ferroelectric thin-film waveguides in integrated optics and optoelectronics

815
title: Ferroelectric Thin-film Waveguides in Integrated Optics and Optoelectronics author: Prokhorov, A. M.; Khachaturian, O. A. publisher: Cambridge International Science Publishing isbn10 | asin: 189832610X print isbn13: 9781898326106 ebook isbn13: 9780585119229 language: English subject Ferroelectric thin films, Integrated optics, Optical wave guides. publication date: 1996 lcc: TA1520.P76 1996eb ddc: 548.8 subject: Ferroelectric thin films, Integrated optics, Optical wave guides.

Upload: others

Post on 11-Sep-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

title: FerroelectricThin-filmWaveguidesinIntegratedOpticsandOptoelectronics

author: Prokhorov,A.M.;Khachaturian,O.A.publisher: CambridgeInternationalSciencePublishing

isbn10|asin: 189832610Xprintisbn13: 9781898326106ebookisbn13: 9780585119229

language: English

subject Ferroelectricthinfilms,Integratedoptics,Opticalwaveguides.

publicationdate: 1996lcc: TA1520.P761996ebddc: 548.8

subject:Ferroelectricthinfilms,Integratedoptics,Opticalwaveguides.

Page 2: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagei

FerroelectricThin-FilmWaveguidesinIntegratedOpticsandOptoelectronics

Page 3: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pageii

OtherbooksavailablefromCambridgeInternationalSciencePublishing

PlasmaChemistry

CoherentRadiationProcessesinPlasma

ThermalPlasmaandNewMaterialsTechnology

LaserThermochemistry

LuminescenceofMoleculesandCrystals

FerrousPowderMetallurgy

Arc-SlagRemeltingofSteelandAlloys

QuantificationandModellingofHeterogeneousSystems

MetallurgyofArcWelding

BibliographyonMechanicalAlloyingandMilling

Page 4: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pageiii

FerroelectricThin-FilmWaveguidesinIntegratedOpticsandOptoelectronics

AMProkhorov,YuSKuz'minov,OAKhachaturyan(GeneralPhysicsInstitute,RussianAcademyofSciences,Moscow)

TranslatedfromtheRussianbyMariannaTsaplina

CAMBRIDGEINTERNATIONALSCIENCEPUBLISHING

Page 5: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pageiv

PublishedbyCambridgeInternationalSciencePublishing7MeadowWalk,GreatAbington.CambridgeCB16AZ,England

FirstpublishedApril1996

©AMProkhorov,YuSKuz'minovandOAKhachaturyan©1996CambridgeInternationalSciencePublishing

ConditionsofsaleAllrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopy,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher

BritishLibraryCataloguinginPublicationDataAcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN189832610X

ProductionIrinaStupakPrintedbyStEdmundsburyPress,BuryStEdmunds,Suffolk,England

Page 6: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagev

ContentsPreface ix

Symbols xi

Introduction xiii

1Epitaxialfilmsofcomplexoxidecompounds

1

1.1Vacuumepitaxy 2

1.2Gas-transportepitaxy 4

1.3Filmsdepositedbyifsputtering 8

1.3.1ThinfilmsofLiNbO3depositedonasapphiresubstrate

9

1.3.2TungstenbronzeferroelectricK3Li2Nb5O15 13

1.3.3KNbO3thinfilms 14

1.3.4KTaxNb1-xO3thinfilms 16

1.3.5.Thinfilmsbypulsedlaserdeposition 17

1.3.6.WaveguidesbyMeVHeionimplantation 20

1.3.7Stripwaveguides 21

1.3.8Doublewaveguide 23

1.4Autodiffusedlayersinlithiumniobateandlithiumtantalate

25

1.4.1Out-diffusionkinetics 27

Page 7: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1.5Thediffusionmethodformetalsandoxides 33

1.5.1Diffusionoftransitionmetals 37

1.5.2Titaniumdiffusion 41

1.5.3Copperdiffusion 49

1.6Proton-exchangedLiNbO3waveguides 51

1.6.1Ion-exchangeprocessesinLiNbO3 53

1.6.2Samplepreparationandexperimentalmethods 54

1.6.3Annealedproton-exchangedwaveguides 56

1.6.4Waveguidesfabricatedusingbufferedmelts 59

1.6.5Protondiffusion 63

1.6.6Waveguidesusingcinnamicacid 64

1.6.7Proton-exchangewaveguidesofMgO-dopedandNd:MgO-dopedLiNbO3

66

1.7Planarion-exchangedKTiOPO4waveguides 69

2Liquid-phaseepitaxyofferrolelectrics

74

2.1Theepitaxialgrowthbymelting(EGM) 74

2.2Thecapillaryliquidepitaxial(CLE)technique 78

2.2.1CLEgrowthprocedure 79

2.2.2.CLEgrowthandcrystalquality 80

2.3Theliquid-phaseepitaxy(LPE)technique 83

2.4Physico-chemicalbasisofcapillaryliquid-phaseepitaxy

87

Page 8: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

2.4.1ThephasediagramofLiVO3-LiNbO3 91

2.4.2PhasediagramofLiVO3-Li(Nb,Ta)O3pseudobinarysystem

92

2.4.3Theschemeofthegrowthcell 95

2.5KineticsofepitaxialgrowthofLiNbO3 97

2.5.1Thestationarycrystallizationmodel 97

2.5.2Epitaxyundernon-isothermicconditions 100

2.5.3DeterminationofsupersaturationUanddiffusioncoefficientD

101

2.5.4Epitaxyunderisothermalconditions 106

2.6CrystallizationoffilmsfromLiNb1-yTayO3solidsolutions

109

2.6.1Liquid-phaseepitaxialgrowthofLi(Nb,Ta)O3films

112

2.7ThinfilmsofLiNbO3dopedwithdifferentelements

114

2.8Epitaxialferroelectricfilmswithperovskitestructure

119

2.8.1Liquid-phaseepitaxyofpotassiumniobate 119

Page 9: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagevi

2.8.2Growthofpotassiumlithiumniobatefilmsonpotassiumbismuthniobatesinglecrystals

122

2.9Diffusionliquid-phasemethodofgrowingimmersedwaveguidechannels

123

2.9.1Striplinestructures 124

2.9.2Symmetricwaveguides 124

2.10GrowthofepitaxialfilmsintheKTiOPO4familyofcrystals

127

3Influenceofelectriccurrentuponliquid-phaseepitaxyofferroelectrics

131

3.1.Electricfieldandcrystallization 131

3.1.1Bulkcrystallization 131

3.1.2Thinfilms 134

3.1.3Liquid-phaseelectroepitaxy 136

3.2Physicalbasisofliquid-phaseelectroepitaxy(Thetheoryofthemethod)

138

3.2.1Temperaturedistributioninasystemundertheactionofanelectriccurrent

138

3.2.2Filmgrowthrate 141

3.2.3Chemicalcompositioncontrolofthefilm 142

3.2.4Initialstagesofnucleation 143

3.3Theroleofthermoelectriceffectsinthecourseofliquid-phaseelectroepitaxyofferroelectrics

149

Page 10: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

3.4Electro-LPEgrowthoflithiumniobate-tantalatefilms

151

3.4.1Epitaxialgrowth 152

3.4.2Electrochemicalprocessesintheliquidphase 152

3.4.3Growthkineticsofelectro-LPEgrownlithiumniobate-tantalatefilms

155

3.5OptimizationofconditionsofepitaxialgrowthoflithiumniobatefilmswithallowanceforJouleheat

158

4Structureandcompositionoflightguidingfilms

165

4.1Structureandphysico-chemicalpropertiesoflithiumniobateandtantalatecrystals

165

4.2X-raydiffractionanalysisoffilms 173

4.2.1Layercomposition 174

4.2.2Monocrystallinityandinterplanardistances 175

4.2.3Measurementofstrainsinthediffusedlayer 178

4.2.4Tidistributionindiffusedlayers 181

4.2.5Thestructureofproton-exchangedLiNbO3 182

4.2.6Orientationrelations 184

4.3Morphologyandperfectionoflayers 185

4.3.1Micromorphologyoffilmsurfacefordifferentcrystallographicorientationsofthesubstrate

186

4.3.2Diffusion-induceddefectsinfilms 188

4.4Substrate-filminterfaceandtransitionregion 190

Page 11: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

4.5Dislocationstructure 191

4.6Domainstructure 196

4.6.1Epitaxialfilmonadomainboundaryofthesubstrate

197

4.6.2Domainconfigurationsinfilms 198

4.6.3Microdomainsinsubstratesandinepitaxiallayers

199

4.6.4PeriodicallyinverteddomainstructuresinLiTaO3andLiNbO3usingprotonexchange

200

4.6.5Waveguideperiodicallypoledbyapplyinganexternalfield

203

4.6.6DomaininversioninLiNbO3usingdirectelectron-beamwriting

204

4.7Annealing-inducedvariationofthephasecompositionandcrystallinestructureofthelithiumniobatecrystalsurface

206

4.7.1Annealing-inducedvariationofthecrystallinestructureofthelithiumniobatecrystalsurface

206

4.7.2Annealing-inducedvariationofthephasecompositionofthelithiumniobatecrystalsurface

208

5Physicalpropertiesofwaveguidelayers

215

5.1Opticalpropertiesoflithiumniobateandtantalatesinglecrystals

213

5.2Opticalwaveguidemodesinsingle-crystalfilms 215

5.2.1Waveguideandradiationmodes 216

Page 12: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

5.2.2Waveequationandfielddistribution 221

5.2.3OpticalmodesinepitaxialLi(NbTa)O3waveguides

225

5.2.4Characteristicsofout-diffusedwaveguides 229

5.2.5Propertiesofdiffusedwaveguides 234

5.3Secondharmonicgenerationinwaveguides 237

Page 13: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagevii

5.3.1Phasematchinginanopticalwaveguide 239

5.3.2Overlapoffieldsofinteractingmodes 240

5.3.3Angularmatching 241

5.3.4Temperaturematching 244

5.3.5Second-harmonicgenerationinawaveguidewithperiodicallydomain-invertedregions

247

5.3.6Effectofprotonexchangeonthenonlinearopticalproperties

249

5.3.7Sum-frequencygenerationinwaveguides 253

5.4SecondharmonicgenerationintheformofCherenkovradiation

255

5.5Electro-opticeffectsinopticalwaveguides 258

5.6Lightresistanceoflightguides 260

5.7Photorefractivepropertiesoflightguides 264

5.7.1Holographicformationofgratingsinopticalwaveguidelayers

265

5.7.2PhotorefractiveeffectinplanarTi-diffusedguides

269

5.7.3Relaxationofindexchange 274

5.7.4Photorefractiveeffectinannealedproton-exchangedLiNbO3waveguides

275

5.8Energylossinwaveguides. 279

5.8.1LossesinTi-diffusedLiNbO3waveguides 279

Page 14: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

5.8.2Absorptionlossinstripguides 282

5.8.3Lossinepitaxialwaveguides 284

5.9Ferroelectricpropertiesofwaveguides 285

5.9.1Dielectricproperties 285

5.9.2Pyroelectricproperties 287

5.9.2.1Thelow-frequencysinusoidaltemperaturemodulationmethod

287

5.9.2.2Thethermalpulsemethod 287

5.10Temperaturedependenceofthermoelectriccoefficientsoflithiumniobateandlithiumtantalate

289

6Thin-filmstructureinintegratedoptics

293

6.1Principalcharacteristicsofwaveguidingelectro-opticmodulators

293

6.1.1Controlvoltage 293

6.1.2Bandwidth 295

6.1.3Modulationdepthandinsertionlosses 297

6.2Photoinducedpolarizationconversion 298

6.3WaveguidemodulatorsonthebasisofTi:LiNbO3 300

6.3.1Electro-opticmodulatoroncoupledchannelwaveguideswithavariableDb

300

6.3.2Interferometricandperfectinnerreflectionmodulators

304

6.4Practicalexamplesofwaveguideelectro-opticmodulators

308

Page 15: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

6.4.1Opticalwaveguideswitchmodulator 308

6.4.2Thin-filmelectro-opticlightmodulator 311

6.4.3Braggdiffractionmodulator 315

6.4.4Ridgewaveguidemodulator 317

6.4.5Ti-diffuseddiffractionmodulator 320

6.4.6InterferometricMach-Zehndermodulator 326

6.4.7Electro-opticphotorefractivemodulator 328

6.4.8KNbO3inducedwaveguidecut-offmodulator 331

6.5Waveguideelectro-opticpolarizationtransformer 334

6.6Lightbeamscanninganddeflectioninelectro-opticwaveguides

338

6.7Electro-opticallytunablewavelengthfilter 342

6.8Flip-chipcouplingbetweenfibresandchannelwaveguides

345

6.9KTiOPO4waveguidedevicesandapplications 349

6.9.1PhasematchinginperiodicallysegmentedKTiOPO4waveguides

352

Conclusions 356

References 357

Index 371

Page 16: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pageix

PrefaceThisbookisalogicalcontinuationofthetwopreviousbooksbytheauthors1whichwerepublishedintheAdamHilgerseries.Altogether,thesethreebooksprovideacompleteenoughpictureofapplicationofferroelectriccrystalsandfilmsinlaserradiationcontrol.Thisvolumeisdevotedtoferroelectricthin-filmwaveguidesforintegratedopticsandoptoelectronics.Wedealherewiththemostwell-knownmethodsofobtainingthin-filmstructures.Ourprimeconcernisliquid-phaseepitaxyfromalimitedmeltbulkwithandwithoutapplicationofanelectricfield.Amethodispresentedwhichcombinesliquid-phaseanddiffusiontechniquesforobtainingstructureswithaprescribedconfigurationofwaveguidechannels.Adetainedconsiderationisgiventophysico-chemicalpropertiesofthinferroelectriclayers,suchasmorphology,domainstructureofatransitionlayerandferroelectricproperties.Animportantroleforpracticaluseaselectro-opticmodulators,deflectorsandtransducersisplayedbytheopticalproperties,modecompositionofpropagatingradiation,secondharmonicgeneration,electro-opticproperties,photorefraction,destructionthresholdandlightloss.Alltheseaspectshavefoundreflectioninthebook.Examplesofpracticaluseofopticalwaveguidesaregiven.

Thebookmaybeinstructiveforexpertsinthefieldofintegratedopticsandoptoelectronics,aswellasforstudentsinterestedinthecorrespondingtopics.

A.M.PROKHOROVYU.S.KUZ'MINOVO.A.KHACHATURYANMOSCOW1995

Page 17: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 18: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagexi

ListofSymbolsAH,CH -latticeparameters

Bij -dielectricimpermeabilitytensorrC -electrodecapacitancec -thermalconductivityc -concentrationd -interelectrodegapdij -nonlinearopticalcoefficientd -thicknessds -elementofthelightpathD -diameterD -diffusioncoefficientD -electricinductivitye -electronchargeE -electricfieldstrengthEx,Ey -electricfieldcomponentsgij -componentsofquadraticelectrooptic

coefficientG -electrodewidthh -heightI -lightintensityj -chargedparticleflowJv -concentrationgradientJ -currentdensityJr -nthorderBesselfunctionk -coefficientofsegregationk=2pn/l.

-propagationconstant

k -thermalconductivity

Page 19: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

K(k) -completeellipticintegralKTP -KTiOPO4l -lengthL -pathlengthL -interactionlengthM -molecularweightM -numberofmodesno,ne -ordinaryandextraordinaryrefractive

indicesNi -molarfractionPL -Langmuirvapourpressurep -pressurePo -saturatedvapourpressureP -poweroflightPout -outputpowerPin -inputpowerP -dielectricpolarisationPs -spontaneouspolarisationPijml -photoelastictytensorq -kineticcoefficientQD -activationenergyfordiffusionQv -activationenergyforvaporisationQij -electrostrictivecoefficientr -radiusrij -linearelectroopticcoefficientR -resistanceRi -reflectivitys -distanceS -complianceS -areaSi -principalstrainSAW -surfaceacousticwavest -time

Page 20: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

T -temperatureTEi -wavemodesU -supersaturationn -velocityofzonemotionV -voltagebetweenelectrodesW -electrodewidthzef -effectiveparticlechargea -energyofformationofunitsurfacea -coolingratea -insertionlossai -electronicpolarisabilitya -evaporationcoefficienta0 -inverseaccommodationcoefficienta -numberofatomsperunitvolumea -overlapparameterb -propagationconstantintheguidebi -wavevectorsG -normalisedoverlapintegraldij -KroneckersymbolDn -refractiveindexchangeDm -variationofchemicalpotentialDlr -shiftofthecentrewavelengthe -dielectricpermitivitye0 -dielectricpermitivityinavacuumx -appliedelectricfieldh -phasemodulationindexq -diffractedangleqB -Bragganglel -wavelengthl0 -free-spacewavelengthlL.S -heatconductivitiesofsourceandliquidl -specificheatofcrystallisationL -gratingperiodicity

Page 21: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

m -mobilityn -molefractionP -Peltiercoefficientr -liquid-phaseresistivity

Page 22: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagexii

r -density

s -surfacetensions -supersaturations -stresst -diffusiontimetp -precipitationtimet -switchingtimetT -Thomsoncoefficientt -thicknessj -phaseshiftj -overallphasefactork -couplingconstantw -modefieldwidth

Page 23: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagexiii

IntroductionAnincreasednumberofcomplicatedelectronandopticalsystemsstimulatesthedevelopmentofoptoelectronics.Theanalysisoftendenciesinthedevelopmentofappliedphysicspointsouttheimportantrolethedielectricmaterialsand,firstofall,non-centrosymmetricpiezo-andferroelectricsplayintheformationofnewtrendsinelectronics(LinesandGlass1981).

Aninevitableincreaseinthevarietyofthin-filmferroelectricstructuresthatarewidelyusedinthenewtrendsofappliedphysicsbringsaboutimprovementintechnologyanddetailedstudiesofthevariousphysico-chemicalpropertiesofsubstances.Thispromotesfurthercreationofmaterialswithpredeterminedphysicalpropertiesthatareoptimumforconcreteapplicationsinengineering(Miyazawa1980;Tomashpol'sky1984;Khachaturyanetal.1984).

Singlecrystalsofactivedielectricsandferroelectricspossessinganinterestingcombinationofelectro-,acousto-andnonlinearopticalpropertiesarepromisingmaterialsfordesigninghighlyefficientdiscreteelementsofintegratedoptics(modulators,deflectors,switches,etc.)andquick-operatingschemesforcomputation,andcanunderliethecreationofhybridopticalintegratedschemes(Kuz'minov1975;Smolenskyetal.1971;Marcuse1974;BurfootandTaylor1979;Smolenskyetal.1985).

TheprincipalapplicationsofferroelectricmaterialsarepresentedinFig.1.Asisseenfromthefigure,thewidestrangeofapplicationofferroelectricsisoptics.Ferroelectriccrystals,usuallyclearandmeasuringfrom0.35to4mm(ed.byShaskol'sky1982)areappliedasphaseandamplitudemodulatorsoflaserradiation,transducers,deflectors,etc.

Page 24: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Ferroelectricfilmshavebeenintensivelyinvestigatedforthelast15yearsduetothegeneraltendencyofmicrominiaturization,decreaseinpowercapacityandincreaseinthesensitivityofdevices.Anumberofphenomena(e.g.lightswitch-overinstriplinewaveguides)donothavebulkanaloguesatall.Thepossibilityofusingthin-filmstructuresascontrolelementshasledtothedevelopmentofalargenumberofmethodsforobtainingfilmsandcoverings.

Dependingonaconcretedomainofapplicability,thin-filmferroelectricsofdifferentstructuralperfectionareused,forinstance,ferroelectricceramics,polycrystallineandepitaxialsingle-crystalfilms.Forsmall-sizecondensers,polycrystallineferroelectricfilmswithahighdielectricpermittivityandlowdielectricloss(BaTiO3,SrTiO3,(Ba,Sr)TiO3)areused,animportantrolebeingplayedbythedependencesoftheseparametersontemperature,frequencyand

Page 25: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagexiv

Fig.1Recentadvancesinmaterialsforcommunicationdevices(Miyazawa1980).

electricfieldstrength(Photonics,editedbyBalkanski1975).Forstoichiometricpolycrystallinefilmscloseto1mminthickness,thelow-frequency(1kHz)dielectricpermittivityexceeds1000andthehigh-frequencydielectricabsorptionleadstoastrongfrequencydependenceofdielectricpermittivityandthelosstangent.Slightviolationsfromstoichiometrycustomarilyinduceadecreaseofdielectricpermittivityandanincreaseoflosses.(Ba,Sr)Nb2O6,(Ba,Sr)TiO3andLiTaO3filmsofsolidsolutionsofPbTiO3andPbZrO3withlanthanum(PLZT)andtriglycinesulphate(TGS)aresuccessfullyusedforhigh-frequencypiezoelectricfilters,transducersandpyroelectricthermaldetectors.Therequirementoftheseapplicationsisahighelectromechanicalcouplingorpyroelectriccoefficient,aswellaslowdielectriclosses.Polycrystallinefilmsaresuitableprovidedthecrystallographicaxesareappropriatelyorientedduringfilmdepositionorsubsequentpolarization.Butthebestcharacteristics

Page 26: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

canbeexpectedfromsingle-crystalfilmswithorientedpyroelectricandpiezoelectricaxesbecauseoftheirhighcouplingcoefficientandtheabsenceofinfluenceofpolarisationofintercrystallayersinpolycrystallinefilms.

TheuseofferroelectricfilmsforrecordingIRradiationisofinterest.Severalpapersaredevotedtothestudyofpyroelectriceffectinferroelectricfilms(Okuyamaetal.1981;Nakagama1979;Mukhortovetal.1981;Petrossoetal.1983;Schittetal.1984;Antsyginetal.1986).Okuyamaetal.(1981)described

Page 27: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagexv

Fig.2Examplesoftheuseofthin-filmferroelectrics(Okuyama,Hamakawa1986).

athin-filmpyroelectricdetectormadeoftheferroelectricPbTiO3.

Antsyginetal.(1986)investigatedthin-filmstructuresofferroelectricbarium-strontiumniobate.Theexperimentsestablishedthatpyroelectric,electro-opticandelectrophysicalpropertiesofthebarium-strontiumniobate(BSN)filmsarewelldescribedbythephenomenologicalrelationstypicalofbulkferroelectricswithasmearedphasetransition.ItwasfoundthatontheBSN-electrodeboundarythelengthofanon-ferroelectriclayerdoesnotexceedabout3×10-8m.ThestudiesofBSNfilmrepolarisationcausedbyanappliedelectricfield,carriedoutbypyroelectricmeasurementsusingthethermalpulsemethod,repolarizationcurrentsandpulsedelectro-optics,showedthattherepolarizationofBSNfilmsisdeterminedbynucleationnearapositiveelectrode.Quick-operatingandmultielementradiationdetectorsemployingBSNfilmsasanactivepyroelectriclayerwerecreated.

Thus,alreadyearlyworksontheapplicationofthinferroelectricfilms

Page 28: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

forIRradiationrecordingindicatedthattheirsensitivityisclosetothatofpyroelectriccrystals,althoughitshouldbenotedthatferroelectricfilmsweremostlypolycrystalline.

Geary(1979)andLemonsetal.(1978)pointedtothepossibilityofemployingferroelectricsPb5Ge3O11andGd2(MoO4)3indeviceswithamovingdomainboundary.Theydescribedopticalshuttersandanalogueelements.Figure2givesexamplesofapplicationofthin-filmferroelectricstructures(OkayamaandHamakawa1986).Inthemetal-ferroelectric-semiconductor(MFES)structure,thesurface

Page 29: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagexvi

potentialofthesemiconductorcancontrolthepolarizationoftheferroelectricfilm.WhentheMFESstructureisusedasashutterofafield-effecttransistor(FET),theoutletcurrentofthetransistorcanbemodulatedbythesurfacepotentialduetofilmpolarization.Forexample,PbTiO3filmspossessadielectrichysteresisloopandahighremanentpolarizationandcanthereforebeusedinMFESFET-typememorycellspossessingstablestatesillustratedinFig.2a.

Sinceathinferroelectricfilmhasaveryhighdielectricconstant,theappliedvoltageindevicescanbeloweredappreciablybyusingaferroelectricratherthanadielectricfilm.Thin-filmelectroluminescent(EL)devicestypicallyhaveasandwichstructureconsistingofZnSfilmsanddielectricY2O3films.AnELdeviceusingPbTiO3insteadofY2O3films(Fig.2b)hasalowcontrolvoltage.ThethresholdvoltageofanELdeviceisloweredfrom210to50V.

FilmsofPbTiO3depositedontothinSiO2orSimembranesasstripsseveraltensorhundredmicrometersinlengthwereusedforthefabricationofultrasonictransducers(Fig.2c).Thinmembranesweremadebyseedingboron-dopedsiliconwiththeuseofaqueoussolutionsofethylenediamineandpyrocatecholwhichetchedwellthe(100)and(110)facetsbuthadaweakeffectuponthe(111)facets.Electrodesweredepositedbyphotolithography.Anultrasonicwaveinducedmechanicaloscillationsofthemembraneatseveralresonancefrequencies,theshearstressinthefilmcausedpiezoelectricstress.Inthe300-690mmdevice,thesecondresonanceharmonichadafrequencyof30-150Hz.

VariousIRtransducerscanbemadeinPbTiO3filmsonthebasisofthepyroelectriceffect.MFESFETwithanelectrodeabsorbingIRlightaresensitivetransistors(Fig.2e).InfraredlightincreasesthePbTiO3filmtemperatureandthusmodulatesthesurfacepotentialofSiwhichaffectstheoutletcurrentofthetransistor.Theoutletvoltage

Page 30: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

isinverselyproportionaltothelightmodulationfrequency.TheresponsetoIRradiationisveryquickandforaCO2laserthetimeofpulseincreasemakesup3.5ms.Thesensitivityofasiliconmonolithictransducercanbeincreasedbyremovingthesiliconsubstratefromthesensitivearea.

Thepropertiesandthewayofpreparationofthinfilmsusedinopticaldevicesmustsatisfyhigherdemands.

Thefirstexperimentalandtheoreticalstudiesofthin-filmopticalwaveguidesusedinintegratedopticswereperformedinthesixties(Deryuginetal.1967;Goncharenko1967;Goncharenkoetal.1969;Tien1971).Thesepapersinvestigatedthemainpropertiesofthin-filmdielectricwaveguidesofopticalrangeandshowedprospectsoftheirapplication.Someprogressmadeinthisfieldinrecentyearsisindicativeofthenecessityofgrowingthinsinglecrystalepitaxialfilmsforthispurpose.Infilmsofthicknesscomparablewiththewavelength,onecanobtainhighintensitiesevenwithmediumlaserpowers.Furthermore,thephasevelocityofalightwaveinathin-filmwaveguidedependsonthefilmthicknessandtheorderofthewavemode,whichsuggestsnewprospectsforcreationofdevices.

Thetheoryofplanardielectricwaveguides,whichunderliethecreationofthemainelementsforradiationcontrol,isdescribedindetailinanumberofpapersandmonographs(Tien1971;Zolotovetal.1974;Kogelnik1977;Tamir1979;Hunsperger1984;House1988).

Page 31: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagexvii

Therequirementsofintegratedopticsinperfectthin-filmstructuresnecessitatedawideuseofvariousmethodsoffabricatinglow-losswaveguidelayers.Alltheknownmethodscanbeconditionallydividedintotwogroups:

1.Refractiveindexincreaseinthenear-surfacelayerofabulkcrystal.

2.Growthofathinfilmwithahigherrefractiveindexonthesubstratesurface.

Thefirstgroupincludesthethermaldiffusionoftransitionmetalions,out-diffusion,ionimplantationandion-exchangeddiffusion.Thesecondinvolvesmainlyepitaxialfilmgrowth.

Untilrecently,theliquid-phaseheteroepitaxyhasbeen,infact,theonlyleaderinproducingheterostructureswithpredeterminedphysicalcharacteristics,whichwasparticularlyclearlyseenonanexampleofawiderangeofA3B5compounds.Foranumberofdevices,thissituationwillremainunchangedinthenearfuture.Amongtheknownliquid-phaseepitaxymethodsthemostpromisingforcomposition,thicknessandstructurecontrolistheliquid-phaseelectroepitaxyoffilms.

Theexistenceofelectro-,piezo-andnonlinearopticalpropertiesoffersnewopportunitiesforpracticaluseofferroelectricfilms.Theuseofepitaxialfilmsofoxideferroelectricsonthebasisofniobatesofalkalinemetalsintheelementalbasisofoptoelectronicsshowstheirnoticeableadvantagesoverbulkanalogues,firstofallfromtheviewpointofminiaturization,loweringofconsumedenergyandintensityofcontrolfields.Lithiumniobateandtantalatearewidelyusedinintegralelectro-opticelementsandincommunicationsystems.Bothpassiveintegro-opticcomponents(polarizers,couplers,filters)andactivecomponents(modulators,switchers,frequencyshift,etc.)havefoundtheirapplicationincommunicationsystems.Theabove-

Page 32: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

mentionedferroelectricsposseshighelectro-opticcoefficientsascomparedwithsemiconductingcompoundsoftheA3B5groupwidelyusedforcreatingradiationsourcesanddetectorsaswellasvariouselectronicdevices.Aspecialplaceinintegro-opticdevicesistakenby'dipped'opticalwaveguidechannels.Obtainingsymmetricwaveguidechannelsbythefilmdiffusionmethodprovidesasimpleandconvenientmatchingbetweenthechannelwaveguideandopticalfibres.

Wehaveanalyzedtheepitaxialgrowthofferroelectricsfromaliquidphase,whichmadeitpossibletooptimizetheconditionsforobtainingstructurallyperfectlayersandfilmpropertycontrol.Theperformedstudiesmadeitpossibletoimprovetechnologytosuchanextentthattheproblemsofverticalintegrationofmultilayerferroelectricstructuresforintegro-opticdevicescanbesolvedcompletelyusingliquid-phaseepitaxyandliquid-phaseelectroepitaxy.Thesetechniquescanalsobeappliedtootheroxideferroelectricsandtohigh-temperaturesuperconductors.

Chapter1presentsthemainmethodsoffabricatingopticalwaveguides,exceptliquid-phaseepitaxy,whichisanalyzedinchapter2.

Epitaxialmethods,whichcannowbeusedtoproducelayerswithmaximumproximityintheirstructuralperfectiontobulkcrystals,arediscussedinchapter2.

Attentioninthischapterisalsogiventothecapillarymethodofliquid-phaseepitaxyofferroelectrics,tothegrowthkineticsoflithiumniobate,potassium

Page 33: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Pagexviii

niobateandsolidsolutionsoflithiumniobate-tantalate.Thecrystallizationmodels,describingthenatureofmasstransferintheliquidphaseforisothermalandnon-isothermalepitaxyconditions,areconsidered.Analyticalexpressionsarederivedlinkingthefilmthicknesswiththegrowthsystemparameters.Thefilmdiffusionmethodofgrowingimmersedwaveguidechannelsinferroelectricsisdiscussed.

Chapter3dealswiththeoreticalandexperimentalresultsofinvestigatingtheinfluenceofadirectelectriccurrentontheliquid-phaseepitaxyprocesses.Materialsoftheoriginalstudiesoftheauthorsongrowingthin-filmferroelectricstructuresarepresentedonanexampleoflithiumniobateandsolidsolutionsoflithiumniobate-tantalate.Anappliedelectricfieldinducingelectriccurrentisshowntohaveanappreciableeffectoncrystallizationconditions,whichguaranteescontrolofthepropertiesofthegrowingstructures.

Chapter4isprimarilyconcernedwiththeresultsofinvestigatingepitaxialferroelectricfilms:crystallinestructure,composition,orientation,micromorphologyofthesurfaceandofthesubstrate-filmboundary,domainanddislocationstructures.

Chapter5isdevotedtoinvestigationsoftheferroelectric,opticalandwaveguidepropertiesofepitaxialfilmsoflithiumniobate,lithiumtantalateandsolidsolutionsoflithiumniobate-tantalate.Thedielectricandpyroelectriccharacteristicsoflayersandthetemperaturedependenceofthermoelectriccoefficientsarepresented.Opticalresistancetolaserradiationisexamined.Refractiveindicesandthemodestructureofradiationthroughepitaxialfilmsaredetermined.Lightattenuationunderwaveguidepropagationandtheelectro-opticpropertiesofstructuresareinvestigated.

Thesubjectofchapter6istheapplicationofopticalplanarandchannelwaveguidestolaserradiationcontrol.Theparametersof

Page 34: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

variousthin-filmintegro-opticalmodulators,deflectorsandtransducersofradiationarepresented.

Page 35: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page1

1EpitaxialFilmsofComplexOxideCompoundsThepresent-daydevelopmentofsolidstateelectronicsisassociatedtoagreatextentwiththedevelopmentofthegrowthtechniqueofsinglecrystalsandsingle-crystalfilms.Thisisconnectedwiththefactthatemploymentofsinglecrystalsandsingle-crystallayersexcludestheinfluenceofgrainboundariesandstructuraldefectstypicalofpolycrystalsandthusprovidesamoreeffectiveuseofthephysicalpropertiesinherentinamaterial.

Inrecentyears,increasingattentionhasbeenpaidtotheproblemsoforientedgrowthofasingle-crystalferroelectriclayerontoasingle-crystalsubstrate,epitaxy,sincetheferroelectricpropertiesaremostofallpronouncedinsingle-crystallayers.

Epitaxyofoxideferroelectricsisnowunderparticularlyintensestudy,andinthischapterweexaminethisproblem.Thenumberofknownferroelectricsisincreasinglylarge,reachingnowseveralhundred.Particularlyfruitfulhasbeenthesearchfornewferroelectricsamongtheperovskite-typestructures(LinesandGlass1977).Thegrowthofperfectepitaxialferroelectricfilmsofagiventhickness,withacontrolledcompositionandanecessaryimpurityconcentration,isoneofthemaintasksofthin-filmtechnologyandisstimulatedbytherequirementsofintegratedoptics.

Single-crystalfilmsarecustomarilyobtainedeitherbyepitaxialgrowthontoorientedsubstratesorbystimulatingorientedcrystallizationonnon-orientedinsulatingsubstrates(Chernovetal.1980;Sheftal1983).

Table1.1givesalistofadvantagesanddisadvantagesofthemain

Page 36: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

methodsforobtainingfilms(ed.byPoate1978).Comparativeanalysisofthemethodsforobtainingheterostructuresshowstheadvantageofepitaxialmethods.

Thedegreeoffilmperfectionisdetermined,inthefirstplace,bythespecificitiesofeachmethodand,inthesecondplace,byconcretefilmgrowthconditions(thedegreeofvacuum,temperatureregimes,growthrates,impuritycontent).

Therearenowthreebasicwaysofepitaxialgrowthofsingle-crystalfilms:

1.Vacuumepitaxy(involvingmolecularbeam),

2.Gas-transportepitaxy(involvingdecompositionofvolatilecompoundsandtransportchemicalreactions),

Page 37: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page2

Table1.1Methodsofproducingfilms

Method Advantages Shortcomings

Vacuumdepositionwithresistiveheatingofevaporator

Simpleequipmentforfusiblematerials

Fusionwithevaporatormaterials

Vacuumdepositionwithelectron-beamevaporator

Fitformostofthesingle-elementmetalsandsemiconductors

Refractorymetals,carbonandoxidesaredifficulttoevaporate

Ionsputtering Fitforbothconductingandinsulatingmaterials;compositionisdeterminedbythatofthetarget.Permitsobtainingamorphousfilmsofmetalsandsemiconductors.readilyadmitsbiasfield

Arorotheratomsandmoleculesofsputteredgasereinsertedintosubstrate,substrateistypicallystronglyheated,filmmaterialismixedwithsubstratematerialandsubstratesurfacecanbedamaged

Chemicalprecipitationfromthevapourphase

Giveshigh-qualitydevices,epitaxiallayersforactivedevices,polycrystallinelayerscanbedeposited

Equipmentismoresophisticated.requiresexactprescriptionofgasflowvelocity;highsubstratetemperature

Epitaxial Guaranteeshigh- Sophisticatedequipment

Page 38: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

growthfrommolecularbeams

qualityfilmsofcompounds

Electrochemicalprecipitation

Awiderangeoffilms;uniformlythicklargearea

Canonlybeappliedformetalfilms;problemofimpurities

Epitaxialgrowthfromtheliquidphase

High-qualityfilmsofcompounds

Itisdifficulttocontrolconcentrationandguaranteereproducibility

Ion-beammethod

Strictcontroloverprecipitationparameters

Lowprecipitationrateandsophisticatedequipment

3.Crystallizationfromaliquidphaseorliquid-phaseepitaxy.

Weshallnowconsidereachoftheseepitaxymethods.

1.1Vacuumepitaxy

Epitaxyfrommolecularbeamssuggestsgrowthofanepitaxiallayerwhenmolecularbeamsoratomsfallontoaheatedsubstratesurfaceinaultrahighvacuum.Abeamisgeneratedbysourceslocatedintheso-calledeffusivefurnacesinwhichthermalequilibriumismaintained.Thecharacteristicfeatureofthismethodismaintenanceofaconstantcompositionoftheevaporatingsubstanceanditseffusionrate.Theprocesstypicallyproceedsinhighvacuum,whichguaranteesasufficientpurityofepitaxiallayergrowth.Themethodiscommonlycharacterizedbyrelativelylowtemperaturesandgrowthrates.Alayeronasubstrateisformedundercrystallizationofcomponentscomingfromdifferentindependentbeamsand,therefore,thecompositionofthegrowinglayerandthelevelofitsdopingareeasilycontrolled.Thismakesthemethodsuitableforobtainingstructureswithasharpvariationinthecompositionandimpurityconcentration.Alowgrowthrateenablesthelayerthicknesstoberatheraccurately

Page 39: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

controlled.Lowgrowthtemperaturessuppresstheinfluenceofthediffusionprocesseswhichlevelupthecompositionsofneighbouringlayers.

Duringcrystallizationfromamolecular(atomic)beam,vacuuminthereactorismaintainedatsuchalevelthatthefreepathofthemolecules(atoms)exceeds

Page 40: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page3

greatlythedistancefromthesourcetothesubstrate.Supersaturationabovethesubstrateisdeterminedbythepressureofthevapourofthecrystallizingcomponentandbythesubstratetemperature.Regulationofthesourceandsubstratetemperaturescontrolssupersaturationand,therefore,thegrowthrate.

Layergrowthbythismethodproceedsinthefollowingsteps:

1.transportofthecomponentvapourtothesubstratesurface;

2.accommodationofatoms(molecules)onthesubstrate;

3.atommigrationonthesubstratesurface,re-evaporation;

4.building-inofmigratingatomsinactivegrowthcentres,stablenucleation;

5.coalescenceofnuclei.

Amolecular(oratomic)beam,emittedbythesource,isdirectedontoasubstrate.Thevapourpressureabovethesource,Psour,inthecaseofone-componentvapourisequalto

whereP0isthesaturatedvapourpressureatthesourcetemperature,a0istheinverseaccommodationcoefficientequaltotheratioofthenumberofevaporatedatomstothenumberofatomscollidedwiththesourcesurface.

Inthecaseofatwo-component(AandB)vapour,itspressureabovethesourcecontainingbothcomponentsisequalto(accordingtotheRaoultlaw):

wherePAandPBarethevapourpressuresofthecomponentsAandB,a0Aanda0Bareinverseaccommodationcoefficientsofthe

Page 41: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

componentsAandB,P0AandP0BaresaturatedvapourpressuresofthecomponentsAandBforTsour,NAandNBaremolarfractionsofthecomponentsAandB(NA+NB=1).

Incrystallizationofatwo-componentvapour,specialmeasuresaretakentopreserveitsconstantcomposition.Sometimes,evaporationiscarriedoutfromseparateone-componentsources.Thevapourpressureofthecrystallizingcomponentiscontrolledbythesourcetemperature.

Itshouldbenotedthatevenasmalldifferenceintheelasticityofvapoursofthecomponentsofdissociatingcompoundscanhaveanappreciableeffectonboththestructureandthepropertiesofthecondensates.Thelatterplaysagreatroleforferroelectricmaterials.Thecondensatecompositionalsodependsonthesubstratetemperature,whichisexplainedbyselectivere-evaporationofcomponents(Shimaoka1985;Tomashpol'sky1982).

Inrecentyears,themethodofpulsedlaserdeposition(PLD)hasbeenintenselydeveloped(GaponovandSalashchenko1976;Firtsaketal.1984;Lushkaetal.1982).Theideaofusinglaserradiationforsubstanceevaporationinavacuumforthepurposeofthin-filmsputteringappearedwiththeconstructionofinitialpowerfullasers.

