small. At frequency of 10.3 Hz, the excitation reaches a

maximum of 0.0033 in (0.1 times of 0.033 in), or 0.084 mm. The

value is too small to cause an issue.

Chapter 12 Structural Dynamics  Section 12.4 Disk and Block   21

Section 12.4

Page 189: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 189/249

Section 12.4Disk and Block 

Problem Description

[2] Right before the

impact, the disk movestoward the block with avelocity of 0.5 m/s.

[1] Before theimpact, the block

rests on thesurface.

[3] Both the disk and theblock are made of a verysoft polymer of Young's

modulus of 10 kPa,Poisson's ratio of 0.4, and

mass density of 1000 kg/m3. 

Chapter 12 Structural Dynamics  Section 12.4 Disk and Block   22

Results

Page 190: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 190/249

Chapter 12 Structural Dynamics  Section 12.4 Disk and Block   23

Solution Behavior

Page 191: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 191/249

Chapter 12 Structural Dynamics  Section 12.5 Guitar String  24

Section 12.5

Page 192: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 192/249

Section 12.5Guitar String

The main purpose of this exercise is to demonstrate how to use theresults of a static simulation as the initial condition of a transient

dynamic simulation

Chapter 13 Nonlinear Simulations  1

Chapter 13

Page 193: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 193/249

Chapter 13

Nonlinear Simulations

13.1  Basics of Nonlinear Simulations

13.2 

Step-by-Step: Translational Joint

13.3  Step-by-Step: Microgripper

13.4  More Exercise: Snap Lock 

13.5  Review

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  2

Section 13.1

Page 194: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 194/249

Section 13.1Basics of Nonlinear Simulations

Key Concepts

• Nonlinearities

• Causes of Structural Nonlinearities

• Steps, Substeps, and Iterations

• Newton-Raphson Method

• Force/Displacement Convergence

• Solution Information

• Line Search

• Contact Types

• Contact versus Target• Contact Formulations

• Additional Contact Settings

• Pinball Region

• Interface Treatment

• Time Step Controls• Update Stiffness

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  3

Nonlinearities

Page 195: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 195/249

   F  o  r  c  e   {   F   }

Displacement {D}

   F  o  r  c  e   {   F   }

Displacement {D}

[1] In a linearsimulation, [K ]

(slope of the line)is constant.

[2] In a nonlinearsimulation, [K ] (slope

of the curve) ischanging with {D}.

• In a nonlinear simulation, the

relation between nodal force {F } and

nodal displacement {D} is nonlinear.

• we may write

 

K (D)!"

  #$ D{ } = F { }

• Challenges of nonlinear simulations

come from the difficulties of solving

the above equation.

Page 196: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 196/249

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  5

Steps, Substeps, and Iterations[1] Number ofsteps can be

Page 197: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 197/249

• Steps (Load Steps)

• Each step can have its own analysis settings.

• Substeps (Time Steps)

• In dynamic simulations, time step is used

for integration over time domain.

• In static simulation, dividing into substeps is

to achieve or enhance convergence.

• Iterations (Equilibrium Iterations)

• Each iteration involves solving a linearized

equilibrium equation.

steps can bespecified here.

[3] Each step

can have itsown analysis

settings.

[2] To switchbetween steps,

type a step number

here.

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  6

Newton-Raphson Method

Page 198: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 198/249

 Displacement D{ }

    F  o  r  c  e

   F                 {

                 }

 D

0  D

1  D

2  D

3  D

4

 F 0

 F 1

 F 2

 F 3

 F 0  + !F 

 P 0

 P 1

 P 2

 P 3

 P 4

 P 1

! P 2

! P 3

! P 4

!

[1] Actual responsecurve, governed by

 K (D)!"   #$ D{ } = F { }

[2] Displacements atcurrent time step

(known).

[5] Displacements at nexttime step (unknown).

[3] External

force atcurrent timestep (known).

[4] Externalforce at next

time step(known).

