fibra yao tutorial

66
Photonic Techniques for Frequency & Timing A Tutorial 1998 IEEE International Frequency Control Symposium May 26, 1998 X. Steve Yao Jet Propulsion Laboratory California Institute of Technology Tel: 818-393-9031 Fax: 818-393-6773 Email: [email protected] Other contributors: Lute Maleki, George Lutes, Malcolm Calhoun, William Shieh Presented at the 2000 IEEE Int'l Frequency Control Symposium Tutorials June 6, 2000, Kansas City, Missouri, USA

Upload: abelardo103

Post on 07-Apr-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 1/66

Photonic Techniques for Frequency & Timing

A Tutorial1998 IEEE International

Frequency Control SymposiumMay 26, 1998

X. Steve Yao

Jet Propulsion LaboratoryCalifornia Institute of TechnologyTel: 818-393-9031 Fax: 818-393-6773

Email: [email protected]

Other contributors: Lute Maleki, George Lutes, Malcolm Calhoun, William Shieh

Presented at the 2000 IEEE Int'l Frequency Control Symposium Tutorials

June 6, 2000, Kansas City, Missouri, USA

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 2/66

Contents

1. Basics of Optical Fiber 1-19

i. History 1

ii. Advantages 2

iii. Fiber vs. coax (data) 3-8

  a. Bandwidth vs. cable length 3

b. Attenuation vs. frequency 4-5

c. Group delay vs. temperature 6-7

d. Temperature stability 8

  iv. How fiber works 9-13

  v. Discussion of fiber dispersion 14-19

2. Basic Photonic Links for RF applications 203. Characteristics of Fiber Optic Components 21-31

  i. Fiber 21-23

ii. Choices of operation wavelengths 24-26

iii. Lasers 27-28

iv. Photodetectors 29

v. Modulators 30

vi. Other commercially available fiber optic devices 31

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 3/66

 

4. Noise sources in photonic systems 32-38

i. White noise: Thermal, shot, and RIN 33

  ii. 1/f RIN and relaxation oscillation RIN 34

iii. Interferometric noise 35-36

iv. Double Rayleigh scattering & Brillouin scattering 37

v. Fiber thermal fluctuation 38

vi. Fiber dispersion mediated noise 38

5. Fiber Optic Frequency Standard Distribution 39-43

6. Photonic Technology for signal mixing & multiplication 44-54

7. Photonic Techniques for generating RF signals 55-69

Contents

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 4/66

Basics of Optical Fiber

• 1910: Concept conceived by Hondros & Debye

• 1915: Existence of a dielectrically guided wave

demonstrated by Zahn, Ruter & Schriever

• 1959: Waveguide modes in optical fiber observed by Snitzer

& Hicks.

• 1965: Fibers with a loss less than 20-dB/km for fiber optic

communications proposed by Kao.

• 1970: Practical fiber with 20 dB/km loss announced by

Kapron, Keck, & Maurer.

• 1972: 4 dB/km loss fiber developed by Corning.

• Today: Fiber has a loss of 0.2 dB/km @ 1550 nm

History

1 Steve Yao, JPL

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 5/66

Advantages of Optical Fiber• Wide Bandwidth ==> High frequency

– 20 MHz-km (multimode) to > 100 GHz-km (single mode)

– With wavelength division multiplexing, > 1Tb/s over 600 km demonstrated.

• Low Loss ==> High Q delay line for low phase noise

– ~0.5 dB/km @ 1300 nm, 0.2 dB/km @ 1550 nm

• Low thermal-induced delay change ==> High stability

– Single mode fiber: 7 ppm/°C, Special fiber: < 0.1 ppm/°C

• No RFI or EMI problems ==> Immune to spurious noise sources

• Electrical isolation between ends• No ground loops

• Small, lightweight, & corrosion resistant

• Material is plentiful & inexpensive

• Cost/capacity ratio is extremely low

Steve Yao, JPL2

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 6/66

How Fiber Works

Mirror

PoPo- Loss

All mirrored surfaces have loss!!

Reflectionn1 (Low index of refraction)

Total Internal Reflection

No Loss!!