VariousresearchesusingPLNhavebeencarriedoutforobtainingorientedfilmsofnearlytwentysemiconductingcompounds,suchasgermanium,silicon,galliumarsenidefilms,aswellasfilmsofoxygen-freeferroelectricsofthetype

Page 42: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page4

ofantimonysulphoiodideandtinthiohypodiphosphate(GaponovandSalashchenko1976;Firtsaketal.1984;Lukshaetal.1982).Insomecases,orientedgrowthoflasercondensatesexhibitsatemperatureloweringascomparedwithwhatweobserveinthermaldepositionmethods.Thisfactcannotbeexplainedconsistentlybythequantitativeanalysisofthelayerformationmechanism.Onthequalitativelevel,thespecificfeaturesofepitaxialfilmgrowthunderQ-modelaserdepositioncanbeexplainedbybombardingthesubstratebyhigh-energyions(102-103eV)oflaser-inducedplasma,whichstrengthenthepotentialreliefofthesurfaceandprovideanorientedgrowthalreadyunderinsignificantatommotions,thatis,atalowersubstratetemperature.

Therelationshipsbetweenmatterandenergytransferprocessesandphaseandintraphasetransformationsinthecondensateallowustodistinguishbetweentwoprincipalcondensationmechanisms:vapour-liquid-amorphousmetastable(glass-like)phaseandvapour-amorphousmetastablephase(withsubdomainsofpolyamorphousmodificationsandtheircondensationthroughamorphouslabilephases)whicharetypicaloflaserdeposition(Firtsaketal.1984).

Vacuumepitaxy,includinghigh-frequencycathodesputtering(Takadaetal.1974),suggestsaneasycontroloftheprocessandenablespurefilmswithaclearlypronouncedinterfacetobeproduced.Butinsomecases,inparticular,forferroelectrics,theseadvantagesareratherdifficulttorealize.Violationsofstoichiometry,occurringwhencomplexoxidefilmscontainingvolatilecomponentsareformedinvacuum,restrictsubstantiallytheefficiencyofthemethod.Thefilmsthusobtainedareasarulepolycrystallineorhaveanimperfectstructure,forexample,filmsofbismuthtitanate(Takeietal.1969),leadtitanate-zirconate(Philips1971),lead-lanthanumtitanate-zirconate(Ishidaetal.1977;Takadaetal.1974),BaTiO3andBaxSr1-xTiO3(Mukhortovetal.1981),lithiumtantalate(D'Amicoetal.

Page 43: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1984)andlithiumniobate(Takadaetal.1974;Meeketal.1986;Postnikovetal.1973;Foster1971;Ninomukaetal.1978).

Lithiumniobatefilmsonasapphiresubstratewereobtainedbysputteringinvacuum(Foster1971;Takadaetal.1974).Films1800Åthickweretransparentandsmoothbutexhibitedhighopticallosses,upto9dB/cm.Itisnoteworthythatthelossesinfilmsincreasedwithincreasingmismatchbetweenthefilmandsubstratelatticeparameters.

Usingvacuumepitaxy,Ninomukaetal.(1978)precipitatedz-LiNbO3filmsontoasubstrateofasingle-crystalMgOorientedalongthe[111]axis.Suchanorientationalrelationshipisduetotheidenticalpositionofoxygenionsintheindicatedplanes(thelatticeparametermismatchwasabout0.2%).Filmswereprecipitatedatarateof0.1mm/hatasubstratetemperatureof620-660°C.Thisexperiomentgavesingle-crystallayers6000Åthickwithasurfaceroughnessof100Å.Nevertheless,lossesinthefilmswereinthiscasealsoanorderofmagnitudelargerthanindiffusionfilms(~10dB/cm).

1.2Gas-transportepitaxy

Epitaxialfilmgrowthviaachemicalreactionincludesprocessesinwhichthecrystallizingphaseisduetoreactionsproceedinginavapour-gasmixture.

Thecrystallizationprocess,asanyphasetransition,isdrivenbythedifferenceinthethermodynamicpotentialsofphasesundergoingtransformations,but

Page 44: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page5

inthecaseofcrystallizationbymeansofchemicalreactionsthegasphasesupersaturationcannotbedeterminedsincethechemicalreactionproceedsatthecrystallizationfronttheelementaryactsofchemicaltransformationsandtheelementaryactsofcrystallizationarecloselyconnected.

Theepitaxialgrowthrateisdeterminedbytheyieldofthechemicalreactionsresultingintheformationofacrystallizingsubstanceanddepends,therefore,ontheconcentrationofinteractingphasesinthegasmixture,thespeedofgasmixturepassageoverthesubstrate,thecatalyticactivityandthesubstratetemperature.Theseparameterscanbecontrolledintheepitaxialgrowthprocess.Thecatalyticactivityofthesubstrate,whichdependsonthemethodofsurfacetreatment,iscustomarilyassumedtobefixedineachseriesofexperiments.

Filmgrowthbymeansofchemicalreactionsundergoesthefollowingstages:

1.transportofstartingcompoundstothesubstratesurface;

2.chemicalreactionresultingintheformationofmoleculesofthegrowingcrystal;

3.migrationofmoleculesaboutthesubstratesurfaceduetoreactionheatrelease,aswellasspontaneousmigration;

4.desorptionofunreactedmolecules;

5.building-inofmigratingatomsintoactivegrowthcentres,formationofstablenuclei;

6.coalescenceofnuclei.

Oneofthemodificationsoftheprocessesdescribedaboveisthegas-transportreaction.Itsmaindifferencefromthechemicalreactionisthatachemicalcompoundcontainingacrystallizingsubstanceis

Page 45: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

formedstraightinthereactorandthentransportedinacertainwayontoaheatedsubstratewhereitisdecomposedandcrystallized.

Thesysteminwhichtheepitaxialfilmgrowthproceedsthroughgas-transportreactionsmusthaveatleasttwotemperaturezones.Inoneofthem,thetransportinggasreactswiththesubstancesourcetoformavolatilecompoundtransportedtothesecondzonewherethesubstrateislocatedandwherethesubstanceorcompoundissegregatedandcrystallized.Thestagesoftheprocessproceedinginthesecondtemperaturezonearesimilartothestagesoffilmgrowthbymeansofchemicalreactions.

Awidespreadandconstructiveversionofthegas-transportepitaxyistheso-called'sandwichmethod'inwhichthesubstrateandthesourceareplatespositionedfractionsofamillimetrefromoneanotherandhavedifferenttemperatures(Dorfman1974).

Inspiteofthedifficultiesincreatingsteeptemperaturegradients,the'sandwichmethod'hasthefollowingadvantages:

a)thespacewherethereactionproceedsisseparatedfromtheremainingspaceofthereactorand,therefore,thepurityoftheprecipitatinglayerisdeterminedbythepurityofthestartingmaterialonly;

b)ahighefficiency(90-98%)ofmasstransfer(theratioofthesubstrateweightgaintothesourceweightloss);

c)ahighcrystallizationrate(hundredsofmicronsperhour).

Thechemicaltransportreactionunderlyingepitaxyfromthegasphasecanberepresentedinthefollowingwayonanexampleofasemiconductingcompound

Page 46: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 47: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page6

AB:

where(AB)solisamaterialsynthesizedinadvance,theso-calledsolid-statesource,whichisinmostcasesmadeofapolycrystallinepowder;Cvapisagaseoussubstance,theso-calledtransporter;(AB)vapandBvaparegaseousproductsofaforwardchemicalreaction.

Substance(AB)solisinthesourcezoneatthetemperatureTsourandthesubstrateisinthecrystallizationzoneatthetemperatureTcryst,whereTcryst<Tsour.Whenthesourceinteractswiththetransporters,gaseousproductsinthedirectreactions(AB)vapandBvapgoovertothecrystallizationzonewherethereversedreaction(fromrighttoleft)proceedsandresultsintheformationofanepitaxialABlayeronthesubstrate.ThetransporterCvaprevealedinthereversereactiongoesovertothesourcezone,whereitisagaininvolvedinaforwardreaction.

Whenepitaxialfilmsaregrownbycrystallizationfromagasphase,uniformlydopedlayerscanbeobtainedquiteeasily.Adopingimpurityisintroducedintotheoperatingspaceeitherintheformofahighlyvolatilecompoundorintheelementalstate.Theimpurityconcentrationinthegasphaseiscontrolledinthiscasebythegasmixturecomposition,andinthecaseofelementaladditionsbythesourcetemperature.

Themethodofchemicalgas-transportreactionshassomeadvantages:theinitialreagentscanbesubjectedtopurification,thecrystallizationprocessisreadilycontrolled,thedevicesusedinthemethodaresimplerthanthoseusedinthemolecularbeammethod(e.g.nodevicesforhighvacuumareneeded).

Page 48: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theshortcomingsofthemethodareasfollows:

a)difficultiesinmaintainingaconstantconcentrationofgaseousreagentsinthesubstratezone;

b)rapidcompositionmodulationcannotbecarriedoutduetothediffusioncharacterofgaseousreagentmotiontowardsthesubstrate;

c)theabsenceofaclearlypronouncedboundarybetweenlayers.

CurtiesandBrunner(1975)reportedobtainingLiNbO3filmsonaLiTaO3substrateusinggas-transportepitaxy.Thepropagationlossreachedavalueof40dB/cm,whichisexplainedbythepresenceofscatteringcentresinthefilms.Single-crystalfilmsobtainedbythegas-transportepitaxyevenunderoptimumconditionsusuallyhavealowstructuralperfectionwithnumerouspointdefectsofpackageanddislocations(CurtiesandBrunner1975;Aleksandrov1972;Nelson1963).

FushimiandSugh(1974)reportedonastudyofthegrowthofLiNbO3singlecrystalsbytheclosed-tubevapourtransporttechniqueanditsapplicationtotheepitaxialgrowthofthinfilmsofLiNbO3singlecrystals.

ThetransportexperimentsforLiNbO3werecarriedoutusingsealed,evacuatedtransparentquartztubes.LiNbO3powderandatransportagentwereloadedatoneendofthetube,whichwasthenevacuatedto10-5mmHgandsealedwithatorch.Theampouleswithstartingmaterialswereheatedinanelectricfurnace.Thetemperatureofbothendsofeachampoulewascontrolled,and

Page 49: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page7

theendcontainingthestartingmaterialswasalwaysmaintainedatthehighertemperature.Theheatingtemperaturesexaminedrangedbetween650and1500°C.ThecoolendproductswereexaminedbyX-raydiffractometrywithCuKaradiation.

Transportagentsexaminedinthisstudyincludedsulphur,iodine,andamixtureoftheseelements.LiNbO3couldbetransportedbysulphur,butnotbyiodine.TransportofLiNbO3bysulphurwasretardedbyaddingiodinetothereactionsystem.Thecomparisonwasmadebetweenthestartingcompositionof1.00gLiNbO3and0.40gsulphurandthatof1.00gLiNbO3,0.40gsulphur,and0.40giodineloadedintheampoules12mmindiameterand100mmlong.Thehotandcoolendtemperatureswere1000°Cand910°C,andtheheatingperiodwassevendays.ThetransportratesofLiNbO3were0.125g/dayforsulphurand0.012g/dayforthemixtureofsulphurandiodine.

TherelationsbetweenthetransportrateofLiNbO3andtheamountofthesulphurtransportagentwereexaminedat1000°Chotendand910°CcoolendtemperaturesandaresummarizedinFig.1.1.Althoughthemeasuredtransportratesareslightlyscattered,theresultwasexpressedas

wherebwasfoundtobe2.0-2.5.

LiNbO3transportedbysulphur,accompaniednoby-productsandcrystallizedinfairlywellshapedtinyrhombs,coveredbythefacetsparalleltothe planes,withdimensionsupto0.5×0.5×0.5mm.The

planescorrespondtotheperfectcleavageplaneofLiNbO3.ThecrystalhabitwasexaminedinaprecessioncamerawithMoKaradiation.

Eventhoughthevapourtransporttechniquewasnotsuitablefor

Page 50: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

obtainingbulkLiNbO3singlecrystals,thetechniquewasappliedtotheepitaxialgrowthofLiNbO3ontheLiTaO3substrate.Opticallyflat

,(010)and(001)platesofLiTaO3wereusedassubstratesforepitaxialgrowth.TheconditionsforepitaxialgrowtharelistedinTable1.2.Thoughthedepositedlayerthicknesswasnotuniform,2-10mmthickLiNbO3crystallayerswereformedontheLiTaO3substrates.ThesurfacesoftheLiNbO3layersdepositedontheLiTaO3platesweresmooth,whilethosedepositedonthe(010)andthe(001)plateswereroughbecausetheywerecoveredbythefacets.Fairlygoodcrystal

Table1.2ConditionsfortheepitaxialgrowthofLiNbO3(Fushimi,Sugh1974)

Ampoulesize 15mmdiam.,170mmlong,20mmdiam.,210mmlong

Initialcharge LiNbO3:1.00-1.40g,S:0.40-2.00g

Substrate LiTaO3 ,(010),(001)plate

Substrate-sourcedistance

8.3-11.0cm

Sourcetemperature 950-1000°C

Substratetemperature 900-910°C

Heatingperiod 3-17h

Coolingrate Furnacecooling,60°C/h

Page 51: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page8

Fig.1.1RelationsbetweenthetransportrateofLiNbO3andtheamontofsulphur(FushimiandSugh1974).

Fig.1.2(right)RockingcurveoftheLiNbO3layerdepositedonaLiTaO3(001)plate(FushimiandSugh1974).

qualityoftheLiNbO3layersandtheirexcellentepitaxyontheLiTaO3substratesoverthewholedepositionareawererevealedbyX-raytopography.Figure1.2showsarockingcurveoftheLiNbO3film

Page 52: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

depositedonaLiTaO3(001)plate,whereKa1andKa2reflectionsfromLiNbO3andLiTaO3areclearlyseparated.

1.3Filmsdepositedbyrfsputtering

Papershavebeenpublishedonionimplantationfortreatmentoflithiumniobatecrystalsurfaces,inparticular,forproducinglightguidinglayers.Townsend(1984)reportedobtainingplanarlightguidesinlithiumniobatebyimplantingN+,B+,He+andNe+ions.HealsodeterminedthedependenceoftherefractiveindexvariationAnonirradiationdosesforeachoftheseionsandshowedthepossibilityofproducinglightguideswithPn>0.1atlowsubstratetemperaturesandirradiationdosesexceeding1022cm-3.Itisnoteworthythatwaveguidesobtainedbytheion-implantationmethodtypicallyexhibithighlosses.Sampleannealingreducesthelosses,butoverannealingreducesthedifferencebetweentherefractiveindicesofthewaveguideandthesubstrate.Furthermore,underionimplantation,thesurfacelayerofthesinglecrystalbecomesamorphous.Inlithiumniobate,implantationofAr+andNe+leadstodistortionsinthesurfacelayerofthecrystallatticeupto10%.Damageinwaveguidelayersalsoimpairstheelectro-opticalpropertiesofcrystals.Thisessentialshortcomingoftheion-implantationmethodmakesiteffectiveonlyforproducingpassiveelementsofintegratedoptics.

Theadvantagesofthismethodovertheothermethodsofthinfilmprecipitationarewellknown:thepossibilityoffabricatingmulticomponentcompounds

Page 53: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page9

(thechemicalelementsinthecompoundcompositioncanbequalitativelycharacterizedbyvariousphysicalproperties,forexample,partialvapourpressure);maintenanceofalowgrowthrate(0.01-5Å/s)duringthewholefilmformationprocessunderintensebombardmentbysecondaryelectronsandions,whichisintheendresponsibleforthehighqualityofitsstructure.ButthemainadvantageofHF-sputtering,particularlyimportantforproducingmultilayerstructures,isthesynthesisofgrain-orientedandevensingle-crystalfilmsonanon-orientingsurface.Thiscanberealizedwhenthefilmissynthesizedbythemechanismoffinalgrowthorientation(Bauer1969).Filmcondensationinthiscasewastheresultofcompetinggrowthofdifferentlyorientedcrystalsratherthanofthetendencytoformationofconfigurationswithaminimumoffreeenergy,asisthecasewhentheinitialorientation(e.g.orientationcausedbytheinfluenceofthesubstratenature)determinesnucleationandsubsequentcondensategrowth.Atdifferentcrystalsurfaces,adifferentnumberofmoleculesiscondensedperunittime,whichdeterminesthepredominantgrowthofcrystalswithoneoftheorientations.IthasbeenestablishedthatunderHF-sputteringthedeterminingfactorinthisgrowthmechanismisthedifferenceinthere-evaporationratesofdifferentcrystallinegrainfacetsundertheactionofelectronandionbombardmentofthesamplesurfaceduringferroelectriclayersynthesis(Margolinetal.1983).Naturally,suchmechanismisonlypossibleatlowgrowthratescomparablewiththeratesofparticlere-evaporationfromthecrystalsurface.HF-sputteringprovidestheindicatedrelationbetweenthespeedatwhichthematerialisfedtothecondensationzoneandthecontrolledspeedofitsremoval.Choosingthetarget-substratedistanceandtheoxygenpressurecreatesconditionsforplasmochemicalreactionsforoxidemoleculeformationduetotwo(andmore)vapouratomcollisionsinthepresenceofionizingelectrons.Undersuchconditions,filmthicknessincreaseswithincreasingsubstratetemperatureTs,which

Page 54: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

agreeswithexperiment.Samplesthusobtainedhaveahighdegreeofstructureperfectionandpreserveinitialstoichiometry.

Sapphireandsiliconwereusedassubstratesinsuchexperiments.Theferroelectricfilmswere1-9mmthick.Thesubstratetemperaturemaintainedinthecourseofgrain-orientedfilmsynthesiswasestablishedtodeterminethegrainsize,whichproducesaqualitativeeffectontheprincipalelectrophysicalpropertiesofsamples.Forexample,agrainsizeof~3mmsuggeststheoccurrenceofferroelectricproperties.

1.3.1ThinfilmsofLiNbO3depositedonasapphiresubstrate

Takadaetal.(1974)werethefirsttosucceedinfeedingalaserbeamintoasingle-crystalLiNbO3thinfilmdepositedonasapphiresubstratebytherfsputteringmethod.Theauthorsbelievethatthesuccessisduetotheuseofanextremelylowsputteringrate.Itshouldbeemphasizedthat,intheirwork,theabove-mentionedpolishingprocesswasnotessentialtotherf-sputteredthinfilm,andthelightbeamcouldbeeasilyfedintothefilm.

Anrfdiodesputteringapparatuswasusedtofabricatethethinfilm.Thetargetusedintheexperimentwaspreparedinthefollowingway:First,lithium-enrichedpulledLiNbO3singlecrystalswerecrashedintograins.Then,adisc9cmindiameterand8mmthickwasformedbythegrains.Finally,thedisc

Page 55: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page10

Table1.3LatticeparametersandordinaryandextraordinaryrefractiveindicesofLiNbO3andsapphireatroomtemperatures(Takadaetal.1974)

Crystal aH(Å) cH(Å) no ne

(l=6328Å)

LiNbO3* 5.149 13.862 2.289 2.201

Sapphire** 4.758 12.991 1.766 1.758

*KNassau,HJLevinsteinandGMLoiacono,J.Phys.ChemSolids,27,989(1966);

**AMyronandJJeppesen,J.Opt.Sec.Am.,48,629(1958).

Table1.4Atypicalsputteringadoptedintheexperiment(Takadaetal.1974)

Target-substratespacing 4cm

Gascontents Ar(60%)+O2(40%)

Gaspressure 2×10-2Torr

rfpower 50W

Magneticfield 100G

Substratetemperature 500°C

Page 56: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.1.3(a)Laserbeaminasingle-crystalLiNbO3filmdepositedbytherfsputteringmethod,and(b)correspondingsample

configuration(Takadaetal.1974).

Page 57: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page11

wassintered.Thec-planeofsapphirewasusedassubstrate.Table1.3showsthelatticeparametersandordinaryandextraordinaryrefractiveindicesofLiNbO3andsapphire.

AtypicalgrowthconditionofthefilmisshowninTable1.4.ThedepositionrateundertheconditionofTable1.4is250Å/h,whichisextremelylowcomparedwiththevalueusedintheusualsputteringprocess.Filmsobtainedaretransparentandsmooth,andshowahomogeneousinterferencecolour.

Figure1.3showsaphotographofafilmwithathicknessof1800Åandatraceofthe6328ÅHe-Nelaserbeamfedintothefilmbyarutileprismcouplerattheleft-handside.Thelossofthefilmislessthan9dB/cm,whichiscomparablewiththelossmeasuredinanepitaxialZnOfilm.Theexperimentalvaluewasobtainedbyusinganopticalfibrewithadiameterof0.5ram.Oneendofthefibrewasplacednearthefilmsurfaceandtheotherendwasconnectedwithaphotodiodeinordertomeasurethelightintensityscatteredbythesurface.AnexampleofexperimentalresultsisshowninFig.1.4.ThemodeusedinthisexperimentwasTM0.Intheexperiment,thelossoftheTE0modewasusuallylargerthanthatoftheTM0mode.

TheordinaryandextraordinaryrefractiveindicesofthefilmwereobtainedfromthemeasuredvaluesofthecouplinganglesfortheTE0andTM0modesandthethicknessofthefilmbyusingtheformulasfromthepaperbyP.K.Tien.Theresultsare andwherenoandnearetheordinaryandextraordinaryrefractiveindices,respectively.ThesevaluesareclosetothoseofthebulkLiNbO3showninTable1.3.

Itisverydifficulttoidentifythefilmthicknesslessthan1umtobeasingle-crystalLiNbO3filmbecausethefilmistoothintobeinvestigatedbymeansofX-rayanalysis.Thefilmswerethereforemadethickerthan1um,andthefollowingpatternsfromthefilms

Page 58: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wereanalyzed:(i)electrondiffractionpattern,(ii)X-raydiffractionpatternbyadiffractometer,(iii)X-rayLauepattern,and(iv)pseudo-KosselpatternbyadivergentX-raybeam.Analysisshowedthat

Fig.1.4Surface-scatteredlightintensityasafunctionofdistancealongthelaserbeaminthefilm.Theslopeindicates

thatthelossofthefilmat6328Åislessthan9dB/cm.Thethicknessofthefilmis1800ÅTM0modeisused

(Takadaetal.1974).

Fig.1.5(right)Propagationlossoflight

asafunctionofthelatticeconstantcHofdepositedfilms(Takadaetal.1974).

Page 59: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page12

single-crystalLiNbO3wasreallydepositedepitaxiallyonthesapphiresubstrateoverawideareasothatthec-planeofthefilmwasparalleltothec-planeofthesubstrate.

Figure1.5showsthepropagationlossasafunctionofthelatticeconstantofdepositedfilms.Itcanbeseenthatthepropagationlossoflightinthefilmisstronglyrelatedtotheincreaseofthediscrepancyinthelatticeconstantofthefilmfromthatofthesubstrate.

Theoriginofthepropagationlossoflightisnotclearinthegivensample.Itis,however,expectedthatthelosscouldbedecreaseduptoaboutone-tenthofthatofthepresentsamplesbypurifyingthetargetmaterialandsputteringgasesandbyfindingoutamoreadequatesputteringcondition,eventhoughtheinternalstressinthefilmcausedbymisfitinthelatticeconstantbetweenthefilmandthesubstratecouldnotbecompletelyeliminated.

IntheworkbyN.F.Foster(1969),lithiumniobatewasdepositedbytriodesputteringinanargon-oxygengasmixturecontaining5-10%oxygen.TheapparatususedisshowninFig.1.6.Thesubstrateholderassemblywasmountedsothatthesubstratecouldbelocatedabovepositionsfortheevaporationofmetalfilmsorforthesputteringoflithiumniobatewithoutbreakingvacuum.

Thesubstratesusedwere1/4in.squareby1/2in.longbarsoffusedquartz,orsapphirewiththec-axiscoincidentwiththebaraxis.Afterchemicalcleaning,thebarswereclampedinthesubstrateholder,heatedto~150°Cinvacuum,andplatedwithathinchromiumunderlayerfollowedbyabout1000Åofgold.Thesubstratetemperaturewasthenincreasedtotheinitialdepositiontemperature,thesputteringgaswasadmittedatadynamicpressureofabout2m,andtheprimarydischargewasstruckandadjustedto1.5Aat60V.Thetargetvoltagewasappliedandthesubstrateswungintoplaceoverthetarget.Withatargetvoltageof1kV,thetargetcurrentwas12

Page 60: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

mA.Amagneticfieldparalleltotheprimarybeamwasproducedbypassingacurrentof2Athroughthe100turncoilsmountedonthefilamentandanodehousings.Undertheseconditions,thesubstratetemperatureincreasedduringdepositionto30-50°Cabovetheinitialtemperature.Topermitopticalratemonitoring,thesubstratewastiltedat45°tothetarget,andundertheseconditionsthefilmgrowthratewasapproximately3/4m/h.Films2-4umthickweredeposited.Thelithiumniobatetargetwasmadeofapowderpressedintoa2.5cmdiameterx3mmthickdiscand

Fig.1.6Triodesputteringunit(Forster1971).

Page 61: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page13

subsequentlyfiredinairat1200°C.Initially,thediscwaswhiteandhighlyinsulatingandsputteringwasveryslow.Asthetargetbecameheated,however,itdarkened,presumablythroughthelossofoxygen,andbecamesufficientlyconductingforthedcsputteringprocesstoproceedreadily.Theoxygenpresentinthesputteringgasassuredthatthedepositedfilmswereinsulating.

14filmsweredepositedduringthisstudy.Forthefirstfourdepositionstheinitialsubstratetemperatureswerebetween100and300°C.ThesefilmswereclearandadherentbutshowednoX-raystructureorpiezoelectricactivity.Theremainingtenfilmsweregrownatinitialsubstratetemperaturesof325-380°C.TheseexhibitedwelldefinedX-raypatternscorrespondingtotrigonallithiumniobate.AtypicalX-rayDebye-Scherrerpatternshowsthatthefilmispartiallyoriented.Althoughthedegreeandthetypeoforientationvariedfromfilmtofilm,the(00.1)and/or(01.2)planesshowedsometendencytoalignparalleltothesubstratesurface.

1.3.2TungstenbronzeferroelectricK3Li2Nb5O15

Amongvariousfamiliesofferroelectricmaterials,thetungstenbronzefamilyisofinterestforopticalwaveguidesandSAWapplications.K3Li2Nb5O15(KLN)isatetragonalcrystalwiththepointgroup4mmandistypicalofcompletelyfilledtungstenbronzeferroelectrics.Single-crystalKLNhasalargeelectromechanicalcouplingfactor

, andk33=0.52andalsohasreducedzero-temperaturecoefficientsofdelayforSAWs.However,itisverydifficulttoobtainhighqualityandlargeKLNcrystals.AnapproachtothesolutionofthisproblemistogrowepitaxialKLNfilms(ProkhorovandKuz'minov,1990).

Anrfsputteringapparatus(ANELVAFP-21)wasusedbyShiosakietal.(1982)tofabricateKLNthinfilms.Thetargetusedintheexperimentwaspreparedbysinteringthepressedpowderwitha

Page 62: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

potassium-andlithium-enrichedcompositionof33mol.%K2CO3,22mol.%K2CO3and45mol.%Nb2O5.Theoptimumgrowthconditionsforhigh-qualityKLNsingle-crystalthinfilmssputteredonbothK3Bi2Nb5O15(KBN)andsapphiresubstratesarea50%Ar-50%O2atmosphereatapressureof9.0×10-2torr,anrfpowerinputbelow150Wand500-630°Csubstratetemperature.Thedepositionrateundertheseconditionsis~800Åh-1atanrfpowerof100W.

BoththeKLNfilmsepitaxiallygrownonKBNandthosegrownonsapphiresubstratesweretransparentandtheirsurfacesweresmooth.AnalysisoftheseKLNfilmsbyX-raydiffractionandREDmeasurementsshowedthattheKLNfilmsobtainedweresinglecrystalsoffairlygoodquality.

AHe-NelaserbeamwassuccessfullyfedintoKLNfilmssputteredontheKBN(001)andsapphire substrates,usingaprismcoupler.BymeasuringcouplinganglesforthreedifferentTEmodes,theeffectiverefractiveindexb/k0inaKLNfilm2.1mmthicksputteredontheKBN(001)substratewasdeterminedtobe2.26,2.25and2.23fortheTE0,TE1andTE2modes,respectively.TherefractiveindexnointhisKLNfilmwascalculatedtobe2.27fromtheeffectiverefractiveindicesgivenabove.MeasurementsoftheopticalpropagationlossintheKLNfilmgrownontheKBNsubstratewerenotattempted.TherefractiveindexnoinaKLNfilm~2.7mmthicksputteredonasapphire

Page 63: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page14

substratewasalsodeterminedtobe2.27bymeasuringthecouplinganglesforelevenTEmodes.Thevalueof2.27obtainedaboveisclosetothatforabulkKLNcrystal.Furthermore,theTE0modepropagationlossintheKLNfilmonsapphirewasmeasuredbytheopticalfibreprobemethod.Theopticalpropagationlossinthisfilmwasdeterminedtobe7.8dBcm-1.

SomeexperimentswerecarriedoutontheSAWpropertiesofthelayeredKLN/sapphirestructure.ThesampleusedinthisstudywasaKLNfilm9mmthicksputteredonasapphire substrateatasubstratetemperatureof520±C.Interdigitaltransducers(IDTs)werenormalelectrodeswith25fingerpairsanda100mmspatialperiod,whichwereevaporatedonthefilmsurface.Thecentre-to-centrepropagationpathlengthwas12.5mm.Accordingly,thevalueofKHforthissamplewas0.6.SincethedelaytimeofSAWpropagationis2.3ms,theSAWvelocityonthisKLNfilmwasdeterminedtobe5430ms-1whichisincloseagreementwiththecalculatedvalue,5500ms-1atKH=0.6.

1.3.3KNbO3thinfilms

TheKNbO3filmsweregrowninarf-diodesputteringsysteminwhichthecathodeformsthebottomelectrode.Thesystem,describedindetailbyS.SchwynandH.W.Lehmann(1992),isequippedwithaload-lockandheatedsubstrateplatform(mountedonthetopplateofthesystem),whichallowssubstratesurfacetemperaturesupto700°C(Thonyetal.1992).Thissputterupdesignturnedouttoberatherusefulsincethisconfigurationalsoallowstheuseofhomemadetargetswhichdonotalwayshavethedesiredhighdensityandcohesion.

Themostimportantparameterintheseexperimentsisthecompositionofthetarget.SputteringfrompureKNbO3targetresultedinfilmswhichwereseverelydeficientinpotassium.Inordertoevaluate

Page 64: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

whichcompositionisappropriatetoobtainstoichiometricfilms,K2CO3andKNbO3powdersweremixedindifferentmolarratios.Subsequently,thepowderwaspressedatroomtemperatureatapressureof5.6×107N/m2.Thediscsobtainedweresolidenoughtobetransferredintoavacuumchamber.Althoughoutgassingismuchstrongercomparedtosinteredmaterial,thehomemadetargetsprovedtobeusefuliftheyarepumpedandpresputteredforasufficientlylongperiodoftime(approximately10h).Atargetcompositionof1:1moleK2CO3andKNbO3finallyyieldedstoichiometricfilms.Thismeansthatthepotassiumconcentrationinthetargetwasthreetimeshigherthanthefinalconcentrationinthesputteredfilms.Table1.5summarizestheparameterswithwhichcrystallinestoichiometricKNbO3filmsweregrown.

Theopticalpropertiesarestronglyrelatedtothecrystalstructureandthecrystallinityofthelayers.Toprovidefavourableconditionsforthegrowthofhighlyorderedfilms,arelativelyhighsubstratetemperature(610°C)andaverylowdepositionrate(6Å/min)werechosen.Thetypicalthicknessofthelayersobtainedusingtheseparametersis200nm.

Furthermore,lattice-matchedsubstrateshadtobefoundinordertoobtaincrystallinefilms.Thetwocrystallinematerials(MgO)(A12O3)2.5spinelandMgOwereconsideredtobewellsuitedassubstratesforthinfilmsofKNbO3bulkcrystals.Moreover,therefractiveindexofthesematerialsisconsiderablylower

Page 65: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page15

thanthatofKNbO3allowingmonomodewaveguidinginlayersofonly100nmthickness.TheMgOsubstrateshadatomiclayerpolishedsurfacesandbothsubstrateswerenotspeciallycleanedpriortouse.

ThecompositionofthelayerswasdeterminedbyRBSusingHe4+ionswithanenergyof2MeV.Thesemeasurementsshowedthatstoichiometricfilmscouldbegrownfroma(KNbO3)(K2CO3)targetsputteredinpureargon(Fig.1.7).Theadditionofoxygenresultsinapotassiumdeficiencyofthefilms.Ascanbeseen,themeasurementresultsareinexcellentagreementwiththesolidlineofthesimulatedspectrumofastoichiometricfilmwithathicknessof190nm.Furthermore,theprofileisflattoppedindicatingconstantcompositionacrossthefilmthickness.Theoxygenstoichiometrywasinvestigatedusingnuclearreactionanalysisanddidnotshowanyoxygendeficiency.

TheX-raydiffractionspectrastronglydependonthecompositionofthefilmsanddepositiontemperature.Layerswithapproximatelystoichiometriccomposition(19.2-20at%)depositedonMgOatatemperatureof500°Corbelowonlyshowweaklinesinthex-rayspectrum.Someofthesmallpeakscouldbeidentifiedasthe(110)and(220)reflectionoforthorhombicKNbO3,whereasitwasnotpossibletoidentifytheothersunambiguously.

Whenthetemperaturewasincreasedto580-610°C,thefilmbecamesinglecrystallineandonbothsubstratestwolineswereobtainedwhichwereclosetothe(0001)and(002)reflectionsoftetragonalKNbO3(Fig.1.8).Thelatticeconstantsobtainedfromthex-raydiffractionmeasurementsforallthethreelatticedirectionsyieldeda=b=4.16parallelandc=4.10perpendiculartothesubstrateplaneforlayersdepositedonMgO.Thismeansthatthefilmistetragonalwithinthemeasurementaccuracy.Therefore,thetetragonalcoordinatesystemwillbeusedinthefollowing.Comparedwiththelattice

Page 66: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

constantsofthetetragonalphase(extrapolatedtoroomtemperature)ofa=b=3.985Åandc=4.075Åthisindicatedalatticemismatchof4%and0.7%,respectively.Tetragonalsymmetrywhichinbulkmaterialisassignedtothestructuralphaseinthetemperaturerange22-440°Ccanbeexplainedbythefactthatthesubstrateiscubicand,therefore,forcesthegrowinglayerinbothdirectionsoftheinterfaceplanetothesamelatticeconstant.Thex-raydatashowedthatthereisaclosecorrelationbetweenfilmstoichiometryandx-rayintensity:asthestoichiometryimproves,thediffractedlinesbecomenarrowerandtheirintensityincreases.

Table1.5rf-sputteringparametersforgrowingstoichiometriccrystallineKNbO3films(Thonyetal.1992)

Targetcomposition

K2CO3:KNbO3 1:1 mol

Gas 100% Ar

Temperature 610 °C

Power 50 W

Processpressure 2×10-2 mbar

Gasflow 20 cm/min

Page 67: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page16

Fig.1.7RBSspectrumofaKNbO3thinfilmofthicknessd=188nmdepositedonMgOsubstratefrom

targetcompositionof(KNbO3)(K2CO3)at610°C(Schwynetal.1992).

1.3.4KTaxNb1-xO3thinfilms

APerkinElmer4400sputteringmachinewasusedforfilmdeposition.A4in.diametersputteringtarget(nominalcomposition:KTa0.5Nb0.5O3)witha15at%excessKandpressedto90%oftheoreticaldensity,waspreparedbystandardceramicprocedures.Substratesusedforfilmdeopositionwere(a)Ptcoated(3000Åsputteredlayer)Siwaferswitha1500AthickintermediatelayerofSiO2and(b)GaAs(100)waferswithaheavilydoped(n=1018-1019/cm2)surfacelayer.Anexcellentlatticematch,within0.3%,existsbetweenKTNandGaAssurfacesublattice(Sashitaletal.1993).

Underanychosensetofsputteringconditions,filmsweresimultaneouslydepositedonPt/SiO2/Si,GaAsandsapphiresubstrates.TheKTNsynthesisconditionsaresimilartothoseforKNbO3,seeTable1.5.Filmsthussputteredwerecompletelycolourlessandtransparent.CompositionofaKTNfilmonsapphirewasdeterminedbyRutherfordbackscatteringspectroscopy(RBS).RBSsimulationspectrayieldedafilmcompositionofK0.94Ta0.68Nb0.4O3.X-raydiffractionanalysisoftheKTNfilmon

Page 68: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

sapphireshowsonlyasingle(100)peakanditstwohigherorders.Thepeaksharpness,referredtothatofthe(1012)sapphiresubstrate,indicatesnearlysinglecrystalepitaxialgrowthoftheKTNlayer.BraggpeaksfromaKTNfilmonGaAsshowonlyasinglenarrow(200)KTNreflection,indicativeoflargegrainswithahigh(100)preferredorientation.Thetwoweakpeaksonthelow20sideoftheGaAsreflectioncouldnotbeattributedtoanyoftheKTNrelatedreflections.

TheCurietemperatureplot(evsT)foraKTNfilmonaPt/SiO2/Sisubstrate(measuredat1kHz,Fig.1.9a)peakssharplyat6°Cwithamaximumeof2090,indicatingalmostabulksinglecrystal-likebehaviour.Figure1.9bshowsthecapacitance(at1kHz)versustemperaturebehaviourofaPt/KTNfilm/GaAstestcapacitor.Again,thesharppeakat3°Cexhibitsabulksinglecrystal-likeCurie-Weissbehaviour.ReflectancespectraofKTNfilmsyieldedrefractiveindicesfrom2.06at0.6mmto1.975at1.1mmandlowabsorptioncharacteristics.ThesearesmallerthanbulkKTNrefractiveindices,from2.15to2.3.ThequadraticEOeffectinKTNfilmsonSiandGaAssubstrateswasmeasuredasthechangeinreflectanceunderanappliedelectricfieldatnearly5°CaboveTc.Thelock-insignal,correspondingtotheelectricfieldinducedreflectivity

Page 69: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page17

Fig.1.8X-raydiffractionspectrumofsingle-crystalline

filmdepositedonMgOshowingthe(001)and(002)reflectionoftetragonalKNbO3(Schwynetal.1992).

changeversusappliedfield,isshowninFig.1.10.ThedifferencesintheplotsforGaAsandSisubstratesareapparentlyduetothoseofcrystallinityandstoichiometrydeviationsofthetwofilms.

Thepeakeforthesefilms(~2090)issignificantlylowerthanthatofbulksinglecrystalvalues.ForameasuredTc=3°C,thecorrespondingfilmcompositionshouldbeKTa0.63Nb0.37O3.

1.3.5.Thinfilmsbypulsedlaserdeposition

ThelasersputteringmethodisdemonstratedonanexampleofLiTaO3(J.A.Agostinelli,G.H.Braunstein1993).Thefilmswereproducedon(0001)-sapphiresubstratesbypulsedlaserdeposition(PLD)usingKrFexcimerlaserradiationat248nm.Typicalpulseenergieswere400mJwithpulsedurationsofabout30ns.Thebeamwasweaklyfocusedontoarotatingtarget,givingafluencebetween1.0and2.0J/cm2.ThetargetwasasinteredpolycrystallinebulkceramicdiscofLiTaO3preparedfrommixedpowdersofLiOH.H2OandTa2O5.ThetargetwasproducedwithanexcessLicontentsuchthattheLi/Taatomicratiowas1.1/1.Thediscwasmountedhavingthenormaltoitssurfaceatanangleof10°withrespecttotherotationaxisinordertoimprovetheuniformityofdepositedfilmthickness.Theanglewas

Page 70: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

chosensothatthenormaltothetargetsurfacesweepsoutacircleatthesubstanceplanetogiveanoptimumuniformityfortheselectedsubstrate-to-targetdistance,whichwas6cm.Thesubstratewasmountedontheheaterblockusingsilverpainttoprovidegoodthermalcontact.Areactiveambientof85mtorrofO2wasused.Thethicknessofdepositedfilmsrangedfromabout100to800Åbutmostfilmswerepreparedwithathicknessof4000Å.Filmdepositionratesinthevicinityof1A/pulsewerefoundandlaserrepratesof4Hzwerecommonlyused.