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  7

Suppose we are now at P 0

 and the time is increased one substep further so that

th t l f i i d t F + !F and t t fi d th di l t

Page 199: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 199/249

the external force is increased to F 0  + !F , and we want to find the displacement

at next time step D4.

 

Starting from point P 0

, <Workbench> calculates a tangent stiffness  [K ], the

linearized stiffness, and solves the following equation

 K !"   #$   %D{ } =   %F { }

The displacement D0 is increased by !D  to become D

1. Now, in the D-F  space,

we are at (D1,F 

0  + !F ) , the point P 

1

! , far from our goal P 4. To proceed, we need to

"drive" the point P 1

!  back to the actual response curve.

 

Substituting the displacement D1

  into the governing equation, we can

calculate the internal force  F 1 ,

 K (D

1)!"   #$ D

1{ } = F 1{ }

Now we can locate the point (D1,F 

1) , which is on the actual response curve. The

difference between the external force (here, F 0 + !F ) and the internal force (here,

F 1) is called the residual force of that equilibrium iteration,

 F 1

R= (F 

0  + !F )" F 

1

If the residual force is smaller than a criterion, then the substep is said to be

converged, otherwise, another equilibrium iteration is initiated. The iterations

repeat until the convergence criterion satisfies.

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  8

Force/Displacement

Convergence

Page 200: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 200/249

[1] You can turnon <Force

Convergence> andset the criterion.

[2] You can turn

on <DisplacementConvergence> andset the criterion.

[3] When shellelements or beamelements are used,

<MomentConvergence> can be

activated.

[4] When shellelements or beamelements are used,

<RotationConvergence> can be

activated.

Convergence

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  9

Solution Information

Page 201: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 201/249

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  10

Line Search

o  r  c  e

Page 202: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 202/249

 D0  D1

 F 0

 F 0  + !F 

 Calculated !D

 Goal

    F  o

 Displacement

[1] In some cases, when the F-D curve is highly nonlinear or

concave up, the calculated !D

in a single iteration mayovershoot the goal.

[2] Line search can beturned on to scale

down the incrementaldisplacement. By

default, it is <ProgramControlled>.

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  11

Page 203: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 203/249

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  12

Contact Types

Page 204: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 204/249

• Bonded

• No Separation

• Frictionless

• Rough

• Frictional

• Linear versus Nonlinear Contacts

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  13

Contact versus Target [1] To specify a contactregion, you have to select a setof <Contact> faces (or edges),

Page 205: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 205/249

( g ),and select a set of <Target>

faces (or edges).

[2] If <Behavior> is set to<Symmetric>, the roles of

<Contact> and <Target> willbe symmetric.

• During the solution, <Workbench> will

check the contact status for each point

(typically a node or an integration

point) on the <Contact> faces against

the <Target> faces.

• If <Behavior> is set to <Symmetric>,

the roles of <Contact> and <Target>

will be symmetric.

• If <Behavior> is set to <Asymmetric>,

the checking is only one-sided.

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  14

Contact Formulations

Page 206: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 206/249

[1] Workbenchoffers several

formulations toenforce contactcompatibility.

[2] <Normal Stiffness> is input here.

The input value (default to 1.0) isregarded as a scaling factor to multiply astiffness value calculated by the program.

• MPC (multi-point constraint)

• Pure Penalty

• Normal Lagrange

• Augmented Lagrange

Chapter 13 Nonlinear Simulations  Section 13.1 Basics of Nonlinear Simulations  15

Additional Contact

Settings

Page 207: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 207/249

Settings

• Pinball Region

• Interface Treatment

• Time Step Controls

• Update Stiffness

Chapter 13 Nonlinear Simulations  Section 12.2 Translational Joint  16

Section 13.2

Page 208: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 208/249

 60

 20

 20

 40

Translational Joint

Problem Description

[3] All connectorshave a cross sectionof 10x10 mm.

[1] Thetranslational jointis used to connect

two machinecomponents, sothat the relativemotion of thecomponents is

restricted in thisdirection.

[2] All leaf springshave a cross section

of 1x10 mm.