Critical angle

Po Po

n2 (High index of refraction)

Snell Law

* n = c/vc = the speed of light in a vacuum (3 x 108 m/s)

v = the speed of light in the material (~ 2 x 108 m/s in glass)

* The index of refraction of glass can be changed by adding

impurities (doping)

Steve Yao, JPL9

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 7/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 8/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 9/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 10/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 11/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 12/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 13/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 14/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 15/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 16/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 17/66

Basic Photonic links for RF applicationsDirectly modulated Link  Externally modulated link 

Laser Detector

E/O converter O/E converter

RF inFiber RF out

Detector

E/O converter O/E converter

RF in Fiber RF out

Laser EOM

RF signal directly drives the laserRF signal drives an E/O modulator

external to the laser

Input current

   O  p   t   i  c

  a   l   P  o  w  e  r

ITH

   S    l  o   p   e

    (    m    W

   /   m   A    )

Lower dynamic range

most CATV systems

High dynamic range

High performance systems

1.0

0.8

0.6

0.4

0.2

0.0

543210

Applied voltage (V)

   T  r  a  n  s  m

   i  s  s   i  o  n

Steve Yao, JPL20

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 18/66

Characteristics of Fiber Optic Components

• Mutimode fiber

– High dispersion, low bandwidth, high modal beating noise.

– Not recommended for frequency & timing.

• Standard single mode fiber

– low cost: ~$0.15/m

– zero dispersion @ 1310 nm

– thermal-induced delay change: ~ 7 ppm/°C

– core/cladding sizes: 9/125 um, numerical aperture: 0.13

– low attenuation: 0.5 dB/km @ 1310 nm, 0.2 dB/km @ 1550 nm– polarization fluctuates due to mechanical disturbances

• Thermally compensated fiber

– Extremely low thermal-induced delay change:

• 0.1 ppm/°C broad range, 0 ppm/°C @ a specific temperature

– high cost

Optical Fiber

Steve Yao, JPL21

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 19/66

• Polarization Maintaining (PM) Fiber

– support two polarization modes

– No polarization fluctuation

– Expensive: ~ $20.00/m

– difficult to connect: fiber axis alignment required

– higher loss: < 2 dB/km @ 1310 nm & 1550 nm

– Slightly smaller core size & larger NA than standard fiber

• Polarizing (PZ) Fiber

– support only one polarization mode ==> fiber polarizer

– most expensive ~ $90.00/m

– higher loss: <2 dB/km @ 1310 nm, <7 dB/km @ 1550 nm

– higher bending loss

-- continue Characteristics of Fiber Optic Components

Steve Yao, JPL22

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 20/66

-- continue Characteristics of Fiber Optic Components

• Dispersion-shifted fiber (DSF)

– Zero dispersion shifted to 1550 nm, where loss is the lowest

– mode-field/cladding sizes: 8.1/125 um, NA = 0.17

– effective area: 50 um2

• Non-zero dispersion-shifted fiber (NZ-DSF)

– Minimum but non-zero dispersion at 1550nm

– reducing fiber nonlinear effects

– mode-field/cladding sizes: 8.4/125 um, NA = 0.16

– effective area: 55 um2

• Large core non-zero-dispersion-shifted fiber

– Minimum but non-zero dispersion at 1550nm

– mode-field/cladding: 9/125 um,

– larger effective area: 72 um2

– further reducing fiber nonlinear effects

Steve Yao, JPL23

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 21/66

• 1310 nm range• most analog links & past installed digital links

• low cost standard fiber off-the-shelf 

• optical amplifier available

• low noise diode-pumped YAG laser off-the-shelf 

• high speed modulators & detectors off-the-shelf 

• high speed semiconductor laser off-the-shelf • high power semiconductor lasers off-the-shelf 

