fib 34 - model code for service life design

116

Upload: dimitrios25

Post on 03-Jun-2018

1.566 views

Category:

Documents


443 download

TRANSCRIPT

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    1/116

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    2/116

    Model Code for

    Service Life Design

    Model code prepared by

    Task Group 5.6

    February 2006

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    3/116

    Subject to priorities defined by the Steering Committee and the Presidium, the results of fibs work inCommissions and Task Groups are published in a continuously numbered series of technical publications

    called 'Bulletins'. The following categories are used:

    category minimum approval procedure required prior to publication

    Technical Report approved by a Task Group and the Chairpersons of the Commission

    State-of-Art Report approved by a Commission

    Manual or

    Guide (to good practice)

    approved by the Steering Committee of fibor its Publication Board

    Recommendation approved by the Council of fibModel Code approved by the General Assembly of fib

    Any publication not having met the above requirements will be clearly identified as preliminary draft.

    This Bulletin N 34 will be submitted to the General Assembly for approval as anfibModel Code in June 2006.

    This report was prepared within Task Group 5.6,Model code for service life design of concrete structures:

    Peter Schiessl (Convener, Technische Universitt, Mnchen, Germany)

    Phil Bamforth (Principal Construction Consultancy, UK), Vronique Baroghel-Bouny (LCPC, France),

    Gene Corley (Construction Technology Laboratories, Inc., USA), Michael Faber (ETH-Zrich,

    Switzerland), Jim Forbes (Hyder Consulting, Australia), Christoph Gehlen (Ingenieurbro Schiessl,Germany), Paulo Helene (Univ. de Sao Paulo PCC/USP, Brazil), Steinar Helland (Skanska Norge AS,

    Norway), Tetsuya Ishida (Univ. of Tokyo, Japan), Gro Markeset (Norwegian Building Research Institute,

    Norway), Lars-Olof Nilsson (Lund Institute of Technology, Sweden), Steen Rostam (Cowi A/S,

    Denmark), A.J.M. Siemes (TNO, The Netherlands), Joost Walraven (Delft Univ. of Technology, The

    Netherlands)

    Full address details of Task Group members may be found in the fibDirectory or through the online services onfib'swebsite, www.fib-international.org.

    Cover images: The photos show the carbonation depth of a vertical concrete surface of an existing building after

    8 years of exposure without shelter from rain. A phenolphthalein indicator distinguishes areas

    with pH < 9.5 (not coloured) and areas with a higher pH (coloured). The graph shows the

    development of the carbonation depth over time, xc(t), compared to the cover depth, a. Scatter of

    both variables is also given.

    fdration internationale du bton (fib), 2006

    Although the International Federation for Structural Concrete fib- fderation internationale du bton - createdfrom CEB and FIP, does its best to ensure that any information given is accurate, no liability or responsibility ofany kind (including liability for negligence) is accepted in this respect by the organisation, its members, servantsor agents.

    All rights reserved. No part of this publication may be reproduced, modified, translated, stored in a retrievalsystem, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, orotherwise, without prior written permission.

    First published in 2006 by the International Federation for Structural Concrete (fib)Post address: Case Postale 88, CH-1015 Lausanne, SwitzerlandStreet address: Federal Institute of Technology Lausanne - EPFL, Section Gnie CivilTel +41 21 693 2747, Fax +41 21 693 6245, E-mail [email protected], web www.fib-international.org

    ISSN 1562-3610

    ISBN 2-88394-074-6

    Printed by Sprint-Digital-Druck, Stuttgart

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    4/116

    fibBulletin 34: Model code for Service Life Design iii

    Contents

    Preface iv

    0 Introduction 1

    1 General 5

    1.1 Scope 51.2 Associated codes 5

    1.3 Assumptions 5

    1.4 Definitions 6

    1.5 Symbols 10

    2 Basis of design 12

    2.1 Requirements 12

    2.2 Principles of limit state design 14

    2.3 Basic variables 14

    2.4 Verification 16

    3 Verification of Service Life Design 20

    3.1 Carbonation induced corrosion uncracked concrete 20

    3.2 Chloride induced corrosion uncracked concrete 23

    3.3 Influence of cracks upon reinforcement corrosion 24

    3.4 Risk of depassivation with respect to pre-stressed steel 25

    3.5 Freeze/thaw attack without de-icing agents 25

    3.6 Freeze/thaw attack with de-icing agents 27

    4 Execution and its quality management 29

    4.1 General 29

    4.2 Project specification 29

    4.3 Quality management 304.4 Materials 31

    4.5 Geometry 32

    5 Maintenance and condition control 33

    5.1 General 33

    5.2 Maintenance 33

    5.3 Condition control during service life 33

    5.4 Action in the event of non-conformity 34

    Annex A (informative)

    Management of reliability for Service Life Design of concrete structures 36Annex B (informative)

    Full probabilistic design methods 44

    Annex C (informative)

    Partial factor methods 83

    Annex R (informative)Reliability management: from SLS to ULS 90

    References 109

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    5/116

    fibBulletin 34: Model code for Service Life Design v

    Preface

    fiband its preceding organizations, CEB and FIP, have a long tradition in treating durability aspects and

    to design for them. In 1978 CEB created a first working group, the Task Group Durability. Milestones in

    the CEB and FIP work on durability are CEB Bulletins 148 Durability of concrete structures, 182

    Durable concrete structures and 238 New approach to durability design. In the latter document the

    framework for a probabilistic design approach was set. In 2002 fibestablished Task Group 5.6 Model codefor service life design of concrete structures with the objective to develop a model code document on

    probabilistic service life design. The approach developed in this document is intended to be the basis for the

    service life design approach of the newfibModel Code, currently under development. Furthermore it might

    serve as a basis for further work in ISO (TC 71) and CEN (TC 104 and TC 250/SC2).