Chapter 13 Nonlinear Simulations  Section 12.2 Translational Joint  17

Results

Page 209: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 209/249

0

30

60

90

120

0 10 20 30 40

   F  o  r  c  e   (   N   )

Displacement (mm)

[1] NonlinearSolution.

[2] Linear Solution.

 101.73

 74.67

Page 210: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 210/249

Chapter 13 Nonlinear Simulations  Section 13.3 Microgripper  19

Results

Page 211: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 211/249

[1] contactstatus. [2] contact

pressure.

Chapter 13 Nonlinear Simulations  Section 13.4 Snap Lock   20

Section 13.4

Page 212: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 212/249

Snap Lock 

Problem Description

 7

 20

 20

 7

 10

 30

 17

 7

 5

 10

 5

 8

The purpose of this

simulation is to find out

the force required to push

the insert into the

position and the force

required to pull it out.

Chapter 13 Nonlinear Simulations  Section 13.4 Snap Lock   21

[2] I i

Results (Without Friction)

Page 213: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 213/249

[2] It requires236 N to pull

out.

[1] It requires 189 N

to snap in.

[3] The curve isessentially symmetric.

Remember that wedidn't take the

friction into account.

Chapter 13 Nonlinear Simulations  Section 13.4 Snap Lock   22

Results (With Friction)

Page 214: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 214/249

[1] It requires 328 Nto snap in.

[2] It requires 305 N to

pull out.

[3] Because offriction, the curve is

not symmetric.

Page 215: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 215/249

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  2

Section 14.1

Page 216: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 216/249

Basics of Nonlinear Materials

Key Concepts

• Linear versus Nonlinear Materials

• Elasticity

• Linear Elasticity

• Hyperelasticity

• Plasticity

• Plasticity

• Yield Criteria

• Hardening Rules• Plasticity Models

• Hyperelasticity

• Required Test Data

• Strain Energy Functions

• Hyperelasticity Models

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  3

Linear/Nonlinear Materials

/   A  r  e  a   )

Page 217: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 217/249

• When the stress-stain relation of a

material is linear, it is called a linear

material , otherwise the material is

called a nonlinear material .

• For a linear material, the stress-strain

relation is expressed by Hooke's law,

in which two independent material

parameters are needed to

completely define the material.

• Orthotropic elasticity is also available

in <Workbench>.

   S  t  r  e  s  s   (   F  o

  r  c  e   /

Strain (Dimensionless)

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  4

Elastic/Plastic Materials

/   A  r  e  a   )

[1] Elasticmaterial.

Page 218: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 218/249

• If the strain is totally recovered after

release of the stress, the behavior is

called elasticity.

• On the other hand, if the strain is not

totally recoverable (i.e., there is no

residual strain after release of the

stress), the behavior is called plasticity

and the residual strain is called the

plastic strain.

   S  t  r  e  s  s   (   F  o

  r  c  e   /

Strain (Dimensionless)

   S  t  r  e  s  s   (   F  o  r  c  e   /   A  r  e  a   )

Strain (Dimensionless)

[2] Plastic

material.

[3] Plastic strain.

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  5

Hysteresis

Page 219: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 219/249

   S  t  r  e  s  s

Strain

• The term hysteresis is used for the energy

loss in a material during stressing and

unstressing.

• Most of materials have more-or-less hysteresis

behavior. However, as long as it is small

enough, we may neglect the hysteresis

behavior.

   S  t  r  e  s  s

Strain

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  6

Hyperelastic

Hyperelasticity 

Page 220: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 220/249

   S  t  r  e  s  s   (   F  o  r  c  e   /   A  r  e  a   )

Strain (Dimensionless)

Hyperelasticmaterial.

•Nonlinear non-hysteresis elasticity are characterized

by that the stressing curve and the unstressing curve

are coincident: the energy is conserved in the cycles.

• Challenge of implementing nonlinear elastic material

models comes from that the strain may be as large

as 100% or even 200%, such as rubber under

stretching or compression.