Filmsgrownatsubstrate-heatertemperaturesof500°Cwerefoundtobeamorphouswhereasthosegrownat525°Candabovewerecrystalline.Filmswerefoundtoimprovewithincreasingtemperatureandsubstrate-heatertemperatureintherange650-700°C,theproducedfilmshavingexcellentcrystallineproperties.Figure1.11isacoupledXRDscanofaLiTaO3filmdepositedon(0001)sapphireat650°C.Thedataindicatethatthefilmissingle-phase,single-orientationLiTaO3.Thepresenceofonlythe(001)linesofLiTaO3showsthattheentirefilmisc-oriented,allowingeasyuseofthed33coefficient.

Page 71: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page18

Fig.1.9a)Curie-WeissbehaviourofKTNonPt/SiO2/Siandb)Curie-WeissbehaviourofKTNonGaAs(Sashital

etal.1993).

Fig.1.10Electro-opticeffectofKTNfilms(Sashital

etal.1993).

Fig.1.11(right)Coupledx-raydiffractionscanofa4000

AthinfilmofLiTiO3on(0001)sapphirepreparedat650°C(AgostinelliandBrainstein1993).

Suchanorientationisequivalentto'z-cut'LiTaO3inthebulk.Themeasuredc-latticeconstantof13.73isclosetothevalueof13.755Å

Page 72: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

forbulkLiTaO3.ICPanalysisofthesefilmsindicatedaLi/Taatomicratioof48.5/51.5withanuncertaintyofabout2at%.In-planeorientationwasstudiedbyx-raypolefigureanalysisusingthe(012)planeofLiTaO3.Forallsubstratetemperaturesusedbetween525and750°C,thefilmswerefoundtobetwinned.Atthelowertemperatures,roughlyequalproportionsofeachorientationwereobserved.Forsubstrate-heatertemperaturesof650°Candabove,amajororientation(>90%)inexactalignmentwiththesubstratewasobserved.

Thedegreeofcrystallineperfectionwasexaminedusingionchannelling.Fromtheseinvestigationsitfollowsthatthequalityofthefilmimprovesasafunctionofheightabovetheinterface.Thelowerqualityofthenear-interfaceregionislikelytoberelatedtoahighdensityofmisfitdislocationsarisingfromaratherlargelatticemismatchofabout8%.

Althoughafilmthatisstrictlysinglecrystalwouldbedesirable,itissufficientfornonlinearopticalapplicationsthattheLiTaO3filmbec-oriented.Becausethec-axisdirectionistheopticalaxisdirectioninthisbirefringentmaterial,theeffectiveindexforlightthatispropagatinginsuchathin-filmwaveguideaseitheratransversemagnetic(TM)waveoratransverseelectric(TE)wavewillbeindependentofthepropagationdirectionintheplanarwaveguide.Thus,

Page 73: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page19

ac-orientedfilmofLiTaO3withnoin-planeorientationcaninprinciplegiveanopticalwaveguidehavinglowscatteringloss.Itisalsoofinterestthattheconditionofc-orientationissufficienttogiveasingled33coefficientfortheentirefilm.Thus,thewell-orientedbutsomewhattwinedfilmsofLiTaO3meetthecriteriaforcrystallinequalityrequiredfornonlinearoptical/electro-opticaldevices.Althoughsinglecrystallinityisnotanecessaryrequirementfortheseapplications,asingleorcontrolledferroelectricdomainstructureisessential.Someeffortwasmadetoelucidatetheas-growndomainstructureofthefilmsbyetchinginhotHF:HNO3withasubsequentexaminationbyscanningelectronmicroscopy.Thefilmsappearedtoetchuniformly,whichsuggeststhatthefilmsaresingledomainasgrown.

MeasurementsoftheopticalpropagationlossforaLiTaO3film,~3400Åthick,grownat650°C,areshowninFig.1.12.Abeamof633nmradiationwascoupledintothefilmusingarutileprism.ThedatacorrespondtoscatteredlightintensityfortheTM0mode.Thebestfitlinethroughthedataindicatesalossofabout0.6dB/cm.However,thelargescatterinthedataplacesaconsiderableuncertaintyinthelossfactor.Itisbelievedthatthelargedeviationsfromthelinearfitaretheresultofpoorsamplingstatisticsfromasmallnumberofstrongscatteringcentresthataresamplingthewaveguideintensity.Thesecentresarelikelytobetheparticulatefeaturesdiscussedabove.Itis,however,apparentthatthesecentresdonotproduceanyseriouswaveguideloss.

Moreover,therearesignificantobstaclesforthegrowthofepitaxialLiNbO3andLiTaO3filmsonGaAsforthebluelightgeneration,becauseofthefollowingreasons:(a)GaAshasthezincblendestructurewithalatticeparameterof0.5673nm,whileLiTaO3hasthetrigonalstructurewitha=0.5153nmandc=1.3755nm,(b)LiTaO3isreactivewithGaAsandproducedundesirablephasesatinterfaces,

Page 74: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

and(c)anintermediateoxidelayerwithlowrefractiveindexisrequiredtoformawaveguide.

L.S.Hungetal.(1993)reportepitaxialgrowthofaLiTaO3layeronaGaAswithaMgObufferlayer.TheMgOlayeractsasadiffusionbarriertoimpedefilm-substrateinteractions,andformsawaveguidestructurewiththeoverlyingLiTaO3.

(NH4)2Sx-treated(111)GaAswaferswereusedassubstratesforepitaxialgrowthofMgOfilms.MgOwasdepositeddirectlyonGaAsbyelectron-beamevaporation.Thedepositionprocesswascarriedoutat3×10-8torrwithoutintroducingadditionaloxygenintothesystem,ensuringanundisturbedGaAssurfacetothegrowthofepitaxialMgOfilms.Thesubstratewasheatedbyaradiativeheater.Thegrowthtemperaturewas450-550°Candmonitoredbyaninfraredpyrometer.Thedepositionratewas0.05-0.15nm/s,andthethicknessoftheMgOfilmswasabout100-500nm.

LiTaO3filmsweregrownbypulsedlaserdeposition.Theparametersofthesputteringlaserarepresentedabove.Depositionwascarriedoutatarateof0.1nm/pulse,thesamplewascooledtoroomtemperatureinoxygenatapressureof150torr.

ThethicknessandcompositionoftheresultingMgOandLiTaO3filmsweredeterminedbyRutherfordbackscatteringspectrometry.Thespectrumcanbebestfittedbyasimulationofabilayeredstructurewiththestoichiometricratio

Page 75: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page20

ofMg:O=1.0:1.0andLi:Ta:O=1.15:0.97:3.TherearedgeoftheTaprofileandthefrontedgeoftheGaAsprofileareabrupt,indicatinglimitedinterfacialreaction.

Thestandard0-20diffractionpatterntakenfromaMgOfilmonGaAsrevealsonlytheMgO(111)andGaAs(111)diffractionpeaks.ThefullwidthathalfmaximumoftheMgO(111)rockingcurvemeasuredatabout1.8°,indicatingahighly[111]-axisorientedfilm.EpitaxialgrowthofMgOonGaAswasverifiedbyx-raypolefigureanalysis.AcomparisonoftheresultsobtainedfromMgOandthatfromtheunderlyingGaAsindicatesthatasingle-crystal[111]-orientedMgOfilmisgrownon(111)GaAs,andthattheMgOlatticeisrotatedby180°aboutthe[111]surfacenormalwithrespecttotheGaAssubstrate.

ThecrystalqualityofLiTaO3canbesubstantiallyimprovedbyincreasingthegrowthtemperatureof600-650°C.

1.3.6.WaveguidesbyMeVHeionimplantation

PlanarwaveguidesinKNbO3byMeVHeionimplantationforopticalwaveswithpolarizationparalleltothecrystallographicb-axiswereproducedbyF.P.Strohkendletal.(1991).Theseguidesconsistedoftheessentiallyundamagedsurfacelayerwhichisseparatedfromthebulkbyaburiedlayerofareducedrefractiveindex.TheionicendofthedamagerangeoftheincidentHeionswasfoundtopartiallyamorphizethecrystallattice(R.Irmscheretal.1991).Thewaveguidesareleaky,aslightwhichispropagatingintheundamagedsurfacelayercantunnelthroughthebarrierwithaloweredindexintothesubstrate.Thewaveguidesshowedaminimumpropagationlossforanimplantationdoseof5×1014cm-2.ThisdosewasatleastoneorderofmagnitudebelowthedoseswhichhavebeenusedsofartoproducewaveguidesinKNbO3(T.Bremeretal.1988andL.Zhangetal.1988).

Page 76: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

F.P.Strohkendletal.(1991)reportedonacriterionofplanarwaveguidesforopticalwaveswithpolarizationparalleltothecrystallographicc-axiswithevenlowerimplantationdoses,thatis,withdosesofabout1014cm-2.Prismcoupling,aswellasend-firecouplingofaHeNelaserbeamwithawavelengthof632.8nmwasusedtocharacterizetheTEmodespropagatingalongthea-axisintheionimplantedplanarwaveguides.

KNbO3crystalsampleswerecutperpendiculartotheb-axisandhaddimen-

Fig.1.12IntensityasafunctionofpropagationdistanceforlightscatteredoutoftheTM0modeLiTaO3thinfilmwaveguideonsapphire(Agostinelliand

Braunstein1993).

Page 77: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page21

sionsoftypically7×2×9mm3.ThesampleswereirradiatedatroomtemperaturewithHeionsofeither1or2MeVanddosesintherange5×1013to5×1014cm-2.TheangleofincidenceoftheHeionswasslightlyoffnormaltoavoidchannelling.Thecrystalsampleswereheatsinkedandtheionfluxwaskeptbelow5×1015cm-2h-1topreventthecrystalsfromheating.ThedoseswerekeptdeliberatelylowbecauseionimplantationisaninherentlydestructiveprocessandleadsinKNbO3alreadyatdosesoftheorderof2×1015cm-2tostrongwaveguidelosses.

Afterimplantation,thesamplesexhibitedplanarwaveguiding.PrismcouplingofanHe-Nelaserwithawavelengthof632.8nmwasusedtomeasurethemodespectraoftheplanarwaveguidesbydarklineandbrightlinespectroscopy.Figure1.13showstwoexamplesofdarklinespectrawhichweretakenbymeasuringthebeampowerreflectedfromtheright-anglecouplingprismasafunctionofthemodeeffectiveindexNeffnpcosa,whereistherefractiveindexofthecouplingprismatawavelengthof632.8nm.Thepronouncedreflectivitydipinthedarklinespectrumofthesampleirradiatedwith1MeVHeionsandadoseof5×1013cm-2indicatesthesuccessfulproductionofawaveguidingstructureandoccursduetoresonantexcitationofthelowestmode.Thedeeperthemediainthedarklinespectrathelesslightisreflectedbackfromthecouplingpoint,andhence,thebetteristhecouplingofthelaserbeamtothewaveguidemode.FromthenormalizedintensityinthedipoftheTE0modeofthe1MeVwaveguide,Strohkendletal.(1991)calculatedacouplingefficiencyof~33%.TheTE0modeofthe2MeVguidewasonlydetectedinthebrigthlinespectrumthatistakenbymeasuringthepoweratthewaveguideexitasafunctionofthecouplingangle.Theabsenceofapronouncedreflectivitydipinthecorrespondingdarklinespectrum(Fig.1.13)indicatesthatthecouplingefficiencyoftheincidentlaserbeamtotheTE0modewaslessthan~1%.

Page 78: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thedarklineandbrightlinespectraofthewaveguidesimplantedwithdoseshigherthan1×1014cm-2exhibitedseveralreflectivitydips.

Notethatforadoseofuptol×1014cm-2nonleakymonomodewaveguideswereproducedinKNbO3.Themuchweakercouplingefficiencyforthe2MeVguidegivesevidencethatthewaveguidinglayerwithanincreasedrefractiveindexislocateddeeperbelowthecrystalsurfacethanforthe1MeVguide.Therefore,Strohkendletal.(1991)havefoundthationimplantationcreatesalayerofincreasedrefractiveindexburiedbelowthecrystalsurface.Therehavebeenseveralreportsonso-called'anomalous'increasesoftheextraordinaryrefractiveindexinbirefringentcrystals(L.Changetal.1988).

1.3.7Stripwaveguides

Integratedopticsapplications,suchasmodulatorsorfrequencydoublers,whichwouldbenefitfromthehighfiguresofmeritofKNbO3demandforthefabricationofstripwaveguides.Baumertetal.(1985)havereportedforthefirsttimeonstripwaveguidesinKNbO3.Theyachievedopticalwaveguidingandcut-offmodulationbyusingtheelectro-opticeffectforwaveguideformationandmodulation.

Flucketal.(1991)reportedforthefirsttimeonpermanentopticalstrip

Page 79: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page22

waveguidesinKNbO3.Theone-dimensionalwaveguidingstructureswereproducedbyMeVionimplantationandappropriatemasking.

TheKNbO3crystalswerecutperpendiculartothecrystallographicb-axis.Thesizeofthecrystalsampleswas9.95×l.97×8.04mm3.Thesurfaceandthetwoend-facesperpendiculartothea-axiswerecarefullypolishedinordertoallowefficientend-firecouplingofalaserbeam.ThefabricationofstripwaveguidesusingHeionimplantationwascarriedoutbyfirstproducingaplanarguideandthenapplyinganimplantationmasktoformtheverticalsidewalls(Fig.1.14).Theplanarwaveguidewasformedbyirradiatingthesamplesatroomtemperaturewith3.2MeVHeionsandadoseof7.5×1014cm-2.Theincidenceoftheionswasslightlyoffnormaltoavoidchanneling.Thedosewaschosendeliberatelylowbecausefortheseconditionslowattenuationplanarwaveguideshavebeenproduced.Thethicknessoftheplanarwaveguidesisgivenbytheaverageionpenetrationdepth,whichwascalculatedwiththeMonteCarlomethodtobe7.7mmfor3.2MeVHeionsinKNbO3.

Toformone-dimensionalwaveguides,Flucketal.(1991)maskedthesamplesforfurtherimplantationbyasetofparalleltungstenwires13mmindiameterandwithaspacingof400mm(Fig.1.14).ThewireswereusedasasimplemaskofsufficientthicknesstocompletelyshieldstripsoftheplanarwaveguidesfromfurtherHeionbombardment,hencefromfurtherrefractiveindexmodification.TheverticalsidewallswereformedwithHeionsof2.9MeVandvaryingangleimplantation,respectively.Ideally,theimplantationmaskwouldpossessverticalwallsanduniformthickness.Butbecauseofusingwires,thereareionswhichpassthroughtheouterthinnerpartofthewires,thereforereducingtheeffectivewidthofthestrips.Becausetheseionslosepartoftheirenergybeforereachingthecrystalsurface,theypenetratelessdeeplyintothecrystal,hencethesidewalldamagelayerswillcontinuouslyrisetothesurface,reducingthewaveguide

Page 80: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

widthespeciallynearthesurface.Thelateralstragglingoftheincidentionswhichisduetotheinteractionwiththetargetionsleadsalsotonarrowingofthewidthofthestripguides.Theactualwidthofthestripwaveguidesformedbyusingtungstenwires13mmindiameterasanimplantationmaskisreducedto11.4mm.

Fig.1.13ReflectivityasafunctionofeffectiverefractiveindexNeffforwaveguidescreatedwith1and2MeVionsandadoseof5×1013cm-2.

(Strohkendletal.1991).

Page 81: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page23

Fig.1.14a)Creationofaplanarwaveguidinglayer,

b)formationoftheopticalstripwaveguidesbyfurtherimplantationwithappropriatemaskingof

thesamplewhichproducesthesidewalls(Flucketal.1991).

TheopticalcharacteristicsofthestripwaveguidesfabricatedbytheionimplantationprocessasdescribedabovearegiveninTable1.6.

1.3.8Doublewaveguide

Planarburieddoublewaveguideswereproducedincrystallinequartzandtheirconvolutedprofilesweredeterminedbymodeindexmeasurements(Chandleretal.1988).LiNbO3isofmuchgreaterinterestandapplicationthanquartzandionimplantationisquiteabletoproducelow-lossguidesinthismaterial(Al-Chalabi1985).Itisimportant,however,nottoassumeasimpleprofilesummationprocessinLiNbO3.Astheiondamagehasbeenshowntoannealatalowertemperature(<400°C)(Glavasetal.1988),itisquitelikelytosufferpartialannealingduringsuccessiveirradiations,duetotheirthermalorionizationeffects.Anassessmentoftheseriousnessofthisproblemisanimportantprerequisitetotheconsiderationofanymultiplewaveguideconstruction.

Page 82: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Themethodofdeterminingthedouble-waveguideprofileisnotimmediatelyobvious.Simplewaveguidesarenormallycharacterizedbythespacingoftheirresonantmodespectra(brightordarklines)usingaquantummechanicalanalogysuchasperturbationtheory,aphase-integralapproximation,(Wentzel-Kramers-Brillouin),orafiniteelementmethod.Onlythelatterwouldbeapplicabletoadoubleguide,anditsimplementationwouldbelaborious.

Chandleretal.(1989)usedLiNbO3samplesobtainedfrom1mmthicky-cutwafers.Theywereclampedingoodthermalcontactwithanaluminiumblockheldattherequiredtemperature.Beamheatingwasminimizedbyrestrictingthecurrenttoabout0.5mAandthiswasscannedoveranareaofnearly0.5cm2(foruniformityofdose).Theshallowbarrierwasproducedwith1.1MeVHe+toadoseof1.5×1016ion/cm2andthedeepbarrierwith2.2MeVHe+toadoseof3.0×1016ion/cm2.Theenergyratiogaveopticalwellsofapproximatelyequalwidthsandthedoseratiowasnecessaryforequalheightbarriers,becauseofthehigherdamageefficiencyfortheshallowerimplant.Theimplantareasforthetwoenergieswereoverlappingbutdisplacedfromeachotherbyseveral

Page 83: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page24

Table1.6CharacteristicsoftheopticalstripwaveguidesinKNbO3formedbyHeionimplantation(Flucketal.1991)

Planarimplantation

Energy 3.2MeV

Dose 7.5×1014cm-2

Sidewallimplantation

Energy 2.9MeV

Angie 5/22/34/45°

Totaldose 3.5×1015cm-2

Sizeofstripwaveguide(mm)

Width 11.4

Depth 7.7

Propagationlosses(dB/cm),wavelengthinnm

514.5 4.3

632.8 1.4

860.1 2.9

millimetresinordertogivethreedistinctregionsforprofilemeasurements-shallowbarrier,deepbarrier,andthecompositeguide.Foreachregion,darkmodepositionsweremeasuredwithTEpolarizationusingthezdirectionofpropagationforbothred(0.6328mm)andblue(0.488mm)light.Allvisiblemodesweremeasured-thesharpguidingmodeswithinthewells,andthebroad'substratemodes'notconfinedbytheguides.Thesewereallusedbythecomputerreflectivitysimulationprogramtogivetherefractiveindexprofilesinthedifferentcases.Theanalyticfunctionchosentodescribe

Page 84: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

eachrefractiveindexbarrierconsistedofanexponential/Gaussiannucleardamagepeaksuperimposedonaflatelectronicplateau.Thisfunctionischaracterizedbyfourvariableparametersandhasbeenfoundtodescribeadequatelytheexperimentalresultsforsingle-barrierprofilesinLiNbO3(Glavasetal.1988).Forsingle-barrierimplantsthemodeswerespacedfairlyevenly,butinthecaseofthedoubleguidesthespacingwasveryuneven,andalsothelineintensitiesvariedconsiderably.Theuseoftwowavelengthshadtheadvantageofactingasacheckagainstmissinganyoftheveryfaintmodes.

Thefirstsamplewasimplantedwithahigh-energydose(2.2MeV,3.0×1016ions/cm2)followedbythelow-energydose(1.1MeV,1.5×1016ions/cm2)bothat300K(Chandleretal.1989).

Figure1.15showsthecompositeindexprofilesforthissamplemeasuredat0.488and0.6238mmtogetherwiththerealmodevalue.Bothbarriersarerepresentedfunctionallybyexponential/Gaussiannucleardamagepeaksonflatplateaux.Itappearsthat,ingeneral,adirectsummationofthedamagehasoccurredfromthetwoimplants,withafewexceptions.Thehigh-energypeak(whichwasimplantedfirst)hasbeenreduced,possiblybyannealingduringthesecondimplant:thelowenergypeakheightisnotasummationbecauseitisclosetosaturationandthelow-energypeakpositionhasbeenshiftedtogreaterdepth.Thislattereffectmaybeattributedtoanincreasedionrange

Page 85: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page25

Fig.1.15Fittedprofilesofexperimentaldatameasuredat0.488mm(upper)and0.6328mm(lower).Themodelevelsandnormalizedmodecurves

areshown(0.488mmdotted)(Chandleretal.1989).

(~4%)forthesecondimplant(lowenergy)duetoanoverallreductionindensityoftheregionduringthefirstimplant(highenergy).

LiNbO3hasbeenshowntobeagoodsubstrateforion-implanteddoublewaveguides.Theprofilesofthenucleardamagebarriersareessentiallyadditive,providedthataccountistakenofpossibleannealingduringirradiationandionrangemodificationduetodensitychanges.Forbarriersofequalheight,itmustalsoberememberedthatthedamageefficiencyfallsalmostinverselywiththeionrange.

1.4Autodiffusedlayersinlithiumniobateandlithiumtantalate

KaminowandCarruthers(1974)developedanovelandsimpleout-diffusiontechniqueforachievingthinpositiveindexlayersinLiNbO3orLiTaO3withoutdegradingtheoriginalsurface.Theauthorsuseddiffusionofcomponentsoutofacrystal.Inthismethod,stoichiometricdeparturesnearthesurfaceoflithiumniobateandlithiumtantalatecrystalswereachievedbyvacuumheatingthecrystalscausingout-diffusionofLi2O.Itisknownfromprevious

Page 86: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

workonbulkmaterialsthatextraordinaryrefractiveindexneincreasesasLi2Oisremovedfromthecrystalbuttheordinaryindexisnotaffected(Carruthersetal.1974).For

inthe0.48<n<0.50range;andfor

wherethemolarfractionv=0.5forastoichiometriccrystal.Thus,theout-diffusionproducesarefractiveindexgradientthathasamaximumpositiveindexchangeatthesurfaceandgraduallyapproachesthebulkindexintheinteriorofthespecimen.Theseout-diffusedlayersserveasexcellentlow-loss

Page 87: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page26

opticalwaveguidesthatpossessallthecharacteristicsofthebulkcrystal.

Theout-diffusedlayershavethefollowingadvantagesoverepitaxiallayers:(a)theprocessingismuchsimpler;(b)thesurfaceremainssmoothandneednotberefinished;(c)theopticalqualityandpropertiesofthelayerareidenticalwiththoseofthebulkcrystal;(d)thereisnoabruptlatticemismatchorimperfectionatthefilm-substrateboundarytoproducescattering;and(e)forout-diffusionbelowCurietemperature,thelayersneednotbepoled.However,theout-diffusedlayersmaybedisadvantageousinsomeapplicationsunlesstheindexprofileparameterscanbecontrolledindependently.Thus,thepeakindexchangeatthesurface,a,andthecharacteristicdiffusiondepth,b,determinethenumberofmodestheguidewillsupportandthedegreeofconfinementofopticalenergytothesurface.

Thetransmissioninterferencemicroscopemethodwasemployedtomeasuretheout-diffusionindexprofilesonalargenumberofspecimenspreparedundervariousconditions.

Refractive-indexprofilesnormaltothesurfacesweremeasuredwithaLeitzinterferencemicroscope.Withthisinstrument,interferencefringes,inpolarizedlight,canbeobservedwitharesolutionofabout2mm.Interferogramsthroughthe(a,c)facetof(1,2)areshowninFig.1.16.TheedgeinFig.1.16aisnormaltotheaxis,andthelight(aHglamp)isanordinarywave.OnlyaverysmallordinaryindexchangeDnoisobserved.TheindexchangeDnisgivenbyDn=pl/d,wherepisthenumberoffringesbywhichtheinterferencepatterninthegradedregionisshiftedfromtheunperturbedpattern,listhewavelength(0.546mm),anddisthesamethickness(2000mm).Thefringeshiftdepictstheindexprofiledirectly.AsubstantialpositiveindexchangeisobservedwithextraordinarylightasinFig.1.16b,

Page 88: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wheretheedgeisagainnormaltothec-axiscorrespondingtoout-diffusionalongthec-axis.TheextraordinaryindexchangeisgreaterthaninFig.1.16c,wheretheedgeisparalleltothec-axiscorrespondingtoout-diffusionnormaltothec-axis.TheinterferogramofFig.1.16d

Fig.1.16Interferograms:a)ordinarywave,diffusionalongc,

b)extraordinarywave,diffusionalongc,c)extraordinarywave,diffusionnormaltoc,d)extraordinarywave,diffusionnormaltoc(KaminovandCarruthers1973).

Page 89: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page27

illustratesthestillgreaterout-diffusionexperiencedby(1-3)underobservationconditionscomparabletothoseinFig.1.16cfor(1-2).

1.4.1Out-diffusionkinetics

Theout-diffusioncomponentsfromthesurfaceofasolidcrystalinvolvethreebasicreactionsteps:(i)diffusionofgaseousmoleculesawayfromthesurface;(ii)desorptionofmoleculesfromthecrystalsurface;and(iii)diffusionofmoleculesthroughthecrystaltothesurface.Thesimpleerrorfunctioncomplement(erfc)solutiontothediffusionequationtowhichtheextraordinaryindexcurveswerefittedintheworkbyKaminowandCarruthers(1973)isonlyvalidforaconstantsurfaceconcentration.Morerefinedboundaryconditionscanbeusedtoexaminethenatureoftheseapproximations.

Inthecrystal,Fick'ssecondlawgoverningthediffusionis

andisvalidforcaseswherethediffusioncoefficientDisindependentoftandx.HereCistheconcentrationdeficitofLi2Oingcm-3atadistancexintothesurfaceafterdiffusiontimet.

Theunitsofconcentrationarerelatedtonby

whereMisthemolecularweightandpthedensity(whichvariesslightlywithnitself).Theinitialconditionis

ThediffusionconstantvarieswithT

whereQDistheactivationenergyfordiffusion,R=1.99calK-1mol-1.

Page 90: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theboundaryconditionatthecrystalsurfaceequatesthevaporizationflux,Jv,totheconcentrationgradientatthesurfaceas

Thisassumesimplicitlythatthesolid-vapourinterfaceisstationarywithrespecttothediffusiondistance(i.e.thereisnovapouretchingofthecrystalsurface)andthattheflux,Jv,doesnotchangewithsurfaceconcentration.Fortheout-diffusionproblem,thesurfaceconcentrationchangesbyverysmallamounts,soboththeseassumptionsarevalid,andthesolutiontoequation(1.5)is(CarslawandJaeger,1971)

Page 91: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page28

whereierfcistheintegraloftheerrorfunctioncomplementandisevaluatedbyCarslawandJaeger(1971)andCrank(1970).Thesurfaceconcentrationcanbewrittenas

Thenormalizedfunctionserfc(x/b')andp1/2erfc(x/b)areplottedinFig.1.17andcanbeseentobesimilar.Theexponentialfunctionexp(-x/b'')isalsoincludedforcomparison.

ThequantitiesDneandCarerelatedbyequation(1.5)andequation(1.7)sothatforLiNbO3:

Thenequation(1.11)canberewrittenas

where

ThevaporizationfluxisrelatedtotheequilibriumvapourpressureofLi2Oover(Li2O)v(Nb2O5)(1-v)bytheLangmuirrelation

orforcomputationalpurposes,

Page 92: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.1.17Diffusionprofiles-analyticalcurvesforp½ierfc(x/b),erfc(x/b')andexp(x/b'').Atypicalsetofexperimentaldataisfitted

asshownwitha=a'=a"andb=1.36b'=1.97b"(Carruthersetal.1974).

Page 93: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page29

wheretheLangmuirvapourpressurePLisrelatedtotheequilibriumsaturationvapourpressurePeqby

and

whereQvistheactivationenergyforvaporization.Heretheevaporationcoefficient,a,mayvaryfromunity,whenmoleculesevaporateintoavacuumattheequilibriumrate,tonearzero,whenmoleculesevaporateatakineticallydeterminedratewithsignificantenergyorentropybarriers.Experimentally,theevaporatinggeometry,totalpressureandpumpingspeedinfluenceJvbecauseofthepartialconfinementofthespecimensurfacebythefurnacetube.Thisdeparturefromidealfreeevaporationwillinfluencethevalueofainanundeterminedmannerthatdoesnotdependontemperature.Consequently,thistemperaturedependenceofaisignoredhere,andtheassumptionwillbejustifiedlater.Thetotalsurfaceconcentrationchangesby (seeCarruthersandPeterson,1971),sowemayregardJvasconstantatanygiventemperature.

Theout-diffusedspecimensareobservedbyKaminowandCarruthers(1973)undertheinterferencemicroscopeandthefringedisplacementsyielded ThedataarefittedtotheierfcdistributionatDne(0),Vand InFig.1.17itcanbeseenthatDn(0)=aandDn(x)=0.5awhenx=0.36b,whichyieldsvaluesforaandb.Atypicalsetofdata,measuredbytheintersectionofeachfringewithalinenormaltothesurface,isplottedinFig.1.17usingthecalculatednormalizationparametersaandbtoobtainacomparisonwiththeanalyticalcurveforierfc.Tocomparethesamedatawiththeerfcandexpfunctions,newparametersa',b'anda",b",respectively,arecalculatedtoobtain

Page 94: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

afitat , and asbefore.Then

ItcanbeseeninFig.1.17thatthedataarebestrepresentedbytheierfccurveasexpectedbutthattheerfcandexpcurvesgivefairapproximationstothedata.Theexpfunctionisaconvenientapproximationfordeterminingthewaveguidingpropertiesofthesegradedindexlayers.Whenthecharacteristicdepth,b,obtainedfromsuchcurvefittingisplottedagainstt1/2,theslopeis2(D)1/2,allowinganaccuratedeterminationofD(T)forthetemperatureatwhichthespecimenwastreated.

Thevaporizationfluxcanbecomputedfromtherefractiveindexgradientatthesurface.Fromequations(1.5a),(1.7)and(1.10)wehave

Page 95: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page30

Itmaybeseenfromequation(1.14)that

Thus,Jvmaybecomputedfromtheparametersaandborfromthegradientitself.Notefromequations(1.15),(1.16)and(1.22)thatthesurfacerefractiveindexgradientisindependentoft.

Fromequations(1.9),(1.17)and(1.20)wehave

where Takingthelogarithmofequation(1.23)anddifferentiatingwithrespecttol/T,wecometo

WehaveignoredtheslighttemperaturedependenceofG0overtherangeofTemployed.Itcanthenbeseenthatthedifferencebetweentheactivationenergiesforvaporizationandsolidstatediffusiondeterminesthetemperaturedependenceoftherefractiveindexgradientatthesurface.

Theactualvaporizationflux,Jv,canbecalculatedfromequation(1.21)andprovidesacheckagainstthemeasuredweightloss.

ThediffusioncoefficientsfoundexperimentallybyCarruthers(1974)areplottedagainstl/TinFig.1.18fordiffusionnormalandparalleltothec-axis.

Page 96: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.1.18Variationofdiffusioncoefficientswithtemperatureas1/Tinlithiumniobatefordiffusionnormalandparalleltothec-axis.Straightlineshavebeenfittedbyleast

squaresregressionanalysis-seeTable1.7(Carruthersetal.1974).

Page 97: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page31

Table1.7Diffusionequationparameters(Carruthers,Kaminow,Stulz,1974)

D0,cm2s-1 QD,kcalmol-1

LiNbO3

^c-axis (3.21±0.44)×102 68.21±0.48

||c-axis (3.32±1.19)×102 68.17±1.24

LiTaO3

^c-axis (2.8^0.8)×10-2 50.1±4.3

||c-axis (6.6±2.5)×10-2 52.1±7.0

Table1.8Refractiveindexgradientequationparametersfromregressionanalysis(Carruthers,KaminowandStulz,1974)

G0(m-1) (Qv-QD)(kcal/mol) Qv(kcal/mol)

LiNbO3

^c-axis 3.69×10-5 2.38 70.6

||c-axis 2.2×10-7 9.15 59.0

LiTaO3

^c-axis 3.0^10-3 13.6 64

||c-axis 1.5×10-3 11.2 63

Thestraightlineswerecalculatedbytheleastsquaresregressionanalysis.TheresidualvariancesareshownasparallellinesandcanbeseentoencompassthecentroidoftheD-valuesbutnottheerrorrangeinallcases.AlsotheresidualvarianceismuchlargerforD||thanforD^fornotquiteclearreasons.ThecalculatedvaluesofD0andQDare

Page 98: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

showninTable1.7.Itcanbeseenthatboththepre-exponentialfactorsandtheactivationenergiesaresimilartoeachother,withinexperimentalerror,fordiffusionnormal.

Thegradientoftherefractiveindexchangeatthesurface(givenbyp1/2a/b)maybeverysensitivetoanumberofexperimentalvariablessuchassurfacecondition,pumpingspeed,andpressure.

Thegradientswereaveragedateachtemperatureandplottedagainst1/TinFig.1.19.Thestraightlinesweredrawnfromaleastsquaresregressionanalysisoftheaveragevaluesoftherefractiveindexgradientsateachtemperature.ThepertinentparametersareshowninTable1.8.

ThevaluesoftheactivationenergyforvaporizationinTable1.7canbecomparedwiththevaluesobtainedforthevaporizationofLi2O.(Berkowizetal.1959;NesmeyanovandBelykh,1969).Forthereaction

avaluefor ofabout155kcal/(moleLi2O)hasbeenestimated.Thisgivesanactivationenergyforvaporizationofabout74kcal/(moleLiNbO3),

Page 99: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page32

Fig.1.19Variationofthegradientoftherefractiveindexchangeatthesurfaceoflithiumniobategiven

asp1/2a/bwithtemperatureas1/T,seeTable1.8(Carruthersetal.1974).

whichisquiteclosedtothemeasuredvaluesinTable1.8forv=0.48andconfirmsthisreactionasaprobablerealizationmechanism.

TherehavebeennoequilibriumvapourpressuremeasurementsofLi2Ooverlithiumniobate,soitisnotpossibletodetermineaatthistime.However,acomparisonofthevaluesofPLcalculatedfromequations(1.15)and(1.18)andshowninTable1.9withtherangeofequilibriumvapourpressuresofpureLi2Ooverthesametemperaturerange(Berkowizetal.1959;NesmeyanovandBelykh,1960)suggeststhat andthat Suchanisotropicandlowvaluesoftheevaporationcoefficientsuggestthatevaporationoccursatakineticallydeterminedratewithsignificantsurfaceenergyorentropybarriers.

Thediffusiondataforlithiumtantalatewereobtainedbyout-diffusingonespecimenateachofninetemperaturesrangingfrom930°Cto1400°C.Thediffusioncoefficientswerecalculatedfromtheslopesofthebversust1/2relationshipsasbefore.

Sincefewerspecimenswereused,thesedataarenotasaccurateasthoseforlithiumniobate.Asinthecaseoflithiumniobate,thedatafordiffusionnormaltothec-axisshowlessscatterthanthosefordiffusionparalleltothec-axis.Thediffusioncoefficientsareplotted

Page 100: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

againstl/TinFig.1.20fordiffusionnormalandparalleltothec-axis.Thestraightlineswerecalculatedbyleastsquaresregressionanalyses,andtheresultingvaluesofD0andQDaregiveninTable1.7.Asforlithiumniobate,thepre-exponentialfactorsandactivationenergiesaresimilar,withinexperimentalerror,fordiffusionnormalandparalleltothec-axis.However,thedifferencesbetweenlithiumniobateandlithiumtantalatearesignificant;thevaluesofD0arelowerbyfourordersofmagnitudeandQDisslightlysmallerforlithiumtantalate.Thegreaterdifficultyofdiffusioninlithiumtantalatemaybeassociatedwiththemorecovalentnatureofthebonding(asreflected,forexample,inthehighermeltingpoint).

Thegradientoftherefractive-indexchangeatthesurface(givenbyD½a/b)isshowninFig.1.21.Thescatterisquitelarge,especiallyfordiffusionparalleltothec-axis.Thestraightlineswerecalculatedbyleastsquaresregressionanalyses,andtheresultingvaluesofG0andQv-QDareshowninTable1.8.Thecomputedactivationenergiesforvaporizationarequitesimilartothoseforlithiumniobateandagainsuggestthatthesamevaporizationreactionisoccurring.Unlikelithiumniobate,however,thegradientofthesurfacerefractive-indexchangebecomeshigherathighertemperatures.Thisisadesirable

Page 101: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page33

Table1.9ulatedevaporationfluxesandkineticvapourpressureforLiNbO3(Carruthers,Kaminow,Stulz,1974)

Jv(gcm-2s) PL(atm)

T(°C) ^c-axis ||c-axis ^c-axis ^c-axis

930 1.95×10-11 0.828×10-11 0.279×10-11 0.118×10-11

1000 6.04×l0-11 2.42×10-11 0.888×10-11 0.356×10-11

1050 1.24×10-10 2.57×10-11 1.86×10-11 0.385×10-11

1100 2.01×10-10 5.18×10-11 3.07×10-11 0.791×10-11

1125 4.04×10-10 2.63×10-10 6.22×l0-11 4.05×10-11

Fig.1.20Variationofdiffusioncoefficientswith

temperatureas1/Tinlithiumtantalatefordiffusionnormalandparalleltothec-axis.Straightlineshavebeenfittedbyleast

squaresregressionanalysis,seeTable1.7(Carruthersetal.1974).

Page 102: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.1.21(right)Variationofthegradientoftherefractiveindex

changeatthesurfaceoflithiumtantalategivenasp1/2a/bwithtemperatureas1/T,seeTable1.7(Carruthersetal.1974).

featureforobtainingsteeperindexprofilesandthinnerwaveguidinglayers,providedtherequireddiffusiontimesat1400°Ccanbekeptsufficientlyshort.

Theevaporationcoefficients,º,arecomparablewiththoseforlithiumniobate andagainsuggestthatevaporationisthekineticallyrate-limitingreaction.

1.5Thediffusionmethodformetalsandoxides

Amongthemostthoroughlyinvestigatedmethodsisnowthediffusionmethodwhichiswidelyusedforfabricationofplanarandchannellightguidesonlithiumniobateandlithiumtantalateplates.However,thisonlyrefersinfullmeasuretotitaniumdiffusion.Themethodconsistsindepositingafilmorastripofmetaloritsoxideontothesubstratesurface,afterwhichthecrystalisdiffusionallydistilledordopedinoneorseveralstages.Thecharacteristicdiffusiontimerangesbetween1and10h,thetemperaturebeing800-1100°Cforlithium

Page 103: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 104: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page34

niobateand800-1300°Cforlithiumtantalate.Thediffusiontypicallyproceedsinamediumofinertgasesargonandhydrogenandinsomecasesintheair,inanoxygenfluxorinitsmixturewithargon.Inthepresenceofoxygen,processestypicallyproceedintwostageswithapreliminarymetaloxidation.Transitionmetalsaremostoftenemployedasdopingimpurities.

Thestudiesofmetaldiffusionmethodcarriedoutinrecentyearsinthetechnologyoflightguidefabricationinvolvinglithiumniobateandlithiumtantalatehaveshownthatinpractice,titaniumdiffusionismoresuccessfulasbeingmoreintensiveandprovidinghigherDnoandDnevaluesascomparedtoothermetals.

Whenthismethodisappliedtocreatingchannelandsingle-modeplanarstructuresinlithiumniobateandtantalate,allowanceshouldbemadeforLi2Oout-diffusionintheregionsadjoiningthoseofchannelformation.Theout-diffusionprocessisknowntocauseanincreaseinne.Electro-opticdevicesaremostoftenintendedformodesofjustthispolarizationsincetheelementr33(associatedwithne)ofthetensorofelectro-opticcoefficientsoflithiumniobateandtantalatecrystalsisthelargest.Li2Oout-diffusionmayleadtoincreasinglossesandtonon-reproducibilityofthemodecompositioninthechannelstructureandisthereforeundesirable.

Thespecificfeaturesofbackgroundout-diffusionintheformationofTi:LiNbO3lightguidesandthewaysofitssuppressionaredescribedbyChenandPastor(1977),Jackeletal.(1981)andNodaetal.(1980).ChenandPastorshowthatasaresultoftitaniumdiffusion(themetalfilmthickness20mm,preliminaryoxidationtime1hatatemperatureof600°C,andthediffusionproperlastssixhoursat900°C)one'titanium'mode(theeffectivelightguidedepthis4mm)andtwo'out-diffusion'modes(15mm)areexcited.Thelattermodeswerethenremovedbysampleannealinginthepowdermixtureof

Page 105: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Li2CO3+Nb205.Componentsofthemixturewith99%ofthemainsubstanceweretakeninproportioncorrespondingtoLiNbO3compositionwithaccounttakenoflithiumcarbonate.Sampleswereannealedat900°Cfor1-4hours,andthe'titanium'modewasnotsuppressed.