    The following members of Task Group 5.6 actively contributed to the work (in alphabetic order):

    Veronique BAROGHEL BOUNY

    Phil BAMFORTH

    Gene CORLEY

    Michael Havbro FABER Christoph GEHLEN* (secretary)

    Paulo HELENE

    Steinar HELLAND*

    Tetsuya ISHIDA

    Gro MARKESET

    Lars Olof NILSSON*

    Steen ROSTAM

    Peter SCHIESSL* (Convener)

    *Members of the Drafting Board

    The format of this Model Code follows the CEB-FIP tradition: the main provisions are given on the right-

    hand side of the page, and on the left-hand side, the comments.

    Peter SCHIESSL

    Convener offibTask Group 5.6

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    6/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    1

    0

    Introduction

    Thebasicideaofservicelifedesignaspresentedinthisdocumentisto

    establishadesignapproachtoavoiddeteriorationcausedbyenvironmental

    actioncomparabletoloaddesigna

    sweareusedtohaveitinourdesign

    codes(e.g.EC2).Thatmeansquantifiablemodelsontheloadside(theseare

    theenvironmentalactions)andonth

    eresistanceside(thisistheresistanceof

    theconcreteagainsttheconsideredenvironmentalactions).Thedesign

    approachwillbeexamplifiedfor

    designagainstreinforcementcorrosion

    causedbycarbonationofconcretewithoutloadorrestraintinducedcracks.

    Thefirststepinthedesignap

    proachistoquantifythedeterioration

    mechanismwithrealisticmodelsd

    escribingtheprocessphysicallyand/or

    chemicallywithsufficientaccuracy(e.g.ingressofcarbonationintothe

    concretedependingontheenviron

    mentandtherelevantconcretequality

    parameters).Suchamodelforingressofcarbonationisgiveninthe

    document.Sufficientaccuracymean

    sthatthemodelshouldbevalidatedby

    realisticlaboratoryexperimentsand

    bypracticeobservations,sothatmean

    valuesandscatterofthematerialresistanceparametersareknownandcanbe

    consideredinthemodel.Inthesa

    mewaymodelsfortheenvironmental

    actionswith

    statistically

    quantified

    environmentalparameters(e.g.

    temperature,relativehumidity,splashraineventsetc.)needtoexist.

    Thesecondstepisthedefinitionoflimitstatesagainstthestructureshould

    bedesignedfor.Appropriatelimitstateswouldbe

    -

    depassivationofreinforcementcausedbycarbonation

    -

    crackingduetoreinforcementcorrosion

    -

    spallingofconcretecoverduetoreinforcementcorrosion

    -

    collapseduetolossofcrosssectionofthereinforcement.

    Theobjectiveofthisdocumentistoidentifyagreeddurabilityrelated

    modelsandtopreparetheframeworkfor

    standardizationofperformance

    baseddesignapproaches.

    ThisModelCodetreatsdesignforen

    vironmentalactionsleadingto

    degradationofconcreteandembeddedsteel.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    7/116

    2

    0Introduction

    Thethirdstepisthecalculation

    oftheprobabilitythatthelimitstates

    definedaboveoccur(determination

    oftheprobabilityofoccurance).This

    willbedonebyapplyingthemodelsdescribedinstep1above.Nowadaysit

    iscommonlyacceptedthatthesafe

    tyofstructuresshouldbeexpressedin

    termsofreliability(reliabilityindex

    !).Dependingonthetypeoflimitstate

    (SLS,ULS)andtheconsequencesof

    afailure,valuesfor!aregiveninEC0.

    Thefourthstepisthedefinition

    ofthetypeoflimitstate(SLS,ULS)of

    thelimitstatesdescribedinstep2.Normallydepassivationwillbeclassified

    asaSLSasthereisnoimmediate

    consequenceonstructuralsafetyifthe

    reinforcementisdepassivated.Therefore!-valuesintherangeof!

    =1.0to

    1.5maybeappropriatefordepassiv

    ation.However,theownermayrequire

    higher!-valuesforexampletosafelyensuretheaestheticqualityofthe

    structure.Forthelimitstatecrackingandspallingthedesignerhastodecide

    whichtypeoflimitstateisneeded

    orshouldbechosen.If,forexample,

    crackingandspallingoccursin

    anchoragezoneswithoutsufficient

    transversalreinforcement,spallingm

    ayleadtocollapse.Inthiscasecracking

    andspallingneedtobedefinedasULS.Inothercasesifcrackingand

    spallingdoesnotinfluencetheloadbearingcapacityofthestructural

    element,crackingandspallingmayb

    edefinedasSLS.