• other fiber optic components off-the-shelf 

• low dispersion ==> low PM to AM noise conversion

• low loss

Choices of operating wavelengths

Steve Yao, JPL24

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 22/66

Choices of operating wavelengths

• 1550 nm range• most present & future digital links, WDM systems

• lowest attenuation

• Er+ doped fiber amplifiers (EDFA) off-the-shelf 

• low cost standard fiber off-the-shelf 

• dispersion shifted fibers (DSF) off-the-shelf 

• high speed modulators & detectors off-the-shelf 

• high speed semiconductor laser off-the-shelf 

• high power semiconductor lasers off-the-shelf 

• other fiber optic components off-the-shelf 

• low dispersion with DSF ==> low PM to AM noise conversion

• most industrial support in the future

Steve Yao, JPL25

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 23/66

Choices of operating wavelengths

• Other wavelengths --1060, 820, 780, & 630 nm• high fiber attenuation

• high cost optical fiber

• high cost modulator

• high cost lasers & detectors

• high speed semiconductor laser not off-the-shelf 

• high power semiconductor lasers (single-mode fiber

pigtailed) not off-the shelf • expensive custom-made fiber optic components

• high dispersion ==> high PM to AM noise conversion

• least industrial support in the future

Steve Yao, JPL26

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 24/66

Fabry-Perot laser

(F-P laser)

Distributed feedback laser

(DFB laser)

* Optical feedback provided

by the end mirrors

* multi-longitudinal modes

* higher noise due to mode

competition

* Optical feedback provided

by the grating on top of the

gain medium

* single longitudinal mode

* lower noise

Grating

Gain mediumGain medium

wavelength wavelength

Commonly used lasers for RF systems

Steve Yao, JPL27

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 25/66

Commonly used lasers for RF systems

Distributed Bragg

Reflector (DBR) Laser

Diode-pumped

solid-state laser

Gain medium

Gratings

* Bragg gratings are narrow

band reflectors* Optical feedback provided

by grating reflection

* single/multimodes operation

* Solid state gain medium

pumped by diode lasers

* Narrowest spectral width

* Lowest noise

* Most expensive

* Less reliable

Diode laser bar

Laser rod

Steve Yao, JPL28

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 26/66

Commonly used Photodetectors• InGaAs PIN photodiodes (0.8 - 1.7 um)

– High responsivity: up to 0.95 A/W commercially available

– High saturation power: up to 15 mW commercially available

– High speed: up to 25 GHz commercially available

– Lowest dark current: ~0.1 nA (intrinsic noise)

• InGaAs Schottky photodiodes (0.95 - 1.65 um)

– Lower responsivity: ~ 0.4A/W

– Highest speed: 60 GHz commercially available

– Low saturation power: ~ 2 mW

• Ge PIN photodiodes (0.8 - 1.8 um)

– High responsivity: ~0.9 A/W

– Higher dark current: ~ 1 nA

– Not well developed for high speed: ~ <6 GHz

Steve Yao, JPL29

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 27/66

Modulators

RF in

Optical in Optical outs

RF in

Optical in Optical outsMach-Zehnder modulator Directional coupler modulator

* Wide Bandwidth: up to 100 GHz

* Good linearity

* No chirp (good)

* Well developed, widely used

* High drive voltage ==>High RF insertion loss

* Potential large Bandwidth

* Not well developed

* Not as good linearity

* Modulation chirp

* High drive voltage ==>

High RF insertion loss

RF in

Optical out

Electro-absorption modulator

* Wideband width: up to 60 GHz

* Easy integration with diode lasers

* Extremely compact

* Low drive voltage * Modulation chirp (not good)

Laser

Steve Yao, JPL30

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 28/66

Other fiber optic devices available

• Directional couplers (ratio: 1 - 50%, backreflection < -65 dBo)

• Isolators (insertion loss: < 0.6 dBo, isolation > 40 dBo)

• Circulators (insertion loss: < 0.8 dB, isolation > 40 dBo)

• Polarizers (insertion loss: < 0. 4 dB, backreflection < -60 dB)

• Polarization controllers (no loss, no backreflection)

• Filters (insertion loss < 0.5 dB, BW: 0.8 nm and up)

• Faraday polarization rotator and mirror

• connectors: Physical contact (PC) and angled physical contact(APC)

– loss < 0. 25 dB, backreflection: PC < -40 dB, APC < -65 dB

• Fiber optic amplifiers: doped fiber & semiconductor

Steve Yao, JPL31

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 29/66

Noise sources in photonic systems

• Thermal noise: kT

• Shot noise: 2eIR• Laser RIN (relative intensity noise): <∆P2>/P2

• 1/f RIN (at < 10 kHz)