Weshallpointouttwowaysofout-diffusionsuppression:metaldiffusionfromfilmsinamediumoflithiumoxideorcorrespondingchemicalcompoundsandlight-guidechannelformationinagasfluxcontainingwatervapour.

TheefficiencyofthistechniquewasprovedbyJackeletal.(1981)usingIRspectroscopyintheregionof3480cm-1(bond-O-H-)ofspecimenswhichhadundergonedifferenttreatment.Titaniumdiffusioninwetargonleadstoarelativeincreaseofhydrogenconcentrationinthesurfacelayerofsubstratesascomparedtotheoriginalcrystal.TheauthorsbelievethatthisinducesLi+ionmigrationsuppressioninthecrystalandpromotesthedecreaseoftheout-diffusionrate.

Zilingetal.(1980)showedthatassoonasTi4+issubstitutedforNb5+,thereoccurschargenonequilibriumwhichcanbecompensatedbypositioningtheLiionintheinterstice.RefractiveindexvariationinaLiNbO3crystaluponthesubstitutionoftitaniumforniobiumcan,dependingontheconcentrationofthelatter,becausedbythedifferenceinionreactionsandinnerstressesduetodiffusion.TakingintoaccountalimitedplasticityofLiNbO3crystalsatthediffusiontemperature,wecanexpectthattheinnerstresseswillcausemicrocrackingandrelaxpartiallywithincreasingdislocationdensityinthe

Page 106: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page35

near-surfacelayer.Bothtypesofdefectswereobservedexperimentallyandarelikelytobethemainfactordeterminingopticallossesofwaveguidinglayers.SimilarresultswereobtainedbyGolubenkoetal.(1980)andZolotovetal.(1989)inthestudyofTidiffusionintoz-cutLiNbO3crystalsinAratmospherewithacompensationofthebackLi2Odiffusion.

AtthesametimeitshouldbenotedthatoneofthemostessentialdefectsofTi:LiNbO3-waveguidesistheirliabilitytolaser-induceddamageknownas'optical'(HolmanandCressman,1982).

Animportantroleisplayedbythediscussionofpossiblemechanismsoftherefractiveindexincreaseonthecrystalsurfaceduetodiffusion.Zilingetal.(1980),Sugiietal.(1978),Canalietal.(1986)andFejeretal.(1986)pointoutthreemechanismsofrefractiveindexincrease:

1.duetothephotoelasticeffect;

2.duetoincreaseofelectronpolarizability;

3.duetodecreaseofspontaneouspolarizationinthedopingregion.

Mechanism1

Therelativedielectricimpermittivitytensor andthestraintensorareknowntoberelatedthroughthephotoelasticitytensor

Thecomponentsofthedielectricimpermittivitytensorareequalto

Thecomponentsofthetensors and arerelatedas

Page 107: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

where istheKroneckersymbol.

Differentiatingtheexpression(1.27),multiplyingtheresultby andmakinguseof(1.26),wecometo

InthecaseofthinlayersitturnsouttobesufficientonlytoconsiderthemainstrainsSx,SyandSzalongthex-,y-andz-axes,respectively.Makingallowanceforthisandalsofortheestimate

weobtain

Page 108: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page36

wherePimisanabbreviatednotationofthecoefficientsPijmm.

Sugiietal.(1978)carriedoutadetailedcalculationandreportedDn0andDnotobeatleasthalftheobservedvaluesand,besides,toexhibitastrongertemperaturedependence.

Mechanism2

Herethedirectcauseoftherefractiveindexincreaseisarelativelyhighpolarizabilityoftheimpurityionsimplantedintothecompositionofthemedium.TherelationbetweenelectronpolarizabilityandtherefractiveindexofthesubstanceisgivenbytheLorentz-Lorenzformula

whereNiisthenumberofi-typeatomsinaunitvolumeandaiistheelectronpolarizabilityoftheseatoms.

AccordingtoZilingetal.(1980),HolmanandCressman(1982)andSugiietal.(1978),titaniumiondiffusioninlithiumniobateproceedsmostlythroughLi+andNb+5sitesofthecrystallattice.ThecrystallochemicalradiiofTi4+,Li+andNb5+ionsarerespectivelyequalto0.061,0.068and0.064nm(HolmanandCressman1982),andtheircoordinationnumberinlithiumniobateisequalto6.Theconcentrationofsubstitutionaltitaniumionsunderusualdiffusionconditionsamountstoapproximately1021cm-3.Toprovidetherefractiveindexincreaseoftheorderof0.001forsuchconcentrations,theai,valuesofTi4+ionsmustexceedthecorrespondingvaluesforthesubstitutedionsbyapproximately0.0410-24cm3.Thisrequirementisinprinciplemetbythesubstitution .AsfarastheNb5+ionisconcerned,itsai,valuesarehigherthanthoseofTi4+

Page 109: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

sinceithasanadditionaloccupiedelectronshellanditsradiusexceedsthatoftheTi4+ion.Inthequalitativerespect,theactionofthismechanismshouldobviouslybethoughtofasdisputable.

Mechanism3

Thismechanismreflectstherelationbetweenspontaneouspolarizationofadielectricanditsrefractiveindex(theKerreffect).Thisrelationcanbeexpressedintheform(Sugiietal.1978)

whereDPsisvariationofthequantityPsduetoimpuritydiffusion,g13andg33aretensorcomponentsofthequadraticelectro-opticeffect.

Calculationsshow(Sugiietal.1978)that and .

Ontheotherhand,itshouldbetakenintoconsiderationthatpolarizationreversalinthebulkcrystalinducesdeformationsalongthex-,y-andz-axesduetotheelectrostrictioneffect

Page 110: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page37

whereQyareelectrostrictioncoefficients.

AnincreaseofneandnoisonlypossibleprovidedthatDPs<0,andasaresultofsuchpolarizationreversalwehave

Thesignsoftherequireddeformationsareoppositetothoseobservedinexperiment.

Thus,theonlysatisfactorydescriptionofthefactorsresponsiblefortherefractiveindexincreaseinthesurfacelayeroflithiumniobateduetotitaniumdiffusioncanbegivenexclusivelyintheframeworkofmechanism1.

1.5.1DiffusionofTransitionMetals

ThreedifferenttransitionmetalionshavebeendiffusedintocrystalsofLiNbO3toformlow-lossTEandTMmodeopticalwaveguidesthatconfinethelighttowithinafewmicronsofthesurface.AthinlayerofmetalofthicknesstisfirstevaporatedontoasurfaceofthecrystalandthenthecrystalisheatedattemperatureTinanonreactiveatmosphereforatimet.Theimportantwaveguideparameters-thenumberofmodesM,themaximumindexchangea,andtheeffectiveguidethicknessbcanbeindependentlycontrolledbythediffusionparameterst,T,andt.

SchmidtandKaminow(1974)haveshownthatawidevarietyofmetalsmaybediffusedintoLiNbO3andLiTaO3toformguidinglayers.Onepromisingclassofmetals,whichtheystudied,wasthetransitionelements.Theyareknown(McClure,1959)tocontaind-electronorbitalsthatarepolarizableinthevisiblespectrum.RepresentativemembersareTi,V,andNicontainingrespectively2,3,and8electronsintheunfilleddshellsoftheatoms.Thenumberofd

Page 111: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

electronsinaniondependsuponitsvalencestate.

Thinlayers(200-800Å)ofthemetalswereevaporatedontothe(010)or(001)facetsofLiNbO3fordiffusionperpendicularorparalleltothec-axis,respectively.ThesampleswereheatedinflowingAr(topreventoxidationofthemetal)totemperaturesintherange850-1000°C(belowtheCurietemperature)inatimelessthan1h,andthediffusiontimetwasmeasuredfromthatpoint.Aftertimet,flowingoxygenwasadmitted(toreoxidizeLiNbO3)andtheovenswitchedoff.Forsufficientlylongdiffusiontimes,allthemetaldisappearsfromthesurface.Ifthediffusionisstoppedbeforeallthemetalentersthecrystal,anoxideresidueformsonthesurfacewhichisremovedbyverylightlyhandpolishingthesurface.

Observationsoftheindexprofilebytheinterferencemicroscopeindicatethepresenceofpositive-indexlayersforbothnoandnefordiffusionofeachofthethreemetals.Mostofthelayers,however,aretoothin(1-3mm)topermitmeasurementsofthefunctionalfromtheindexprofile.Electronmicroprobemeasurementsalsolacktheresolutiontomeasurethemetalconcentrationprofilesofthethinlayers.However,themicroprobewasemployedtomeasuretherelativeconcentrationprofilefortwothickNi-diffusedguides(Fig.1.22).

Page 112: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page38

Fig.1.22Electronmicroprobemeasurementofwaveguidesformedbydiffusionofa400Å,Nifilm:Ni/Nb

countratiovsdepthx.aremeasuredpointsfor6hdiffusionat850°C.aremeasuredpointsfor6hdiffusionat950°C.ThesolidlineisfitoftheGaussianfunction.Thedashedlineisfitof

theerfcfunction(SchmidtandKaminow,1974).

Fordiffusiontimeslongcomparedtothetimerequiredforthemetalfilmtocompletelyenterthecrystal,theconcentrationprofileshouldapproachtheGaussianfunction(Shewmon1963)

wherexisthedepthbelowthesurface,athenumberofatomsperunitvolumeinthedepositedfilmofthicknesst,

andthediffusionconstant

(Strictlyspeaking,tin(1.35)shouldincludeacorrectionforthewarm-uptime.)Forshortdiffusiontimes,wherethemetalisnotcompletelydiffusedintothecrystal,theconcentrationprofileshould

Page 113: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

beacomplementaryerrorfunction(erfc)withthesurfaceconcentrationindependentoftime(Shewmon1963).Fordiffusiontimescomparablewiththetimerequiredforallthemetaltoenterthecrystal,theconcentrationprofilewillbeintermediatebetweentheGaussiananderfcprofiles.

ThisbehaviourisillustratedinFig.1.22wheretheNi/Nbcountratiosareplottedasfunctionsofdepthfordiffusionperpendiculartothec-axisintwowaveguides.TheactualNi/Nbconcentrationratioisproportionaltothecountratiowithaproportionalityfactorgreaterthanunity.Thedatawereobtainedbyprobingpointsonaplanenormaltotheplaneoftheevaporatedlayer.Measurements

Page 114: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page39

ofsurfaceconcentrationc(0,t)weremadeontheevaporatedfacetitself.GaussiananderfcprofilesarefittedtothedataatDn(x)=aand(1/2)ainFig.l.22.Thewaveguideformedbyheatinga400Åthickfilmat850°Cfor6hhasafunctionalshapewelldescribedboyacomplementaryerrorfunction.Thewaveguideformedbyheatinga400Åthickfilmat950°Cfor6hhasthelong-tailcharacteristicofacomplementaryerrorfunctionbutitalsohasthebell-likeshapenearthesurfacecharacteristicofaGaussianfunction.Inbothcasesthemetalfilmappearedtobecompletelydiffusedintothecrystal,butthediffusionrateismuchgreateratthehighertemperature.

ThevaluesofbobtainedforthetwoGaussianprofilesinFig.1.22showthatthesurfaceconcentrationc(0,t)isqualitativelyproportionaltot/b,asrequiredby(1.34).Inaddition,thesurfacecountratioforathirdsamplewitht=250Å,whichwastreatedfor6hat950°C,wasalsoinagreementwiththeexpectedt/bdependence.

Itisreasonabletoassumethattherefractive-indexchangeDn(t)isproportionaltoc(x)forsmallDn.ThenmakingallowancefortheGaussianprofile(1.34),wehave

Itisclearfrom(1.37)thatacanbecontrolledbyadjustingtandfrom(1.35)and(1.36)thatbcanbecontrolledbyvaryingtandT.Byanalogywithaslaborexponentialguide,thenumberofmodesMshouldbeproportionalto(CarruthersandKaminow1974)

Thus,asingle-modeguidecanbefabricatedwithb/aand,hence,theopticalmodedepthquitesmall.Incontrast,theb/aratioforout-diffusedguideswasfoundtoberelativelyinsensitivetotheavailablediffusionparameterstandT(CarruthersandKaminow,1974).

Page 115: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Severalmetal-diffusedwaveguideshavebeenexamined.Thenumberofmodesandtheirprismcouplinganglesweremeasuredand,fromthesemeasurements,thediffusiondepthbandtheindexchangeatthesurfacetn(O)wereestimatedbycomparingtheeffectiveindicesofthemodeswiththoseexpectedforanexponentialwaveguide(CarruthersandKaminow1974;Conwell1973).TheaverageresultsofthesemeasurementsforanumberofTi-,V-,andNi-diffusedsamplesaregiveninTable1.10.Itshouldbeemphasizedthatsincetheprofileisnotexponential,alltheeffectivemodeindicesinanexperimentalmultimodeguidecouldnotbemadecoincidentwiththosewithanexponentialguideforanysetofa,bparameters.Thehighest-andlowest-ordermodeswerematchedfortheestimatesofTable1.10,anditwasassumedthatbisaboutthesameforTEandTMmodes.Itmaybeseenthataisaslargeas0.04andbassmallas1mmfortheTiguides.ThediffusiondepthsbarelargerandtheindexchangesaaresmallerforNiandVthanforTiforgiventandT;however,reducingtand/orTwouldbringaandbforNiandVmoreintothelinewiththevaluesfor

Page 116: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page40

Ti.ThechangeinrefractiveindexwithconcentrationmaybecalculatedusingthedataofTable1.10,equation(1.37)andthestandarddensitiesofthemetals:forexample,forTi,dno/dc=l.6×10-23cm3;forV,dno/dc=0.8×10-23cm3;andforNi,dno/dc=0.6×10-23cm3.

Thedominantsourcesofwaveguidelossarescatteringfromcrystalsurfaceimperfectionsand,possibly,absorptionbythemetalions.Thelossesat0.63mmareestimatedtobeabout1dB/cm.

Thewaveguidesaresuperiortoout-diffusedguidesinthataandbcanbecontrolledseparatelytoyieldverythinsingle-modelayers.TheyhavetheadvantageoverguidesformedbydiffusionofNbintoLiTaO3at1100°CthatthecrystalsarenotdepoledsincetheCurietemperatureofLiNbO31125°Ccomparedto600°CforLiTaO3.DiffusionintoLiTaO3attemperaturesbelow600°Cisfeasiblebutveryslow.

Itseemslikelythatmanyothermetalswillproduceeffectiveguideswhendiffusedintoavarietyofinsulatingcrystals.SchmidtandKaminow(1974)havemadepreliminarytestsusingvariousotherelementsondifferentsubstrates.

Table1.10Averageresultsformetal-diffusedguides(SchmidtandKaminow,1974)

MetalThicknesst(Å)

Timet(h)

Temperat.T(°C)

Diffusiondirection

Numberofmodes(M)

Effectiveb(mm)

EffectiveDn0(0)

EffectiveDne

Ti 500 6 960 1TM 1.1 0.01 ...

4TE 1.1 ... 0.04

1TE 1.6 0.006 ...

5TM 1.6 ... 0.025

V 250 6 950 1TM 6.5 0.0005 ...

4TE 6.5 ... 0.002

V 500 6 970 1TM 6.2 0.0005 ...

Page 117: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

4TE 6.2 ... 0.004

Ni 270 6 800 2TM 2.9 0.007 ...

2TE 2.9 ... 0.004

2TE 2.6 0.007 ...

2TM 2.6 ... 0.006

Ni 270 6 960 3TM 6.6 0.002 ...

0TE 6.6 ... ...

2TE 5.5 0.0015 ...

0TM 5.5 ... ...

Ni 500 6 800 3TM 2.8 0.0095 ...

2TE 2.8 ... 0.006

3TE 3.1 0.0085 ...

2TM 3.1 ... 0.0045

Ni 500 6 960 7TM 11.6 0.0025 ...

0TE 11.6 ... ...

4TE 4.5 0.0045 ...

0TM 4.5 ... ...

Page 118: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page41

Ithasbeenfound,forexample,thatAu-,Ag-,Fe-,Co-,Nb-,andGe-diffusedLiNbO3andTi-diffusedLiTaO3allyieldgoodwaveguides.Apparently,anyvalenceelectronscontributedbytheseelementsincreasetheopticalpolarizabilitywithoutacompensatingincreaseinthelatticevolume.Then,ifthemetalionsdonotintroduceexcessiveabsorptionattheoperatingwavelength,asatisfactorywaveguideisproduced.

1.5.2Titaniumdiffusion

Inthepaperscitedabove,thebackdiffusionofLi2Ohasnotbeenused.Butthisdiffusionisnecessaryforcreatingactiveelementsofintegratedoptics(modulators,switches,etc.)onthebasisofstriplinewaveguidessincealongwithstriplinewaveguidesthebackdiffusionprovidesthecreationofaplanarwaveguideforanextraordinarywave.ThedataonthereversediffusioncompensationisduetoBurnsetal.(1978),RanganathandWang(1973)andChenandPastor(1977)andMiyasawaetal.(1977).Theseauthorsmainlyconsidereddiffusioniny-cutcrystals.Atpresent,z-cutLiNbO3crystalsareofincreasingimportanceforintegratedoptics,firstofallbecausethiscutallowsaparticularlysimple'Cobra'typeelectrodeconfigurationtobeusedformodulatorsandswitches(PapuchonandCombemale1975)and,second,becausetheTidiffusionrateintheAratmospherealongthez-axisofaLiNbO3crystalisseveraltimesgreaterthantheratealongthey-axis(Fukudaetal.1978).Inviewofthis,z-cutLiNbO3crystalsareveryconvenientforcreatingdevicesonthebasisofstriplinewaveguides.

Golubenkoetal.(1980)investigatedTidiffusioninz-cutLiNbO3crystalsinanargonatmospherewithabackLi2Odiffusioncompensation.Themethodsofsamplepreparationareofpracticalinterest.Polishedz-cutLiNbO3sampleswerepreliminarilyannealedat1000°Cinanoxygenatmospheretoremovethesurfacelayer

Page 119: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

damagedundermechanicalpolishingofcrystals.Titaniumlayersofdifferentthickness(200-600Å)weredepositedontoannealedplatesbymagnetronsputtering.ThespecimenswereplacedintoaplatinumcruciblefilledwithLiNbO3powderpreparedfromshavingsofthesamecrystals.TheconcentrationofLi2Ovapoursformedbythepowderandthesampleisinequilibrium,andthusthereisnoneedchoosingthetimewhenthebackdiffusioncompensationmuststart.Diffusionwascarriedoutinafurnacewithanargonatmosphere.Theheatingratewas50°C/min.Assoonasthenecessarytemperaturewasestablished,theamountofArwasdecreasedlestthefluxshouldcarryawayLi2Ovapours.Whenthediffusionwasover,thespecimenswerecooledinthesameArfluxatarateof5°C/min.Thewaveguidesobtainedinthisprocesshadlosseslessthan1dB/cmanditwasnotnecessarytocoolthespecimensinanoxygenatmosphere.

TheEPRstudiescarriedoutbyZilingetal.(1980)showedthatLiNbO3specimensthatwerenotspeciallydopedwithtitaniumexhibitedFe+3andMn+2ionspectra.Afterthespecimenswereannealedinavacuumat1000°Cfor2h,theFe+3linedisappearedwhiletheMn+2lineremainedunaltered.Intheregion thereappearedasinglelinewithananisotropicg-factor.AnalysisoftheorientationaldependenceofthespectrumrevealedthattheparamagneticcentreobservedhassymmetryC3v.

Inspecimenscoveredwithatitaniumlayer100nmthick,forwhichthediffusionannealingwascarriedoutinvacuuminregimesprovidingaTiconcentration

Page 120: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page42

Fig.1.23EPRspectraof(1)Ti-dopedand(2)originalvacuum-annealedcrystals(Zilingetal.1980).

of(0.5-2)×10-2cm-3,thelineintensityincreasesbymorethananorderofmagnitude(Fig.l.23)andcorrespondstothenumberofcentres,6.5×1015.TheparamagneticcentreresponsiblefortheappearanceofthislinehasanelectronspinS=1/2andg-factorstypicalofthe3d-ionwhichinthiscaseistitaniuminthestateTi3+.EPRspectraofpairwiseTi3+ionswerenotobserved.

Whenspecimensareannealedintheair,thenumberofTi3+centresdecreasesrapidlywithincreasingtemperature.Att>600°Cthecorrespondinglinedisappears.NonewlinesexceptthosebelongingtoFe3+wereobserved,whichsuggeststitaniumtransitiontothenon-paramagneticstateTi4+.ThesymmetryC3visindicativeofthefactthataTiioncanbeinthepositionofeitherlithiumorniobium,butthevalenceoftheTiionandthechangeofthisvalencetestifyinfavourofniobiumsubstitution.Forconcentrationslessthanabout6×1019cm-3,theconclusionofthepositionofTiintheLiNbO3latticeisconfirmedbytheresultsreportedbyPearsalletal.(1976).

Thesesubstitutionalatomsalsohaveactivationenergiesofabout3.7eVwhicharemuchhigherthanthoseofinterstitialatoms,suchasLiandCu,ofabout1eV.Therefore,boththemarkedlatticecontraction

Page 121: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

andthehighactivationenergyfoundintheTidiffusionintoLiNbO3implythatTidiffusessubstitutionallyintotheLiNbO3crystal.Recently,ithasbeenshownthatTidiffusedintoLiNbO3isall+4valenceandTiionssitnotonvacanciesordefectsbutonwelldefinedsites(Pearsalletal.1976).InLiNbO3,twopossiblesitesremainforsubstitutionalimpurities,aLisiteandaNbsite.ThelatticecontractionwouldoccurifTiionsreplacedeithertheLisiteortheNbsite,sincetheeffectiveionicradiusofTi+4,0.605Å,issmallerthanthoseofLi+1andNb+5of0.68and0.64Å,respectively,whenthecoordinationnumberofallofthemissix.However,thereplacementofNbionsbyTiionsismorefavourablefromthepointofviewofchargecompensation,soitisassumedthatTiisdiffusedassubstitutionalionsfortheNbsiteinLiNbO3.

Page 122: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page43

Armeniseetal.(1983)discussedthefirststepoftheinteractionbetweenTiandLiNbO3,occurringbefore,andsubsequentlyleadingtotheformationofthe(Ti0.65Nb0.35)O2compoundlayer.Inparticular,theystartedwiththestresseseventuallyinducedbyTideposition,thendescribedthekineticsoftheTioxidationanditsinteractionwiththeOatomsoftheannealingatmosphereandofthesubstrate.So,theyshowedtheformationofLiNb3O8and(Ti0.65Nb035)O2compoundsandthedissolutionofTiO2andLiNb3O8phases,leadingtoacompleteformationofthe(Ti0.65Nb0.35)O2layer.

Opticalgradeandopticallypolishedy-andz-cutLiNbO3single-crystalsubstrateswereused.Tifilmswiththicknessesrangingfrom150to600Å,weredcsputterdepositedonsubstratesfromapure(99.99%purity)TitargetinapureAratmosphere(10-3torr)withadepositionrateofabout80Å/min.BeforeTidepositiontheTitargetwassputteretched,whilenosputteretchingwasperformedonthecrystalsubstrates.Onfewsamples,Tiwasdepositedinanevaporatorequippedwithanelectrongun.Sampleswerethenannealedinaflowing(120litre/h)dryoxygenatmosphereatdifferenttemperaturesandtimes.Theheatingandcoolingratewas30°C/min.

Samplemorphology,compoundformation,atomiccompositionprofiles,andstructuralcharacterizationoftheformedphaseswereanalyzedbyascanningelectronmicroscope(SEM),equippedwithanenergydispersiveX-rayanalysis,Rutherfordback-scatteringspectroscopy(RBS),byusinga1.8-MeV4He+beam,Augerelectronspectroscopy(AES),secondaryionmassspectrometry(SIMS),andglancingangleX-raydiffractionperformedwithaWallace-Wardcylindricaltexturecamera.ThepeculiaritiesandthereasonsforthechoiceofthesemicroanalyticaltechniqueswerediscussedbyArmeniseetal.(1982).NondestructiveRBSanddestructiveAESandSIMSin-depthatomiccompositionprofilingtechniqueswereusedtoobtaincomplementaryinformationandtoensurethatmeasured

Page 123: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

compositionswithAESandSIMSwerenotfalsifiedbytheeventualdriftofmobilespecies,inducedinthesampleduringtheionmilling.Inparticular,toavoidelectricalchargeupduringanalyses,sampleswerecoatedwithabout50-100Åofcarbonorgold.

TheTioxidationprocessstartsattemperatureshigherthan300°Candmaybedirectlyobservedfromthecolourofthespecimensurfacelayerwhichchangesfrommetallic-gray(300°C,4h)towhitetranslucentin500°C,4hannealedsamples.Microanalyticaltechniquescanhelptounderstandtheoxidationmechanismsandkinetics.

Withincreasesintheannealingtemperature,thecompleteformationofTiO2,whichoccursat500°C,4h,isfollowedfirstbythegrowthoftheLiNb3O8phase,andthenbytheformationofthe(Ti0.65Nb0.35)O2phase.

TheLiNb3O8compoundcanbeclearlydetectedandidentifiedbyglancingangleX-raydiffractionpatternstakenwiththeWallace-Wardcylindricaltexturecamera.

Thesurfacemorphologyofthesampleannealedat750°Cfor2hwasexaminedinaSEM,operatingwithsecondaryelectrons.Onthesurface,manywhitezonesmorethan100mmindiameterappearandcoverabout10%ofthewholesurface.TheirtypicalshapesandmorphologiesareshowninthemicrographinFig.1.24.

Asalreadymentionedabove,thegrowthofLiNb3O8isfollowedbythe

Page 124: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page44

Fig.1.24SEMmicrographsofwhitezonesappearingonaz-cutsample,coatedwitha400ÅthickTifilmandannealed

indryO2at750°Cfor2h(Armeniseetal.1983).

appearanceoftheternarycompound(Ti0.65Nb0.35)O2whosespotsbecomeevidentinglancingangleX-raydiffractionpatterntakenwiththeWallace-Wardcylindricaltexturecameraforannealingtemperatureshigherthan700°Candincreasecontinuouslyinintensityupto950°Cfor30minthermalannealing,whentheLiNb3O8phaseisalreadycompletelyconsumedanddecomposed.

Armeniseetal.(1983)fullycharacterizedthisternarycompoundandidentifieditastherealsourceforTidiffusioninLiNbO3.Itgrowsepitaxiallyonbothy-andz-cutsubstrates.

DifferentmicroanalyticaltechniqueswerethusemployedtostudythefirststepsoftheinteractionbetweenTiandLiNbO3crystalsoccurringduringthefabricationofTiindiffusedopticalwaveguides.Theresultsobtainedcanbesummarizedasfollows.

TisputteredorevaporatedfilmsgroworientedontheplanesoftheLiNbO3substrateforallobservedcrystallineorientations.The

Page 125: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

crystallinequalityofboththefilmandthesubstratedoesnotdependonthedepositiontechniques(evaporationorsputtering)iflowvoltageandsputteringrateareused.

ThestressesinducedbytheTifilmarethusfoundtobeindependentofthedepositiontechnique.

Forlow-temperaturethermaltreatments(300-500°C)theTifilmwillformanamorphousTioxidelayer.TheoxidationmechanismwasclearlydeterminedasacaptureofOatomsbothfromthesurroundingatmosphereandfromtheLiNbO3substrate.ThislasteffectgivesrisetoanaccumulationofNbattheTi/LiNbO3boundarywhile,duetoitshighionicability,LidoesnotaccumulatebutdiffusesthroughtheTiorTi-oxidefilm.Thechangeoftheoxygenconcentrationintheannealingatmosphere(dryO2ordryAr)willonlyproduceanincreaseordecreaseintheamountoftheOatomscapturedbyTifrom

Page 126: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page45

thebulk.Therefore,thefirststepofTiin-diffusedopticalwaveguidefabricationconsistsoftheformationofaTiO2layeratabout500°C.TheseresultscanalsoexplaintheformationofwaveguidesobtainedbydiffusingTiatabout1000°CfromdepositedTiO2films(Nodaetal.1975).

Atincreasingannealingtemperature(greaterthanorequalto600°C),theformationoftheLiNb3O8phasewasobservedonbothTicoatedanduncoatedLiNbO3substrates.AssketchedinFig.1.25,ontheTicoatedsamplesthiscompoundgrowsaslargecrystallitescharacterizedbyawell-definedorientationrelationshipwithrespecttotheunderlyingy-andz-cutsubstrates.FromRBSspectratheepitaxialqualityoftheLiNb3O8phaseshowsupbetteronTiuncoatedsamples.

TheLiNb3O8compoundcontinuestogrowwithincreasingannealingtemperatureupto750°C,whileforhigherannealingtemperatureitdecomposesandfinallyvanishes(T>900°C).Fukumaetal.(1978)didnotdetectthepresenceoftheLiNb3O8compoundinsamplesannealedathightemperatures.Thiscompoundisstillpresentandclearlydetectablealsoinrapidly(>30°C/min)cooledsamples,whenannealedattemperatureslessthanorequalto800°C;nevertheless,thepresenceofflowingoxygencannotinhibitthephaseseparationandtheLiNb3O8growth.Moreover,LiNb3O8formationanddissolutionappearnottobeaffectedbythepresenceofTi.Armeniseetal.(1983)attributetheformationofthiscompoundtoLiorLi2Oout-diffusionandtotheconsequentgrowthofaLi-deficienttoplayer.LiNb3O8isreportedtobeproblematic:infact,wheneverthisphasewasdetectedtheamountoftheopticaldamageinwaveguidesincreaseddramatically(Holmanetal.1978).Thisphasewasnolongerdetectedinsamplesannealedattemperatureshigherthan850°C,itsformationinduceslargestressandmicrofracturesinTiO2films(seeFig.l.25)andmaybeasourceofTiprofileinhomogeneitiesinthediffusedlayers.

Page 127: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ThegrowthofLiNb3O8isfollowedbytheappearanceofthe(Ti0.65Nb0.35)O2compoundwhichgrowscontinuouslyupto900-950°C,leadingtoacompleteconsumptionoftheTiO2layer(Fig.1.25).Thisternarycompoundistheonlyphasepresentat900-950°C;itformsauniformlayerontopoftheLiNbO3substrateandconstitutestherealsourceforTiin-diffusionwhichtakesplaceforlongerannealing,asreportedbyArmeniseetal.(1983).ItshouldbepointedoutthatadecompositionofLiNb3O8occursalsoinTiuncoatedsamples,andconsequentlyitappearsasanintrinsicstepoftheLiNbO3annealingprocess.

ResultssimilartothosediscussedaboveforannealinginadryO2atmospherewereobtainedinLiNbO3samplesannealedindryN,Ar,andstaticair.ExperimentsareinprogressonthepresenceandgrowthkineticsoftheLiNb3O8phaseinsamplesthermallytreatedwithprocessessuchasannealinginanatmosphererichinLiorinagasflowingthroughH2O,whichwereallreportedascapableofpreventingLiout-diffusion(Jackel,1982).

Sugiietal.(1978)investigatedthemechanismforgenerationofmisfitdislocationsandcracks.ThediffusionofTiintoLiNbO3createdstressessufficienttogeneratebothmisfitdislocationsandcrackswithinthediffusedlayer.Inevaluatingstresses,apositivesignfortensilestressandanegativeoneforcompressivestresswereused.Byassumingthatthestresssyonthediffusedlayerinthedirectionnormaltothesurfaceplaneiszero,themaximumimpurity-inducedstressesalongthecrystalsurfaceinsidethediffusedlayer

Page 128: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page46

Fig.1.25SchematicofLiNb3O8and(Ti065Nb035)O2growthinLiNbO3aftertheformationoftheTiO2toplayer.

Temperaturesandtimesareonlyindicativefora400ÅthickoriginalTifilm(Armeniseetal.1983).

canbeexpressedasfollows:

whereSisthecomplianceofLiNbO3(Warneretal.1967)andeisthestressalongthex-,y-andx-axes.ThecalculatedstressesforthesamplesaregiveninTable4.3.Thesestresseswerepartiallyrelievedbythegenerationofmisfitdislocationsneartheboundarybetweenthediffusedandsubstrateregions,butthepresenceofcracksindicates

Page 129: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

thatthedensityofthemisfitdislocationswasmuchlowerthantheoneneededforcompleteaccommodationoftheimpurity-inducedstresses.Anisotropyofstresses,(sx)max>(sz)max,resultedinpreferentialgenerationofcracks.

Thesameauthorsalsoconsideredthemechanismcausingrefractive-indexchangesinthediffusedlayer.Thereareatleastthreepossiblemechanismsforrefractive-indexchangesinthediffusedlayer:(i)duetoaphotoelasticeffect

Page 130: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page47

bydiffusion-inducedstrains,(ii)duetoanincreaseoftheelectronicpolarizabilitybythein-diffusionofTi,(iii)duetoadecreaseofthespontaneouspolarizationofLiNbO3,Pdp,byTidiffusion.

Therefractiveindexofacrystalisspecifiedbytheindicatrix,thatis,anellipsoidwhosecoefficientsarethecomponentsoftherelativedielectricimpermittivitytensorBij,namely,

StrainsSndeformtheindicatrixthroughthephotoelectriceffect,andthechangeinBijisgivenby

wherepijisthephotoelasticcoefficient.

Inthecaseofathindiffusionlayer,itissufficienttoconsideronlyprincipalstrainsS1,S2,andS3,inthex-,y-,andz-axes,respectively.Thenequation(1.42)turnsinto

whereallthesuffixesareabbreviatedinthematrixform(Nye1957).Withallowancefor ,thechangesintherefractiveindicesatthesurfaceareapproximatedby

Forno=2.306,ne=2.220(refractiveindicesforNaD-lines)(Midwinter1968),andp11=0.034,p12=0.072andp13=0.178(O'Brienetal.1970),thecalculatedvaluesforthesampleswerecomparedwiththevaluesobservedbyNodaetal.(1975).Itwasfoundthattherefractiveindexchangesduetothephotoelasticeffectcontributetoabouthalfoftheobservedchanges.

Page 131: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thesecondpossiblemechanismforindexchangesisbydiffusionofimpurityionshavinglargerelectronicpolarizabilitythanthatofthehostionstobesubstituted.Asinmostsolids,therefractiveindexofaferroelectriccrystalshouldoriginatefromelectronicpolarization.Therelationbetweentherefractiveindex,n,andelectronicpolarizability,a,isgivenas

Page 132: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page48

whereN1isthenumberofionsoftypeiperunitvolumeandatistheelectronicpolarizabilityoftheion.ItwasfoundthatTiionsreplacedNbionsofatomicfractionofabout1021cm-3intheLiNbO3crystal.InordertoproducearefractiveindexchangeDn=10-3,theelectronicpolarizabilityofTiion,a(Ti),shouldbelargerby0.04×10-24cm3thanthatoftheNbion,a(Nb).However,itisunreasonablesincetheelectronicpolarizabilityofionshasatendencytodecreaseastheionicradiusbecomessmall(Kittel1956).

Thepossibilityofathirdmechanismisnowdiscussed.IntheferroelectricphaseinLiNbO3,oneofthecharacteristicfeaturesisthemarkeddecreaseintherefractiveindexduetospontaneouspolarizationPsthroughtheKerreffect.Theyaregivenby

fortherefractiveindicesnoandne,respectively,wheregoisthequadraticelectro-opticcoefficient.IfTi-diffusionintoLiNbO3changedthespontaneouspolarizationbyDps,Dpswouldproducerefractive-indexchangesgivenas

wheng13=0.043m4C-2,g33--0.16m4C-2(Ivasakietal.1966)andPs=0.50Cm-2(Savage,1966),DPsof-0.005Cm-2willcauserefractive-indexchangesof and Ontheotherhand,achangeofthespontaneouspolarizationwillatthesametimecauselatticestrainsinthea-andc-axesthroughtheelectrostrictiveeffect.Then,thestrainsduetoDPs,Snaregivenby

and

Page 133: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

whereQ31=-0.0036m4C-2,andQ33=0.067m4C-2istheelectrostrictivecoefficientforLiNbO3(Iwasakietal.1968).IfDPs<0asrequiredtoincreasetherefractiveindices,itshouldproducestrainsS2>0andS3<0.ThesignsofS2andS3are,however,oppositetothoseoftheobservedstrainseyandez'respectively.Thus,itisunlikelythattherefractiveindexincrementsarecausedbydecreasingthespontaneouspolarization.

Itisconcludedthatthefirstmechanismproposedforrefractive-indexchangesismorelikelythanthesecondandthird.

Page 134: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page49

1.5.3Copperdiffusion

Nodaetal.(1974)attemptedtodiffusemanykindsofmetals,suchasCu,A1,Ge,Cr,Fe,Nb,andTiintoLiTaO3.Amongthem,Cuwaseasilydiffusedatrelativelylowtemperatures,andasaresultalargerefractiveindexchangewasobservedintheCu-diffusedlayer.TheauthorsreportedtheexperimentalresultsonCudiffusioninLiTaO3.

Twokindsofdiffusionprocesseswereexamined:thermaldiffusion,anddiffusionunderanelectricfield(electrodiffusion).

PolishedLiTaO3Y-platesweredepositedwithCuabout5000ÅthickandwereheatedinairandinanAratmosphere.Forthespecimenstreatedinair,thedepositedCuwasoxidizedduringtheheattreatment,anddiffusionproceededremarkably,whileforthespecimentreatedinanAratmospherediffusionscarcelyoccurred.TheseresultsindicatethatCumustbeionizedinordertodiffuseintothespecimenandthationizationfromthecopperoxideiseasierthanthatfromthepuremetal.

AninterferencefringeprofileoftheCu-diffusedlayerobservedalongthex-axisisshowninFig.1.26.Diffusiontookplaceat800°Cfor10hinair.Theedgewasnormaltothey-axisandthelight(aNalamp)wasanordinarywave.Themaximumincreaseinnois3×10-3andthediffusiondepthisabout120mm.Theprofilefortheextraordinarywavewasthesameasthatfortheordinarywave,andthediffusedlayersupportedbothTEandTMmodes.Apeakoftherefractiveindexwasalwaysobservedbeneaththesurfaceforallspecimensdiffusedunderdifferentconditions.Thereasonforthephenomenonisnotclearyet.Inthethermaldiffusionmethod,itisdifficulttocontroltherefractiveindexchangeandthediffusiondepth.Moreover,therequiredtemperatureishigherthantheCurietemperatureofLiNbO3.Therefore,thermaldiffusionisnotsuitableforfabricatingtheactiveandthinsingle-modewaveguidinglayer.

Page 135: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

TheauthorsthenexaminedthediffusionofCuintoLiTaO3underanelectricfieldusingthedepositedCuorCuOaselectrodes.Byapplyinganelectricfield,Cuiondiffusedeasilyfromtheanodesideinthelower-temperatureregion,thatis,500°C,atwhichnothermaldiffusionwasobserved.Figure1.27showsan

Fig.1.26InterferencefringepatternontheCu-diffused

layer,indicatingthechangeoftherefractiveindexn0.CuwasthermallydiffusedintoaLiTaO3Y-plate

at800°Cfor10h(Nodaetal.1974).

Fig.1.27(right)InterferencefringepatternoftheCu

electrodiffusedlayerinLiTaO3indicatingthechangeofrefractiveindexn0.Diffusionwascarriedoutat500°Cfor1hinairandan

electricfieldof10V/mmwasapplied(Nodaetal.1974).

Page 136: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 137: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page50

interferencestructurefortheY-platespecimendiffusedat550°Cfor1hunderanelectricfieldof10V/mm.Thestructurewasobservedalongthex-axisusingtheordinarilypolarizedlight.Theprofilefornewasalmostthesameasthatfornointhiscasealso.Therefractiveindexatthesurfaceincreasesbyabout5×10-3,andthediffusiondepthis25mm.Theincreaseintherefractiveindexwasfoundtobeproportionaltotheappliedfield.Withelectricfieldsstrongerthan30V/mm,microcracksoccurredatthesurfaceofthediffusedlayer,andsuchalayerwasnotsuitableforthewaveguide.

Figure1.28showstherelationbetweenthediffusiondepthandthediffusiontimeforthespecimensdiffusedinairat550°Cunderanelectricfieldof10V/mm.Thechangesintherefractiveindexwerealmostconstantforthevariationofthediffusiontime.Whenthediffusiontimewaslongerthan1h,thecrystallinityofLiTaO3wasdegraded.TheelectrodiffusioninanAratmospherewasalsoexaminedforthespecimensdepositedwithCuO,anddiffusionwasfoundtoproceedmoreslowlythanthatmadeinair.