    TheModelCodeisdividedintofivechapters:

    1.General

    2.Basisofdesign

    3.VerificationofServiceLifeDesign

    4.Executionanditsqualitycontrol

    5.Maintenanceandconditioncontrol

    Theservicelifedesignapproachinthisdocumentiselaboratedforthree

    differentlevels.Thefullprobabilisticapproach(level1)willbeusedonlyfor

    exceptionalstructures.Basedonthefullprobabilisticapproachapartial

    safetyfactorapproachcomparabletoloaddesignisgiven.Thepartialsafety

    factorapproach(level2)isadeterm

    inisticapproachwheretheprobabilistic

    natureoftheproblem(scatterofmaterialresistanceandenvironmentalload)

    istakenintoaccountbypartialsafe

    tyfactors.Finallythedeemedtosatisfy

    approach(level3),againderivedfromthefullprobabilisticapproachis

    TheflowchartinFigure1.1-1illustrate

    stheflowofdecisionsandthe

    designactivitiesneededinarationalservicelifedesignprocesswithachosen

    levelofreliability.Twostrategieshavebeenadopted,whereofthefirstis

    introducedofthreelevelsofsophistication.Insum4optionsareavailable.

    Strategy1:

    Level1.

    Fullprobabilisticdesignapproach,(option1)

    Level2.

    Partialfactordesignapproach,(option2)

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    8/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    3

    elaborated.Thistypeofapproachiscomparabletotheapproachwhichcanbe

    foundinthestandardsnowadays.

    Howeverdescriptiverulesoftodays

    standardsarenotbasedonphysicallyandchemicallycorrectmodelsbut

    moreonpractical(sometimesbad)experience.Inthefuturecurrentlyapplied

    rulesurgentlyhavetobecalibrateda

    gainstthefullprobabilisticapproach.

    Anotheroptiongiveninthisdocu

    mentistheuseofnonreactivematerials

    (e.g.stainlesssteel,strategy2/option

    4).

    Othermethodsorlevelsbetween

    thelevelschosenforthisdocumentmay

    beappropriateforServiceLifeDesign(e.g.thedurabilityfactormethod

    approach,[1]).

    Level3.

    Deemedtosatisfydesignapp

    roach,(option3)

    Strategy2:Avoidanceofdeteriorationdesignapproach,(option4)

    Figure1.1-1:Flowchartservicelifedesign

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    9/116

    4

    0Introduction

    WithinChapter3variousdeteriorationmechanismsaretreated:

    carbonation-inducedcorrosion;:

    chloride-inducedcorrosion;

    freeze/thawattackwithoutde-icing

    agents;

    freeze/thawattackwithde-icingagents.

    Forthesemechanismsbroadacceptedmodelsexist.Otherdeterioration

    mechanismsarenottreated,forexamplealkalisilicareaction,andsulfate

    attack,mainlyduetothesituationthatbroad

    acceptedmodelsdonotexistso

    far.

    Simultaneousdynamicloadingandcorrosionofsteele.g.intheregionof

    loadorrestraintinducedcracks,willleadtoareductioninthefatigue

    resistance.TheS-N-curvesasthebasisforfatiguedesignmaybeupto50%

    lowerrelatedtothestressrangeco

    mparedtoS-N-curvesofreinforcement

    withoutcorrosionattack.

    Besideabovementionedmechanismsa

    lsofatiguecausedbydynamic

    loadingandleadingtotimedependentmaterialdegradationandcorrosion

    fatiguecausedbydynamicloadingandsimultaneouscorrosioncausedby

    environmentalactionisnottreated.

    Tomakethisdocumentcomplete,missingmodelshavetobedeveloped

    whichhavetorespectthegeneralprinciplesofChapter2.

    Theservicelifedesignapproachdescribedinthisdocumentmaybe

    appliedforthedesignofnewstruc

    tures,fortheupdateoftheservicelife

    designifthestructureexistsandrealmaterialpropertiesand/orthe

    interactionofenvironmentandstructurecanbemeasured(realconcrete

    covers,carbonationdepths)andforthecalculationoftheresidualservicelife.

    AttachedtotheMC-SLDare4informativeannexes.Thesearegiving

    backgroundinformationaswellasexamplesofproceduresanddeterioration

    modelsfortheapplicationinSLD.Othersufficientlyvalidatedproceduresfor

    reliabilitymanagementandmodelsfordeteriorationmightbeused.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    10/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    5

    1

    General

    1.1Scope

    Traditionally,nationalandinternationalconcretestandardsgive

    requirementstoachievethedesireddesignservicelifebasedonthedeemed-

    to-satisfyandtheavoidanceofdeteriorationapproach.

    Suchoperativerequirementshavetobecalibratedbytheresponsible

    standardizationbody.Thisdocumentgivesguidanceforsuchcalibration.

    (1)ThepresentModelCodeisapplicableforServiceLifeDesign(SLD)

    ofplainconcrete,reinforcedconcreteand

    pre-stressedconcretestructures

    withaspecialfocusondesignprovisionsformanagingtheadverseeffectsof

    degradation.TheModelCodeprovidesthe

    basisforservicelifedesignof

    concretestructures.Fourdifferentoptionsareoffered:

    afullprobabilisticapproach

    asemiprobabilisticapproach(partialfactordesign)

    deemedtosatisfyrules

    avoidanceofdeterioration

    Themethodologydescribedinthisdocu

    mentmightalsobeappliedfor

    assessmentofremainingservicelifeofexistingstructures.