• Relaxation oscillation RIN peak 

• Interferometric noise

• Double Rayleigh scattering noise• Brillouin scattering caused noise

• Fiber dispersion mediated noise

• Fiber thermal noise

Steve Yao, JPL32

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 30/66

White Noise

-190

-180

-170

-160

   N  o   i  s  e   d  e  n  s   i   t  y   (   d   B  m   /   H  z   )

876543210

Photocurrent (mW)

Thermal noiseShot noise

RIN noise (RIN: -160 dB/Hz)Total noise

Steve Yao, JPL33

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 31/66

1/f RIN & Relaxation Oscillation RIN

   R   I   N   N  o   i  s  e   (   d   B   /   H  z

   )

1/f 

1 Hz 10kHz 200 kHz 10 MHz

-135 dB/Hz

-115 dB/Hz

-90 dB/Hz

< -160 dB/Hz

-145 dB/Hz

Frequency

Typical diode pump YAG laser

* The low frequency 1/f noise & relaxation oscillation peak 

will be multiplied up by the modulator & affect the signal

Steve Yao, JPL34

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 32/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 33/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 34/66

Double Rayleigh Scattering Brillouin + Rayleigh scattering

Rayleigh scattering: photon being

scattered from random material

inhomogeneitiesOpticalcarrier

Signalsideband

Signalsideband

Double scattered light

Transmitted light12

3

1’2’ 3’

1+1’, 2+2’, 3+3’ ==> 

Low freq. noise (< 1 GHz), no wary

1+2’, 1+3’, 1’+2’, 1’+3’ ==>

noise around signal!!

Brillouin scattering: photon being

scattered by acoustic phonons in the fiber.

Brillouin scattering

Rayleigh scattering

Opticalcarrier

Signalsideband

Signalsideband

Stokes shift

Scattered light is frequency down shifted

(Stokes shift) from the entering light.

When modulation frequency = Stokes

shift ==> noise around signal

Brillouin +

Rayleigh

Steve Yao, JPL37

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 35/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 36/66

• Frequency standards are extremely expensive• Multiple users at different location share one

standard ==> big money saving

• Distribution system should not degrade the

performance of the standard

• In 1981, JPL pioneered the fiber opticfrequency standard distribution

• The only workable solution so far

Fiber Optic Frequency Standard Distribution

Steve Yao, JPL39

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 37/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 38/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 39/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 40/66

Photonic technology for signal

mixing & multiplication

• Photonic links w/ traditional & photonic mixers

• Pros & cons of present photonic signal mixing

• SOA based photonic mixing links

• Brillouin Selective Sideband Amplification

(BSSA) of RF signals• BSSA based photonic mixing links

• OEO based photonic mixing links

• Summary

Steve Yao, JPL44

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 41/66

Fiber Optic Links w/ traditional mixers

LD PDFiber

RFEOM

f LO

IFRF

LD PDFiber

EOM

f LO

IFLD PD

RF

f LO

LD

Fiber

EOM

f LO

IFLD PD

RF

f LO

Filter

LD PD

f LO

IF

Fiber

RF

Base station

Control StationBroadband

MMW BS

LD PD

f LO

IFIF

LD PDMMW

RF

To other BS

Low speed

High speed, but narrow bandwidth

LD PDIF

Fiber

IF

Low speed

Σ

LO Control

RF

~LO

LOcontrol

Directly Modulated Externally Modulated

Steve Yao, JPL45

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 42/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 43/66

Photodetector as a mixer

(Asin2πf 1 + Bsin2πf 2)2

==> (f 1 + f 2) and (f 1 - f 2)f 1 f 2

Optical freq.

Photocurrent I ~ |E|2

foOptical carrier

IF IF

LO LO

RF

Power Law Photodetector ==> acts as a mixer

Modulator & photodector combination ==> signal up or down conversion

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 44/66

Pros & Cons of Present Photonic Mixing Links

Pros Cons

* Separate LO trans. not needed

* Harmonic up/down conversion

==> Lower freq. LO & circuit

* Slow detector for down conv.

==> lower cost, higher power

* Slow laser/EOM for up conv.