Nodaetal.fabricatedsuccessfullythewaveguidinglayersupportingonlythefundamentalmodesTE0andTM0bythefollowingconditions:temperature550°C,electricfield10V/mm,diffusiontime10rain,andinanArgasflow.Thethicknessofthediffusedlayerwasabout4mm.AHe-Nelaserbeamwasfedintothelayerwithaprismcouplerandpropagatedalongthex-axisofLiTaO3.AphotographoftheoutputspotsofTE0andTM0modesdecoupledwithagasprismisshowninFig.1.29.Thephotographshowsthatthespotshavewell-definedshapesandthemlinespassingthroughthespotsarefaint.Furthermore,onlyaslightdecaywasobservedinthestrengthofthescatteredlightoverthe1cmlengthofalightstreakalongthelayer,anditcanbeconcludedthattheopticalqualityofthelayerwassatisfactoryat0.633mm.However,aweakabsorptionpeakwasobservedatawavelengthof1mm,andtheuseofthelayerinthis

Page 138: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wavelengthregionmaybesomewhatlimited.

Fig.1.28RelationbetweendiffusiondepthanddiffusiontimeinCu-diffusedLiTaO3.Diffusionwascarriedoutat500°Cinairunderanelectricfieldof10V/mm

(Nodaetal.1974).

Fig.1.29(right)Outputspotswithfaintmline

decoupledwithaGaPprismforTE0andTM0modes.AHe-NelaserbeamisfedintotheCuelectrodiffusedlayerwiththeprism

coupler,andispropagatedalongthex-axisofLiTaO3(Nodaetal.1974).

Page 139: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page51

1.6Proton-exchangedLiNbO3waveguides

Theionexchangemethodisbasedontreatmentofaspecimeninasaltmeltorsaltmixturesothatasaresultofchemicaldiffusionthereoccursapartialreplacementofmobileionsfromthesurfaceregionofthespecimenbyionsfromthemelt.Themostintensiveion-exchangeprocessesproceedamongunivalentionsofalkalinemetalsLi+,Na+,K+,Cs+,Rb+,aswellasTi4+,Ag+,Cu+and,possibly,Cu2+ions.Theprincipalfactorsaffectingtheion-exchangeprocessaretemperature,time,thestateofthesamplesurface,thechemicalcompositionandthemeltproperties.Toformalightguide,itisnecessarytoprovidearefractiveindexincreaseonthesamplesurface,andthereforethechoiceofappropriateion-exchangedpairsistypicallycarriedoutbycomparingtheelectronpolarizabilitiesofionsorbyestablishingtheratioofelectronpolarizabilitiestothecubesoftheirradii.Thehigherthevaluesofelectronpolarizability,thelargertherefractiveindexincrease.Thisisinmostcasesvalidfortheionexchangeprocessinglasses.Wealsonotethatindevelopingthismethodoneshouldnotneglectapossibleoccurrenceofsomebackgroundprocesses,suchassamplesurfaceseeding,phaseseparationandothers.

Lithiumniobateandtantalatearethefirstcrystallineobjectsforwhichion-exchangeddopingwasfirstrealized.SubstitutionalionsintheseprocessesareofcourseLi+ions.

Manyrecentreportsaredevotedtofabricationandinvestigationofthepropertiesoflightguidesformedbythe exchangemethod.AsthesourceofH+ions,Jackeletal.(1982)usedameltofbenzoicacidC6H5COOHat160-250°C.Toavoidacidevaporationanddecomposition,x-andz-cutlithiumniobateplatesweredopedinaclosedvesselwithoutreachofair.ThelightguidesamplesexhibitedpropagationofTE-modesonly,thedistributionfunctionofthe

Page 140: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

refractiveindexofthelightguidebeingastepfunctionwithDne=0.12.Thevaluesoftheioninterdiffusioncoefficientswere3.8×10-12and1.0×10-12cm-2/sat244and217°C,respectively.Theproton-lithiumexchangewasobservedtoproceedsomewhatsloweralongzthanalongxdirection.Thelightlossinlightguideswasapproximately0.5dB/cm.Channellightguidesfabricatedusingmasks(chromiumfilms10nmthickandgoldfilms50nmthick)were1-20mmthick(Jackeletal.1982).Attemptstodopey-cutLiNbO3platefailedduetoastrongdestructionofthesurface.

Thepossibilityofobtainingwaveguidelayersonaz-cutLiTaO3usingtheion-exchangereactioninabenzoicacidmeltwasreportedbyAtuginandZakharyan(1984)andKopylovetal.(1983).Theprofileoftherefractiveindexincreasen(x)atelevatedtemperatureswasinvestigatedbyanumericalmethod(Kolosovskyetal.1981)whichallowedtheauthorstoreconstructtheprofilefromalimitedsetofdatabothforasharp(exponential)andasmooth(Gaussian)profilevariation.SurfaceopticalvariationsshowedthattheinvestigatedinteractionofLiTaO3withbenzoicacidstimulatesanincreaseoftheextraordinaryrefractiveindexonly.TheprofilesofDn(x)areclosetostep-likeones,thedepthofthewaveguideregionmakesupabout2.5mm.TheobservedjumpintherefractiveindexvariationislikelytobecausedbythephasetransitioninLi1-xHxTaO3typecompoundsduetoanincreaseoftheorderparameterx(RiceandJackel1982).

Page 141: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page52

Theexperimentalresults(Reachetal.1985;Boikoetal.1985;Bashkirovetal.1985;Gan'shinetal.1985)suggestthefollowingschemeofproton-exchangeddoping:

1.Proton-lithiumexchangecausestheformationonacrystalsurfaceofanearlyconstanthydrogenconcentration,whichisapparentlyduetoastrongdependenceoftheinterdiffusioncoefficientDonionconcentrationinthesurfacelayer.

2.Experimentalstudiesshowthattonucleationandafurtherannealing-stimulateddevelopmentinannealingthecrystallinephasesn-Nb2O5andLiNb3O8therecorrespondsadefiniteH+-to-Li+concentrationratiointhedopedregion.Thisratiocanbeattainedwiththehighestprobabilityattheionexchangefront.Theformationoftheindicatedphasesisinevitablyassociatedwiththeoccurrenceofsignificantstructuraldistortions.Thisaccounts,inparticular,fortheloweringoftherefractiveindexDno=0.04whichislargerthanintherestoftheproton-exchangeregion.

3.Mismatchofthelatticeparametersofn-Nb2O5,LiNb3O8andLiNbO3leadstoconsiderablestresses,andthesurfaceregiongoesovertoametastablestate.

Reportshaveappearedonthedevelopmentandsuccessfulapplicationofacombinedwayoflightguidefabricationonthebasisoflithiumniobate-theso-calledTIPE(titanium-in-diffused-proton-exchange)process(Becker1983).Theprocessproceedsasfollows:titaniumdiffusionformsaTi:LiNbO3lightguideinwhichmodesofbothordinaryandextraordinaryrayscanbeexcited.Afterthis,thesampleistreatedinabenzoic-acidorinsomeothermeltsuitableforaproton-lithiumexchange.TheTIPEpromotestheformationofstructureswithahighnonx-,y-andz-cutsofacrystal(aftertitaniumdiffusiontheLiNbO3(Y)surfaceisnotpronetodestructionundertheactionofbenzoicacid).TIPElightguidesmayhave,dependingonthe

Page 142: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

preparationconditions,rathercomplicatedrefractiveindexprofiles.Obviously,theTidiffusioninTIPEstructuresshouldonlybecarriedoutattemperatureshigherthan950°C.DiffusionatlowertemperaturesisfraughtwithariskofformationonthecrystalsurfaceofachemicalcompoundcontainingTiandNboxideswhichblocklithiumdiffusionthroughtheinterface.Thismayresultinblockingasubsequentproton-lithiumexchange.

Beingresistanttoinducedlaserradiation,proton-exchangedwaveguidesexhibittheloweringoftheelectro-opticeffectandahighinstabilityoftherefractiveindex.Ti-diffusedwaveguidesdegradewithtime,whileproton-exchangedwaveguidesage.Moreover,theypossessatypicalshortcoming-aweakrestrictionofthelightwave,whichisduetoanessentialimpossibilityofobtainingasharprefractiveindexvariationatthesubstrate-layerboundary.

1.6.1Ion-exchangeprocessesinLiNbO3

Theproton-exchangetechniqueinvolveschemicalreactionbetweensinglecrystallithiumniobate(LiNbO3)andasuitableprotonicsource,mostcommonlybenzoicacid(C6H5CO2H,m.p.=122°C),attemperaturesfrom150°Cto300°C(Jackeletal.1982).Theoverallreactioncanberepresentedbytheequation

Hydrogenisincorporatedwithinthecrystalintheformofhydroxylgroups

Page 143: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page53

astheresultofbondingbetweenH+andO2-inthelattice.Theextentofprotonexchangedependsonthereactiontimeandtemperature,andonlypartialexchangeisnecessaryforwaveguideformation(Jackeletal.1983;Rice1986;RiceandJackel1984).AcompleteexchangecanbeobservedinLiNbO3powderandresultsintheformationofthecompoundLiNbO3,causingastructural(hexagonaltocubic)transformation(RiceandJackel1982;Fourquetetal.1983;WellerandDickens1985).Itisonlytheextraordinaryrefractiveindexthatisincreasedbyprotonexchange,whiletheordinaryindexisslightlydecreased(Jackeletal.1982).ThenatureofthesinglepolarizationmeansthatTEmodesaresupportedinx-andy-cutwaveguidesandTMmodesaresupportedinz-cutwaveguides.

Theopticalpropertiesofprotonexchangewaveguideshavebeendeterminedfromprism-couplingdata(Clarketal.1983;Wongetal.1986)andinfraredspectroscopyhasbeenusedtofollowtheincorporationofhydrogenashydroxylgroups(JackelandRice1981;Lonietal.1987).ThisapproachhasbeenextendedtodeterminerelationshipsbetweentheextentofformationofOHgroupsandwaveguidedepthsforx-andz-cutsingle-crystallithiumniobate.Improvedopticalpropertiesforannealedwaveguidesandwaveguidesproducedusingbufferedmeltswerereportedmanytimes(Jackeletal.1983;JackelandRice1984;Wong1985;Minakata1986),theterm'buffered'referringtypicallytobenzoicacidcontainingsmallamountsoflithiumbenzonate.Asystematicstudyofannealedandbufferedmeltwaveguideswascarriedoutinordertounderstandwhythepropertiesareimproved.Theroom-temperaturehydrogenisotopicexchangewasshowntooccurinproton-exchangeswaveguides(DeLaRueetal.1987;Lonietal.1987)indicatingthatthesewaveguidesreactwithatmosphericwatervapour.Theisotopicexchangetechniquewasusedtoinvestigatethebehaviourofbothannealedandbufferedmeltproton-exchangedwaveguidestowardsatmosphericwatervapour

Page 144: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

attemperaturesupto375°C.

High-indexchanges(Dn=0.12)werereportedforionexchangeofLiNbO3inmeltsofAgNO3(ManharandShah1975)andTlNO3(Jackel1980)Unfortunately,thehigh-indexchangeisnotconsistentlyreproducibleandwasfoundtobedisconnectedwiththeintroductionoftheheavyAg+andTl3.4+ions(Griffiths1981;Chenetal.1982).RatheritresultsfromaprotonexchangeprocesssimilartothatreportedbyJackeletal.(1982),withwaterimpuritiesinthemeltactingasthesourceofhydrogen(JackelandRice1982).Sincetheseprocessescannotgiveconsistentresults,theyarenotasusefulashadpreviouslybeenhoped.Thus,protonexchangeinbenzoicacidfillstheneedforameansofproducinglargeindexchangesinLiNbO3.

JackelandRice(1982)showedthatimmersionofLiNbO3inhotacids,orincertainhydratemelts,resultsinprotonexchange,inwhichlithiumionsarelostfromthecrystalandaresubstitutedbyanequalnumberofprotons(JackelandRice,1981;RiceandJackel,1982).Instrongacids,suchasHNO3orH2SO4,thesubstitutioniscompleteandthenewcompoundHNbO3isacubicperovskite.ThelargestructuralandbulkchangefromthetwistedperovskiteLiNbO3structureprecludestheformationofasurfacelayerontheLiNbO3substrate.However,inlessacidicenvironments,suchasMg(NO3)26H2OorbenzoicacidC6H5COOH),anincompleteexchangeoccurs.Studiesofsingle-phasepowdersamplesshowthatatleastasmuchas50%ofthelithiumcanbereplacedby

Page 145: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page54

protonswithoutamajorstructuralchange.OnmacroscopicLiNbO3crystals,partiallyexchangedlayersthickerthan10mmhavebeenformedusingbenzoicacid.

JackelandRice(1982)choosebenzoicacidasthemostpromisingoftheprotonsourceswhichproducepartialexchange,primarilybecauseofitshighboilingpoint(249°C)andstabilitythroughoutitsliquidrange.Thehighboilingpointpermittedworkingattemperaturesforwhichdiffusionwasrapid.Stabilityofthecompoundpermittedobtainingconsistentresults.Secondaryargumentsinfavourofbenzoicacidwereitslowtoxicityandlowprice.

Benzoicaciddoesnotattackmostmetals,sometalmaskscanbeusedtodefinechannelwaveguidesorothersmallfeatures,suchasgratings.Usingamaskofapproximately100ÅCrand500ÅAu,Jackeletal.(1982)havemadeaseriesofchannelwaveguides1-20S0109>mwide.Theuseofasimilarmaskingtechniqueformakinghigh-efficiencygratingsisnowunderinvestigation.

Clarketal.(1983)confirmedthattheuseofy-cutsubstratesrendersthesurfaceofthesubstrateliabletosevereetching.However,theproblemcanbeovercomebyusingprotonexchangeinconjunctionwithTiin-diffusiontoproducewaveguidesony-cutsubstrateswhichguidebothTEandTMmodes(DeMichellietal.1982).Bothactiveandpassiveopticalwaveguidedevicescanbefabricatedusingthistechnique;highefficiencybeamdeflectors(Punetal.1982),opticalfrequencytranslators(Wongetal.1982),andsecondharmonicgenerators(DeMichellietal.1983)havebeendemonstrated(seechapters5and6).

1.6.2Samplepreparationandexperimentalmethods

Lonietal.(1989)proposedthefollowingwayofpreparationoflight-guidinglayers.Nominallyidenticalcongruent-compositionx-andz-

Page 146: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

cutlithiumniobatesubstrates(dimensions:1cm×1.5cm×0.1cm)werepolishedonbothfacetsforIRspectroscopicexperiments.Thesamplesinholderswereplacedinindividualcoveredsilicaglassbeakerswhichcontainedaccuratelyweighedquantitiesofmoltenbenzoicacid.Theheatingsourcewasahigh-temperatureoilbathwhichwascontrolledto±0.25°C.TemperaturesweremeasuredusingaPt-13%Rh/Ptthermocouple.The'neatmelt'x-andz-cutwaveguideswerefabricatedattemperaturesbetween167°Cand211°C,fortimesrangingfrom0.12to6h.Thefabricationprocedureforthex-cutbufferedmeltproton-exchangedwaveguideswasidentical,exceptthatthewaveguideswerefabricatedat215°Cand135°Cfortimesrangingfrom1to8.5h.ThequantityoflithiumbenzoateaddedtothebenzoicacidmeltswasdefinedintermsoftheLi+molarfraction,thatis,[molesoflithiumbenzoate]/([molesoflithiumbenzoate]+[molesofbenzoicacid]).Themolarfractionsoflithiumbenzoate,forfabricationofthebufferedmeltwaveguides,werebetween0.28×10-2and1.12×10-2.

SampleswereannealedinaPyrextubemountedinafurnacewhosetemperaturewascontrolledto±2°C.Theatmosphereusedwasdioxygensaturatedwithwater,obtainedbybubblingO2throughacolumnofwarm(60°C)water.Thewaveguidesweremountedinastainlesssteelboatthatallowedauniformflowofgasoverthesurfaceofeachwaveguide.Toavoidthermalshockatinletandoutlet,thewaveguidesweremovedslowlyalongthefurnacetubeoveraperiodofapproximatelyoneminute.Theannealingtimewasdefinedastheintervalbetween

Page 147: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page55

thesamplereachingthefurnacehotspotanditssubsequentremoval.ThewetO2flowwasmaintainedthroughouttheentranceandremovalperiods.

Afterprocessing,thewaveguidesweremountedinevacuablePyrexinfraredcellsfittedwithcalciumfluoridewindowsforH/Dhydrogenisotopicexchangestudies.High-temperaturehydrogenisotopicexchangewascarriedoutbyannealingthewaveguidesasabove,exceptthatD2O(99.8percent)wasusedinsteadofH2O.Theinfraredspectrawererecordedusingaspectrometeranddatastation.Theopticalpropertiesoftheplanarwaveguideswereassessedat)l=0.6328mmusingtheprismcouplingtechniqueandassumingnormalizedstep-indexequations(TienandUlrich1970).TherefractiveindexprofilesoftheannealedwaveguideswerecalculatedusingtheIWKBmethod(Finaketal.1982),amethodparticularlyusefulforwaveguideswithagraded-indexprofile.

ProtondiffusionwascontrolledbytheIRspectra.Thex-cutspectraconsistoftwooverlappingbandsintheOHstretchingregion:abroad-bandatvmax=3250cm-1duetohydrogen-bondedOHgroups,andasharpbandatvmax=3505cm-1dueto'free'OHgroups.PolarizationmeasurementsindicatethatfreeOHisconstrainedtovibrateinthe(x,y)-planeofthewaveguide.Abandatvmax=3505cm-1isalsoobservedinthespectraofz-cutwaveguides.However,theabsorptionduetohydrogen-bondedOHgroupsisdiscernibleonlyasashoulderonthelow-frequencysiteofthesharpbandatvmax=3505cm-1.

Thedifferentspectraarepresumablyduetothedifferentcrystalorientation.

Thex-andz-cutinfraredspectra,Fig.1.30(a,b),indicatethattheOHabsorbanceincreaseswiththewaveguidefabricationtime.Itwasreported(Wongetal.1986)thatforx-cutlithiumniobate,therelationshipbetweentheOHabsorbanceat3505cm-1wasnonlinear

Page 148: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

withtemperatureandtime.TheresultsduetoLonietal.(1989)wereinagreementwiththeseobservations.However,todeterminetheextentofproton-exchange,theareaoftheOHbandsshouldbeused.Therelationshipbetweentheabsorptionbandareaandwaveguidefabricationtemperatureislinear,asdepictedinFig.1.31(a,b)forx-andz-cutproton-exchangedwaveguides,respectively.Theobservedtemperaturedependenceindicatedthatthereisaminimumtemperaturerequiredforproton-exchange,thevaluesbeingT=(140.6±3.3)°Cforz-cutmaterialsandT=(131±8.3)°Cforx-cutmaterials.Correspondingvaluesobtainedbyplottingthewaveguidedepth(determinedfromprismcouplingdata)asafunctionoftemperaturewereT=(148.5±7.5)°Cforz-cutmaterialsandT=(145.4±3.4)°Cforx-cutmaterials.Thedatasuggestthattheminimumexchangetemperatureisslightlyhigherforz-cutmaterials.

TherelationshipbetweentheOHabsorptionbandareaand(time)1/2forx-andz-cutproton-exchangedwaveguidesislinear(thez-cutcaseinFig.1.32(a)),whichisconsistentwithaprocessinwhichtheextentofOHgroupformationinthewaveguidelayerisgovernedbydiffusion.Thenaturallogarithmoftheslopeofeachline(areaversust1/2)wasplottedasafunctionof1/TandtheobservedArrheniusbehaviourenabledapparentactivationenergiesfortheproton-exchangeprocesstobecalculated.ThevaluesobtainedwereQx=60.4kJmol-1andQz=81.2kJmol-1.

Sinceboththeabsorptionbandareaandwaveguidedepthshowat1/2dependence,thetwoquantitiescanbelinearlyrelated.Thiswasverifiedbyplottingthebandareaasafunctionofdepthforthex-andz-cutwaveguides,illustrated

Page 149: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page56

inFig.1.32(b)forthez-cutwaveguides.Therefore,thedepthofaproton-exchangedwaveguidecanbeestimatedbycalculatingtheareaundertheinfraredabsorptionbands.Withsuitablerecalibration,themethodcanalsobeusedforwaveguidesproducedusingbufferedmelts.Themethodisparticularlysuitedforsingle-modeproton-exchangedwaveguides,wheretheusualIWKBandstep-indexmethodscannotbeused.

1.6.3Annealedproton-exchangedwaveguides

Theeffectofannealingontherefractiveindexprofileofanx-cutproton-exchangedwaveguide(Table1.11)isshowninFig.l.33a.Althoughtheinitialstep-likeindexprofileissubstantiallypreservedafterashortannealingtime,ataileventuallyformsatthewaveguide-substrateboundary,indicatingachangetoamoregraded-indexprofile.Thewaveguide(surface)indexofthesampledecreasedby0.04(atl=0.6328mm)afterannealingat320°Cfor3h11min(Fig.1.33a),andthedepthoftheguidingregionincreasedby1.30°m(Table1.11).Asaconsequence,thenumberofmodessupportedincreasedfromthreebeforeannealing,tofive.Afterfurtherannealingat400°Cfor30min,thetailonthestep-likerefractiveindexprofilewasmoreprominent.

Theeffectofannealingontheeffectivemodeindices(at)l=0.6328mm)andwaveguidedepthofthesamesampleisillustratedinFig.1.33b.Thesecond-ordermode(m=1)andthethird-ordermode(m=2)hadmaximumeffectiveindicesafterannealingtimesofapproximately10and15rain,respectively.Thefourth-ordermode(m=3)reachedamaximumafterapproximately1h.Afterthis,theeffectivemodeindicesalldecreasedgraduallywithincreasingannealingtime.Noinitialincreasewasobservedforthefundamentalmode(m=0).TheresultsobtainedforthesamplesinTable1.11indicatethatmostofthechangesintherefractiveindexprofileoccur,

Page 150: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

approximately,withinthe

Fig.1.30infraredspectraofproton-exchangedwaveguides.a)x-cut,T=198°C:i)4.42h,ii)3h,iii)2h,iv)1h,

v)0.25h.b)z-cut,T=211°C:i)6h,ii)4.42h,iii)3h,iv)2h,v)1h,vi)0.42h,vii)0.12h

(Lonietal.1989).

Page 151: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page57

Fig.1.31Absorbancebandareavstemperature:a)x-cut,b)z-cut(Lonietal.1989).

firsthalftoonehourofannealingandthesmallervariationsareobservedafterannealingformuchlongerperiods.

Afterannealingthex-cutproton-exchangedwaveguideat250°Cfor0.5h,therewasasignificantdecreaseintheintensityoftheinfraredabsorptionbandduetothehydrogen-bondedOHgroupsinthesample,butthebandat3505cm-1wasunchanged.Aprolongedannealingatthesametemperatureproducedfurther,butsmaller,variationsinthebroad-band.Thisbehaviourcanbecorrelatedwiththeobservationthatthemajorchangesintherefractiveindex

Page 152: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.1.32a)Absorbancebandvst1/2(z-cutproton-exchangedwaveguides).b)Absorbancebandareavsdepth

(z-cutproton-exchangedwaveguides)(Lonietal.1989).

Page 153: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page58

profileofsampleX3occurredwithinthefirst0.5hofannealing.Nodecreaseintheeffectivemodeindiceswasobservedatroomtemperature(afterannealing)overameasurementperiodofoneyear,inagreementwithJackelandRice(1984).

Thehydrogenisotopicexchangetechniquewasusedtotestwhetherannealedproton-exchangewaveguidesreactwithatmosphericwatervapourinasimilarmannertoannealedwaveguides,atroomtemperature.Theinfraredabsorptionspectraindicatedthat,unlikeinunannealedproton-exchangewaveguides,nohydrogenisotopicexchangetookplaceinthematerial.However,whenthex-cutwaveguidesweresubsequentlyannealedat320°Cfor0.5hinawet(D2O)/O2atmosphere,therewasanuptakeofdeuterium.Fromtheinfraredabsorptionspectrumofthesampleitcanbeseenthatthehydrogen-bondedOHwasmarkedlyreducedbyannealing.Thesharpbandatvmax=3505cm-1decreasedsignificantly,withthegrowthofanODcounterpartatvmax=2590cm-1.Thespectraoftheabsorptionbandstructuresindicatedthat,afterannealing,thewaveguides

Table1.11Opticalwaveguidemeasurements(l=0.6328mm)andannealingconditionsfor'neatmelt'x-cutproton-exchangedwaveguides(Loni,Hay,DeLaRue,Winfield,1989)

Diffusiontime,h

Annealingtemperature,°C

Annealingtime,h

Waveguide(surface)index

Depth(mm)

1 - - 2.3281 0.40

250 0.5 2.3082 0.70

250 1 2.3081 0.70

250 2.62 2.3036 0.72

3 - - 2.3295 0.73

250 0.5 2.3168 1.14

Page 154: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

250 1 2.3151 1.19

250 2.62 2.3098 1.27

6(T=168°C)

- - 2.3307 1.09

250 0.5 2.3231 1.41

250 1 2.3168 1.61

250 2.62 2.3153 1.63

1 - - 2.3244 0.63

320 0.25 2.3072 1.02

320 1 2.2862 1.34

320 3.18 2.2763 1.50

3 - - 2.3286 1.12

320 0.25 2.3137 1.85

320 1 2.3026 2.02

320 3.18 2.2882 2.42

6(T=175°C)

- - 2.3281 1.60

320 0.25 2.3191 2.35

320 1 2.3021 2.72

320 3.18 2.2992 2.54

Page 155: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page59

Fig.1.33a)Refractiveindexprofile(l=0.6328mm)asafunctionofwaveguideannealing;thesamesamplewasproton-exchangedat175°Cfor3h.b)Variationineffective

modeindiceswithannealingtime(thesamplewasannealedat320°c)(Lonietal.1989).

didnotreactwithatmosphericwateratroomtemperature.Similarresultswereobservedwhenpreviouslyannealed(O2/H2atmosphere)waveguideswerereannealedusingD2Oatahighertemperatureof375°C,althoughhydrogenisotopicexchangewasnotobservedinthesewaveguides(beforereannealing)atroomtemperature.

1.6.4Waveguidesfabricatedusingbufferedmelts

Theopticalpropertiesofwaveguidespreparedinbenzoicacidwithaddedlithiumbenzoateweredeterminedfromprismcouplingdata,viamodeanglemeasurementsandcalculationsusingthestep-indexmodel.Theresultingwaveguidedepthswerelinearlyrelatedtothesquarerootofthefabricationtime.Asthemolarfractionoflithiumbenzoateincreases,theeffectivediffusioncoefficient(estimatedfromthedepthversust1/2curves)decreases(Fig.1.34)indicatingthattheextenttowhichproton-exchangeoccursdependsstronglyonthepresenceoflithiuminthemelt.Asimilareffectmightbeexpected,intheabsenceoflithiumbenzoate,duetothepresenceoflithiuminthemeltresultingfromtheLi+-H+exchangeprocess.

Page 156: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

However,thelithiumconcentrationsinbenzoicaciddeterminedbyatomicabsorptionspectroscopyafterprotonexchange,aresufficientlysmall(Lonietal.1987)andtheequivalentlithiumbenzoatemolarfractionisoftheorderof0.02×10-1.Therefore,theeffectivediffusioncoefficientremainsapproximatelyconstantthroughouttheexchangeperiod.

Thedegreeofopticalstabilityinaproton-exchangedwaveguidedependsonthemolarfractionoftheaddedlithiumion(Fig.l.35a,x-cut).Forexample,thedecreaseinthefundamentalmode(m=0)indexoveraperiodof410hwas0.0045forasamplecontainingLi+molarfraction=0.09×10-2,and0.001forasamplecontainingLi+molarfraction=1.10×10-2.JackelandRice(1984)showedthatnomeasurabledecreaseintheeffectivemodeindexcanbeobservedforwaveguidesproducedfrommeltscontainingmolarfractionsoflithiumiongreaterthan3.40×10-2.

Althoughtherefractiveindexprofilesarestep-like,thevalueofDne

Page 157: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page60

decreasesasthelithiumbenzoatemolarfractionincreases(Fig.l.35b).ThelowestvaluemeasuredbyLonietal.(1989)wasDne=0.085forawaveguideproducedusingLi+molarfractionequalto2.42×10-2.InfraredspectraofwaveguidespreparedinbenzoicacidwithaddedlithiumbenzoateareshowninFig.l.36.AlthoughtheOHabsorptionbandsatvmax=3505cm-1andvmax=3250cm-1arebothpresent,therelativeintensityofthelatterbandismuchsmallerthanthatforwaveguidesproducedusingbenzoicacidaloneundernormallyidenticalconditions.ThelargerLi+molarfraction,thesmallertherelativemagnitudeoftheabsorptionatvmax=3250cm-1,indicatingthatthehydrogen-bondedOHgroupsarepresenttoalesserextent.Noroomtemperaturehydrogenisotopicexchangewasobservedinthewaveguideswhichwerefabricatedusingbufferedmelts(uptoLi+molarfraction=1.04×10-2),indicatingthat,likeannealedproton-exchangedwaveguides,theydonotreactwithatmosphericwatervapour.

Annealingthebufferedmeltwaveguidesinawet(H2O)dioxygenatmospherehadrelativelylittleeffect.Forexample,nomeasurablechangesintheinfraredabsorptionspectrawereobservedafterthebufferedmeltwaveguideswereannealed.Smallchangeswere,however,observedintherefractiveindexprofiles,butthesewereofthesamemagnitudeastheonesobservedduringthelaterstagesofannealingneatmeltproton-exchangedwaveguides.

Sincethepresenceofhydrogen-bondedOHinbufferedmeltwaveguidesisverymuchreduced,thechangesintherefractiveindexprofilesasaconsequenceofannealingmustarise,inthemain,fromthediffusionofprotonsoriginatingfrom'free'OHintothesubstrate.Itisunlikelythat'free'OHout-diffusesintotheatmospheresincetherewouldbeanassociatedreductionintheabsorptionband.

Thelossofhydrogenduringtheannealingprocesscouldariseby

Page 158: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

migrationofthehydrogen-bondedOHtothesurfaceoftheguidingregionfollowedbyreactionofsurfacehydroxylgroupstogivesurfaceoxidesandwater.Thelatterprocesscaneithertakeplaceviaroute2,orviaroute4followedbyroute5,inthescheme:

Fig.1.34Effectivediffusioncoefficientsat215°Cand235°CversusLi+molefraction(x-cut)(Lonietal1989).

Page 159: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page61

Fig.1.35a)VariationineffectivemodeindexwithtimefordifferentLi+molefractions(x-cut).b)Stepindexchange versusLi+mole

fraction(x-cut)(Lonietal.1989).

(where representshydrogen-bondedOH).Theprocessisreversible,sinceithasbeenshownthatDisincorporatedintoproton-exchangedwaveguidesfromD2Oduringannealing.Thiscouldoccureitherdirectly,viaroute6,orviaroute1followedbyroute4.Thelatterrouterequireshydrogen-bondedOHtobepresentandislikelytobeimportantonlyduringtheearlystagesofannealing.Lonietal.(1989)demonstratedreversibleHDexchangeatroomtemperature.However,thisisnotobservedwithannealedorbufferedmeltwaveguides,arguingthatHDroomtemperatureexchangeinvolvesroute1thenroute4androute3thenroute2,ratherthanthedirectroutes5or6.Thedirectroutes5and6dooccurathightemperaturessince,asmentionedabove,Dcanbeincorporatedathightemperatureswithoutthepresenceofhydrogen-bondedhydroxylgroups( ).Itis

Page 160: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.1.36Infraredabsorptionspectraofx-cutprotonexchangedwaveguidesfabricatedusingbufferedmelts,at215°C:i)neatbenzoicacid,ii)Li+molefraction=0.28×10-2,iii)Li+molefraction=1.04×10-2(Lonietal.1989).

Page 161: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page62

suggestedthattheannealingprocesscanberepresentedbythefollowingreactionsteps:

Theremovalofhydrogen-bondedOHgroupsasH2Opreservedchargeneutralityinthecrystalandcantakeplaceviareaction(1.54)followedbyreaction(1.55).Reaction(1.55)wasfirstsuggestedbyBollmann(1987),althoughforadifferentsituation.

Lonietal.(1989)believethathydrogen-bondedOHgroupsarelikelytoberesponsible,toasubstantialdegree,fortheundesirableeffectsassociatedwithproton-exchangedwaveguides;forexample,deviceinstabilities,suchasdcdrift(Wongetal.1982).Wongetal.(1982)reportedthatapplyingadcvoltageofapproximately5V(eitherpolarity)toaproton-exchangedstripwaveguidephasemodulatorresultedintheextinctionoftheguidedmode,withatime-constantoftheorderof1min.Removingthedcvoltageledtoaslowrecoverywhereasvoltagereversalledtoamuchmorerapidrecovery.Suchaneffectmaywellbecausedbythemovementofhydrogen-bondedOH(protons)undertheinfluenceofanappliedelectricfield.Thedistributionofhydrogen-bondedOHis,initially,likelytobeapproximatelyuniformwithintheguidinglayer.However,onapplyinganelectricfieldtheelectrostaticforceswouldredistributetheprotons.Protonswhicharehydrogen-bondedwillbemorestronglyattractedbyanegativepotential,sincetheyarethemoremobilehydroxylgroups.Theconsequentredistributionoftheprotonscouldresultinamajormodificationinthewaveguiderefractiveindexprofile.Removaloftheelectricfieldwouldgiveachargeimbalanceandtheprotonswouldtendtomigratebacktomorefavourablesites,recoveringtheoriginalwaveguiderefractiveindexprofile.

Inadditiontotheremovalofhydrogen-bondedOHandthediffusion

Page 162: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

of'free'OHintothesubstrate,theannealingprocessmayalsoinvolvemigrationoflithiumionsfromadjacentregionsofthesubstrateintothewaveguideregion.Inthissituation,thedistortedunitcellstructureinthewaveguidemaytendtochangebacktothatofvirginLiNbO3.Asaconsequence,theelectro-opticeffectwouldberestoredandpropagationlossesreduced.Itiswidelyacceptedthatthediamond(parallelogram)whichappearsinthe(012)plane,basedontherhombicsystem,isrelatedtothestrongelectro-opticeffectintheLiNbO3crystal,asshowninFig.1.37.Aftertheexchange,thefigureisslightlyclosetothesquare(perovskite,thecubicsystem)causedbythestrainDc/c.Sincethesquarehasthecentreofsymmetry,thelinearelectro-opticconstantdoesnotgenerallyexist.Thus,itisestimatedthatr33reducesbecauseofthedeformationofthediamond.However,inspiteofnophasetransitionintheexchangedlayer,thevalueofr33seemstobeverysmall.ItissuggestedthattheHNbO3(system)compositionoftheexchangedlayershouldhaveapoorelectro-opticeffect.

1.6.5Protondiffusion

Usingtheprismcouplingtechnique,Clarketal.(1983)calculatedtheeffective

Page 163: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page63

refractiveindexofeachobservedmode.ThevaluesofeffectiverefractiveindiceswerethenusedastheinputforacomputerprogrambasedonnormalizedstepindexequationsgivenbyKogel'nikandRomaswamy(1974),tocalculatethesurfacerefractiveindexandthedepthoftheplanarwaveguide.Thestep-indexassumptionwasverifiedbymodellingthediffusionprofileoftheplanarwaveguidebyafinitedifferencesolutionoftheone-dimensionalionexchange(equation(1.56))(WilkinsonandWalker1979)

where ;Daisthein-diffusioncoefficientforprotons,Dbtheout-diffusioncoefficientforLi+ions,andutheconcentrationofprotonstothetotalconcentrationofions.

Theequationtakesintoaccounttheratioofthediffusioncoefficientsofthespeciesdiffusinginandoutofthesubstrate.Itwasfoundthattherateofprotonsdiffusinginwasverymuchsmallerthanthatofthelithiumionsdiffusingout.Fromthemodel,theoreticalvaluesofthediffusioncoefficientsforlithiumandprotonionswerefoundtobe1.62and0.08mm-2/hat200°C,respectively.Clarketal.(1983)usedtheabovemodelinconjunctionwithavariationalsolutionofthewaveequation(Walker1981)tocalculatemodeeffectiveindices.Theparameterainequation(1.56)wassystematicallyvariedtoobtainabestfittomeasuredeffectiveindexvalues.Thebest-fitprofileoccurredwhen indicatingthatthesolutionofequation(1.56)wasastepfunction.

Plotsofthediffusiondepthversus(time)1/2forvarioustemperaturesareshowninFig.1.32(b).Fromthegradientofthecurves,thevaluesforthediffusioncoefficientwerecalculatedassumingthattheprotonsourceconcentrationdidnotvaryduringtheexchangeprocess.ThisgivesvaluesofthediffusioncoefficientD(T),asshowninTable1.12.

Page 164: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thevalueswerecalculatedassumingthediffusiondepthdtovaryasfollows(Crank1970):

Fig.1.37Deformationofdiamondappearsinthe planeofLiNbO3

beforeandafterexchange(Minakataetal.1986).

Page 165: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page64

wheretistheexchangetime.Inequation(1.57),thetemperaturedependenceofDisgivenbytheArrheniuslaw:

whereD0isaconstantfortheprotonexchangeprocessinz-cutLiNbO3,Rtheuniversalgasconstant,Ttheabsolutemelttemperature,andQtheactivationenergyfortheexchangeprocess.Figure1.38illustratestherelationshipbetween1/TandInD(T).Fromthisplot,theQandD0valueshavebeenobtained:Q=94kJ/mol,D0=1.84×109mm2/h.Equation(1.57)canthereforeberewrittenas(1.59) exp(-5.65×103T)mm.FromFig.1.38onecanreadoffthevalueofthediffusioncoefficientwithintheworkingrangeforbenzoicacid(150-230°C).

1.6.6Waveguidesusingcinnamicacid

Punetal.(1991)havedemonstratedtheuseofcinnamicacid(C6H5CH:CHCOOH)andinparticulartranscinnamicacid,asanewprotonsourceforthefabricationofhigh-indexproton-exchanged(PE)waveguidesinz-cutLiNbO3.TherefractiveindexprofileofthePEwaveguidesusingthisacidisagradedindexfunctionandisdifferentfromthoseobtainedusingorganicacidswhichhavestepindexprofiles.

Z-cuty-propagatingPEplanarwaveguideswerefabricatedinintegratedopticsgradeLiNbO3substratesthatwerepolishedononeface.Thesubstrateswereprecleanedthoroughlyusingaseriesoforganicsolventsandpreheatedbeforeimmersingintotheacidmelt.Theanalyticalgradetranscinnamicacidwascontainedinacoveredquartzcrucibleandmaintainedatthesettemperatureforfabrication.Aftertheexchangeprocess,anyresidualacidwasrinsedawaywithacetone.Forannealingexperiments,thewaveguideswerepostbakedinahorizontalfurnaceat350°Cfortimesbetween6minand5h.A

Page 166: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

dryoxygenatmosphereflowingat500ml/minwasusedtopreventdeoxidizationofthewaveguides.

Thewaveguidedepthsandindexprofileswerecomputedfromthemeasureddatausingthecontinuouseffectiveindexfunctionmethod(Chiang1985).

Figure1.39showsthevariationofwaveguidedepthdwithexchangetimetfordifferentfabricationtemperaturesT.Assuming ,theeffectivediffusioncoefficientD(T)canbecalculatedforeachfabricationtemperature.ThetemperaturedependenceofD(T)followstheArrheniuslaw,thatis, ,whereD0isthediffusionconstant,Qistheactivation

Table1.12Diffusioncoefficientswithrespecttotemperature(Clarc,Nutt,Wongetal.1985)

T D(T)

(°C) mm2/h

180 0.027

200 0.081

220 0.207

Page 167: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page65

Fig.1.38PlotofInD(T)versus1/T(gradientofline=Q/R)(Clark,etal.1983).

energyandRistheuniversalgasconstant.FromtheArrheniusplot,thatis,In[D(T)]versus1/T,thevaluesofD0andQwerefoundtobe9.78×107mm2/hand77.15kJ/mol,respectively.HencethediffusiondepthofaPEwaveguideusingtranscinnamicacidcanbeexpressedas

Figure1.40showsatypicalvariationoftheindexprofileofthePEwaveguidewithannealingtimeasaparameter.Thewaveguidewasinitiallyexchangedat235°Cfor2h.Theindexprofilechangesfromatruncated-parabolicfunctiontoastepfunctionafterannealingfor16min.Withfurtherannealing,anindextailformsattheguidesubstrateboundaryandtheprofileisGaussian-like.Figure1.41showstheeffectofannealingonthesurfaceindexchangeDnandthewaveguidedepthincrease ,whered0istheinitialwaveguidedepthbeforeannealing.ThelineardependenceindicatesthatbothDnandDdfollowapower-lawrelationshipwithannealingtimeta,andcouldbegivenby

Page 168: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wherec1andc2areconstants.Fromthemeasureddata,c1andc2havevaluesof0.082and1.81respectively.Otherwaveguidespreparedusingdifferentinitialexchangetimesandtemperatureshavesimilarcurvesafterannealing,butwithdifferentvaluesofc1andc2.Annealedsingle-modewaveguidesalsoexhibitalowerpropagationloss(0.33dB/cm)comparedtothatoftheunannealedcounterpart(0.81dB/cm).