    1.2Associatedcodes

    CENEN1990Basisfordesign

    isbasedonthegeneralprinciplesforthe

    verificationofthereliabilityofstructuresgiveninISO2394:1998General

    principlesonreliabilityforstructures

    (1)Thepresentcodeisapplicableasdescribedunder1.1togetherwith

    CENEurocode0(EN1990:2002)

    Basisfordesign

    ProbabilisticModelCode,Joint

    CommitteeonStructuralSafety

    (JCSSPMC:2000),www.jcss.eth.ch

    CENENV13670-1:2000Executionofconcretestructures

    ISO2394:1998(E),Generalprinciplesonreliabilityforstructures

    1.3Assumptions

    CENENV13670-1ispresentlythemainreferencedocumentforISOTC-

    71/SC3whendraftinganinternation

    alstandardfortheexecutionofconcrete

    structures.

    ThisCENstandardmightbereplacedbythecomingEN13670,orbythe

    ISOdocumentwhenavailable,orw

    iththeexecutionprovisionsinthenext

    versionofthefibModelCode.

    (1)InadditiontothegeneralassumptionsofEN1990thefollowing

    assumptionsapply:

    Structuresaredesignedbyappropriatelyqualifiedandexperienced

    personnel.

    Adequatesupervisionandqualityc

    ontrolisprovidedinfactories,in

    plantsandonsite.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    11/116

    6

    1General

    Theexecutionstandardassumesthattheconstructionmaterialsbroughtto

    thebuildingsitecomplywithrelevantproductstandardsdefiningtheir

    minimumperformances.

    Constructioniscarriedoutbypersonnelhavingtheappropriateskill

    andexperience.

    Theconstructionmaterialsandproductsareusedasspecifiedinthe

    relevantmaterialorproductspecifications.

    Thestructurewillbeadequatelymaintainedaccordingtothe

    optionsgiveninthisdocument.

    Thestructurewillbeusedinaccord

    ancewiththedesignbrief.

    Theminimumrequirementsforex

    ecutionandworkmanshipgiven

    inENV13670arecompliedwith.

    1.4Definitions

    (1)ThetermsanddefinitionsgiveninEN1990applywiththefollowing

    amendments:

    1.4.1Basicvariable1)8)

    partofaspecifiedsetofvariablesrepresentingphysicalquantities,which

    characteriseactionsandenvironmentalinfluences,geometricalquantities,

    andmaterialproperties.

    1.4.2Characteristicvalue(Xkor

    Rk)2)

    Inthisrespectanominalvaluemeansavaluefixedonnon-statistical

    bases,forinstanceonacquiredexper

    ienceoronphysicalconditions.

    valueofamaterialorproductpropertyhavingaprescribedprobabilityof

    notbeingattainedinahypotheticalunlimitedtestseries.Thisvaluegenerally

    correspondstoaspecifiedfractileoftheassu

    medstatisticaldistributionofthe

    particularpropertyofthematerialorproduct.Anominalvalueisusedasthe

    characteristicvalueinsomecircumstance.

    1.4.3Characteristicvalueofageometricalproperty

    (ak)2)8)

    valueusuallycorrespondingtothedimensionsspecifiedinthedesign.

    Whererelevant,valuesofgeometricalquantitiesmaycorrespondtosome

    prescribedfractilesofthestatisticaldistribution.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    12/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    7

    1.4.4Characteristicvalueofana

    ction(Fk)2)8)

    principalrepresentativevalueofanaction

    .

    1.4.5Designcriteria2)

    quantitativeformulationsthatdescribefo

    reachlimitstatetheconditions

    tobefulfilled.

    1.4.6Designservicelife3)8)

    Thisdocumentappliestheterm

    DesignServiceLife.Themeaningof

    thistermisequivalenttothetermD

    esignworkinglifeasusedbyCEN.

    assumedperiodforwhichastructureor

    apartofitistobeusedforits

    intendedpurpose.

    1.4.7Designsituations1)8)

    setsofphysicalconditionsrepresentingtheexpectedconditionsoccurring

    duringacertaintimeintervalforwhichthe

    designwilldemonstratethatthe

    relevantlimitstatesarenotexceeded.

    1.4.8Designvalueofageometric

    alproperty(ad)1)8)

    generallyanominalvalue.Whererelevant,valuesofgeometrical

    quantitiesmaycorrespondtosomepresc

    ribedfractileofthestatistical

    distribution.

    Note:Thedesignvalueofageometricalpropertyisgenerallyequaltothe

    characteristicvalue.However,itmaybetreateddifferentlyincaseswherethe

    limitstateunderconsiderationisvery

    sensitivetothevalueofthe

    geometricalproperty.Alternatively,itcanbeestablishedfromastatistical

    basis,withavaluecorrespondingtoamoreappropriatefractile(e.g.rarer

    value)thanappliestothecharacteristicvalue

    .

    1.4.9Designvalueofanaction(F

    d)2)9)

    valueobtainedbymultiplyingtherepresentativevaluebythepartialfactor"f.

    Note:Theproductoftherepresentative

    valuemultipliedbythepartial

    factor"F="Sd#"f

    mayalsobedesignated

    asthedesignvalueoftheaction

    (SeeEN19906.3.2)

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    13/116

    8

    1General

    1.4.10

    Designvalueofmaterialorproductproperty

    (XdorRd)2)9)

    valueobtainedbydividingthecharacteristicvaluebyapartialfactor"mor

    "M,or,inspecialcircumstances,bydirectdetermination.