• Additional consideration is that, under such large

strains, the stretching and compression behaviors

may not be described by the same parameters.

•This kind of super-large deformation elasticity is

given a special name: hyperelasticity .

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  7

PLASTICITY

[1] Idealized[2] Initial yield

Page 221: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 221/249

Idealized Stress-Strain Curve

   S  t  r  e  s  s   (   F  o  r  c  e   /   A  r  e  a   )

Strain (Dimensionless)

stress-strain

curve.

point (or

elastic limit).

[3] The stress-strain relation isassumed linear

before Yield

point, and theinitial slope is theYoung's modulus.

[4] When thestress is released,

the strain

decreases with aslope equal to theYoung's modulus.

• Plasticity behavior typically occurs in ductile

metals subject to large deformation. Plastic strain

results from slips between planes of atoms due to

shear stresses. This dislocation deformation is a

rearrangement of atoms in the crystal structure.

• A stress-strain curve is not sufficient to fully

define a plasticity behavior. There are two

additional characteristics that must be described: a

yield criterion and a hardening rule.

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  8

Yield Criteria

Page 222: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 222/249

• <Workbench> uses von Mises criterion as the yield criterion, that is, a stressstate reaches yield state when the von Mises stress ! 

e  is equal to the current

uniaxial yield strength !  y " , or

 

1

2  ! 

1"! 

2( )2

+   ! 2 "! 

3( )2

+   ! 3 "! 

1( )2#

$%

&

'(  =! 

 y )

• The yielding initially occurs when !  y "   = ! 

 y , and the "current" uniaxial yield

strength !  y "  may change subsequently.

• If the stress state is inside the cylinder, no yielding occurs. If the stress state is on

the surface, yielding occurs. No stress state can exist outside the yield surface.

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  9

 ! 

3 This is a von Mises yield surface, which

is a cylindrical surface aligned with the

Page 223: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 223/249

 ! 

1

 ! 

2

 ! 

1  = ! 

2  = ! 

3

axis ! 1  = ! 

2  = ! 

3 and with a radius of

2!  y 

" , where !  y 

"  is the current yield

strength.

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  10

Hardening Rules

Page 224: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 224/249

• If the stress state is on the yield surface and the stress state continues to "push" the

yield surface outward, the size (radius) or the location of the yield surface will

change. The rule that describes how the yield surface changes its size or location is

called a hardening rule.

• Kinematic hardening assumes that, when a stress state continues to "push" a yield

surface outward, the yield surface will change its location, according to the "push

direction," but preserve the size of the yield surface.

• Isotropic hardening assumes that, when a stress state continues to "push" a yield

surface, the yield surface will expand its size, but preserve the axis of the yield

surface.

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  11

[1] Kinematic hardeningassumes that the difference

[2] Isotropic hardeningth t th t il

Page 225: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 225/249

 ! 

 y  2! 

 y 

   S  t  r  e  s  s

Strain

between tensile yield

strength and thecompressive yield strength

remains a constant of 2!  y 

.

 ! 

 y "

 ! 

 y 

"   S  t  r  e  s  s

Strain

assumes that the tensile

yield strength and thecompressive yield strengthremain equal in

magnitude.

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  12

Plasticity Models in Workbench

Page 226: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 226/249

[2] To complete adescription of plasticity

model, you must include itslinear elastic properties.

[1] Currently,<Workbench>

provides sixplasticity models.

Page 227: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 227/249

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  14

• It is possible that a set of test data is obtained by superposing two sets of other test

data. For example, the set of uniaxial compressive test data can be obtained by adding a

Page 228: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 228/249

set of hydrostatic compressive test data to a set of equibiaxial tensile test data.

[1] Uniaxialcompressive test.

[2] Equibiaxialtensile test.

[3] Hydrostaticcompressive test.

= +

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  15

300

Page 229: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 229/249

0

60

120

180

240

0 0.2 0.5 0.7

   S  t  r  e  s  s   (  p  s   i   )

Strain (Dimensionless)

[1] Uniaxialtest data.