1.6.7Proton-exchangewaveguidesofMgO-dopedandNd:MgO-dopedLiNbO3

Ithasbeenreportedthatproton-exchangewaveguidesformedinMgO-doped

Page 169: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page66

Fig.1.39Waveguidedepthdasafunctionofexchange

timetusingtranscinnamicacid(Punetal.1991).

LiNbO3haveahigherdamagethresholdthanwaveguidesfabricatedinundopedmaterial(Digonnetetal.1985).Inordertousehigherpumppowerswhileavoidingeffectsassociatedwithphotorefractivedamage,LiNbO3substratesdopedwithbothneodymium(toprovidethelasingmedium)andmagnesiumoxide(tosuppressphotorefractiveeffects)canbeused.

BothJackelandDigoneetetal.(1985)haveindependentlycharacterizedproton-exchangewaveguidesfabricatedinx-(DigonnetM.etal.1985;JackelJ.L.1985)andy-cut(DigonnetM.etal.1985)LiNbO3dopedwith5%MgO,whilstLietal.(1988)characterizedwaveguidesfabricatedinx-cutLiNbO3dopedwithapproximately1%Nd.Jackelusedneatbenzoicacidmeltsforwaveguidefabricationat150and250°CandDigonnettetal.usedneatandbufferedbenzoic-acidmelts(1and2mol.%lithiumbenzoate)at249°C,whereasLietal.useda'double-exchange'technique(requiring1mol%followedby3mol%lithiumbenzoate)at300°C.Lonietal.(1990)reportedthefirstcharacterizationofneat-melt,proton-exchangedwaveguidesinthex-cutsubstratedopedsimultaneouslywithMgOandNd.

Page 170: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Planarwaveguideswerefabricatedonx-cutNdMgO-doped(0.1-0.2%:4.5%)LiNbO3andonx-andz-cutMgO-doped(4.5%)LiNbO3.PlanarwaveguideswerealsoproducedincongruentLiNbO3andwereusedasareferenceforthewaveguidesfabricatedinthedopedsubstrates.Thewaveguideswerefabricatedbyimmersioninneatbenzoicacidattemperatureswithintherangeof182-235°C,withfabricationtimesrangingbetween1and12.5h.Allthewaveguidesweremultimode.Lightpropagationwasalongthey-direction.

ThecharacteristicOHabsorptionbandswereobservedintheinfraredspectraofalltheMgO-dopedand(Nd:Mg)-dopedsubstratesandproton-exchangedwaveguides.Therelativeintensititesofthebandsweredependentonthewaveguidefabricationparameters,inamannersimilartothatobservedforwaveguidesproducedincongruentsubstrates,andtheinfraredspectraofwaveguidesproducedinbothtypesofdopedsubstrateswereidentical.Theonlyobviousdif-

Page 171: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page67

Fig.1.40IndexprofileofPEwaveguideasafunctionof

annealingtime(T=235°C,t=2.0h,Tc=350°c)(Punetal.1991).

Fig.1.41SurfaceindexchangeDnandwaveguide

depthincreaseDdasafunctionofannealingtimeta(Punetal.1991).

ferencesintheinfraredabsorptionspectra,comparedtothoseofwaveguidesformedbyprotonexchangeincongruentLiNbO3,wereinthepositionsoftheOHpeaksbeforeandafterprotonexchange.

InagreementwiththeresultsreportedbyJackel(1985),theslightlydifferentOHenvironmentsandbehaviourbeforeandafterprotonexchangemaybeindicativeofslightlydifferentwaveguidematerialstructures.

Byplottingtheexponentialrelationshipbetweenwaveguidedepthand

Page 172: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

,andassuming ,effectivediffusioncoefficients,D(T),fortheproton-exchangeprocesswereestimated.Figure1.42showstherelationship

Table1.13Diffusionparameters(QandD0)forprotonexchangeindoped(d)andundoped(c)LiNbO3(Lonietal1990)

Sampledescription Diffusionparameters

Q(kJmol-1) D0(mm2h-1)×109

x-cut,H+:LiNbO3(c) 81.24 0.234

x-cut,H+:LiNbO3(d) 91.54 1.41

(H+:Nd:MgO:LiNbO3)(d)

z-cut,H+:LiNbO3(c) 90.40 1.472

z-cut,H+:MgO:LiNbO3(d) 99.36 5.037

H+:Nd.MgO:LiNbO3(d)

Page 173: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page68

obtainedbetweentheeffectivediffusioncoefficientsandtemperatureforproton-exchangedwaveguidesfabricatedinboththedopedandundopedsubstrates.ItcanbeseenfromtherelationshipsdepictedinFig.1.42thatthediffusionprocessincongruentLiNbO3isslowerforz-cutsubstratesthanforx-cutsubstrates.ThisrelativeslownessisalsothecasefortheMgO-dopedsubstratesand,presumably,fortheNd:MgO-dopedsubstrates.

AlthoughaccordingtoFig.1.42,theprotonexchangeprocessproceedsmoreslowlyinMgO:LiNbO3thanincongruentmaterialofthesameorientation,inagreementwiththeresultsofJackel(1985),thereappeartobenomeasurabledifferencesbetweentheeffectivediffusioncoefficientsforproton-exchangeinNd:MgO:LiNbO3andMgO:LiNbO3.ThepresenceofMgOandNd:MgOLiNbO3singlecrystalshasalsobeenshowntoreducethediffusioncoefficientsfortitaniumin-diffusion(Bulmer1984).ForprotonexchangeincongruentLiNbO3dopedwith5%MgO,theeffectivediffusioncoefficientestimatedbyJackel(1985)forawaveguidefabricationtemperatureof250°Cwas0.81m2h-1.Extrapolatingthecurveforthex-cutproton-exchangewaveguidesinMgO:LiNbO3to250°C,Fig.1.42,yieldsasapproximatelyidenticaldiffusioncoefficientof0.80m2h-1.Thissimilarityisreasonable,giventheprobablelevelofprecisioninobtaininguniformMgOdopantconcentrationsinthesolid.TakingtheeffectivediffusioncoefficientsforprotonexchangeinMgO:LiNbO3(Nd:MgO:LiNbO3)asapercentageofthecorrespondingvaluesforcongruent,onefindsthatthereductionisoftheorderof50±5%forx-cutwaveguidesand37±4%forz-cutwaveguides(Table1.13).

TheobservedArrhenius-typerelationshipsbetweenD(T)andT(Fig.1.42),aretypicaloftheproton-exchangeprocess.ByplottingInD(T)asafunctionofT-1,acomparisonofboththeactivationenergyandpreexponentialfactorwasobtainedforthewaveguidesfabricated

Page 174: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

inthedopedandundopedsubstrates,Table1.13.IncongruentLiNbO3,boththeactivationenergyandthepreexponentialfactorarelowerforx-cutsubstratesthanforz-cutsubstratesandhighereffectivediffusioncoefficientsareevidentforx-cutsubstrates(Lonietal.1989,Clarketal.1983).ThisrelationshipalsoappliesforNd:MgO-dopedandMgO-dopedsubstratesofx-andz-cutorientations.Comparingthewaveguidesproducedindopedandundopedsubstrates(Table1.13),onefindsthatlowereffectivediffusioncoefficientsareobtainedforprotonexchangeindopedsubstrates.Inaddition,theactivationenergyandpreexponentialfactorarehigherforMgO-doped(Nd:MgO-doped)substrates.ThesedifferencesareprobablyrelatedtoslightdifferencesbetweenthebulkandwaveguidecrystallinestructuresofcongruentandMgO-doped(Nd:MgO-doped)LiNbO3.

1.7Planarion-exchangedKTiOPO4waveguides

Potassiumtitanylphosphate(KTiOPO4,abbreviatedasKTPbelow)haslongbeenrecognizedasanoutstandingmaterialformanyimportantopticalandelectro-opticalapplications(Zumstegetal.1976,Liuetal.1984,Liuetal.1986).Itshighdamagethreshold,goodmechanicalandthermalstability,largeopticalnonlinearity,andbroadtemperaturebandwidthhavemadeitarguablythebestmaterialforfrequencyconversioninthevisibleandnearinfraredranges.KTPalsoshowsgreatpromiseinelectro-opticapplicationsduetoits

Page 175: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page69

Fig.1.42Relationshipsbetweeneffectivediffusioncoefficientandtemperatureforaseriesofx-andc-cutproton

exchangedwaveguidesfabricatedindopedandundopedLiNbO3(Lonietal.1990).

lowdielectricconstantsandlargePockelscoefficients(BierleinandArweiler1986).

Despitetheinitialsuccesses,theion-exchangeprocesshasitsdrawbacks.Specifically,theionicconductivityvariessignificantlywithcrystalgrowthmethodsandwithimpurities,makingthedevicefabricationprocessdifficultandwithpooryields.Thisinherentlydiffusiveandstronglyanisotropicion-exchangeprocessoftenproduces (whereMisT1orRb)guideswithabroadpoorlydefinedrefractiveindexprofilealongthec-axis,andwasbelievedtoberesponsiblefortheobservedvariationsintheperformanceofthesedevices.BetterunderstandingofthemechanismofionicconductionandtheunderlyingdefectsinKTPpromisestoreducethisproblem(Morrisetal.1991).

TheionexchangeconditionsandwaveguidingresultsaresummarizedinTable1.14,wheredisthediffusiondepthandDntheincreaseinthesurfacerefractiveindex.Anerrorfunctiondistributionisassumed

Page 176: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

fortherefractiveindexprofilesintheionexchangedregions,adistributionwhichagreeswellwiththeionconcentrationprofileandisshowninFig.1.43foratypicalRb-exchangedsample.Themaximumincreaseinthesurfacerefractiveindexobservedforrubidium(Dn=0.02)isclosetothevaluethatwouldresultinnearlycompleteionexchangeformingaRbTiOPO4surfaceonaKTPsubstrate(Zumstegetal.1976).Theincreaseinthesurfacerefractiveindexforalltheseionexchangedguidesgenerallyscaleswiththeelectronicpolarizabilitiesoftheexchangedionsrelativetopotassium.

Theionexchangedwaveguidesarestablebothatroomtemperatureand,providedthediffusiontemperatureremainsbelowabout450°C,theexchangeprocessdoesnotintroduceanynoticeablesurfacedefects.Nearandabove450°C,slightsurfaceetchingoccursinsomesamplesduringtheexchange.

TheresultsgiveninTable1.14showtheiondiffusioninKTPtobehighlyanisotropic,beingmuchgreateralongthez-axis(corpolardirection)andbeing

Page 177: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page70

Fig.1.43DepthprofileforRbionexchangeinKTP

(BierleinandFerretti1987).

higheronanegativez-surface(positivepyroelectriccoefficient)thanonapositivez-surface.Thediffusionanisotropycorrelateswellwiththelargeanisotropyofionicconductivitiesanddielectricproperties(BierleinandArweiler1986).Thevariationsindiffusionintothedifferentpolarsurfacesresultfromdifferencesinsurfaceadsorptionandreactivities.Additionalvariationsindiffusionkineticsareobservedalongthez-axisfromchangesinlocalionicproperties.Somecrystalshadregionsofvaryingpyroelectricanddielectricpropertiesdependingoncrystaldefects,incorporatedO-H,etc.Thediffusionrategenerallyscaleswithionicconductivity,aresultwhichisexpectedsinceionicconductivityanddiffusionarecloselyrelated.

DiffusionconstantsandactivationenergiesindicatethattheRb-K-exchangeprocessdoesnotobeysimplediffusionkinetics.TheeffectivewaveguidethicknessandDnwerefoundtobenearlyindependentofdiffusiontimefrom0.25to4hatatypicaldiffusiontemperatureof350°Candalsonearlyindependentofdiffusion

Page 178: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

temperaturefrom350to400°C.Also,post-annealingaRb-exchangedguideinairfrom300to350°Cfor30minto2hdidnotsignificantlychangedorDn.TheseresultsindicatethattheeffectiveexchangeorthediffusionratefortheRbKsystemisinitiallyhighandthendecreasessignificantlyaftersomepointintheexchangeprocess.ThislargechangeinexchangeordiffusionratecanbeexplainedbyassumingaverylowdiffusionconstantforRbandKinRb-rich

andahighconstantinKTP.Single-crystalRbTiOPO4(RTP)showsamuchlower(~100times)ionicconductivitythanKTPandhenceionicdiffusionisalsoexpectedtobemuchlower.ExchangingKwiththelargerRbioninaKTPsurfacelayerwillalsotendtoblockconductionchannelswhichfurtherlowersionicconductivity.Hence,duringionexchange,asthe

Page 179: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page71

Table1.14KTPwaveguidecharacteristics(Bierlein,Ferretti,Brixner,Hsu1987)

Ion Surfacetype

Temperature(°C)

Time(h)

Numberofmodes

Modetype

d(mm) Dn

Rb x 450 3.3 0 TE

1 TM 1.3 0.02

Rb z(+) 350 4 3 TE 4 0.019

3 TM 4 0.018

Rb z(-) 350 4 3 TE 6.5 0.008

2 TM 6.5 0.008

Cs z 450 4 11 TE 13 0.028

8 TM 13 0.019

T1 z 335 4 4 TE 1.6 0.23

4 TM 1.6 0.18

surfacerubidiumconcentrationincreases,thediffusionconstantsatthesurfacedecreasewhichwillsuppressfurtherionexchangeandresultintheequilibriumiondistributionshowninFig.1.43.Althoughsuchanequilibriumdistributionisunusual,itisconsistentwithdiffusiontheory.Thistypeofbehaviourisanadvantageforopticalwaveguidedevicessinceitallowstospeedupwaveguidefabricationatrelativelylowtemperaturesandalsopermitsthermallystableproperties.

Planarwaveguideswerefabricatedonthez-surfaces(crystallographiccdirection)ofhydrothermallygrownKTPcrystalsbyimmersingtheminamoltenmixtureofRbNO3(80mol%)andBa(NO3)2(20mol%).Diffusiontimesrangedfrom2to20minat350°C.

Page 180: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Followingdiffusion,633nmlightfromahelium-neonlaserwascoupledintothewaveguideusingaprism.Theeffectiveindicesofthewaveguidemodestravellingalongthey-axisoftheKTPcrystalweremeasuredandtherefractiveindexprofileofthewaveguidewasobtainedbytheinverseWKBmethod(Risk1991).

AtypicalrefractiveindexprofileobtainedinthismannerisshowninFig.1.44forTEmodes.ThesolidcurvesinFig.1.44arethebestfitsoftherefractiveindexprofile,n(z)=ns+Dnerfc(z/d),wherensistherefractiveindexoftheKTPsubstrate,Dnistherefractiveindexchangeatthesurface(z=0)ofthesubstrate,erfcisthecomplementaryerrorfunction,anddisthedepthofthewaveguide.Theexperimentallymeasuredrefractiveindexdistributioniswelldescribedbyanerfcprofile,asmightbeexpectedforsimplediffusion,andthisagreeswiththemicroprobemeasurementsofRb-ionconcentrationreportedbyBierleinetal.(1987).IthasbeenmentionedabovethatDnanddaremarkedlydifferentdependingonwhetherthe+cor-csideofthesubstrateisused(Bierleinetal.1987).WiththeadditionofBaions,thewaveguidepropertiesareessentiallythesameonboththe+cand-csides.

ThewaveguidedepthdandsurfacerefractiveindexchangeDnweremeasuredforseveraldiffusiontimes.Thedepthofthewaveguidewasfoundtodepend

Page 181: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page72

Fig.1.44RefractiveindexprofileofKTPwaveguideformedbyionexchange.PointswereobtainedbyinverseWKBfrommeasuredmodeindices.Thesolid

curvesarebestfitsoftheprofilen(z)=Dns+Dnerfc(z/d)(Risk1991).

Fig.1.45EffectofpostbakingtheKTPcrystal.Solid

curveshowsrefractiveindexprofileofwaveguidefabricatedaccordingtotemperaturecycledescribed.

Dashedcurveshowsrefractiveindexprofileofthesamewaveguideafterheatinginairto350°C

for10min(Risk1991).

ondiffusiontimetas .ThedepthobtainedforagivendiffusiontimewassimilarforbothTEandTMmodes.ThesurfaceindexchangeDnobtainedforTMmodeswassomewhathigherthanforTEmodes.ThisispossiblyaconsequenceofinferringDnfromthemode

Page 182: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

indicesusingasimpleWKBmodelthatdoesnotincludetheeffectofthebiaxialnatureofthesubstrateontheTMmodes.However,theTMmodeindicesareaccuratelymodelledusingthissimpleWKBapproachwiththevaluesofDnanddgiven,andthissufficesforpredictingthephase-matchingcharacteristicsforfrequencydoubling.

ItisimportanttocontrolthetemperatureoftheKTPcrystalbeforeandafterdiffusiontopreventcrackingofthesubstrateandunwantedmigrationoftheRbions.ItwasfoundthatimmersingtheKTPcrystalsdirectlyintothemeltfromroomtemperaturecausedthemtocrack,sothesubstrateswerefirstgraduallyheatedinairtonearthetemperatureofthemeltbeforebeingimmersed.ThisphenomenonisaresultoftheparticularthermalandmechanicalpropertiesofKTP.TheKTPcrystalwasheldinapreheatingfurnaceforabout1h,toensurethatthetemperatureofthecrystalhadequilibratedtothefurnacetemperature.Thenthecrystalwasdippedinthemelt.Aftertheprescribeddiffusiontime,theKTPcrystalwasremovedfromthemeltandallowedtocoolrapidlydowntoroomtemperature.BecausethediffusionoftheRbionsissofastforthisRb/Baprocess,unwantedmigrationoftheRbionsfurtherintotheKTPcrystal

Page 183: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page73

canoccurifthesubstrateisnotcooledrapidly,resultinginchangesintherefractiveindexprofile.ThisisillustratedinFig.1.45,whichshowstherefractiveindexprofileofaplanarKTPwaveguideimmediatelyafterthediffusionprocessandafteranadditional10minofbakinginairat350°C.Itisevidentthattheadditionalheattreatmenthasresultedinasignificantdecreaseinsurfaceindexchangeandanincreaseinthedepthofthewaveguide,andthattherefractiveindexdistributionnolongerhasanerfcprofile.

Page 184: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page74

2Liquid-PhaseEpitaxyofFerroelectricsThemethodofliquid-phaseepitaxyfromthefluxisbasedonthefollowingprocedure(Nelson1963;Andreevetal.1975).Thedissolvedsubstancecancrystallizeonthesubstrateimmersedinasupersaturatedconstant-temperatureflux.Inthecourseofcrystallization,supersaturationofthesolutiondecreasesandthegrowthratetendstozero.Themaximumamountofthecrystallizedsubstanceisproportionaltothemassofsolutionandthemagnitudeofsupersaturation.

Theliquid-phaseepitaxyhassomeadvantagesoverothermethods.Stoichiometryneednotbemaintainedduringgrowthfromthemelt,whichpermitsanycombinationoftemperaturesandcompositionsneartheliquiduslineofthephasediagram.Inmanycases,acorrectchoiceofthesolventallowscrystallizationatatemperaturelowerbyseveraldegreesthanthemeltingpointofthecompound.Thishelpstolowertheconcentrationofchemicalandstructuraldefectsascomparedtothatinacrystalgrownfromanearlystoichiometricmelt.Thelowerthetemperature,thelessthepossibilityofcontaminationofthefluxbyimpuritiesfromthecontainer(Alferov1976;Dolginoveta1.1976).

Thereareseveralmodificationsoftheliquid-phaseepitaxyofferroelectrics,themostpopularofwhichareepitaxialgrowthbymelting(Miyazawa1973;Adachietal.1979),liquid-phaseepitaxyfromtheflux(Kondoetal.1975;Baudrantetal.1978(a);Baudrantetal.1978(b);Ballmanetal.1975);KhachaturyanandMadoyan1978;Miyazawaetal.1978;Kondoetal.1979;KhachaturyanandMadoyan1980),capillaryliquid-phaseepitaxy(Khachaturyanetal.

Page 185: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1984;FukudaandHirano1976;FukudaandHirano1980),andliquid-phaseepitaxyfromalimitedvolume(Madoyanetal.1983;Madoyanetal.1985).

Theapplicationofliquid-phaseepitaxymethodsprovidesaclearlypronouncedsubstratefilmboundarywithstep-likerefractiveindicesandarelativelysmoothsurfaceofthestructure.

2.1Theepitaxialgrowthbymelting(EGM)

ToobtainferroelectricsinglecrystalLiNbO3films,Miyazawa(1973)proposedthemethodofepitaxialgrowthbymeltingonLiTaO3substrates.Forsubstrates,LiTaO3singlecrystalswereusedbecausethepointgroupofLiNbO3and

Page 186: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page75

LiTaO3hasthesameclass, ,andthemeltingpointofLiTaO3ishigherbyabout300°CthanthatofLiNbO3.ThisdifferenceinthemeltingpointisthekeypointfortheEGMmethod,wherethemeltingpointofthesubstratehastobehigherthanthatofthefilmmaterial,aswillbedescribedlater.

Fortunately,itisobviousfrommanypreviousinvestigationsontherefractiveindicesofLiNbO3singlecrystals(Tien1972)thatrefractiveindicesforordinaryandextraordinaryraysofLiNbO3singlecrystalswithanysolid-solutioncompositionarelargerthanthoseofLiTaO3atroomtemperature.TherefractiveindicesofLiNbO3andLiTaO3aregiveninchapter5,indicatingthataLiNbO3filmonaLiTaO3substrateactsasadielectriclightwaveguide.

TheLiTaO3substrate,whichwaspreparedfromasingle-crystalboulegrownbypullingfromameltwithacongruentmeltingcompositionofLi/Ta=0.951inmoleratio(Miyazawa1971)was10×15×4mminsizeinthex,y,andcdirections,respectively.Thec-planewaslappedandpolishedoptically,andLiNbO3ceramicscrushedintopowderwerelaidonthepolishedc-planeofthesubstrate.Thesubstratewiththepowderonitstopsurfacewasheatedto~1300°CinaresistancefurnaceinordertomelttheLiNbO3crushedpowderalone,anditwasthencooledslowlyat~20°C/hthroughthemeltingpointofLiNbO3(1250°C).Inthisway,aLiNbO3filmcrystallizedepitaxiallyontheLiTaO3substrate.Asamatterofcourse,thesubstrateisnotinasingleferroelectricdomain.(ThenameEGMoriginatesfromtheprocessdescribedabove.)ForthecompositionoftheLiNbO3ceramicsacongruentmeltingcompositionofLi/Nb=0.942inmoleratio(Lerneretal.1968)wasused,sinceacompositionalfluctuationdidnotoccurduringthegrowthrun.Consequently,afluctuationoftherefractiveindexdoesnotexistinthegrownfilm.TherefractiveindicesofcongruentLiNbO3are and at6328Å.

Page 187: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ThelatticeparametersofcongruentLiNbO3andLiTaO3singlecrystalsatroomtemperaturearegiveninchapter4.ThemismatchofthelatticeparametersatroomtemperaturebetweentheLiNbO3filmandtheLiTaO3substrateisabout0.08%and0.57%foraHandcH,respectively.ThefilmthicknesswasmeasuredbylineanalysisusinganX-raymicroanalyzer.AnintensitydistributionprofileofcharacteristicX-rayspectraforNbandTa,asshowninFig.2.1,wasobtainedbyscanningtheelectronbeamperpendiculartothefilmsubstrateboundaryoverthecrosssectionofthespecimen.FromFig.2.1thefilmthicknesswasmeasuredtobeabout6mm.Thec-planeofthefilmwasetchedwithasolutionofaHF+2HNO3mixtureatitsboilingpointfor2mintodeterminewhethertheLiNbO3single-crystalfilmwasgrownornot.

TheferroelectricdomainofaLiNbO3singlecrystalisrevealedmoreeasilybychemicaletchingthanthatofLiTaO3.Theetchedtopsurface,showninFig.2.2,indicatestheferroelectricmultidomainstructure,whichisveryclosetothatofaLiNbO3singlecrystalwheretheareaswithtrigonalhillocks(blackincolour)areatthenegativeendofspontaneouspolarizationandthosewithouthillocksareatthepositiveone.ItwasconcludedthattheLiNbO3single-crystalfilmwasgrownontheLiTaO3substrate,sinceitiswellknownthattheferroelectricdomainstructure,asshowninFig.2.2,isnotrevealedinaLiTaO3singlecrystalunderthesameetchingcondition.X-rayexaminationresults

Page 188: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page76

Fig.2.1Intensitydistributionprofileof

characteristicsX-rayspectraforNbandTa,perpendiculartothefilmsubstrate

boundary(Miyazawa1973).

Fig.2.2(right)Etchfigureofthefilmsurface,indicating

theferroelectricmodulationpattern(Miyazawa1973).

indicatethattheLiNbO3single-crystalfilmwasepitaxiallygrownonthesubstrate.

Asthetopsurfaceoftheas-grownfilmwasrelativelyrough,itwashandpolishedfirstwithdiamondpasteandthenwith0.05mmA12O3powderinordertodemonstratelightwavepropagationinthe

Page 189: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

epitaxiallygrownfilm.Figure2.3showsa6328-ÅHeNelaserbeamwhichwasfedintothefilmattheright-handsidebyaprismcoupler.Arutileprismwasusedastheinputcoupler.Thelightbeampropagatedthroughtheentirelengthinsidethefilmandthenradiatedintofreespaceattheleft-handedgeofthespecimen,leavingabrightareawhichindicatesthenear-fieldstructure.Afewspecksoflightareobservedalongthelightstreak,andalargespotisobservedneartheleft-handedge.Inotherexperiments,thesingle-crystalfilmwasgrownonthex-andy-planesofthesubstrate.Thefilmgrownonthex-planeincludedseveralcracksrunningalongtheperfectcleavageplane ofLiNbO3,Fromdetailedobservationsofthefilmsurfaceunderadifferentialmicroscope,itwasfoundthatweaklyobservedscatteringalongthepropagatinglightbeamwascausedbytheroughnessofthefilmsurface.

Ballmanetal.(1975)havemodifiedthemethoddevelopedbyMiyazawa.EvidenceispresentedwhichsuggeststhattheepitaxialgrowthbymeltinginvolvesadiffusionmechanismbetweenthemeltingliquidandtheLiTaO3substrate.AlthoughthegrowthprocessinvolvessimplemeltingofLiNbO3powderonthesurfaceofLiTaO3substrates,thesuccessfulproductionofahighqualityfilmisespeciallydependentuponthemannerinwhichthepowderisappliedtothesubstrate.

Ifthepowderedlayeristoothickorifthethicknessvariesappreciablyoverthesurfacearea,puddlesofLiNbO3formduringthemeltingprocess.Theyproduceaveryunevensurfaceafterrecrystallizationandmakethefabricationofanopticalwaveguidequitedifficult.

Page 190: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page77

Fig.2.3Lightbeampropagatinginthefilmgrownontothec-plane,whichwas

fedbyaprismcouplerattheright-handside(Miyazawa1973).

LiNbO3powdersofabout30mmparticlesizeweresuspendedinalacquer.ThisLiNbO3-lacquersuspensionwasthen'painted'ontheLiTaO3substrates.Thesepaintedlayerswerepracticallyflat,andwhendry,thesuspendedpowderswerefirmlyfixedtothesubstrate.Thespecimenswerethenbroughtuptothedesiredfiringtemperature(1260°Cand1320°C)inaresistancefurnace.Duringthewarm-upperiod,theorganiclacqueriscompletelydecomposedandleavesaveryuniformlayerofLiNbO3powderreadyforthemeltphaseepitaxialreaction.Aftera30minsoakperiodatthefiringtemperaturethesampleswerecooleddowntoroomtemperatureatarateof20deg/h.

ThefilmthicknesscanbecontrolledbyvaryingtheconcentrationoftheLiNbO3-lacquersuspension.Similarly,thicknesscanbebuiltupbyadditionalpaintingandfirings.Thefilmsrequiredlightsurfacepolishorbuffinginordertocouplelaserlightinoroutviaarutileprism-filmcoupler.Figure2.4showsthephasediagramforLiNbO3(film)andLiTaO3(substrate)astothetwoendmembers(Petersonetal.1967).Theshadedarearepresentsthetemperaturerangecoveredinthisstudyanditincludesthereactiontemperature(1300°C)

Page 191: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

reportedbyMiyazawainhiswork.

Fig.2.4LiNbO3-LiTaO3phasediagram

(Petersonetal.1970).

Page 192: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page78

Itisevidentthatinameltphaseepitaxialprocessseveralfactorscombinetodeterminethefinalcompositionofthefilm.Thephasediagramitselfpredictsthefilmcompositiononecouldobtainasafunctionofthereactiontemperature.Anadditional,andimportantconsiderationistherateatwhichLiTaO3-lacquerwilldissolveinthemoltenLiNbO3-lacquerduringthesoakperiod.Afurthercompositionalgradingcanoccurduetosegregationwhichtakesplaceasthemoltenlayercrystallizesinaccordancewiththephasediagram.Thereisthenthesolidsoliddiffusionprocesswhichoccursasthegrownfilmisslowlycooledtoroomtemperature.

Thefilmthicknessmeasurementswereobtainedbyusinganelectronmicroprobeandtrackingacrossthecleavededgeofaspecimen.Theelectronbeamtrackedacrossthesurfaceofthefilmandcontinuedacrossthefilmsubstrateboundary.Asthebeamfirstentersthefilm,boththeniobiumandtantalumcountsriseandthisisindicativeofthesolidsolutionnatureofthefilm.Asthebeamleavesthefilmandentersthesubstrateregion,theniobiumintensitydiminishes.Thedistancetrackedwhiletheniobiumintensityiselevatedisequaltothefilmthickness.Figure2.5showstheeffectinafilm~3mmthick.

TheroleofsolidsoliddiffusionandhowitmaybeusedtoalterthepropertiesofagrownfilmisshowninFig.2.6.CurveArepresentstheindexoftherefractionprofileforasolidsolutionfilm.CurveBrepresentstheindexprofileforthesamecrystallinefilmafterithasundergoneanannealat1200°Cfor48h.Itisclearfromtheloweringoftherefractionindexandtheincreasedfilmthickness(3.7mmto~10mm)thatextensivediffusionhasoccurredinthesolidstateduringtheanneal.

Thelossofthefundamental(m=0)waveguidemodewasdeterminedbymeasuringthelightlostintransmissionbetweentheinputandtheoutputcoupler.Solidsolutionfilmsofthetypeshownheregavelosses

Page 193: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ofabout5dB/cm.Thesamemethodwasalsousedtoobtain(K,Li)LiNbO3films(Adachietal.1979)uptoseveralmicronsthick.Thequalityofthefilmdependsonthechoiceofsubstratesandthewayinwhichtheceramicpowderisdepositedontothesubstratesurface.

2.2Thecapillaryliquidepitaxial(CLE)technique

Thecapillaryliquidepitaxialtechniqueisoneofthenewmethodsforobtaining

Fig.2.5Nb+andTa+intensityaselectronbeamtracksoffilmsurfaceandfilmsubstrate

interface(Ballmanetal.1975).

Page 194: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page79

ferroelectricfilms.Themethodisamodificationofthewell-knownStepanov'stechnique(Stepanov1963;Maslov1977)whichgivessinglecrystalsintheformofthinfilms(FukudaandHirano1976;FukudaandHirano1980).

2.2.1CLEgrowthprocedure

ThegrowthsetupusedforCLEgrowthisthesameasusedinthepreparationofLiNbO3ribboncrystals(FukudaandHirano1975).Thegrowthsetupcomprisesa50mmdiameter×30mmlongPtcrucible,agap-shapedPtcapillarywitha0.5mmwidthand30-50mmheight,aconicalPtafterheater,ceramicinsulatorsandasubstratepullingmechanism.ThegrowthgeometryisshowninFig.2.7.Growthisinitiatedwhenthetipofthesubstratetouchestheliquidinthecrucible,withabout0.5mmseparationbetweenthesubstrateandthecapillaryplate.Whenthesubstrateispulled,thesolutionismixedwiththatinthecapillarygap,onthetopofthedie.Therefore,thecapillarydieisusedasareservoirtofeedthelayerofliquidbetweentheexteriorofthedieandanadjacentsubstrate.Temperatureadjustmentisaccomplishedbymonitoringtheliquidtemperature.

Figure2.8showsthegeometryforanimprovedCLEtechniqueandamultilayergrowthtechnique,proposedbyFukudaandHirano(1980).IntheimprovedCLEtechnique,thecapillarydiecomprisestwoparallelverticalplatesofdifferentlengthsuitablyspacedtoprovidethecapillaryaction(seeFig.2.8a).Theliquidrisesthroughthecapillarydietopandgrowthistheninitiated.Thesubstrateplateconstitutesthediewallcomplementingthelowerendportionoftheshortercapillaryplate.Figure2.8bshowsthatafilm(LiNbO3)oraribbon(LiTaO3)crystalcanbegrownusingtheimprovedCLEandEFGtechniquessimultaneously.

LiNbO3thinfilmsweregrownfromaLiNbO3-LiVO3moltensolution.Amixtureof50mol%Li2CO3,10mol%Nb2O5and40

Page 195: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

mol%V2O5wasusedasastartingmaterial.ThemixturewasheatedinaPtcruciblebyrfheatingandthesolutiontemperaturewasadjustedtoavaluesuitableforgrowth(850-900°C).Thefilmthicknesswascontrolledbysolutiontemperatureandpullingspeed.Afterterminatinggrowth,thefurnacewascooledtoroomtemperatureatarateofabout200°C/h.ForLiTaO3substratesmirror-polishedplates(typicaldimensions15×30×2mm)werefabricatedfromCzochralskigrownboules.Thefollowingorientationswereused:(001)<100>,(100),<210>,(130°rotatedYplate)<210>and(170°rotatedYplate)<210>,where()and<>showtheplateplaneandpullingdirection,respectively.

LiTaO3thinfilmsweregrownfromaLiTaO3-LiVO3moltensolution,aswereLiNbO3filmsfromaLiNbO3-LiVO3moltensolution.Forsubstrates,LiNbO3platecrystalswerefabricatedfromCzochralskigrownboules.Orientationswere(001)<100>,(131°rotatedYplate)<210>,and(210)<112.1°rotatedY>.

Forseveraladvancedexperiments,basedontheCLEtechnique,multiple-layerstructurefilmsorstripedfilmsonsubstratesandmultipleribbonsweregrown.Thefollowingsubstrateswereused:LiNbO3filmson(001)<100>LiTaO3plates,LiTaO3filmson(001)<100>LiNbO3plates,and(001)<100>LiTaO3substrateswith200or25mmwidthand0.75mmdepthalong<100>

Page 196: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page80

Fig.2.6Indexofrefractionprofileversusthicknessforafilmbeforeandafter1200°anneal(Ballman

etal.1975).

Fig.2.7(right)GeometryofCLEgrowth(Fukuda

andHirano1980).

direction,asshowninFig.2.9(madebyionbeametching).LiNbO3thickfilmsweregrownon(001)<100>LiTaO3platesoras-grownribbons,fromaLiNbO3meltinsteadofaLiNbO3-LiVO3solution.ThefilmgrowthconditionsarepresentedinTable2.1.

2.2.2.CLEgrowthandcrystalquality

LiNbO3epitaxialthinfilmshavebeensuccessfullygrownontoLiTaO3substrates.Thefilmthickness,whengrownat970°Canda3mm/minpullingrate,wasabout2mmandalmostconstant,exceptnearthefilmedge.Thefilmsurfacewassmooth,clearandmirror-polished.Thesideviewofthefilmsubstrateboundaryobservedbyopticalmicroscopywasverysharp.AnX-rayrockingcurvefromthe

Page 197: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

(006)reflectionshowedclearlyseparatedfourpeaksofCuKalandCuKa2radiationfromthefilmandsubstrate(FukudaandHirano1976).

Fig.2.8GeometryforimprovedvariationsoftheCLEtechnique(a)andmultiple-layergrowthtechnique(b)(Fukudaand

Hirano1980).

Page 198: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page81

Table2.1LiTaO3andLiNbO3thin-filmgrowthconditions(Fukuda,Hirano1976)

Film Substrate Solutiontemperature

(°C)

Pullingrate(mm/min)

Filmthickness(mm)

LiTaO3 LiNbO3 1026 2 2

LiNbO3 LiTaO3 995 1.8 0

LiNbO3 LiTaO3 975 2.3 3.5

LiNbO3 LiTaO3 970 3 3

LiNbO3 LiTaO3 965 2.3 4.5

Fig.2.9A(001)<100>LiTaO3substratewith20mmwideand0.75mmdeepgroovesetchedwithanionbeam,alongthe<100>direction(FukudaandHirano1980).

Theseresultssuggestthatthefilmsobtainedwereofhighquality.

Thethicknessofthefilmisafunctionofthesolutiontemperatureandpullingrate,ashasbeenreportedindetail(FukudaandHirano1976).Thelowerthesolutiontemperature,thethickerthefilmobtained.But

Page 199: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

asthetemperaturebecamelower,manysmallhillocksappearedonthefilmsurfaceandslipboundariesweredetectedneartheedge.Rapidpullingproducedagradualdecreaseinthicknesswithinthecrystal,whileslowerpullingproducedagradualincreaseinthickness.

LiNbO3films,whichweregrownontothe(100)<210>,(131°rotatedYplate)<210>,and(170°rotatedYplate)<210>usingthesamegrowthconditionsasemployedonthe(001)<100>plates,wereofpoorqualityhavingroughsurfacesandmanydefects.Thefilmqualitywasremarkablyimprovedbyadjustingtheinitiatedtemperatureusingdiesofdifferentlengths.Itisassumedthattheappropriategrowthtemperaturewasachievedaftercarvingquicklythesolutionontothesubstrateusingcapillaryactionsothatthefilmdidnotsufferbadeffectsoflargesupercoolingbyloweringthesolutiontemperature.

Page 200: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page82

Theimprovementwasobservedastheresultofchangingthedielength(l)(wherelmeansthepartofagap-shapedcapillary0.5mmwide)forgrowthonthe(170°rotatedYplate)<210>plate.

Figure2.10showstypicaletchpatternsforLiNbO3filmsgrownonplates(+Z)LiNbO3platesand(+Z)LiTaO3plate

crystals,respectively.Etchingwascarriedoutfor15minutesattheboilingpointoftheetchant(HF:HNO3=2:1).Forthecrystalsexamined,itwasobservedthatthefilmsurfacesidewasalways(-Z)planeoverthewholeplateirrespectiveofsubstrateorientation.ItissuggestedthatthefilmgrownbytheCLEtechniqueisofthesingledomaintype.Thismaybeattributedtothefactthatgrowthisinitiatedintheferroelectricphase.

Thelatticeconstantc0ofa filmona(001)<100>LiTaO3plate,whichwasgrownusingthemixtureofLiNbO3(10mol%),LiTaO3(10mol%)andV2O5(80mol%),wasmeasuredbyX-raydiffraction.Thevalueofcowas13.80Å,whichwasnearlythesameasthatofthebulk crystal(Swartzetal.1975).Thissuggeststhat oftheCLEgrownfilmfromthesesystemsapproachedunity,asisindicatedinEFGgrowth(FukudaandHirano1975).

LiTaO3thinfilmscouldbealsogrownwithgoodepitaxyontoLiNbO3substrates,whosemeltingpointwasabout400°Clowerthanthatofthefilm

Page 201: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.2.10TypicaletchpatternsforaLiNbO3film(a)(-Z)LiNbO3plate(b)(+Z)

LiNbO3plateand(c)(-Z)LiTaO3plate,respectively(FukudaandHirano1980).

Page 202: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page83

material.Thethicknessofthefilmsgrownat1026°Catapullingrateof2mm/min,wasabout2mm.ThefilmsurfaceandqualityobservedandmeasuredbyopticalmicroscopyandX-raydiffractionwerenearlythesameasthatofLiNbO3filmsonLiTaO3substrates.