    1.4.11

    Inspection4)

    conformityevaluationbyobservationandjudgementaccompaniedas

    appropriatebymeasurement,testingorgauging.

    1.4.12

    Irreversibleserviceabilitylimitstates2)8)

    serviceabilitylimitstateswheresomeconsequencesofactionsexceeding

    thespecifiedservicerequirementswillremainwhentheactionsareremoved.

    1.4.13

    Limitstates2)8)

    statesbeyondwhichthestructurenolo

    ngerfulfilstherelevantdesign

    criteria.

    1.4.14

    Maintenance5)

    setofactivitiesthatareplannedtotakeplaceduringtheservicelifeofthe

    structureinordertofulfiltherequirementsfo

    rreliability.

    1.4.15

    Projectspecification7)

    documentscoveringtechnicaldataandrequirementsformaterials,

    execution,maintenanceandconditioncontrolforaparticularprojectprepared

    tosupplementandqualifytherequirementso

    fgeneralstandards.

    1.4.16

    Referenceperiod2)8)

    chosenperiodoftimethatisusedasa

    basisforassessingstatistically

    variableactions,andpossiblyforaccidentalactions.

    1.4.17

    Reliability1)8)

    abilityofastructureorastructuralmembertofulfilthespecified

    requirements,includingthedesignservicelife,forwhichithasbeen

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    14/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    9

    designed.Reliabilityisusuallyexpressedinprobabilisticterms.

    Note:Reliabilitycoverssafety,serviceabilityanddurabilityofastructure.

    1.4.18

    Reliabilitydifferentiation

    2)

    measuresintendedforsocio-economicop

    timisationoftheresourcestobe

    usedtobuildconstructionworks,takingintoaccountallexpected

    consequencesoffailuresandthecostofthec

    onstructionworks.

    1.4.19

    Repair2)

    activitiesperformedtopreserveortorestorethefunctionofastructure

    thatfalloutsidethedefinitionofmaintenance.

    1.4.20

    Representativevalueofa

    naction(Frep)2)8)

    valueusedfortheverificationofalimitstate.Arepresentativevaluemay

    bethecharacteristicvalue(Fk)oranaccompanyingvalue($Fk).

    Note:Theaccompanyingvalueofa

    variableactionmaybethe

    combinationvalue,thefrequentvalueorthequasipermanentvalue.

    1.4.21

    Resistance1)

    capacityofamemberorcomponent,or

    across-sectionofamemberor

    componentofastructure,towithstandaction

    sduetodeterioration.

    1.4.22

    Serviceabilitylimitstates(SLS)2)9)

    SLSisthisdocumentonlytrea

    tedinitsnarrowsense,i.e.durability

    relatedlimitstates,andnotinitsgeneralwidersense,e.g.tocoverdeflection.

    SLSmightbeassociatedwithanydurabilityrelatedconditionbeyond

    whichtheownerfeelsuncomfortableandwhichareincludedinthedesign

    criteria.

    statesthatcorrespondtoconditionsb

    eyondwhichspecifiedservice

    requirementsforastructureorstructuralmem

    berarenolongermet.

    1.4.23

    Serviceabilitycriterion2)

    designcriterionforaserviceabilitylimits

    tate.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    15/116

    10

    1General

    1.4.24

    Ultimatelimitstate(ULS

    )2)9)

    statesassociatedwithcollapseorwithothersimilarformsofstructural

    failure

    Note:Theygenerallycorrespondtothem

    aximumload-carryingresistance

    ofastructureorstructuralmember

    1) ThedefinitionisbasedonthatinEN19

    90

    2)T

    hedefinitionisidenticaltothatinEN1990

    3)C

    ENdocumentsareusingthetermDesignworkinglifewherethis

    documentisapplyingDesignservicelife

    4)T

    hedefinitionisidenticaltothatinISO

    9000

    5)BasedonISO15686-1:2000BuildingandconstructionassetsService

    lifeplanning,Part1:Generalprinciplesclause6.7

    6)ThedefinitionisinaccordancewithJC

    SSProbabilisticModelCode

    Part1

    7)BasedonCENENV13670-1

    8)T

    hedefinitionisbasedonthatinISO2394

    9)T

    hedefinitionisidenticaltothatinISO

    2394

    1.5Symbols

    (1)Forthepurposeofthisdocument,thefollowingsymbolsapply:

    F

    Action

    Fd

    Designvalueofaction

    R

    Resistance

    SLS

    Serviceabilitylimitstate

    ULS

    Ultimatelimitstate

    a

    Distance,ageexponent

    t

    Thickness,timebeingconsid

    ered

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    16/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    11

    "

    Partialfactor

    "c

    Partialfactorforconcrete

    "f

    Partialfactorforactionswithouttakingaccountofmodel

    uncertainties

    "F

    Partialfactorforaction,

    alsoaccountingformodel

    uncertaintiesanddimensiona

    lvariations

    "m

    Partialfactorsformaterialproperty,takingaccountonlyof

    uncertaintiesinthematerialproperty

    "M

    Partialfactorsformateria

    lproperty,takingaccountof

    uncertaintiesinthematerial

    propertyitselfandinthedesign

    modelused

    "Sd

    Partialfactorassociatedwiththeuncertaintyoftheaction

    and/oractioneffectmodel

    "Rd

    Partialfactorassociatedwith

    theuncertaintyoftheresistance

    model,plusgeometricdeviationsifthesearenotmodelled

    explicitly

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    17/116

    12

    2Basisofdesign

    2

    Basisofdesign

    2.1Requirements

    2.1.1Basicrequirements

    (1)TheSLDofconcretestructuresshallbeinaccordancewiththegeneral

    rulesgiveninEN1990.