==> lower cost

* Infinite isolation: LO & RF

* Low efficiency (most cases)

* High LO power (some cases)

* Freq. locking circuits needed

(some cases)

Steve Yao, JPL47

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 45/66

All-Optical RF Mixing Using a Semiconductor Optical Amplifier (SOA)

SOAλLO

λRF G(t) λRF

Pin ( t)

Pout( t) = G(t) * P in ( t) ωLO

ωRF

ωRF-ωLO

ωRF+ωLO

SOAλLO

λRF G(t) λRF

Pin ( t)

Pout( t) = G(t) * P in ( t) ωLO

ωRF

ωRF-ωLO

ωRF+ωLO

LO Modulatesthe Gain

LD1 Modulator

SOA OpticalDetector

Optical Filter@1312 nm RF

SpectrumAnalyzer

LD2 Modulator

1312 nm

1320 nm

6 GHz

5 GHz

(b)

RF

LO

Advantages:

* Mixing with Gain* Flexible LO location

* LO can be distributed

in the network 

Gain Mod. Bandwidth > 50 GHz

Steve Yao, JPL48

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 46/66

1GHz, OMI(LO) = 90 %11 GHz, OMI(LO) = 90%1GHz, OMI(LO) = 30%11 GHz, OMI(LO) = 30%

1GHz, OMI(RF) = 25%11GHz, OMI(RF) = 25%1GHz, OMI(RF) = 15%11GHz, OMI(RF) = 15%

0.1

1

10

10 100LO Modulation Index (%)

   I   F  m  o   d  u   l  a   t   i  o  n   i  n   d  e  x

IF Gain Measurement IF Optical Mod. Index

Performance of SOA Based Photonic Mixing Link 

Input RF Power (dBm)

-48 -46 -44 -42 -40 -38-60

-55

-50

-45

-40

-35

-30

   I   F   P  o  w  e  r   (   d   B  m   )

 L o s s l e s s

  L i n e

* IF Gain: 8 dB * 3rd Order IMD < 45 dBC

Steve Yao, JPL49

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 47/66

Brillouin Selective Sideband Amplification

BSSA

-80

-60

-40

   R   F

   P  o  w  e  r   (   d   B  m   )

 

-80

-60

-40

   R   F   P  o  w  e  r   (   d   B  m   )

5.485.465.455.44 5.47Frequency (GHz)

  -12.17 dBm

-2.17 dBm

2.83 dBm

7.83 dBm

40

30

20

10

0

   R   F   G  a   i  n   (   d   B   )

20151050Optical Pump Power (mW)

RF input:

FM Signal: 10 MHz BW

G = 40 dB

TX PD

LD

Bias Tee

PumpFreq. Locking

RF RF

υpump

BW: ~10 MHz

υTX

Freq.

Freq.

12.8 GHz @ 1.3 um10 GHz @ 1.5 um

* Fiber as gain medium

* Low pump power ~ 10 mW

* Dispersion robust

* Highly efficient

Steve Yao, JPL50

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 48/66

υpump

υTX

Opt. Freq.

Opt. Freq.

BSSA as a tuner for SCM systems

Tuning pump laser frequency

to selectively amplify a channel

Filter + Gain

Frequency multiplication

υpump

υLD

Freq.

Freq.f m

-80

-70

-60

-50

-40

-30

-20

   P  o  w  e  r   (   d   B  m

   )

2520151050

Frequency (GHz)

5 GHz

10 GHz

15 GHz20 GHz

25 GHz

LD PD

LDPump Tuning pump freq.

EOM

f m

Steve Yao, JPL51

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 49/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 50/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 51/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 52/66

Photonic Techniques for generating RF signals

• Requirements of Photonic Signal Sources

• Evolution of Oscillators

• Opto-electronic oscillators (OEO)

• Properties of OEO

• Experimental results

• Comparison with other type oscillators

• Coupled Opto-electronic oscillators (COEO)

• Summary

Steve Yao, JPL55

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 53/66

Special Requirement of Signal Sources

For Photonic Applications

E OO O

EO

* Photonic Systems are Electro-Optic Hybrid Systems

===> Ideal Signal Source: both Electrical & Optical Signals

Avoid high loss E/O and O/E conversions

===> High Frequency

===> Wide Tuning Range

===> Can be Interfaced with the System both Electrically & Optically.