Figure2.11showstheas-grownfilmsurfaceandsideviewofLiTaO3andLiNbO3multiple-layerstructurefilmson(001)<100>LiTaO3substrates.Thefilmsurfaceflatnessisalmostthesameasthatofthesinglelayerfilmsusedasasubstrate(seethedottedlineinFig.2.11).Thefilmareabout5mmthick.Inparticular,itischaracteristicthatthefilm-to-filmboundaryobservedbyapolarizedmicroscopeisverysharp.

LiNbO3filmsweregrownonto(001)<100>LiTaO3substratesinwhichstripedditches200or25mminwidthand0.75mmindepthalongthepullingdirectionhadbeenprepared(seeFig.2.9).Itshouldbenotedthatstripedditcheswerecompletelyburiedunderfilmsandthatthefilmsurfacewasalmostflat.

FromtheconsiderationoftheCLEcharacteristicsmentionedaboveitissuggestedthataburiedfilmorlayerstructurefilm,asdepictedinFig.2.12,canbegrownbycombiningtheCLEtechniquewithetchingandpolishing.Shapedfilmscanalsobegrownusingashapeddie.

UsingthedieasshowninFig.2.8,LiNbO3thinfilmsandLiNbO3thickfilmsweregrownon(001)<100>LiTaO3substrates.ThinfilmsgrownfromtheLiNbO3-LiVO3systemwereessentiallythesameasthosegrownusingthedieshowninFig.2.7.ThefilmgrownfromaLiNbO3meltwas200mmthick.(001)<100>LiNbO3onLiTaO3multipleribbonswerealsogrown.WhengrownfromtheLiNbO3melt,thesurfacewasnotsmoothandcontainedstriationsandripples,aswasseenintheEFGgrownribbon(FukudaandHirano1975).ThecompositionprofilesperpendiculartothefilmsubstrateboundaryweredeterminedusinganX-rayprobemicroanalyzer.Asshownin

Page 203: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.2.13,thereisasharptransitionfromtheNb-totheTa-containinglayer.

CapillaryliquidepitaxywasusedtogrowferroelectricfilmsofLiNbO3(Khachaturyanetal.1984;FukudaandHirano1976;FukudaandHirano1980),Li(Nb,Ta)O3andLiTaO3(FukudaandHirano1976;FukudaandHirano1980),andKNbO3(KhachaturyanandMadoyan1980;KhachaturyanandMadoyan1984).Thecapillaryliquidepitaxymethodhasthefollowingadvantages:thepossibilityofobtainingfilmsfromahigh-temperaturematerialonsubstratesfrommaterialswithalowermeltingtemperature,asmoothfilmsurfaceandaclearlypronouncedfilmsubstrateboundary.

2.3Theliquid-phaseepitaxy(LPE)technique

Analysisofexperimentalstudiesofthegrowthofthin-filmferroelectricstructuresshowsthatthemostperfectepitaxiallayersofLiNbO3,Li(Nb,Ta)O3,KNbO3wereobtainedbytheliquid-phaseepitaxytechnique.Theopticallossesinlightpropagationthroughtheindicatedstructuresliewithintherange0.5-3dB/cm.

Thelowgrowthratetypicalofliquid-phaseepitaxymakesitpossibletocontrolthesizeofepitaxiallayerstoanaccuracymuchhigherthanthatattained

Page 204: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page84

Fig.2.11As-grownfilmsurfaceflatnessandsideviewofaLiTaO3

andLiNbO3multiple-layerstructurefilmona(001)<100>LiTaO3substrate(FukudaandHirano1980).

indiffusionprocesses.

Kondoetal.(1975)appliedtheliquid-phaseepitaxymethodtogrowingLiNbO3films.Amixtureof50mol%Li2O,10mol%Nb2O5and40mol%V2O5waschosenasastartingcompositionforLPEgrowth.Thecompositionisequivalentto20mol%LiNbO3inthepseudobinarysystem.AfterweighingtheappropriateamountofLi2CO3,Nb2O5,andV2O5,themixturewasheatedat1200-1250°Cformorethan3hinaresistancefurnace.APtcrucible50mmindiameter,40mminheight,and1mminwallthicknesswasused.Thefurnacewasdividedintothreeheatingzones.Eachzonewascontrolledindependentlywithinanaccuracyof±0.5°C,sothattheverticaltemperaturedistributionwasalmostuniformupto200mmabovethecruciblebase.

Afterachievingcompletemelthomogeneity,themoltensolutionwascooledtoabout850°Catarateof30°C/h,andwasheldmorethan3hatthistemperature.

Page 205: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Ac-cutLiTaO3substrate,positionedslightlyabovethemoltensolutiontobeequilibratedwiththesolutiontemperature,wasdippedinthemoltensolution.Anappropriatedippingtemperaturewas825-850°C.Thesubstratewasthenremovedfromthemoltensolutionandslowlybroughttoroomtemperature.

Fig.2.12Aburiedfilmorlayeredstructurefilmareshown,

whichcanbegrownbycombiningtheCLEtechnique,etchingandpolishing(FukudaandHirano1980).

Page 206: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page85

Fig.2.13CompositionprofilesdeterminedbyX-ray

probemicroanalyser(FukudaandHirano1980).

Thegrowthrateoftheepifilmwasexaminedbychangingthedippingtime,anditwasestimatedtobeapproximately0.1mm/min.Oneendofthesubstratewascutobliquelyinordertodraintheflux,andthefluxwasfoundtodrainfromthespecimenuponremovalfromthemoltensolution.Theresidueofthefluxadheringtotheas-grownspecimenwaswashedawaywithwater.

Theas-grownspecimenthusobtainedisshowninFig.2.14a.Thesurfaceappearsclearandsmooth,andthefilmseemstransparentandcolourless.Figure2.14bindicatesacross-sectionalprofileofthespecimennearthefilmsubstrateboundary.Thefilmthicknesswasmeasuredtobe~3.1mm,exceptneartheboundary.Protuberanceattheboundarymaybecausedby'wetting'ofthemoltensolutionontothesubstrate.

Theroughnessoftheas-grownsurfacedependsonthefilmthickness.Smallhillocks,whichappearonthesurface,aresurroundedbyfacetsofLiNbO3.Thehillocksonthegrowingsurfaceareadjacenttoaconstitutionalsupercooledsolution,andapreferentialgrowthofthehillocksoccurs.Asaresult,theymaybecomelargerandgrowfasterasthegrowthproceeds.Consequently,thefilmsurfacebecomesrougher.

Page 207: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.2.14a)As-grownLiNbO3filmontheLiTaO3substrate.b)cross-sectionalprofilenearthefilmsubstrateedge.Film

thicknesswasabout3.1mm(Kondoetal.1975).

Page 208: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page86

Fig.2.15X-rayrockingcurvetakenfor(006)reflection(Kondoetal.1975).

ThecrystallinityofthefilmwasinvestigatedbytakingX-rayrockingcurves.Figure2.15showsa(006)rockingcurve.Thefourpeaks,correspondingtoCuKa1andCuKa2radiationsfromthefilmandthesubstrate,arewellseparated.Thischaracteristicfeatureindicatesthatthefilmhasahighsinglecrystallinitywithgoodepitaxy.

Thefilmwasalsogrownontothey-platesubstrate.Thegrowthratewas3-5timesfasterthanontothec-plane.However,thefilmsurfacewasroughercomparedtothec-plane,andanX-rayrockingcurverevealedthatthefilmhadpoorepitaxywithmanymicrocracks.ThismaybecloselyrelatedtothelatticeparametermismatchbetweenLiNbO3andLiTaO3.Themismatchforthec-anda-axeswasabout0.7and0.1%,respectively.Theanisotropyofthelatticemismatchinthey-planeresultsinthenonuniformgrowthofthefilmcausedbymismatchdislocations.

Baudrantetal.(1978)hasalsousedLiTaO3substratesforliquid-phaseepitaxyoflithiumniobate.

LiTaO3waferswerepolishedtoahighdegreeofperfection,mounted

Page 209: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

horizontallyonaplatinumsubstrate-holderandslowlyintroducedintotheverticalfurnaceforepitaxy.Asolutionobtainedfromatypicalchargeof27wt%Li2CO3-20wt%Nb205-53wt%V2O5hadasaturationtemperatureofabout950ºC.Growthtemperatureswerechosebetween940and945ºC.Undertheseconditions,thegrowthratewasabout0.5mm/min.

Inordertoobtainsmoothmonolayer-typeepitaxialfilmsratherthanisland-typefilms,severalcrystallographicorientationsofthesubstrateweretested.Symmetryconsiderationsandagoodfitbetweentheparameterssuggestedanattempttotryfirstepitaxialgrowthonthe(00.1)basalplanes.

SeveralLiNbO3filmswereisothermicallygrownfromundercooledsolutionsduringdifferentgrowthperiodsinordertofollowthesuccessivegrowthstepsofanepitaxiallayer.The[00.1]orientedfilmsbecomerapidlycontinuous

Page 210: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page87

andfromthicknessofabout2mmareperfectlysmoothanddirectlyusableforlightpropagationexperiments.

Infact,theprofileofthetransitionlayercouldbedeterminedboyionicanalyserchemicalcontrol.Thisprofileshowstheexistenceofan~2000Åthicktransientlayer.Thiscanbeexplainedeitherbyaninterdiffusion ontheLiTaO3matrixor,moreprobably,byaslightdissolutionofthesubstratebeforegrowth.Thus,thefirstgrowinglayerswillhavecompositionofthetypeLiTaxNb1-xO3varyingrapidlyfrom1to0.

Fromanopticalpointofview,thisLPEfilmprofilecan,however,beconsideredasastepinterfacecomparedtothemeltphaseepitaxialfilmprofilewhichexhibitsagradedindex(Takadaetal.1974).Itshouldbenotedthattoofastacoolingrateafterepitaxyinvolvedcrackformationbothinthefilmandinthesubstrateparalleltothecleavageplanes(01.2).

Intheirearlierpaper,Baudrantetal.(1975)usedasubstrateoflithiumniobatecrystalswithorientation^c.Thepreparationandtechnologyofepitaxiallayerswereidenticalwiththosedescribedabove.

Themethodofliquid-phaseepitaxyfromalimitedvolumeofsolutioninamelthasbeenproposedrecentlybyMadoyanetal.(1983)andMadoyanetal.(1985).Crystallizationproceedsherefromalimitedvolumeofflux(solutioninmelt)containedinacapillaryformedbytwoparallelsubstrates.Whenthegapbetweenthesubstratesissmall,theliquid-phaseconvectionisabsentandthegrowingsurfaceisfedbydiffusionofthedissolvedcomponent.Thefilmthicknessdependsonthedistancebetweenthesubstrates(thecapillarywidth),epitaxytemperatureregime,materialandsubstrateorientation.Lowcoolingratesprovideprecipitationofthelayerontothesubstratesurfacewithoutcrystallizationintheflux.

Page 211: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theliquid-phaseepitaxymethodiseconomicalowingtothepossibilityofusingthesolventmaterialrepeatedly.Thebasicshortcomingofthemethod,whenappliedtolithiumniobate,iscomplicatedcontrolofobtaininglayerswithprescribedparameters.Thetendencyofthesolutioninmelttosuper-cooling(to70-80ºC)hampersapreciselocationoftheliquiduscurve(theinitialepitaxytemperature).Chemicalactivityoftheliquidphaserestrictsstronglythechoiceofconstructionalmaterialforcruciblesandsubstrate-holders.

2.4Physico-chemicalbasisofcapillaryliquid-phaseepitaxy

Crystallizationfromabufferedmeltexhibitsfunctionsofboththesolutionandmeltmethods,whichaccountsforthewiderangeofcompositionsemployed,includingthemajorityofmeltingcompounds.Liquid-phaseepitaxyisdeterminedbythermodynamics,kineticsandtechnology(Andreevetal.1975).Thefirstofthesefactorsisresponsibleforthecharacterofphaseequilibriuminthesubstrate-bufferedmelt-vapoursystem.Thesefactorscompletelydeterminetheprocessunderequilibriumconditionsonly.Thekineticfactorshaveasubstantialeffectupontheepitaxyprocessundernonequilibriumconditions.Thegrowthkineticsaredeterminedbythefeedofthegrowingsurfaceandbytheactivationenergyoftheprocessatthephaseboundaries.Themethodicalfactorsincludethoseconnectedwithprocesstechnology.

Page 212: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page88

Phaseequilibriuminthesubstrate-solutionsystemdeterminesthenatureofcrystallization.Asaturatedliquidphase(i.e.asaturatedsolutionofthecompoundundercrystallizationinameltofanothermaterial)isbroughtincontactwiththesubstrate,andundersubsequentsupersaturation(duetocoolingoradditionalfeedfromthesolidorgasphase)theepitaxiallayerprecipitatesontothesubstrate.Theliquid-phasecompositionandtheslopeoftheliquiduscurvedeterminethecomposition,growthrateandthicknessofthefilm.Inreality,theprocessproceedsinnonequilibriumconditionsforasimplereasonthatcrystallizationrequiressupersaturation,whichinitselfisadeviationfromequilibrium.Thisexplainswhythecrystallizationprocessandtheepitaxiallayerparametersarecharacterizedbyotherfactors,namely,byalimitedspeedatwhichcomponentsapproachthegrowingsurface(typically,inanon-mixingandisothermicsolution),bysupersaturationofthesolutionduringgrowth,bynucleationandthegrowthmechanismonthesurfaceandbyconvectionduetotemperatureandcompositiongradients.Inaddition,atanearlystageofanewheterostructurallayer,thatis,intheheterotransitionphase,therealwaysexistsathermodynamicinstabilitybetweenthesolutionandthecrystalsurface.

Thermodynamicinstabilitybetweenthecrystalsurfaceandtheliquidphasemustexistprovidedthesolidstatecomposition,wheninequilibriumwiththeliquidphase,differsfromthecompositionofthecrystalwhichisincontactwiththesolution(BolkhovityanovandChikichev1982).Furthermore,thecrystallizationprocessdependsontherelationbetweenthecrystallizationrateofagivensubstanceandthecoolingrateofthesolutionforadefinitestateofthesubstratesurface,ontheinitiallevelofsolutionsaturationandonotherfactors.Thefollowingversionsofthisrelationshiparepossible.Ifthecrystallizationrateexceedsappreciablythefeedrate,theactsofcrystallizationandsolutioncanalternateduetoinsignificantthermal

Page 213: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

fluctuations.Thus,theepitaxyprocesswillhaveafluctuationalcharacter,whichcancauseadistortionofthecrystallizationfrontshape.Thiseffectisobservedatminimumratesofinducedcoolingofthesystem.

Underepitaxy,thesolutioninmeltisincontactwiththesubstrateontowhichthelayeriscrystallized.Theepitaxyprocessandthepropertiesoftheprecipitatedlayerarethereforealsodeterminedbythepropertiesofthesubstrate.Thesubstrateonlyhasadirecteffectuponthecrystallizationofthefirstlayer(withthethicknessofseverallatticeconstants),whentheepitaxyprocessisdeterminedbythecharacterofphaseequilibriumatthesubstrate-solutionboundaryandbythekineticsofsurfaceprocesses.Althoughthefurthergrowthproceedsontheepitaxiallayer,partofthesubstrateparametersaffectthecrystallizationduringthewholeprocess(e.g.thesubstrateorientation).Inthisconnection,inthechoiceofmaterialforasubstrate,alongwithphysicalparameters,suchastherefractiveindex,opticalcoefficients,etc.,thecrystallochemicalspecificitiesshouldbetakenintoaccount.Themostimportantconditionforobtainingperfectlayersisuniformityofthecrystallinestructureofthefilmandsubstratewithadifferencebetweenthelatticeconstantsnothigherthan1%.Thesubstratemustbechemicallyneutralwithrespecttotheliquidphaseanditssolubilityinthemeltinsignificant.Finally,substrate-filmpairsshouldbechosentohaveclosethermalcoefficientsofexpansionlesttemperature

Page 214: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page89

variationsshouldinducestrongtensionsalongtheinterface.

Theclosevaluesofthefeedratesandcrystallizationpromoteconditionsofapproximateconstancyofthebufferedmeltsupersaturation.Thisprovidesahigheruniformityofcrystallizationlayers.Whenthesubstanceapproachesthecrystallizationfrontatarateexceedingthecrystallizationrate,thesupersaturationofthesolutioninthemeltgraduallyincreases.Undertheseconditions,thevariousactivecentreshaveanincreasingeffectuponthelayergrowth.Theroleofsuchcentresismostoftenplayedbydefectsofthesubstratesurfaceandatomsofimpuritiesinthesolution.Whentheinducedcoolingrateofthesystemdiffersonlyslightlyfromtheoptimumepitaxyconditions,thepredominantsubstancecrystallizationonthesecentrescanbeseenasaslightworseningofthestructuralperfectionofthelayers.Afastercoolingofthesystemleadstoastrongerpredominantroleofdefectsoftheorientingsurfaceinthecrystallizationprocess.Theextrememanifestationofthiseffectisthepolycrystallinelayergrowthwhichtakesplaceatconsiderableratesofinducedcoolingofthesystem.Thus,forthegrowthoflayerswithaperfectenoughstructureandmorphologyofthesurface,thesolution-substratesystemshouldbesocooledthatastrictlydefiniteandconstantamountofsubstanceisfedtothecrystallizationfrontperunittime.

Thebasicrequirementsonsolventsusedinliquid-phaseepitaxyareasfollows(Andreevetal.1975):

1.alowmeltingtemperatureofthesolventandalowvapourpressureattheepitaxytemperature;

2.ahighsolubilityofmaterialundercrystallization,whichmakesitpossibletoobtainepitaxiallayersatlowtemperatures;

3.stabilityofthesolidphaseofthedissolvingsubstanceundergrowth

Page 215: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

conditions;

4.solventneutralitytothecruciblematerial;

5.alowsolventsolubilityinthecrystallizedlayer(thesolventcontaminatesthefilmlessifthefilmandsolventmaterialhaveidenticalions).

UnderLPEofferroelectrics,theconstituentliquidofthesolutionismostoftenoneofthebasiccomponentsofthesolidstate,andphaseequilibriumsaresuchthattheliquidsolutionfromwhichprecipitationoccursisdilutewithrespecttoallthecomponentsexceptone.

Forinstance,forgrowingferroelectricfilmsoflithiumniobatefromasolutioninmelt,thesolventshouldbenonvolatileandnonviscous,withawiderangeofsupercooling,andmustnotformcompoundsandsolidsolutionswiththedissolvedsubstance.Thethermalcoefficientofsolubilitymusthavevaluesoftheorderof0.1%g/gradinorderthatthesolutioninmeltcouldbecooledslowly.Toobtainfilmsofhighopticalqualityandstructuralperfection,itisnecessarytooptimizesimultaneouslyallthetechnologicalparameters,namely,supersaturationandviscosityofthesolution,saturationtemperature,etc.

Foranadequatechoiceofsolvent,thesolubilityoflithiumniobatewasinvestigatedinvariousinorganiclayers:PbO-PbF2,Li2O-MoO3,Li2O-V2O5(Kondoetal.1975;Baudrantetal.1975),Li2O-B2O3,Li2O-WO3(Kondoetal.1975;Ballmanetal.1975),LiF,LiCl(Kondoetal.1975),KCl(Baudrantetal.1975),K2WO4andWO3(KhachaturyanandMadoyan1978).Thepossibility

Page 216: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page90

ofLiNbO3precipitationfrombufferedmeltsLi2O-V2O5,Li2O-B2O3andLi2O-WO3wasrevealed.Allthethreesystemsexhibitedprecipitationoflithiumniobatewithouttheformationofotherphasesinawiderangeofconcentrations.

Beforeanyliquid-phaseepitaxialtechniquewasappliedtofilmgrowth,severalsystemsofinterest,K2WO4-LiNbO3,KVO3-LiNbO3,NaVO3-LiNbO3andLi1-xNaxVO3-LiNbO3,wereinvestigated(Neurgaonkaretal.1980)andthetemperatureandcompositionalboundariesoverwhichLiNbO3crystallizeswereestablishedbythedifferentialthermalanalysistechnique.

ExaminationofthephasediagramsinFig.2.16showsthattheLiNbO3phasecrystallizesinallthethreesystemswhentheconcentrationofLiNbO3isabove50mol%and,hence,thedippingtemperaturehadtobeinthe1100to1150ºCrange.TheLPEgrowthoftheNb-richfilmswassuccessfulontheY-cutLiNbO3substratesfromtheK2WO4-LiNbO3andKVO3-LiNbO3systems,andtheunitcellavariedfrom5.148ÅforLiNbO3substrateto5.153ÅfortheNb-richLiNbO3films.Ballmanetal.(1975)alsostudiedtheK2WO4-LiNbO3system,andtheirresultswereinexcellentagreementwiththoseofNeurgaonkarandStaples(1981).AccordingtoNeurgaonkaretal.(1978),K+doesnotpreferthesixfoldcoordinatedLi+-siteintheLiNbO3structure;thechangesintheunitcellaarethereforeconsideredtobeduetochangesintheLi:Nbratio.

Inthethirdsystem,NaVO3-LiNbO3,thesituationiscompletelydifferent.Crystalchemistry(Neurgaonkaretal.1980)showsthatabout7mol%sodiumdissolvesintheLiNbO3structureand,forthisadditionofsodium,theunitcellachangedfrom5.148ÅforLiNbO3to5.179ÅforLi0.93Na0.07NbO3.This

Page 217: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.2.16Partialphasediagram:a)K2WO4-LiNbO3;b)KVO3-LiNbO3;c)NaVO3-LiNbO3

(NeurgaonkarandStaples1981).

Page 218: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page91

createdalargelatticemismatchbetweentheLiNbO3orLiTaO3substrateandthefilm,andtheLPEgrowthwasthereforeunsuccessful.

2.4.1ThephasediagramofLiVO3-LiNbO3

Theanalysisoftheresultspresentedaboveshowsthatobtainingfilmsismuchmoredifficultfromtheborateandtungstensystemsthanfromthevanadiumone.ThemostsuitablesolventforLiNbO3appearedtobethecompositionLi2O-V2O5whichsatisfiestheabove-mentionedrequirements.Theexcessivesolventiseasilyremovedfromtheepitaxialstructuresurfacebyboilingindistilledwater.

Tochooseoptimumgrowthconditionsandtostudythegrowthkinetics,exactdataarerequiredonthephasediagramofthesolvent-precipitatesystem.Sincethedataintheliteratureareverydiverse,itbecamenecessarytocarryoutsystematicphysico-chemicalstudiesofthepseudobinarysystemLiVO3-LiNbO3.

ThecharacteroftheinteractionbetweenLiNbO3andthefluxLi2O-V2O5waspreliminarilyinvestigated.Coolingthemeltedmixturewith10to100mol%LiNbO3atarateofabout1grad/minresultedintheformationofsmallcrystalswhichcouldbeeasilyseparatedfromtherestofthebufferedmeltbywashingindistilledwater.X-raydiffractionexaminationshowedthattheprecipitatedcrystalpowdercorrespondedtolithiumniobate.Itshouldbenotedthat,insomecases(LiNbO3concentrationfrom30to50mol%),thecrystalsizereached5mm.So,thepossibilityofLiNbO3crystalgrowthbythespontaneouscrystallizationmethodhasbeenshown.

Figure2.17ashowstheusefulpartofthepseudobinaryphasediagraminvestigatedbydifferentialthermalanalysis(DTA),directobservationsofthemeltandX-rayanalysis(Baudrantetal.1978).

Usingheatingandcoolingratesof10or5ºC/min,thermaleffectsdue

Page 219: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

todissolutionandcrystallizationcanbedetected.Thus,theappearanceoftheLiNbO3solidphasefromvariousconcentratedsolutionsiseasilydetectableandisrepresentedbythedarkline2inFig.2.17awhichis,infact,thecriticalnucleationcurve.Endothermalphenomenaduetodissolutionarelessdiscernibleatalowsolutionconcentrationandmustoftenbecompletedbymicroscopicandweighingobservationsduringliquid-phaseepitaxyexperiments.ItisthuspossibletodrawthedottedlineinFig.2.17awhichrepresentstheliquiduscurve.

Theeutecticpointhasbeenlocalizedatabout4mol%ofLiNbO3byaccurateX-rayinvestigationsoftheprimarylargestcrystalsfoundinthebulksolid'residue'.TheprimarycrystalshavebeenidentifiedasLiVO3ononesideoftheeutecticpointandLiNbO3,ontheotherside.ThisdiagramshowsthatLiNbO3canbecrystallizedoverawidecompositionrange.Finally,Baudrantetal.(1978)pointoutthatthedomainoftheslowgrowthrateisverynarrow,extendingnomorethan10ºCundertheliquiduscurve.

TheliquiduscurvewascalculatedusingtheSchröderequation:

Page 220: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page92

Fig.2.17a)PseudobinaryLiNbO3-LiVO3phasediagram,(1)-liquiduscurve.(2)-criticalnucleationcurve(Baudrantetal.1978);b)Dependence

ofthemolefractionlogarithmoninversetemperature(Madoyanetal.1979).

whereN1isthemolarfractionofthedissolvedcomponent.Thelineardependenceofthelogarithmofthemolarfractionontheinversetemperature(Fig.2.17b)suggestsanidealnatureofthesystemsolutions.ThemeltingheatofanindividualLiNbO3,determinedfromtheslopeangle,isequalto13.2kcal/mole.

Analysisofthephasediagramshowsthepossibilityofobtainingfilmsandcrystalsoflithiumniobatewithinawidetemperaturerangeof700to1200ºC.Withintherangeof750-950ºC(15-30mol%LiNbO3),theslopeoftheliquiduscurvepermitsaneasygrowthcontrolsinceaslighttemperaturevariationdoesnotentailavariationofthesolutioncomposition.Thegrowthrateofthelayercanbeestimatedfromthevariationofthesolutionconcentrationatagivencoolingrate.

2.4.2PhasediagramofLiVO3-Li(Nb,Ta)O3pseudobinarysystem

PhasediagramsoftheLiVO3-Li(Nb1-xTax)O3pseudobinarysystem,rangingfrom0to1,wereinvestigated,wherexisthemoleratioofTa2O5/(Ta2O5+Nb2O5)(Kondoetal.1979).Thetemperature-compositionrange,inwhichLi(Nb,Ta)O3solidsolutioncrystallizes,wasdeterminedbydifferentialthermalanalysis(DTA).Phase

Page 221: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

diagramsforLi2O-Nb2O5,Li2O-V2O5andV2O5-Nb2O5pseudobinarysystemswerereportedonbyReismanandHolzberg(1965),ReismanandMineo(1962)andWaringandRoth(1965),respectively.

SamplesforDTAexperimentswerepreparedbymixingchemicalreagentgradeLiCO3,Nb2O5,Ta2O5andV2O5powderinthedesiredratios.Themixtureswereplacedinaplatinumcell.DTAmeasurementswereconductedinahigh-temperaturethermoanalyzerusinga-Al2O3asareference.Heating-coolingcycleswerecarriedoutatarateof20ºC/min,andwererepeatedseveraltimes.Heatingorcoolingratesbelow20ºC/minoftenresultedinaveryweakresponsecorrespondingtothermaleffectsduetodissolutionandcrystallization.ThetemperaturecorrectionofDTAmeasurementswasmadebyusingLiVO3(616ºC),NaCl(800ºC)andLiNbO3(1250ºC)asreferencesatthesameheating-coolingrate.Liquidustemperaturesweredeterminedfromtheheatingcurves,because

Page 222: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page93

theheatingcurvesdidnotindicatesignificantoverheatingeffects,whilethecoolingcurvesoftenindicatedlargesupercoolingeffects.Furthermore,liquidustemperatureswerealsorecognizedbysaturationtemperatures.Thesaturationtemperatureisdeterminedasthetemperaturewhereneitherdissolutionnorcrystallizationoccurswhenasubstrateisdippedinthesolution.Theliquidustemperaturefromtheheatingcycleagreedwiththesaturationtemperaturewithin±10ºC.

TheresultsaregiveninFig.2.18,wheretheendmembersarestoichiometricLiVO3andspecificsolid-solutioncompositionsofthepseudobinarysystemLi(Nb1-xTax)O3,andliquidustemperaturesforseveralvaluesofxareshown.OnthephasediagramoftheLiVO3-LiNbO3pseudobinarysystem,x=0.0intheFig.2.18,theliquidustemperaturedecreasesfrom1250ºC,themeltingpointofLiNbO3to960ºCat20mol%LiNbO3.Apseudoeutecticoccursatabout3mol%LiNbO3.

Theliquiduslinesbecomehigherandtheirslopessteeperastheparameterxincreases.Figure2.18showsthattheprimaryphaseLi(Nb,Ta)O3cancrystallizeatpercentageshigherthan3mol%Li(Nb1-xTax)O3foreachxvalue.

Tamadaetal.(1991)reportedaLiNbO3thin-filmopticalwaveguidegrownbyliquidphaseepitaxy(LPE)usingLi2O-V2O5fluxanda5mol%MgO-dopedZ-plateLiNbO3substrate.Unfortunately,therewasalargeopticallossatblue-greenwavelengthsinspiteofitshighcrystallinityandgoodsurfacemorphology.Thisopticalabsorptionwhichcouldnotbecompletelyremovedbytheheattreatmentinaflowingoxygenwithlessthanafewvol.%ozoneafterfabrication,wasduetothe crystalfieldtransitionofV3+ionswhichwereincorporatedintotheLiNbO3filmfromtheLi2O-V2O5flux.Therefore,inordertorealizeaLi2O-V2O5thinfilmopticalwaveguideforbluewave-

Page 223: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.2.18PhasediagramofLiVO3-Li(Nb1-xTax)O3pseudobinarysystem(Kondoetal.1979).

Page 224: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page94

lengths,anotherfluxsystemwhichisfreefromtransitionmetalsmustbedeveloped.

Li2O-B2O5wastargetedasalikelycandidateforthisfluxsystemforseveralreasons.First,itdoesnotcontaintransitionmetals,sothatopticalabsorptioncentresmightnotbeintroducedevenifboronwereincorporatedintothefilm.Second,thereportedeutecticreactiontemperatureof800ºContheLiNbO3-LiBO2pseudobinarysystem(Ballmanetal.1975)issufficientlylowascomparedwiththeCurietemperatureofLiNbO3(1050-1200ºC).Moreover,MgO-dopedLiNbO3wasconsideredtobemoresuitableasasubstrateforobtainingaLiNbO3thinfilmwithhighcrystallinity,becausefilmpropertiesweredrasticallyimprovedwhenaMgO-dopedLiNbO3substratewasusedwithLi2O-V2O5flux(Tamadaetal.1991).

YamadaandTamada(1992)reportedLPEgrowthofLiNbO3thinfilmsona5mol%MgO-dopedZ-plateLiNbO3substrateusingLi2O-B2O3fluxandpresentedadetailedcharacterizationofthefilmproperties.

LPEgrowthwastriedfrommetalsofvariouscompositionsintheLiNbO3-LiBO2pseudobinarysystem.Meltcompositionsappropriateforobtainingfilmswithaperfectmirrorsurfacewerearound20mol%LiNbO3intheLiNbO3-LiBO2pseudobinarysystemwhichcorrespondstothepointof50mol%Li2O,10mol%Nb2O5and40mol%B2O3intheternarysystem.Thus,theLi2O/Nb2O5compositionwasalsovariedalongtheB2O340mol%fixedlineintheternarysystem.Thegrowthtemperaturewaschosentobeabout5ºClowerthanthesaturationtemperature,whichresultsinagrowthrateof1mm/min.Inthisway,aLiNbOsingle-crystalthinfilmwithasuitablethicknessforanopticalwaveguidecanbeobtainedbydippingthesubstrateintothemeltfor3-4min.

Thefilmcrystallinitywasinvestigatedbythex-raydoublecrystal

Page 225: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

method.Afilmgrownfrom52mol%Li2O,8mol%Nb2O5and40mol%B2O3meltwasused.Thefullwidthathalf-maximumof11.4arcsecforapeakcorrespondingtothefilmiscomparableto10.2arcsecforthesubstratepeak,whichindicatesthatthisfilmhasextremelyhighcrystallinity.Thedifferenceofthediffractionanglebetweenthefilmandthesubstratewas249arcsec.Thelatticemismatchalongtheaaxis,Da,calculatedfromthisvalue,is41.4×10-5nm,whereYamadaandTamada(1992)definedthesubstratelatticeconstantminusthefilmlatticeconstant.ThevalueofDawassomewhatlargerthanthatoffilmsgrownfromLi2O-V2O5flux(3.7×10-5-40.3×10-5nm),whichsuggeststhatthisfilmhasacompositionricherinLi.Thereexistsanapproximately400nmthicktransientlayerformedbyMgdiffusionfromthesubstratetothefilm.However,ifthethicknessofapracticalopticalwaveguide(typically4-5mm)istakenintoaccount,itcanbesaidthattheprofileofthisLPEfilmisalmoststep-shaped.Thoughboroncouldnotbedetectedatallinthismeasurement,averysmallamountmightbeincluded.

Theferroelectricdomainstructurewasalsoinvestigatedusingaconventionaletchingmethod.Thecross-section,whichcorrespondstothe-Ysurfaceofthesubstrate,wasopticallypolishedandthenetchedina1HF+4HNO3solutionat90ºCfor1min.Polishedsurfaceswereexaminedusingadifferentialinterferencemicroscope.Thisshowedthatsingle-poledfilmsweregrownonboththe+Zand-Zsurfaceofthesubstrate.Butthedirectionofspontaneouspolarizationofthefilmgrownonthe-Zsurfaceisoppositetothatofthe

Page 226: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page95

substrate,whereasfilmsgrownonthe+Zsurfaceweresingle-poledalongthesamedirectionasthesubstrate.Thesephenomenaformastrikingcontrasttothedomaininversionatthe+ZsurfacewhentheLi2O-V2O5fluxisused(TamadaandYamada,1991)andcanbeexplainedbyaninternalself-polingfieldproducedbythedifferenceofthespontaneouspolarizationbetweenafilmandasubstrate(Miyazawa,1979;PeuzinandMiyazawa,1986).Thatistosay,duetotheLi-richcompositionofthefilm,therelationshipofthespontaneouspolarizationofasubstrateandafilmatthegrowthtemperatureiscontrarytothatofthecaseusingLi2O-V2O5flux.

2.4.3Theschemeofthegrowthcell

FourbasicwaysoffilmcrystallizationfromafluxontoasubstrateareillustratedinFig.2.19onanexampleoftheLiVO3-LiNbO3system:

1.growthbyaslowsolutioncooling(thestraightlineA-B);

2.growthonasubstratelocatedinthecoldpartofthecrucibleatatemperatureTcold,theexcessivecrystallizingsubstancebeingincontactwiththesolventinahotterzoneatatemperatureThot.

Convectionanddiffusionthattakeplaceinthismethodcausemassexchangewhichallowsanexcessivedissolvedsubstanceprecipitateonthesubstrate.Inthefilmgrowthregion,theconditionsaredeterminedbythevalueoftheconstanttemperaturegradientandbythesubstrategrowthregime(thestraightlineC-E);

3.growthundertheconditionofsupersaturationduetosolventevaporation(thestraightlineA-D);

4.filmgrowthbymeansofspontaneouscrystallizationfromasupersaturatedsolutionataconstanttemperature.

Solutionsaturationisachievedbypreliminaryslowsaturationofthesolution.Themethodisbasedontheabilityofthesolutionofsome

Page 227: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

compoundstoreachastableandstrongsupersaturationwithinawidetemperaturerangeandwithalowtemperaturegradient,whichpermitsrapidgrowthofepitaxial

Fig.2.19Phasediagramillustratingthemethods

ofgrowingsingle-crystalfilmsfromsolutioninmelt(onanexampleoftheLiVO3-LiNbO3

system).

Page 228: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page96

filmsbyspontaneouscrystallizationfromasupersaturatedsolution.

TheadvantagesofLPEareclearlyseenonanexampleofobtainingalargeseriesofsemiconductorA3B5typecompounds.Togrowoxideferroelectricfilms,thismethodshouldbemodified.

Themostpromisingisthemethodofcapillaryliquid-phaseepitaxialgrowthofferroelectrics,proposedbyKhachaturyanandMadoyan(1985),whichprovidesimprovementofplanarityandthequalityoflayersurfacesgrownfromathinplane-parallelvolumeofameltandpermitssomecontroloverthegrowthparameters.Thismethodalsomakesitpossibletodefinewithahighaccuracytheparametersdeterminingthefilmthicknessandgrowthrate.CombinationofthewideoperationallatitudeofthecapillarytechniquewiththegeneralproceduralmeritsofLPEmakesitthemostpromisingmethodofobtainingintegro-opticalelements.

Inageneralcase,theliquid-phasecapillary(LPC)technique(PanishandSumski1971;Bolkhovityanov1977;MalininandNevski1978)suggestsfilmgrowthfromabufferedmeltlimitedtotwoparallelsubstrates.

Figure2.20givestheschemeofsubstratepositionsandthetemperatureregimefortheliquidcapillaryepitaxymethod.

Substratesaremoundedverticallyoveracruciblefilledwithaliquid,andatastartingepitaxytemperatureT0areimmersedinthebufferedmeltwhichispulledintothegapbetweenthesubstratesduetotheactionofcapillaryforces.Thewettedsubstratesarethenmoundedhorizontallyintheoperatingzoneofthereactionvessel,andthetemperatureinthecrystallizationcellstartstodecrease.Filmsgrowontheinnersurfacesofthesubstrates,asshowninFig.2.20.Aftertheepitaxialthin-filmstructureisformed,theliquidphaseissuckedofffromthecapillarygapbymeansofaliquid-phaseabsorber(Dudkin

Page 229: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

andKhachaturyan1988).Theliquid-phaseabsorberwasmadeofmicrochannelslabsorkaolincotton.

Thetemperatureregimeoftheprocessisdeterminedbytheslopeoftheliquiduscurve.Forprecipitationofperfectlayersatahigh-temperaturecoefficientofsolubility,thecoolingrateshouldbeverylow.

Fig,2.20Temperatureregimeduringtheepitaxyprocess(left)

andtemperaturedistributionundercapillarytechnology(right)(KhachaturyanandMadoyan1984).

Page 230: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page97

Animportantadvantageoftheliquid-phasecapillary(LPC)techniqueisaconstantthicknessoftheliquidzoneoverthewholesubstratesurface.Thismakesitpossibletoremovethewedgeshapeandobtainequallythicklayers.Themaximumgapisdeterminedbythefluxviscosityandbythewettingofthesubstratesurface.

TheLPCtechniquepermitseasycontrolofthegrowthrateandthelayercomposition:theprecipitationrateisdeterminedbysupersaturationnearthefront,whichdependsondiffusionandthetemperaturevariationrate.

2.5KineticsofepitaxialgrowthofLiNbO3

Masstransferplaysanimportantroleinthecrystalandfilmgrowth.Havingadirecteffectuponthethicknessandgrowthrate,theseprocessesdeterminethestructuralperfectionandpropertiesofthegrowncrystalsandfilms.Thestudyoftheregularitiesofprocessesintheliquidphaseandattheinterfacesuggestsoptimumversionsofcontrolovergrowthandobtainingepitaxiallayerswithprescribedproperties.

Themajorityofpapersdevotedtokineticsofepitaxialfilmgrowthfromabufferedmeltarebasedonthediffusionapproximationinwhichthefilmgrowthrateislimitedbythediffusionmasstransferofthedissolvedcomponenttothecrystallizationfront.

WehavealsoconsideredthegrowthkineticsofLiNbO3filmsinthediffusionapproximationandestablishedthedomainofitsapplicabilitywithinwhichtheinfluenceofconvectiveprocessesisinessential.Calculationshavebeencarriedoutwithallowanceforspecificitiesofagrowingsystemforthecapillaryversionofepitaxy,whichpermitsahighlyaccuratereproductionofthecalculatedconditionsofepitaxy(MadoyanandKhachaturyan1983).

Page 231: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

2.5.1Thestationarycrystallizationmodel

Weshallconsideracrystallizationsystemintheformoftwoparallelsubstrateswithabufferedmeltbetweenthem.Thegapbetweenthesubstratesismuchlessthantheirsize,whichcorrespondstotherealconditionsandallowsustoproceedtoaone-dimensionalproblem.Thesystemisassumedtobeisothermalwithoutlocalsupercooling,andtheinitialconcentrationC0isthesamethroughouttheentirethicknessofthesolution.

Inrealsystems,phaseandchemicalequilibriumaredisplacedinorientedcrystallization.Thesolutionconcentrationdiffersfromtheequilibriumvalue,variesfromonecrystallographicfacetorientationtoanother,andisconnectedwiththepropertiesofthisfacet.So,inourmodeltheconcentrationnearthesubstratesurfacemustbehigherthantheequilibriumonebyacertainquantityUdependentonthematerialandsubstrateorientation.