    (2)Thesupplementaryprovisionsforc

    oncretestructuresgiveninthis

    documentshallalsobeapplied.

    (3)ThebasicrequirementsofEN199

    0Section2aredeemedtobe

    satisfiedforconcretestructureswhenSLD

    iscarriedoutaccordingtothe

    requirementsgiveninsection2.1.2(2).

    2.1.2Reliabilitymanagement

    (1)ReliabilitymanagementshallfollowtherulesgiveninEN1990

    Section2.

    (2)Theservicelifedesignshalleither:

    followthegeneralprinciplesforprobabilisticservicelifedesignof

    concretestructuresoutlinedinthe

    JCSSPMC,ISO2394:1998(E),

    respectively.

    usethepartialfactormethodgiveninthisdocument

    usethedeemed-to-satisfymethodg

    iveninthisdocument

    bebasedontheavoidance-of-deteriorationmethodgiveninthis

    document

    2.1.3Design

    service

    life,durability

    and

    quality

    management

    (1)Therulesfordesignofservicelife,du

    rabilityandqualitymanagement

    aregiveninEN1990Section2.

    (2)Thedesignservicelifeistheassumedperiodforwhichastructureor

    partofitistobeusedforitsintendedpurposewithanticipatedmaintenance

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    18/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    13

    butwithoutmajorrepairbeingnecessary.

    Thedesignservicelifeisdefinedby:

    Adefinitionoftherelevantlimitstate

    Anumberofyears

    Alevelofreliabilityfornotpas

    singthelimitstateduringthis

    period

    (3)Durabilityofthestructureinitsen

    vironmentshallbesuchthatit

    remainsfitforuseduringitsdesignservic

    elife.Thisrequirementcanbe

    consideredinone,oracombination,ofthefo

    llowingways:

    Bydesigningprotectiveandomitigatingsystems

    Byusingmaterialsthat,ifwellmaintained,willnotdegenerate

    duringthedesignservicelife

    Bygivingsuchdimensionsthat

    deteriorationduringthedesign

    servicelifeiscompensated

    Bychoosingashorterlifetimefor

    structuralelements,whichmay

    bereplacedoneormoretimesduringthedesignlife

    incombinationwithappropriateinspectionatfixedorcondition

    dependantintervalsandappropriatemaintenanceactivities.

    Inallcasesthereliabilityrequirements

    forlongandshort-termperiods

    shouldbemet.

    (4)Theserviceabilitycriteriashallbe

    specifiedforeachprojectand

    agreedwiththeclient.

    Guidanceforthechoiceofserviceabilitycriteriacombinedwith

    appropriatetargetvaluesofreliabilityaregiv

    eninAnnexA.

    TheConsequenceclasses,ReliabilityclassesandDesignsupervision

    levelsareidenticaltothosedefinedinAnnexBofEN1990,whilethe

    Inspectionlevelsduringexecution

    ofEN1990areonlyoneelementinthe

    Executionclassesdefinedinthepresentdocument.

    (5)Asaguidancetoreliabilitydifferentiation,AnnexAtothisdocument

    definesthefollowinggeneralclassifications:

    ConsequenceclassCC3,CC2andCC1

    ReliabilityclassRC3,RC2andRC1

    DesignsupervisionlevelDSL3,DS

    L2andDSL1

    ExecutionclassEXC1,EXC2andEXC3

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    19/116

    14

    2Basisofdesign

    RobustnessClassROC1,ROC2andROC3

    Forservicelifedesign,AnnexA,inaddition,classify4levelsofcondition

    controlduringtheservicelife:

    CCL3,CCL2,CCL1andCCL0

    2.2Principlesoflimitstated

    esign

    Theperformanceofawholestructureorpartofitshouldbedescribed

    withreferencetoaspecifiedsetoflimitstatesandassociatedlevelsof

    reliabilitywhichseparatedesiredstatesofthestructurefromundesiredstates.

    Itshallbeverifiedthatnoneoftheselimitstatesareexceededwithaless

    degreeofreliabilitythangiveninthe

    designcriteria.

    ThedefinitionsofSLSandULSaregivenin1.4.22and1.4.24.

    SLSrepresentsalllimitstatesexc

    eptthatassociatedwithcollapseorother

    similarformsofstructuralfailure.

    ExamplesoflimitstatesassociatedwithSLSanddealtwithinthis

    documentmightbe:depassivation

    ofreinforcement,cracking,spallingof

    cover,erosionofsurfaceduetofreez

    e-thaw,etc.

    (1)TherulesforlimitstatedesignaregiveninEN1990Section3.

    2.3Basicvariables

    2.3.1Actionsandenvironmental

    influences

    Rulesforactionsandenvironmen

    talinfluencesarealsogiveninEN1990,

    Section4.