[2]Equibiaxial test

data.

[3] Shear testdata.

Chapter 14 Nonlinear Materials  Section 14.1 Basics of Nonlinear Materials  16

Hyperelasticity

Models in

Page 230: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 230/249

Workbench

Page 231: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 231/249

Chapter 14 Nonlinear Materials  Section 14.2 Belleville Washer  18

 40 mm

 22 mm• We will compress the Belleville

Page 232: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 232/249

The Belleville washer is

made of steel, withthickness of 1.0 mm.

spring by 1.0 mm and then

release it completely.

• A force-displacement curve will

also be plotted.

• We will examine the residual

stress after the spring is

completely released.

Chapter 14 Nonlinear Materials  Section 14.2 Belleville Washer  19

80

Force-versus-Displacement Curve

Page 233: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 233/249

-80

-60

-40

-20

0

20

40

60

80

0 0.2 0.4 0.6 0.8 1.0

   C  o  m

  p  r  e  s  s   i  v  e   F  o  r  c  e   (   N   )

Displacement (mm)

[1] The curve isquite different

between loadingand unloading.[3] Let's explore the

residual stress at thispoint when the external

force is completelyreleased.

[2] There is no practice use of thissection. It is the force required to pullthe spring back to its original position.

Chapter 14 Nonlinear Materials  Section 14.2 Belleville Washer  20

Residual Stress

[1] Residuali l

Page 234: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 234/249

equivalent stress.

[2] Residual hoop stress. Notethat the top surface is

dominated by tension, whilethe bottom surface is

dominated by compression.

Chapter 14 Nonlinear Materials  Section 14.3 Planar Seal  21

Section 14.3

Page 235: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 235/249

Planar Seal

Problem Description

0

40

80

120

160

200

0 0.1 0.2 0.3

   S  t  r  e  s  s   (  p  s   i   )

Engineering Strain (Dimensionless)

[1] Uniaxialtest.

[2] Biaxialtest.

[3] Shear test.• The seal is used in the door of a

refrigerator. The seal is a long

strip, and we will model it as a

plane strain problem.

Chapter 14 Nonlinear Materials  Section 14.3 Planar Seal  22

Page 236: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 236/249

 .800

 1.100

 .333  .500

 .133

 .133

 .867

 R.150

 R.150

 R.200

 R.200

 R.050

 R.050

 Unit: in.

[2] Steelplate.

[1] Rubberseal.

[3] Steelplate.

[4] The upperplate is displaced0.85" downward.

Chapter 14 Nonlinear Materials  Section 14.3 Planar Seal  23

Results

Page 237: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 237/249

Chapter 14 Nonlinear Materials  Section 14.3 Planar Seal  24

Page 238: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 238/249

A force-versus-displacement curve. Notethat the force unit should

be read lbf/in instead of lbf.

Chapter 15 Explicit Dynamics  1

Chapter 15

Page 239: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 239/249

p

Explicit Dynamics

15.1  Basics of Explicit Dynamics

15.2 

Step-by-Step: High-Speed Impact

15.3 

Step-by-Step: Drop Test

15.4  Review

Chapter 15 Explicit Dynamics  Section 15.1 Basics of Explicit Dynamics  2

Section 15.1

Page 240: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 240/249

Basics of Explicit Dynamics

Key Concepts

• Implicit Integration Methods

• Explicit Integration Methods

• Solution Accuracy

• Integration Time Steps

• Automatic Mass Scaling

• Static Damping

Chapter 15 Explicit Dynamics  Section 15.1 Basics of Explicit Dynamics  3

Implicit Integration Methods

Page 241: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 241/249

 

 M!"   #$   !!D{ }+ C !"   #$   !D{ }+ K !"   #$ D{ } = F { }

• <Transient Structural> solves the above equation using the following algorithm:

 

!Dn+1 =

  !Dn + !t   "   !!D

n+1+(1# "  )!!D

n$%

  &'

 

Dn+1 =Dn  + !t  !

