fiber optic network design class 8 c. s. yan, x. wu, m. y. li dept. of opt. engr., zju 2013

37
Fiber Optic Network Design Class 8 Class 8 C. S. Yan C. S. Yan , , X. Wu, M. Y. Li X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU Dept. of Opt. Engr., ZJU 2013 2013

Upload: jade-wilkerson

Post on 03-Jan-2016

220 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Fiber Optic Network Design

Class 8Class 8

C. S. YanC. S. Yan, , X. Wu, M. Y. LiX. Wu, M. Y. Li

Dept. of Opt. Engr., ZJUDept. of Opt. Engr., ZJU

20132013

Page 2: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

ContentIntroduction

Development of optical fiber communicationBottlenecks

Basic theory of COCAdvantages, Principles, Structures and typesDPSKDP-QPSK

Simulation of DPSK system by OptisystemPulse generationSequence decoderBalanced receiver

Exercise todayReference

Page 3: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

• Higher Spectral Efficiency• Higher Data Rates• Higher Receiving Sensitivity

Introduction

Page 4: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Development process on optical transmission rate and transmission distance product for thirty

yearsMoore's Law

bottlenecksRevolution?

Introduction

Page 5: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Year Development1966 C. K. Kao: fiber as communication medium 1976 Fiber loss <0.47dB/km (1.2um)1976 44.7Mb/s, 10km (Atlanta, multi-mode fiber)1976-1978 34Mb/s (100Mb/s), 64km (Japan)1983 400Mb/s (1.6Gb/s), 3400km, (Japan’s

north-south route)1988 6400km, TAT-8 Atlantic submarine cable1989 13200km, TPC-3/HAW-4 Atlantic submarine

cable

Development of optical fiber communication in the earlier years

Introduction

Page 6: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

1. Chromatic dispersion

What is the bottlenecks for DWDM

2. polarization mode dispersion

Introduction

Page 7: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Nonlinear effect BottlenecksStimulated Raman Scattering

SNR degradation as the number of channel increases

Four-wave mixing Limit the channel spacingCross phase modulation

Limit the number of channels

3. Nonlinear effect

4. Electronic rateWhen >30GHz , limited by electronic circuit and ADC chip

What is the bottlenecks for DWDMIntroduction

Page 8: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

How to break through the bottlenecks ——Optical Time Domain Multiplexing (OTDM)?

8

4x40Gb/sdelayed

1x 160Gb/s

Electronic signals Optical signals

Introduction

Page 9: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

The advantages of OTDM

Characteristics Advantages

Single wavelength operation

No gain flatteningSimple dispersion managing

All-optical digital signal processing

Overcome the electronic bottleneckImprove network capacityNetwork signal stream all-optical regeneration

Reduces signal noise and crosstalk accumulationTruly transparent transmission of optical signals

Bandwidth on demand

Flexibility to provide emergency service access

Achieved through the slot allocation routing

Data format and protocol transparent transmission

Introduction

Page 10: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

The Disadvantages of OTDM

High price

Ultra-narrow optical pulse laser

Optical clock extraction and de-

multiplexing

Severe nonlinear effects

Introduction

Page 11: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Combination of OTDM and WDM

Introduction

Page 12: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

How to breakthrough? COC?

Amplitude Modulation WDM

OTDM

Phase Frequency Polarization Modulation

Coherent Optical

Communication

Basic theory of coherent optical communication

Page 13: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Opportunities come again COC

solve the problem of channel attenuationBut hard to large scale CommercialReplaced by EDFA in the 1990s

2004, M. G. Taylor, PTL, Proposed to restore the signal using DSP, Digital coherent receiver technology

2004, 20Gbit/s, QPSK system

2002, R. A. Griffin (UK), DQPSK

Basic theory of coherent optical communication

Page 14: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Advantages of COC

AdvantagesHigh sensitivity and long distance relay

Sufficiently close to the quantum limit by raising the power of the LO light.

Good wavelength selectivity and large communication capacityLarge dispersion and nonlinear toleration

linear system, The linear distortion owing to dispersion and PMD can be completely compensated.