    (1)ActionsspecifictoSLDaregiveninrelevantsections.

    Characteristicvaluesofactionsforusein

    SLDshalleitherbe

    basedondataderivedfortheparticularprojector

    fromgeneralfield-experience

    fromrelevantliterature

    Otheractions,whenrelevant,shallbede

    finedinthedesignspecification

    foraparticularproject.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    20/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    15

    2.3.2Materialandproductproperties

    (1)Therulesformaterialandproductp

    ropertiesaregiveninEN1990

    Section4.

    (2)Characteristicvaluesofmaterialsan

    dproductpropertiesforusein

    SLDshalleitherbe

    basedondataderivedfortheparticularprojector

    fromgeneralfield-experience

    fromrelevantliterature

    Materialsandproductpropertiestobe

    determinedwilldependonthe

    deteriorationmodelused.Ifdifferentmodels

    withdifferentbasicassumptions

    areoffered,acheckingprocessshouldbee

    stablished,toavoidanincorrect

    mixtureofdata.

    (3)Materialpropertyvaluesshallbed

    eterminedfromtestprocedures

    performedunderspecifiedconditions.Aconversionfactorshallbeapplied,

    whennecessary,toconvertthetestresultso

    flaboratorycastspecimensinto

    values,whichcanbeassumedtorepresent

    thebehaviourofthematerialor

    productinthestructure.

    2.3.3Geometricdata

    (1)TherulesforgeometricaldataaregiveninEN1990Section4.

    Ofparticularrelevanceforservicelifedesign(SLD)areENV13670-1

    clause10.6,figure3band3d

    concerninglocationofordinaryand

    prestressedreinforcement.

    Forpracticalreasons,asimplifiedstatisticalapproachbasedon

    maximumpermitteddeviationisoftenusedinprojectspecifications.This

    isoftenthecasefortheconcretecovertoreinforcement.Thisisnormally

    givenasanominalvalue(targetvalue)andmaximumpermittedminusand

    plusdeviations.

    WhenperformingafullprobabilisticSLD,thismaximumpermitted

    deviationhastobetransformedtoagivenfractileofanassumedstatistical

    distribution(seeclause4.5(2)).

    (2)Designvaluesofgeometricaldatafor

    SLDshallbeinaccordancewith

    EN1990clause6.3.4oraccordingtom

    easurementsonthecompleted

    structureorelement.

    (3)ENV13670-1Executionofconcretestructuresspecifiespermitted

    geometricaldeviations.Ifthedesignassumesstrictertolerances,thedesign

    assumptionsshallbeverifiedbymeasurementsonthecompletedstructureor

    element.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    21/116

    16

    2Basisofdesign

    2.4Verification

    2.4.1Verificationbyfullprobabilisticmethod

    Materialparametersderivedfrom

    acceleratedshort-timetestsmighthave

    aninherentuncertaintyconcerningth

    eirapplicationforlong-termmodelling.

    Therelevanceofsuchmaterialcharacteristicsshouldthereforebe

    calibratedtolong-terminfieldperformance.

    Theuncertaintyofmodelsand

    parameterswillnormallyinfluencethe

    resultoftheSLDtoagreaterdegreewhenusedfordesignofnewstructures

    thanwhenassessingremainingservicelifeofexistingstructures.

    (1)Thegeneralprinciplesforprobabilisticservicelifedesignofconcrete

    structuresoutlinedintheJCSSPMCshallbe

    followed.

    Inparticularthefollowingfourprinciples

    shallbeconsidered:

    Probabilisticmodelsshallbeappliedthataresufficientlyvalidated

    togiverealisticandrepresentativeresults.

    Theparametersofthemodels

    appliedandtheirassociated

    uncertaintyshallbequantifiablebymeansoftests,observations

    and/orexperience.

    Reproducibleandrelevanttestmethodsshallbeavailabletoassess

    theaction-andmaterial-parameters

    .

    Uncertaintiesassociatedwithmodelsandtestmethodsshallbeconsidered.

    2.4.2Verificationbythepartialfactormethod

    (1)Therulesforthepartialfactormethod

    aregiveninEN1990Section6

    andcanbeusedforSLDwithoutthelimitationsgiveninEN1990clause

    6.2.

    (2)Thesamemodelsasforthefullprobabilisticmethod,basedondesign

    values,shallbeusedforthepartialfactormethod.Simplificationsonthesafe

    sidearepossible.

    (3)Thepartialfactorformatseparatesth

    etreatmentofuncertaintiesand

    variabilitiesoriginatingfromvariouscause

    s.Intheverificationprocedure

    definedinthisdocumentthedesignvaluesofthefundamentalbasicvariables

    areexpressedasfollows:

    Designvaluesofactionsaregenerally

    expressedas

    Fd="fFrep

    (2.4-1)

    whereFreparerepresentativevaluesof

    action

    "farepartialsafetyfactors

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    22/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    17

    Designvaluesofmaterialorproductpropertyaregenerallyexpressed

    as

    Rd=Rk/"m

    (2.4-2)

    Or,incaseuncertaintyinthedesignmodelistakenintoaccountby:

    Rd=Rk/"M=Rk/("m#"Rd)

    (2.4-3)

    whereRkarecharacteristicvaluesofresistance

    "misthepartialfactorformaterialproperty

    "Rdisthepartialfactorassociatedwith

    theuncertaintyoftheresistance

    modelplusgeometricdeviationsifthesearenotmodelledexplicitly.