Dn  +

1

2 !t 2

2" !!

Dn+1+ (1# 2" )!!

Dn$%

  &'

• The parameters !    and !  are chosen to control characteristics of the algorithm such as

accuracy, numerical stability, etc.

• It is called an implicit method  because the response at the current time step depends on

not only the historical information but also the current information; iterations are

needed in a single time step.

Chapter 15 Explicit Dynamics  Section 15.1 Basics of Explicit Dynamics  4

Explicit Integration Methods

Page 242: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 242/249

 

 M!"  #$  !!D{ }+ C !

"  #$

  !D{ }+ K !"  #$ D{ } = F { }

• <Explicit Dynamics> solves the above equation using the following algorithm:

 

!Dn+1

2

=   !Dn!1

2

+ !!Dn"t 

 

Dn+1

= Dn +   !D

n+1

2

!t 

• It is called explicit methods because the response at the current time can be calculated

explicitly; no iterations within a time step is needed.

Chapter 15 Explicit Dynamics  Section 15.1 Basics of Explicit Dynamics  5

Solution Accuracy 

Page 243: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 243/249

• <Explicit Dynamics> uses the principle of conservation of energy  to monitor the solution

accuracy.

 (Reference Energy) + (Work Done)Reference!Current   = (Current Energy)

• It calculates overall energy at each cycle. If the energy error reaches a threshold, the

solution is regarded as unstable and stops. The default threshold is 10%.

• The Energy Error  is defined by

 

Energy Error  =

(Current Energy)-(Reference Energy) - (Work Done)Reference!Current

max Current Energy , Reference Energy , Kinetic Energy( )

Chapter 15 Explicit Dynamics  Section 15.1 Basics of Explicit Dynamics  6

Page 244: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 244/249

The red curve isthe energy error.

In this case, thesolution is quite

stable.

Chapter 15 Explicit Dynamics  Section 15.1 Basics of Explicit Dynamics  7

Integration Time Steps

Page 245: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 245/249

• With explicit methods, the integration time step needs to be small enough to ensure

stability and accuracy of the solution. The German mathematicians, Courant, Friedrichs,

and Lewy, suggested that, in a single time step, a wave should not travel further than the

smallest element size, i.e.

 

!t "h

where h is the smallest element size, c  is the wave speed in the element.

• Because of the CFL condition, when generating meshes for <Explicit Dynamics>, make

sure that one or two very small elements do not control the time step. In general, a

uniform mesh size is desirable for <Explicit Dynamics> simulations.

Chapter 15 Explicit Dynamics  Section 15.1 Basics of Explicit Dynamics  8

Automatic Mass Scaling

Page 246: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 246/249

• The wave speed in an element is c = E   !  , where E is the Young's modulus

and !   is the mass density of the element. Further, !  = m V , where m is the

mass and V  is the volume of the element. Therefore the CFL condition yields

 

!t " fhm

VE

• The idea of mass scaling is to artificially increase the mass of small elements,

so that the stability time step can be increased.

Chapter 15 Explicit Dynamics  Section 15.1 Basics of Explicit Dynamics  9

Static Damping

Page 247: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 247/249

• <Explicit Dynamics> is primarily

designed for solving transient dynamic

problems.

• Using <Static Damping> option, a steady-

state solution can also be obtained.

• The idea is to introduce a damping

force, to critically damp the lowest mode

of oscillation.

Chapter 15 Explicit Dynamics  Section 15.2 High-Speed Impact  10

Section 15.2

Page 248: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 248/249

High-Speed Impact

Chapter 15 Explicit Dynamics  Section 15.3 Drop Test  11

Section 15.3

Page 249: Finite Element Simulations with ANSYS Workbench 13.pdf

8/10/2019 Finite Element Simulations with ANSYS Workbench 13.pdf

http://slidepdf.com/reader/full/finite-element-simulations-with-ansys-workbench-13pdf 249/249

Drop Test

 10

 R3

20!

 5 m/s

 120

 R20

[1] The phonebody is made of an

aluminum alloy.