* Photonic systems are Broadband Systems

Steve Yao, JPL56

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 54/66

Evolution of Oscillators

• Mechanical Oscillators: Pendulum, tuning fork  ==>

• Electronic Oscillators: Van der Pol oscillator ==>

• electromechanical Hybrid Oscillators: Quartz Oscillator ==>

• Atomic Oscillators: Maser, Cesium beam standard ==>

• Optical Oscillators: Laser ==>

• 6. Electro-Optic Hybrid Oscillator? ==> OEO & COEO

OEO is a new class of oscillators

Electrical & Optical Hybrid

Steve Yao, JPL57

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 55/66

OEO vs. van der Pol Oscillator

+_

Vg

ip

Plate

CathodeElectrons

Vp

Plate current

VB

Photons in

iph Photocurrent

Filter

Laser

Vm

VpB

PhotodiodeFiberdelay

van der Pol Oscillator Opto-electronic Oscillator

LC tank 

Low Q & Low Frequency High Q & High Frequency

kHz to > 70 GHz

kHz

Steve Yao, JPL58

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 56/66

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 57/66

Other Approaches for Generating Photonics Signals

* Multiplier + E/O Conversion

Multi-stage multipliers

Quartz E/O

Modulated Optical Signal

* Beating Two Lasers

Requiring: Phase lock or injection lock to a RF source

* Beating two modes of a mode locked laser

Laser1

Laser2

Reference  Source ~

RF source is also required

Limited byRF sources

Steve Yao, JPL60

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 58/66

Performance Characteristics of OEO

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

   V  o  s  c   /   V

     π

2.01.81.61.41.21.0

Open Loop Voltage Gain

Data5th order fit3rd order fit

Data & Fit

Oscillation Amplitude vs. Open Loop Gain

Steve Yao, JPL61

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 59/66

-150

-140

-130

-120

-110

-100

   P   h  a  s  e   N  o   i  s  e   (

   d   B  c   /   H  z   )

3 4 5 6 7 8 9

104

2 3 4 5 6 7 8 9

105

Frequency offset (Hz)

-140

-135

-130

-125

-120

   P   h  a  s  e   N  o   i  s  e   (   d   B  c   /   H  z   )

6 7 8 9

0.12 3 4 5 6 7 8 9

1

Loop delay (µs)

Corrected data

-142.21-20*log(delay)

-28.70-20logf Po=13.33 dBm-34.84-20logf Po=13.00 dBm-38.14-20logf Po=12.67 dBm-40.61-20logf Po=12.67 dBm-50.45-20logf Po=10.33 dBm

0.06 µs0.13 µs0.21 µs0.28 µs

1.2 µs

Phase noise vs. frequency offset

Phase noise vs. loop delay time

Steve Yao, JPL62

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 60/66

OEO Phase noise as a function of oscillation frequency

(b)-125

-120

-115

-110

-105

-100

100 200

Oscillation Frequency (MHz)

Datamultiplied resultData Fit

   P   h  a  s  e   N  o   i  s  e   (   d   B  c

   /   H  z   )

300 400 500 600700800

-140

-135

-130

-125

-120

-115

-110

   P   h  a  s  e   N  o   i  s  e   (   d   B  c   /   H  z   )

3 4 5 6 7 8 9

104

2 3 4 5 6 7 8 9

105

Frequency offset (Hz)

(a)

100MHz300MHz700MHz800MHz

Steve Yao, JPL63

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 61/66

  -   8   0

  -   4   0   0

   P  o   w  e  r  (  d   B    m  )

   1   0 .   0

   0   7   6

   1   0 .   0

   0   7   2

   S  p  a  n  :   1   M   H  z

   R   B   W  :   1   k   H  z

  -   8   0

  -   4   0   0

   P  o   w  e  r  (  d   B    m  )

   1   0 .   0

   0   7   4   4

   1   0 .   0

   0   7   4   0

   1   0 .   0

   0   7   3   6

   S  p  a  n  :   1   0   0   k   H  z

   R   B   W  :   1   0   0   H  z

  -   8   0

  -   4   0   0

   P  o   w  e  r  (  d   B    m  )