    "M="m#"Rdisthepartialfactorform

    aterialpropertyalsoaccounting

    forthemodeluncertaintiesanddimensionalvariations.

    Designvaluesofgeometricalquantitiestobeconsideredas

    fundamentalbasicvariablesaregenerallydirectlyexpressedbytheir

    designvaluesad.

    Thetargetreliabilitylevelusedforthecalibrationshallbeinaccordance

    withChapter2.1.3.(4)

    (4)Whenusingthepartialfactormethod,

    itshallbeverifiedthatthetarget

    reliabilityfornotpassingtherelevantlimitstateduringthedesignservicelife

    isnotexceededwhendesignvaluesforactionsoreffectsofactionsand

    resistanceareusedinthedesignmodels.

    Thepartialfactorsshalltakeintoaccount:

    Thepossibilityofunfavourabledeviationsofactionvaluesfromthe

    representativevalues

    Thepossibilityofunfavourabledeviationsofmaterialsandproduct

    propertiesfromtherepresentativevalu

    es

    Modeluncertaintiesanddimensionalv

    ariations

    Thenumericalvaluesforthepartialfactorsshallbedeterminedineither

    oftwoways:

    Onthebasisofstatisticalevaluation

    ofexperimentaldataandfield

    observationsaccordingtorequirementsofclauseVerificationbyfull

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    23/116

    18

    2Basisofdesign

    probabilisticmethod

    Onthebasisofcalibrationtoalongtermexperienceofbuilding

    tradition

    2.4.3Verificationbythedeemed

    -to-satisfymethod

    Exposureconditionsinthedesignsituationsmightbeclassifiedin

    exposureclasses.

    Traditionally,deemed-to-satisfy

    provisionsincluderequirementstothe

    workmanship,concretecomposition,possibleairentrainment,cover

    thicknesstothereinforcement,crackwidthlimitationsandcuringofthe

    concrete.

    However,otherprovisionsmight

    alsoberelevant.

    Examplesofthecalibrationof

    deemed-to-satisfycriteriabasedona

    close-tofullprobabilisticmethod

    anddataderivedfrom1015yearsold

    structuresaregivenin[2].

    (1)Thedeemed-to-satisfymethodisaset

    ofrulesfor

    dimensioning,

    materialandproductselectionand

    executionprocedures

    thatensuresthatthetargetreliabilityfo

    rnotpassingtherelevantlimit

    stateduringthedesignservicelifeisno

    texceededwhentheconcrete

    structureorcomponentisexposedtothedesignsituations.

    (2)Thespecificrequirementsfordesign,materialsselectionandexecution

    forthedeemed-to-satisfymethodshallbedeterminedineitheroftwoways:

    Onthebasisofstatisticalevaluation

    ofexperimentaldataandfield

    observationsaccordingtorequirementsofclauseVerificationbyfull

    probabilisticmethod

    Onthebasisofcalibrationtoalongtermexperienceofbuilding

    tradition

    Thelimitationstothevalidityoftheprovisions,e.g.therangeofcement

    typescoveredbythecalibration,shallbeclearlystated.

    2.4.4Verificationbytheavoidan

    ce-of-deterioration

    method

    (1)Theavoidance-of-deteriorationmethodimpliesthatdeterioration

    processwillnottakeplaceduetoforinstance:

    Separationoftheenvironmentalactionfrom

    thestructureor

    componentbye.g.claddingormembranes

    Usingnon-reactingmaterials,e.g.certainstainlesssteelsoralkali-non-

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    24/116

    fibB

    ulletin34:ModelcodeforServiceLifeDesign

    19

    reactiveaggregates

    Separationofreactants,e.g.keepingthestructureorcomponentbelow

    acriticaldegreeofmoisture.

    Suppressingtheharmfulreactione.g.byelectrochemicalmethods

    Theassumedeffectivenessofthe

    actualconceptshallbedocumented,for

    instanceforproductsbycomplying

    withrelevantminimumrequirementsin

    productstandards.

    (2)Thespecificrequirementsfordesign,materialsselectionandexecution

    fortheavoidance-of-deteriorationmethodcaninprinciplebedeterminedin

    thesamewayasforthedeemed-to-satisfymethod.

    Thelimitationstothevalidityoftheprovisionsshallbeclearlystated.

    Copyright fib, all rights reserved. This PDF copy of fib Bulletin 34 is intended for use and/or distribution only by National Member Groups of fib.

  • 8/12/2019 Fib 34 - Model Code for Service Life Design

    25/116

    20

    3VerificationofServiceLifeDesign

    3

    VerificationofService

    LifeDesign

    3.1Carbonationinducedcor

    rosionuncracked

    concrete

    3.1.1Fullprobabilisticmethod

    3.1.1.1

    Limitstate:depassivation

    Togetcorrosionanenvironme

    ntthatiswetenoughisneeded.For

    structuralelementssolelyexposedto

    relativedryindoorenvironment,alimit

    statedepassivationmaynotberelevantasnosignificantcorrosionwill

    develop.

    (1)Thefollowingrequirementneedstobefulfilled:

    p{}=pdep.=p{a-xc(tSL)