Use DSP to restore the dataUse electronic devices for Dispersion compensation and Polarization equalization

Low cost, high reliability, Commercialization,

Support various modulation schemes

M-PSK, M-QAM , OFDM, with higher spectral efficiency

Basic theory of coherent optical communication

Page 15: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

The principle of COC

)](exp[)( SSss tjEtE

)](exp[)( LLLL tjEtE

Basic theory of coherent optical communication

Page 16: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

The principle of COC

)cos()( LSIFLSLS tPPRPPRI 2

Detector Responsivity

Optical power

)cos()(

)cos()(

LsIFLs

LSLs

tPPRtI

PPRtI

2 :detection Heterodyne

2 :detection Homodyne

termDC a as filtered becan

, Because

)( LS

sL

PPR

PP

Basic theory of coherent optical communication

Page 17: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

The principle of COC

Homodyne detection

Heterodyne detection

Advantages:

Disadvantages:High frequency stabilityNarrow bandwidthFrequency tunable

Optical phase locked loop (PLL)

SNR is two times lower than homodyne

Lout PI

Cor 0 Ls

Basic theory of coherent optical communication

Page 18: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Structures and types of coherent receivers

OFDM ngmultiplexidivision frequency Optical

64QAM

16QAM

8QAM

amplitude) & (phase QAMon Based

NRZ

RZ

QPSK-DP

QPSK

DPSK

modulation phaseon Based

Receiver

Cohenent

Basic theory of coherent optical communication

(Quadrature Amplitude Modulation)

(Differential phase shift keying)

Page 19: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Signal Modulation of Differential phase shift keying (DPSK)

Basic theory of coherent optical communication

phase change between 0 and 1 code

Page 20: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Coherent demodulation process of DPSKBasic theory of coherent optical communication

Page 21: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Modulation formats comparison of coherent receivers

OSNR=0.2dB

100Gbit/s50GHz channel spacing

Basic theory of coherent optical communication

Page 22: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

After 1600km transmission in standard single-mode fiber

Dispersion can be compensated by DSP. For the same dispersion, it has different requirement for the computing power of the DSP (serials)

Basic theory of coherent optical communication

Modulation formats comparison of coherent receivers

Page 23: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Coherent receiver of Dual-polarization quadrature phase shift keying (DP-QPSK)

Polarization separation

Demodulation

Phase intensity

Balanced receiverTIA: Trans-impedance amplifierOptical Electrical

Basic theory of coherent optical communication

Page 24: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Optical fiber type

Free space type

90 phase shift mixer of DP-QPSKBasic theory of coherent optical communication

Page 25: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

LiNbO3 waveguide type

Si-based monolithic integration

Bell Lab 2010

90 phase shift mixer of DP-QPSKBasic theory of coherent optical communication

Page 26: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

90 phase shift mixer of DP-QPSK

Furukawa

Si-based monolithic integration type

InP-based monolithic integration type

Bell Lab 2011

Basic theory of coherent optical communication

Page 27: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

90 phase shift mixer of DP-QPSK

Major international manufacturers of 100Gbit / s coherent receiver

Basic theory of coherent optical communication

Page 28: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

90 phase shift mixer of DP-QPSK

Physical map of InP based monolithically integrated coherent receiver by HHI and U2T

Basic theory of coherent optical communication

Page 29: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

DPSK—pulse generation

Simulation of DPSK system by Optisystem software

MiI kiki ,,,cos 21

MiQ kiki ,,,sin 21

MiiMkki ,,, 2112

1

nM 2

Constellation diagram

Page 30: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

M-ARY pulse generator and Threshold detector

Simulation of DPSK system by Optisystem software

input M-ary signal

linear gain parameter Bias

bit period duty cycle

pulse position

if the signal input has a value of -3.3, the output level will be -3, since -3.3 is between -3.5 and -1.5.

Page 31: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

DPSK—pulse generation and decoding

Simulation of DPSK system by Optisystem software

Page 32: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

DPSK sequence decoderSimulation of DPSK system by Optisystem software

MiiMkki ,,, 2112

1

nM 2

MiI kiki ,,,cos 21

MiQ kiki ,,,sin 21

k

k

I

Qarctan

1

21

M

i kk

The DPSK decoder will calculate the value of i from the phase difference between consecutive signals k and k-1:

Page 33: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

DPSK sequence decoderSimulation of DPSK system by Optisystem software

Assuming ϕ=0, if bits per symbol (n) equals 2, and M=4, then the values for I and Q will be:

Assuming ϕ=0, if bits per symbol (n) equals 3, and M=8, then the values for I and Q will be:

Page 34: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Balanced receiverSimulation of DPSK system by Optisystem software

Page 35: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Balanced receiverSimulation of DPSK system by Optisystem software

IFIFLOsLOs tPPRPPRI cos2

1

IFIFLOsLOs tPPRPPRI cos2

1

IFIFLOs tPPRI cos2

Eliminate intensity noise, improve sensitivity

Page 36: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Exercise today

Set up and study the system

Page 37: Fiber Optic Network Design Class 8 C. S. Yan, X. Wu, M. Y. Li Dept. of Opt. Engr., ZJU 2013

Reference

刘卫华 . 用于 100Gbit/s 相干通信的 90°相移光混合器研究 . 华中科技大学博士学位论文 . 2012

王甲琛 . 基于 FPGA 的 DPSK调制解调技术的设计与实现 . 西安电子科技大学硕士学位论文 . 2010