   1   0 .   0

   0   7   4   0

   S  p  a  n  :   5   0   k   H  z

   R   B   W  :   1   0   0   H  z

  -   8   0

  -   4   0   0

   P  o   w  e  r  (  d   B    m  )

   1   0 .   0

   0   7   4   0

   F  r  e  q  u  e  n  c  y

   (   G   H  z   )

   S  p  a  n  :   5   0   k   H  z

   R   B   W  :   1   0   H  z

  -   8   0

  -   4   0   0

   1   0 .   0

   0   6   8

   1   0 .   0   0   6   4

   1   0 .   0

   0   6   0

   S  p  a  n  :   1   M   H  z

   R   B   W  :   1   k   H  z

   1   0 .   0

   0   6   3   0

 

  -   8   0

  -   4   0   0

   S  p  a  n  :   1   0   0   k   H  z

   R   B   W  :   1   0   0   H  z

  -   8   0

  -   4   0   0

   1   0 .   0

   0   6   3   4

   1   0 .   0

   0   6   3   2

  -   8   0

  -   4   0   0

   1   0 .   0

   0   6   3   4

   1   0 .   0

   0   6   3   2

   S  p  a  n  :   5   0   k   H  z

   R   B   W  :   1   0   0   H  z

   S  p  a  n  :   5   0   k   H  z

   R   B   W  :   1   0   H  z

   F  r  e  q  u  e  n  c  y

   (   G   H  z   )

   S  p  e  c   t  r  a

   l   P  u  r   i   t  y   C  o  m  p  a

  r   i  s  o  n

   O   E   O

   H   P   8   6   7   1   B

Steve Yao, JPL64

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 62/66

Comparison with Commercial Oscillators

• 1st OEO bench unit at 10 GHz: -140 dBc/Hz

Phase Noise @ 10 GHz, 10 kHz from carrier

• HP high performance synthesizer: -94 dBc/Hz

• Best quartz multiplied to 10 GHz: -114 dBc/Hz

Steve Yao, JPL65

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 63/66

-140

-120

-100

-80

-60

-40

   S   S   B   P   h  a  s  e   N  o   i  s  e   (   d   B  c   /   H  z   )

101

2 3 4 5 6

102

2 3 4 5 6

103

2 3 4 5 6

104

Offset Frequency (Hz)

OEO

HP8671B

HP8662, approx.Multiplied

Phase Noise of an OEO at 10 GHz

OEO free running @ room temperature

Jitter: 1.6 fs for f >1kHz, 16 fs for f > 100 Hz

Steve Yao, JPL66

SLC oscillator

free running

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 64/66

MZ modulator

800 mfiber

RF amp.

RF

filter

Optical output

RF output

SOA

P  ol   . c  on t  r 

 ol  l   e r 

Isolatora)

Laser Natural Modes

∆υ

Optical Freq.0

b)

Final lasing Modes

3∆υ

Optical Freq.0

e)

Possible mode beating freqs. RF Freq.

∆υ

0

c)3∆υ 

filter

Final OEO modes

3∆υ

RF Freq.0

f)

Natural opto-electronic loop modes RF Freq.0

d)

filter3∆υ

filter

Coupled Opto-electronic Oscillator

A variation of OEO ==>

µ-wave & laser oscillations coupled together

Steve Yao, JPL 67

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 65/66

50 ps

Pulse width: 17 ps

Optical Pulse measurement Phase Noise Measurement

w/ a 40 GHz detector and Tek CSA 803 Using Frequency Discrimination Method

10 GHz

-140

-120

-100

-80

-60

-40

   P   h

  a  s  e   N  o   i  s  e   (   d   B  c   /   H  z   )

Offset Frequency (Hz)

HP8671B

COEO

OEO

10 100 1000 10000

1 st 10 GHz COEO

Steve Yao, JPL68

8/6/2019 FIBRA YAO Tutorial

http://slidepdf.com/reader/full/fibra-yao-tutorial 66/66

• OEO & COEO hold promise as high freq., lowphase noise, & low jitter µ-wave & optical sources

• Lowest phase noise @ 10 GHz of any free running

oscillator at room temperature

• Further phase noise reduction using noise

reduction techniques

• Low jitter reference signal for µ-wave, mm-wave

communication & photonic A/D

Steve Yao, JPL69

Section summary