Weshallexaminetheconcentrationvariationinacapillaryconsistinginthegeneralcaseofdifferentsubstrates(Fig.2.21).Coolingofthesystemleadstotheformationofaconcentrationprofileandtolayerprecipitationontothesubstrates.Atapointx=0,whichcorrespondstothemaximumsupersaturationofthesolution,theconcentrationgradientisequaltozeroand,therefore,theparticleflowsthroughtheplanex=0areequalonbothsides.Then,fortheliquid-phaseregiontrappedbetweentheplanex=0andthefirstsubstrate,

Page 232: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page98

Fig.2.21Schematicofdistributionofconcentrationsinacapillarysystem:a)precipitationontodifferentsubstrates;b)precipitationonto

identicalsubstrates;c)concentrationvariationduringcrystallizationinthebulk;d)dependenceoftheeffectivethickness

oftheliquidphaseonthesizeoftheopeninginacapillary.

theconcentrationdistributionsatisfiesthediffusionequationwiththeboundaryconditions

whereC0istheinitialsolutionconcentration,C1(x,t)istheconcentrationofthecomponentbetweenthefirstsubstrateandtheplanex=0,mistheslopeoftheliquiduscurve,tistime,aisthecoolingrate,U1issupersaturationnearthesubstratesurface,(m=tanj)istheslopeangleoftheliquiduscurve.

Introductionofsupersaturationdoesnotalterthecharacterofdistributionbutonlyleadstoitsdisplacementintime(retardation)byu1m/a.Thesolutionofthediffusionequationgivestheexpressionforconcentrationvariation(Moon1974):

Page 233: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

where ,Disthediffusioncoefficient.

Underquasistationaryconditions(for ),integratingtheexpression(2.2),weobtainthevalueofthemaximumrelativesupersaturationDCm1:

Page 234: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page99

WesimilarlyobtainexpressionsfordC2/dxandDCm2intheregionbetweentheplanex=0andthesecondsubstrate.Theresultingsupersaturationinthesolutionisequaltothesumoftherelativesupersaturationandthesupersaturationatthesubstratesurface.Sincethetemperaturesofbothsubstratesarethesame,itfollowsthatintheabsenceofnucleationintheliquid-phasevolume,theremustholdthecondition

From(2.4)wecanreadilyderivetheexpressionfor and :

whereU21=U2-U1and isthegapbetweenthesubstrates.Thus,filmprecipitationontodifferentsubstratesinacapillarycomesfromtheliquidlayerwhosethicknessisdeterminedbytheexpressions(2.5)and(2.6).

Nowweshallconsiderprecipitationontosimilarsubstrates,whenU1=U2.IftheresultingsupersaturationexceedsthecriticalsupersaturationDCm0underwhichcrystallizationoccursinthebulk,precipitationintoeachsubstratecomesfromalayerthickness(Fig.2.21(b)).Supersaturationintheliquidphaseincreases,DCm+U,withincreasinggapsizeanddappearstobeequaltothecriticalvalue.From(2.3)itfollowsthat

Undersuchconditionsnucleationoccursinthemiddleofthecapillary,andanewcrystallizationfrontthereappears.Atthisfront,thesupersaturationUcanbeassumedequaltozerosincespontaneousnon-orientedcrystallizationproceeds.Inthecentreofthecapillarythe

Page 235: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

concentrationbecomesequaltotheequilibriumoneatagiventemperature,andanewconcentrationdistributionoccurs(Fig.2.21c).Precipitationontothesubstratecomesfromthelayer

Afurtherincreaseofdleadstoanincreaseof uptothecriticalvalueatwhichintheregionbetweenthesubstrateandthemiddleofthegapacrystallizationfrontoccursagain.Figure2.21dshowsthethicknessvariationoftheliquid-phaselayerfromwhichincreasedprecipitationcomesontothesubstrate.Thus,intheabsenceofconvectiveflowsandaninducedmixtureofthe

Page 236: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page100

solution,precipitationofthelayercomesfromalimitedvolumeoftheliquidphase.

2.5.2Epitaxyundernon-isothermicconditions

Animportanttaskoftheoreticalestimationsisfindingtheepitaxialfilmthicknesssincethisis,infact,theonlymeasurableparameterofthefilms.Typically,thethicknessisevaluatedfromtheamountofprecipitateusingthephasediagramanddisregardingmasstransfer.

Underthecondition (Fig.2.20),thelayerthicknesshisdefinedbytheexpression(Moon1974)

Ifwesubstituteheretheexpressionforconcentrationvariation(Madoyanetal.1988)

and ,whereCsisthedissolvedcomponentconcentrationinthesolidphaseandkisthesegregationcoefficient,thenreplacingtby

weobtain

Thewholecrystallizationprocesscanbedividedintotwostages:nonstationarywhichformstheconcentrationprofile,andstationaryunderwhichtheprofileremainsunchanged(ZhovnirandMaronchuk

Page 237: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1980).Theefficiencydeterminedastheexperimental-to-calculatedthicknessratioincreaseswithincreasingcoolingtimeorwithdecreasinggapsize.ToobtainLiNbO3filmswithathicknesscorrespondingtotheequilibriumone,wecanincreasethesoakingtimeataconstanttemperatureafterthecoolingprocessisover.TheconcentrationinthesolutionlevelsupandbecomesequaltoU+Ck,whereUissupersaturationatthecrystallizationfrontandCkisthesaturationconcentrationcorresponding,accordingtotheliquiduscurve,tothefinalepitaxytemperature.Intheformula

Page 238: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page101

C1=U1+Ck,andinsteadofd/2wehaveusedthe valuefromEq.(2.5).

2.5.3DeterminationofsupersaturationUanddiffusioncoefficientD

LetacapillarywithagapdconsistoftwosimilarsubstrateswithacharacteristicsupersaturationU.

Theexpression(2.9)determinesthedependenceofthefilmthicknessonthefinalsolutionconcentration.Substitutingexperimentalfilmthicknessvalues,wecanfindthefinalconcentrationvalueCk+U.Thedifferencebetweenthevalueobtainedand isequaltothecharacteristicsupersaturation.

ForanexactdeterminationoftheUvalueitisnecessary,asmentionedabove,toproceedtosoakingaftercoolingisover.Asthesoakingtimeincreases,thethicknessincrementmustdecreaseduetoconcentrationlevelling.

Inanumberofpapers,diffusionwasinvestigatedonsingle-crystalsampleswithinclusionsofdropsfromthemotherliquor(Timofeeva1978).

Wehaveevaluatedthediffusioncoefficientonthebasisofexperimentallyestablishedfilmparameters.

Whenepitaxyproceedsontodifferentsubstrates,thefilmthicknessdependsonthepositionofthepointofmaximumsupersaturation.From(2.5)itfollowsthat

Thevalues and aredeterminedfrom(2.9)onthebasisofexperimentallymeasuredlayerthicknesses(substituting ford/2).

Page 239: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Inexaminingtherelationshipbetweenthegrowthparametersandthemasstransfercharacter,ithasbeenestablishedthat,inbufferedmeltsystems,thecontributionofconvectiveflowsisinsignificantifthegapbetweensubstratesissmallandincreasessharplywithincreasingd(LitvinandMaronchuk1977;Mil'vidskyetal.1980).Thefilmgrowthrateisreadilydeterminedfrom(2.8)or(2.9).Thelineardependencev=f(d)testifiestothefactthatundertheseconditionsmasstransferislimitedtomoleculardiffusion.Asdincreases,adeviationfromlinearityinthesolutionisobservedasaresultofnaturalconvectionduetogravitationandthedifferenceinthedensitiesofthedissolvedsubstanceandthesolvent.Inthesolution,crystallizationcentresmayoccurwhicharedistributedthroughouttheentireliquid-phasevolumebyconvectiveflows.

Inadditiontothevalueofthecriticalgapd*determiningthediffusionregion,animportantfactoristhestationarity .Thetimeofappearanceofaconstantconcentrationprofileforthegap isdefinedbythecondition .

Astheprocesstime increases,theprocessapproachesthestationaryone.

Page 240: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page102

Fig.2.22Filmthicknessandgrowthrateasfunctionsofgrowthsystemparameters:a,d:

1)a=0.2grad/min,2)a=0.4grad/min,3)a=0.6grad/min.b:1)calculatedvalues,2)(0001)isorientationofLiTaO3,3)(1120)isorientation

ofLiTaO3.

TocalculatethethicknessandthegrowthrateofaLiNbO3film,weshouldknowthevaluesofthediffusioncoefficientofLiNbO3intheLi2O-V2O5meltandthecharacteristicsupersaturationUdependingonthematerialandsubstrateorientation.Theexperimentaldeterminationofthesevaluesonthebasisoftheconstructedmodelrequiresrealizationofthegrowthprocessesunderconditionsverycloselyapproachingthestationaryones.LiNbO3andLiTaO3platesofdifferentorientationswereusedassubstrates.Figure2.22presentsthedependenceoftheLiNbO3filmthicknessonthesizeofthegapdbetweenthesubstrates.Intheabsenceofconvectiveflowsthisdependencemustbelinear.Thegraphimpliesthatatacoolingratea=0.2grad/min,thecontributionofconvectivemasstransferis

Page 241: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

insignificantuptothevalued=3ram.Fora=0.4grad/min,thevalued*decreases,whichisevidentlyduetoanincreaseoftemperaturegradientsinthebufferedmeltandtheassociateddensityinhomogeneitiesoftheliquidphaseinthecapillary.Fora=0.6grad/min,thefilmthicknessdoesnotaltersubstantiallyifa>2mm,whichisduetothebeginningofcrystallizationinthebulkmelt.Ford=3mm,thefilmthicknessdecreaseslessthanexpectedwithintheproposedmodel.Thiscanbecausedbyanincompletecoveringofthesurfaceofmaximumsupersaturationbybulknuclei.Inthiscase,theeffectivelayerthickness fromwhichprecipitationcomesontothefilmmustincrease,andthemeanconcentration

Page 242: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page103

inthecentreofthecapillaryissomewhathigherthanequilibrium.Thus,theanalysisoftheresultsobtainedshowsthatatthecoolingratea=0.2grad/minandthegapsized<3mmlithiumniobateprecipitatesinaccordancewiththediffusiongrowthmechanismwithoutcrystallizationinthebulk.

Precipitationoftheentireexcessivesubstanceontosubstratesisalongprocess.Butwhensubstratesareheldforalongtimeincontactwiththeliquidphaseatthefinalepitaxytemperature,themassexchangebetweentheliquidphaseandthefilmsurfaceleadstofilmroughnessandthicknessinhomogeneity.Todeterminetheoptimumsoakingtimeq,thefilmthicknesswasinvestigatedasafunctionofthesoakingtimefordifferentcoolingratesofthesystem.Fora=0.2grad/min,precipitationstops10minutesafterthecoolingisover.

Furthersoakingleadstodivergencebetweenthefilmthicknessesontheupperandlowersubstrates,whichmustbeassociatedwiththedownwardgravitationalflowofpermanentlyoccurringanddecayingquasiparticlesand,therefore,withconcentrationnonuniformity.Fora=0.4grad/min,thethicknessreachesitsmaximumvaluewithin20minutesandthendoesnotchange.Within15-20rain,thethicknessreachesitsmaximumvaluealsoatacoolingrateofa=0.6grad/min.Inthiscase,furthersoakingleadstoadecreaseoffilmthickness,whichmustbeassociatedwiththeredistributionofthesubstancebetweenthefilmandsmallcrystalsintheliquidphase.

Underquasistationaryconditionswehaveestimatedthecharacteristicsupersaturationforz-andy-planesofLiTaO3.Weinvestigatedthedependenceofthefilmthicknessonthegapsizeforidenticalsubstrates.Theinitialepitaxytemperaturewas890ºC,thefinal860ºC,thecoolingratea=0.16grad/min.Thecoolingtimewasthreehoursandthesoakingtimeaftertheprocesswasoverwas15-20min.TheresultsobtainedarepresentedinFig.2.22a.ThestraightlineI

Page 243: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

correspondstotheonecalculatedfromformula(2.9).Sinceprecipitationisassumedtoproceedbythediffusionmechanism,theexperimentaldependencesarelinear.Thefilmthicknessonthey-planeofLiTaO3issomewhathigherthanthatonthez-plane.Thelithiumniobateconcentrationnearthey-andz-substratesinthismodelexceedsequilibriumby0.24and0.39mol%,respectively.

Characteristicsupersaturationhasastronginfluenceonthethicknessandthegrowthrateofthefilmunderprecipitationinacapillarywhichconsistsofdifferentsubstrates.Theasymmetricprofileoftheconcentrationdistributionleadstothefactthatprecipitationontosubstratesproceedsfromsolutionlayersofdifferentthicknesses.Table2.2presentsthethicknessvaluesunderprecipitationontothey-andz-substratesofLiTaO3.Foraprecipitationrateof0.16grad/min,thethicknessesmaydifferbyafactorof3.Onthebasisoftheresultsobtained,wehaveestimated,usingformula(2.10),thediffusioncoefficientD=(1.5±0.7)×10-5cm2/s.ThecoefficientDdeterminesthediffusionofconcreteatoms(ions,molecules)inthemedium.Butintheframeworkofthemodelconstructed,theestimatedvaluecharacterizesconditionallythediffusionofmolecularlithiumniobateandsimplifiesappreciablythecalculationsoffilmparameters.Thepictureremainsthesameinthecaseofhyperepitaxy.Sincetheintroductionoflithiumtantalateintothebufferedmeltheightenstheliquidustemperatureofthesystem(Kondoetal.1979),theliquid-phasesupersaturation

Page 244: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page104

Table2.2ParametersofthegrowthsystemandLiNbO3filmthicknessincapillarygrowthon(0001)and(1120)LiTaO3substrate(Khachaturyanetal.1984)

dmm

hpmm adeg/min

hxmm hzmmmm mm

D×105cm2/s

DD×105cm2/s

1.5 17.19 0.16 22.1±1.5 7.3±0.5 1.13 0.37 0.87 0.1

1.5 17.19 0.2 21.0±1.5 7.5±0.5 1.11 0.39 1.02 0.15

1.5 17.19 0.4 19.5±1.010.2±1.00.98 0.52 1.35 0.3

2 22.92 0.16 29.5±1.512.3±0.31.41 0.59 1.26 0.1

2 22.92 0.2 29.0±2.011.5±0.51.43 0.57 1.65 0.18

2 22.92 0.2 27.0±1.512.5±0.51.37 0.63 2.81 0.35

D0=(1.5±0.7)×10-5cm2/s

hampersdissolvingofthesubstrate,itscompositiondoesnotchangeandalayerofpurelithiumniobateprecipitates.Thesolidsolutionisformedinthenarrowtransitionregionattheexpenseofdiffusionthroughtheinterfaceinthesolidphase.

Figure2.22demonstratesthefilmthicknessasafunctionofcoolingrate.Fora<0.4grad/minthethicknessdoesnotpracticallychange,whilefora=0.5grad/minitfallssharplyowingtothefactthatthecriticalsupersaturationisreachedandcrystallizationproceedsinthebulk.Formula(2.3)implies

Substitutingthevaluedcr=2.5mm,a=0.5grad/min,D=1.5×10-5cm2/s,m=11.6grad/mole,vz=0.39,weobtainDCm0=1.89.Fromthiswecandeterminethecriticalvaluesofthegapsforvariouscoolingrates.

Page 245: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

InthecapillarymethodofLPEforferroelectricfilmgrowthwithallowancefortheabove-mentionedrestrictions,crystallizationoutsidethesubstrateisabsentandallthedissolvedsubstanceinthegapprecipitatesontothesubstrateasafilm.Knowingthethicknessofthesolutionlayerandthegrowthtemperaturerange,wecancalculatetheexpectedfilmthicknessusingthestatediagram.

ForacomputercalculationofthefilmthicknessasafunctionofgrowthparametersintheframeworkofthecapillaryLPEmethod,thereexistsanalgorithm,andthefollowingmethodsofcalculationarerealizedasauniversalprogram(onanexampleofepitaxialfilmsoflithiumniobate(Madoyanetal.1982)).

ThecalculationsarebasedontheliquidustemperatureofthephasediagramofthepseudobinarysystemLiVO3-LiNbO3(Madoyanetal.1979).Theanalyticalexpression(2.9)describingthedependenceofthefilmthicknessthegrowthparametersisobtainedonthebasisofcalculatingtheamountoftheprecipitatingcrystallizingsubstanceforagivensystemsupercooling.

Page 246: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page105

Forconvenienceofprogramming,thephasediagramoftheLiVO3-LiNbO3systeminthetemperaturerange800-870ºCwasapproximatedbytheexponentialfunction

whereaandbareconstants;cisthemolarconcentrationofLiNbO3.WehaveusedthestandardapproximationprogramfromthesoftwareofaNairi-2computer.

ThealgorithmsforcalculatingthefilmthicknessasafunctionofgrowthparameterswerepublishedindetailbyMadoyanetal.(1982).

Thus,weobtainthecompletesetofvaluesofLiNbO3filmthicknessasafunctionofvariableparameters.Figure2.23givesthegraphsofthedependenceofthefilmthicknessontheparametersoftheepitaxyprocess.

Fig.2.23LiNbO3filmthicknessversusgrowthconditions:a)startingtemperature,b)overcoolingofthesystem,c)weightofthe

solutionmelt.Pointsareexperimentalvalues.

Thesedependencespermitsaratheraccuratepredictionoffilmthicknessunderconcretegrowthconditions.PointsinFig.2.23indicatethefilmthicknessvaluesobtainedunderexperimentally

Page 247: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

chosenoptimumepitaxyconditions.Thedifferenceof5-10%canbeexplainedbyadditionalprecipitationfromthemeltofthesubstanceremainingonthefilmsurfaceaftertheepitaxyisover.

Thesatisfactoryagreementbetweentheexperimentalandtheoreticaldatasuggestsawiderangeofapplicabilityofprogrammingcalculationoftheepitaxialfilmwidth.

2.5.4Epitaxyunderisothermalconditions

Asdistinguishedfromthenonisothermalcaseforwhichthediffusionprocessesdeterminedbythesystemcoolingratearelimiting,inisothermalepitaxytherateofthediffusionprocessesvarieswithfilmgrowth,andthequestionofarelativecontributionofdiffusionandsurfaceprocessestothegrowthkineticsremainsopen.Inviewofthis,wehaveconsideredthegeneralcasewithallowance

Page 248: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page106

forthekineticcoefficient.Isothermalepitaxyisinvestigatedunderconditionsofaquasistationaryprocesswhichtakesplaceintheindicatedsystems( ).

Asinthenonisothermalcase,crystallizationproceedsfromalimitedvolumeconsistingoftwoidenticalparallelsubstratesmountedatadistanced(Fig.2.24a).Thequantitativedeterminationofthetimedependenceoffilmthicknessatagiveninitialsupersaturationconsistsofsolvingthedifferentialequationdescribingthediffusionofadissolvedcrystallizingmaterialinsideacapillarywithcorrespondinginitialandboundaryconditions

whereyisadimensionlessdistance(intheunitsd/2)countedfromthegrowthfront.Therangeofyvariationisduetothesymmetryaboutthecapillarycentre.Theinitialandboundaryconditionsoftheproblemhavetheform

1.Fort=0C(y,0)=C0;

2.Inthecapillarycentre ;

3.Atthegrowthfrontsthereholdsthemassconservationconditionofthecrystallizingmaterial:

where

Hereqisthekineticcoefficient.TheboundaryconditionsdisregardUsinceinrealsystems .

Page 249: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

UnderLPEconditions,theinitialsupersaturationDC0=C0-C1issosmallthatthemaximum(final)filmthicknessisnoticeablylessthanthecapillaryhalfwidth.

Solvingequation(2.12)bythemethodofseparationofvariables,weobtainthetimedependenceofthefilmthicknessh:

Page 250: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page107

wheret=d2/4Disthediffusiontime,v0=v(t=0)

vnaretherootsoftheequationandjv=tanv.

Thefirstsummandin(2.13)isfinalfilmthicknessh0whichisindependentoft.

For and wecanretainonetermintheseries(2.13)

admittingherearelativeerror

Itshouldbenotedthatfort=ttheconcentrationprofilevariationduetodiffusionreachesthepointd/2(Fig.2.24a).For thefilmincreasesinthesamemannerasinaninfinitecapillary,andthedependence isdeterminedbythesolutionofequation(2.12)withtheboundaryconditions

leadingtothefollowingtimedependenceofsupersaturationatthegrowthfront

whereFistheprobabilityintegral.Itshouldbenotedthatforthereholdsakineticgrowthregime,thatis,thefilmgrowthrateisonlydeterminedbythekineticcoefficientandinitialsupersaturation

Page 251: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theexpression(2.14)obtainedabove,whichholdsforj>1, ,describesthediffusionregimeinwhichthegrowthrateisdeterminedbythediffusion

Page 252: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page108

Fig.2.24Concentrationdistribution(a)andfilmthicknesshasafunctionoftime(b).

coefficientandthecapillarywidthanddependsweaklyonq.

ToestablishthecharacterofLiNbO3crystallizationfromthebufferedLiVO3-LiNbO3melt,thetimedependencesofthefilmthicknessweremeasuredforvariousDC1anddvalues.

TheresultsofthesemeasurementsarepresentedinFig.2.24b.Thefinalthicknessh0isequaltothemaximumfilmthicknessvalueobtainedunderanincreasedsoakingtime.Measurementswerecarriedoutforh>4mmsinceforlowerhtheerroriscomparablewiththefilmthickness.Thelinearcharacterofthedependenceh(t)inlogarithmiccoordinatesisanevidenceofpredominanceofthediffusiongrowthregimeforh>4mm,thatis,practicallythewholeofthefilmisgrowinginthediffusionregime.Theresultsofexperimentssuggestestimatesofthequantitiesentering(2.14)andshowtheerrortowhichthisformulaholds.So,forcurve1(Fig.2.24b)

whichcorrespondstothekineticcoefficient

Thebestcoincidenceof(2.14)withexperimentalresultstakesplace

Page 253: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

forD=0.5×10cm/s,whichagreesintheorderofmagnitudewithwhatwehaveobtained.Toevaluatetheerroroccurringintheuseofformula(2.18),weshallemploy(2.15),assuming

Page 254: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page109

Fort/t>p-1,weobtainDh/h0<10-1,whichiswithintheexperimentalerrorforh.Thus,inthegrowthsystemunderconsiderationwedealwiththekineticregimeat sandwiththediffusionregimeat

s.

Theseestimatesconfirmtheconclusionthatthediffusionregimeisprevailingforfilmgrowth.

2.6CrystallizationoffilmsfromLiNbl-yTayO3solidsolutions

Obtainingepitaxialfilmswithagivencompositionisoneoftheimportantproblemsofappliedphysicssinceinsignificantcompositionvariationsmayhaveaconsiderableeffectuponthephysicalpropertiesofgrownstructures.Itisverydifficulttomaintainaconstantcompositionwhenlayersofmulticomponentdielectricmaterialsareprecipitatedfromabufferedmelt,whenintroductionofeachcomponentisspecifiedbyanindividualsegregationcoefficient,dependsonthegrowthconditionsandvarieswithlocalfluctuationsofgrowthparameters(Timofeeva1978).

Toobtainfilmswithaprescribedcomposition,itisnecessarytoestablisharelationshipbetweenthecompositionandacomplexoffactorswhichdeterminetheenteringofcomponentsinthegrowinglayer.InLPE,thesefactorsareindividualcoefficientsofsegregationandthegrowthparameters,namely,thecompositionandthicknessoftheliquidphase,theinitialtemperature,thecoolingrateofthesystem,etc.

LithiumniobateandtantalateformLiNb1-yTayO3solidsolutionsintheentirerangeofthecompositions0<y<1(seeFig.2.4)(MadoyanandKhachaturyan1985).

Aspecificfeatureofcrystallizationoffilmsofsolidsolutionsisthenecessitytotakeintoaccounttheinfluenceoftheamountof

Page 255: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

precipitatingcomponentsontheepitaxytemperature,composition,uniformityofcomponentdistributionandfilmthickness(Madoyanetal.1985).

Inprecipitationfromahigh-temperaturemeltofmulticomponentsystems,thecompositionoftheprecipitatinglayerdifferstypicallyfromthecompositionofthedissolvedmaterialsinceenteringofeachcomponentintothelayerisdeterminedbyanindividualsegregationcoefficient.Inepitaxyoflithiumniobate-tantalatefromthesolutionintheLi2O-V2O5melt,thecompositionoftheLiNb1-yTayO3filmisshiftedrelativetothecompositionofthedissolvedmaterialLiNb1-xTaxO3towardsincreasingtantalum,thatis,y>x.AnalysisoffilmcompositionsrevealedashiftofthecompositionoftheLiNb1-yTayO3layerrelativetotheliquidphasetowardsanincreasingmolarfractionoftantalate(y>x).Numericalestimatesgiveavariationoftherelationbetweenniobiumandtantalumbynomorethan3%duringprecipitationofalayerabout10mmthick.Thecorrespondingliquidustemperaturedisplacementdoesnotexceed±5ºwhenthegrowthcelliscooledbyabout40º.Thus,theequilibriumtemperaturevariationsduringgrowthcanbedisregarded,buttheerrorinpredictingthefilmthicknessincreasesupto20%.

Intheliterature,thevariationoftheeffectivecoefficientofsegregationiscustomarilyassociatedwithmasstransferprocessesintheliquidphase,thatis,withdiffusion,convection,electromigration,etc.(Madoyanetal.1985;Milvidsky1986).

Page 256: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page110

Fig.2.25Theeffectivesegregationcoefficientoftantalumversusthegrowthrateofa

Li(Nb,Ta)O3film.

Figure2.25illustratesthedependencesoftheeffectivesegregationcoefficient,definedastherelationk=y/x,onthegrowthratewhenthemolarfractionoftantalumintheliquidphaseisx=0.2and0.4.Thesegregationcoefficientassumesthevaluesfrom1.4to2.35(x=0.4)andfrom1.5to2.75(x=0.2)asthegrowthratevariesfrom0.4to0.1mm/min.Makinguseofthisdependence,wecancontrolthefilmcompositionduringgrowthandobtainLiNb1-yTayO3filmswithyrangingfrom0.2to1.

WhenaLi(Nb,Ta)O3filmgrowsfromasaturatedsolutioninthediffusionepitaxyregime,thegrowthrateisv~ad,whereaisthecoolingratesincethefilmthickness (Avakyanetal.1986).Thus,thechangeinthecoolingrateofthesystemduringgrowthleadstoavariationofthegrowthrateandmodulationincompositionoftheprecipitatinglayerinlinewiththedependencek(v)(Khachaturyanetal.1986).IftheinitialepitaxytemperatureisbelowthephaseequilibriumtemperatureT1,theprecipitationrate,whichismaximumattheinitialmoment,willdecreasetillanequilibriumconcentrationisestablished,andthelayercompositionwillchangeinasimilarway.AtT0>T1,thefilmdoesnotprecipitateandthesubstratesurfaceisslightlydissolvedwhichcausesanuncontrolledvariationoftheliquid-phasecomposition.Consequently,foranefficientcomposition

Page 257: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

control,itisnecessarytostarttheprecipitationprocessatatemperatureequilibriumforagivenconcentration.

Independenceofthesegregationcoefficientofmasstransferintheliquidphaseprovidesanefficientlayercompositioncontrolduringgrowth.Figure2.26presentsthegraphsofaprogrammedtemperaturedecrease(1)andthecorrespondingthicknessdistributionofstructurecomponentsobtainedbymicro-X-rayspectralanalysis(2).Foraconstantcoolingrateandequilibriuminitialtemperature(a)thegrowthrateisconstantandthecompositionremainsunchangedthroughouttheentirelayerthickness.Figure2.26(b,c)presentsthegraphsofthecoolingrateatwhichfilmsgrowwithastep-likeandperiodicdistributionofcomponents,whichplaysanimportantappliedrole,forinstance,formaintainingamultiple-modecontrollingintegro-opticwaveguide.

AnimportantfactorofstructuralperfectionofLi(Nb,Ta)O3filmsisalowcontentofvanadiumimpurity.Analysishasshownthattheconcentrationofahomogeneousvanadiumimpuritydoesnotexceed0.1atom%.ApredominantamountofniobiumisexplainedbytheequalityofionicradiiofNb5+andTa5+(0.66Å)asdistinctfromtheionicradiusofV5+(0.4Å).Foranoptimumrangeofgrowthrates,inwhichthecompositionwasmodulatedrelative

Page 258: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page111

toniobiumandtantalum(0.1-0.5mm/min)thevanadiumconcentrationdidnotexceed0.1mol%,andwithafurtherincreaseofthegrowthrateaninhomogeneouscaptureofthebufferedmeltwasobserved.Consequently,variationofgrowthconditionswithinthelimitssufficientforobtainingfilmsofdifferentcompositionwithrespecttoniobiumandtantaluminducesnosubstantialheighteningofthecontentofvanadiumimpurity.

2.6.1Liquid-PhaseepitaxialgrowthofLi(Nb,Ta)O3films

Inthissection,theliquid-phaseepitaxialgrowthofLi(Nb,Ta)O3solid-solutionfilmsonLiTaO3y-platesubstratesisdescribedonthebasisofthephasediagramsobtainedbyKondoetal.(1979).

Theverticaldippingtechniquewasusedfortheexperiment.Athree-zoneresistanceheatingfurnacewasused,toobtainanoptimumverticaltemperaturedistribution.Thetemperaturedifferencebetweenthemeltsurfaceandthebottomofthecruciblewaswithin1°C.Thestartingmaterialwasputinsideaplatinumcrucible.Athermocouple(Pt-Pt/Rh13%)wasattachedexternallytothecrucible.

Thesolutioncompositionwasfixedat50mol%Li2O,5mol%(Nb1-xTax)O5and45mol%V2O5,andthesolutioncompositionparameterxdefinedasTa2O5/(Ta2O5+Nb2O5)inthesolutionwasvariedfrom0.0to1.0.ThiscompositioncorrespondstothepointA,indicatedbythearrowinFig.2.18.

Approximately1mmthicky-platesubstrateswerecutfromaLiTaO3singlecrystal,andtheirsurfacesweremechano-chemicallypolished.

AtypicaltemperatureprogramforLPEgrowthisshowninFig.2.27.ThesolutioninthePt-cruciblewasheatedto1300°Candwasheldatthistem-

Page 259: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.2.26ProgrammedtemperaturedecreaseinLPEgrownLi(Nb,Ta)O3(I)

andthecorrespondingNbandTadistributionthroughthethicknessofLi(Nb,Ta)O3/LiTaO3hyperstructure(II)

(Khachaturyanetal.1987).

Page 260: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page112

Fig.2.27TypicaltemperatureprogrammeforLPEgrowth.Tsshowsthesaturationtemperatureofthesolution

(Kondoetal.1979).

Fig.2.28(right)Epilayerthicknessasafunction

ofgrowthtimeandseveralgrowthtemperatures.Thexofsolutioncompositionwas0.8

(Kondoetal.1979).

peraturefor2-4daystomakeithomogeneous.Thenthetemperaturewasloweredtoagrowthtemperatureatwhichthesolutionwassaturated.Priortodipping,thesubstratewasthermallyequilibratedjustabovethesolutiontobringittothesolutiontemperature.Thenthesubstratewasinsertedintothesolution.Afterfilmgrowth,thesubstratewaswithdrawnatarateof1cm/minfromthesolutionandslowlycooledtoroomtemperature.Thesubstrateswerenotrotatedduringthefilmgrowth.ThefluxadheredtothesamplecouldbeeasilydissolvedbydiluteHClsolution.

Page 261: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Aseriesofgrowthrunswerecarriedout,withgrowthtimeandthegrowthtemperaturesasparameters,todeterminetheireffectsonthegrowthrate.Figure2.28showsarelationshipbetweenfilmthicknessandgrowthtime.Thesolutioncompositionparameterxwasfixedat0.8,andthegrowthtemperatureswere1120,1125and1130°C.Itcanbeseenthatthefilmthicknessincreasesapproximatelylinearlywithtimeuptoabout30miningrowthtime.Thefilmsweregrownat1120°Candthegrowthrateofthesefilmswasestimatedtobe1mm/min.

Thefilmthicknessbelow10mmyieldedsmoothsurface.After12mmgrowth,ripplesappearedonthesurface.At50mmgrowththeripplesdevelopedintoaseriesofsharpridgesknownasfilmfacetingandthefluxwastrappedbetweentheridges.Itcanbesaidthatafilmthicknessoflessthanapproximately10mmisadequateforobtainingasmoothas-grownsurface.

Figure2.29showsthegrowthrateasafunctionofgrowthtemperaturefordifferentsolutioncompositions.Thesolutioncompositionparameterxwas0.5,0.7,0.8,0.9and1.0.Saturationtemperaturesforthesecompositionswereestimatedtobeapproximately1020,1095,1135,1165and1190°C,respectively,aswereindicatedinFig.2.29.Thegrowthtimewasfixedat15minineachcase.Thegrowthratesweredirectlyproportionaltothesupercoolingrangingfrom0toabout30°C,overwhichthegrowthratedepartedfromlinearrelationship.Thiscanbeexplainedintermsofboththecurvatureoftheliquidusslopeinthe

Page 262: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page113

Fig.2.29Growthrateasafunctionofgrowthtemperatureandsolutioncomposition.

Growthtimewasfixedat15min(Kondoetal.1979).

LiVO3-Li(Nb1-xTax)O3systemandthespontaneousnucleationofLi(Nb,Ta)O3whichoccurredpriortoorduringthegrowthatlargesupercooling(Daviesetal.1974).Therefore,themagnitudeofsupercoolingwaschosentobelessthan30°C.

ElectronprobemicroanalysiswasusedtomonitorNb,TaandVconcentrationsinthefilmandthesubstrate.Thesolutioncompositionparameterxofthisfilmwas0.8andthefilmthicknesswasabout30mm.TheTaconcentrationisconstantnotonlyinthesubstratebutalsointhefilmanditvariesdiscontinuouslyattheboundarybetweenthefilmandthesubstrate.TheratioofTaconcentrationinthefilmtothatinthesubstrateisabout0.96.TheNbwasdetectedonlyinthefilmanditsconcentrationisconstantinthefilm.TheconcentrationofVions,whichisafluxelement,islessthan0.2mol%inthefilm.

TherealfilmcompositionwasdefinedasLi(Nb1-yTay)O3,whereyisthemoleratioofTa/(Ta+Nb)inthefilm,andtheresultsaregiveninTable2.3.ItisnotedthatthefilmcontainsahigherTaconcentrationthanthestartingsolution.

2.7ThinfilmsofLinbO3dopedwithdifferentelements

Page 263: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Neurgaonkaretal.(1979)reportedtheLPEgrowthofNa+andCo2++Zr4+dopedLiNbO3filmsfromLi2O-V2O5flux.

Table2.3Thecompositionalrelationshipthesolutionandthegrowthfilm;thesolutioncompositionwasgivenasLi2O:(Nb1-xTax)O5:V2O5=50:5:45inmol%,andthefilmcompositionLi(Nb1-yTay)O3(Kendon,Sugii,Miyasawa,Uehara,1979)

Solutionx Filmy

0.5 0.78

0.7 0.93

0.8 0.96

0.9 0.98

1 1

Page 264: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page114

BeforegrowinganyepilayersofLi1-xNaxNbO3andLi1-xCoxNb1-xZrxO3components,thecrystallinesolubilityoftheseionswasfirstestimatedintheLiNbO3phase.Thesubstitutionsweremadeasfollows:

Alltheceramicphaseswerepreparedbysolid-statereactions(1000-1200°C)andwerecheckedbyX-raypowderdiffractiontechniquesinordertoestablishthesolidsolubilityrangeofLiNbO3structure.NaNbO3hasapseudo-monoclinicunitcell(Wood1951)atroomtemperatureandbelongstotheperovskitestructuralfamily.AccordingtoLeComteetal.(1974),amaximumof7mol%Na+canbesubstitutedforLi+intheLiNbO3phase.AlthoughCoZrO3doesnotformacompound,itdissolvestoagreaterextentintheLiNbO3structure.About22mol%CoZrO3canbeaccommodatedintheLiNbO3phasewithoutalteringitscrystalsymmetry.ThesubstitutionofNa+forLi+,andCo2+andZr4+forLiandNb,respectively,intheLiNbO3phaseloweredtheferroelectrictransitiontemperature.

TheLi2O-V2O5fluxwasusedforLPEgrowthwork,andmixturescontaining80mol%LiVO3and20mol%Li1-xNaxNbO3andLi1-xCOxNb1-xZrxO3,where0.04<x<0.15,wereprepared.Here,x=0.15(i.e.NaorCo=Zr)inbothoftheabovecompositionscorrespondstoabout3mol%ofthetotalofthemixtures.SincethephasediagramforthepseudobinaryLiVO3-LiNbO3systemisknown(seeFig.2.17),itwasrelativelyeasytoestablishtheliquidustemperaturefortheNa+andCo2++Zr4+containingphasesbytheDTAtechnique.Themeasurementsshowednosignificantchangesinthemeltingtemperaturesforeitherofthesystems.TheappropriateamountsofLi2CO3,V2O5,Nb2O5andNa2CO3orCoCO3+ZrO2werethoroughlymixed,heatedto600°Candthenmeltedina100ccplatinumcrucible.Averticalplatinum-woundresistancefurnacewas

Page 265: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

used,andthegrowthtemperaturewascontrolledwithinanaccuracyof±1°C.Themixturewasheatedto1150-1200°Covernight,afterachievingcompletemelthomogeneity,themoltensolutionwascooledtoabout860°Cattherateof30°C/h.

Any-orz-cutLiNbO3substrate,positionedslightlyabovethemelttoequilibratewiththesolutiontemperature,wasdippedintothemelt.Anappropriatedippingtemperaturewas860-890°Cforboththesystems.Aftertherequiredtimeforgrowthhadelapsed,thesamplewaswithdrawnandcooledveryslowlytoroomtemperature.Thegrowthrateoftheepifilms,whichwasexaminedbychangingthedippingtime,wasestimatedtobeapproximately1.0mm/min.Theresidueofthefluxadheringtothefilmswaswashedawaywitheitherwaterordiluteacids.

ThesurfaceforboththeNa+andCo2++Zr4+-containingfilmswassmoothandclear.Microscopicobservationsathighmagnificationsshowedaslightlyrougheraspectinthecaseofthickerfilms.Co2++Zr4+-dopedfilmswerebluishtintincolour,indicatingtheinclusionoftheseionsinthefilms.Epitaxialfilmsasthickas30-35mmcouldbegrownbythistechnique.

Thecrystallinityandthelatticeconstantawerestudiedforthesubstrateand

Page 266: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page115

Fig.2.30X-raydiffractionpeak(300)takenforthefilm/substrate(Neurgaonkaretal.1979).

thefilmsbytheX-raydiffractiontechnique.They-cutLiNbO3substrateshowedareflectioncorrespondingto(300).Figures2.30(a)-(d)showtherelativeintensityof(300)asafunctionoffilmthickness.ThepeakscorrespondingtoCuKa1andCuKa2representtheLiNbO3substrate,whilethefilmpeakpositionshavebeendenotedby

and .Ascanbeseenfromthisfigure,therelativeintensityofCuKa1andCuKa2graduallydecreasedwithincreasingfilmthicknessandfinallydisappearedcompletelywhenthefilmthicknesswasmorethan10mm.Thepeaksfromthesubstrateandfilmsarewellseparatedandreproducibleundersimilarexperimentalconditions.Thischaracteristicfeatureindicatedthatfilmshaveahighsinglecrystallinitywithgoodepitaxy.

Thelatticeconstantawasestablishedforthesubstrateandfilms.Althoughthelatticeconstantdifferenceforthesubstrateandfilmswaslessthan0.1%,itwaspossibletoidentifythesedifferencesbytheX-raydiffractiontechnique.ThedatashowedthatthefilmsgrownfromtheLi2O-V2O5fluxhavethelatticeconstantasmallerthanthatusuallyobservedinthebulkcrystalsofLiNbO3.Thecrystallinesolid

Page 267: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

solubilityofNa+andCo2++Zr4+inthephasehasbeenshowntobeapproximately7and22mol%,respectively.However,itwasfounddifficulttoraisetheirconcentrationinthefilmsusingtheLi2O-V2O5flux.BasedontheseobservationsandtheresultsreportedbyBaudrantetal.(1975)onthesubstitutionofAg+,Cu+,Fe3+,andCr3+intheLiNbO3films,itwouldappearthattheconcentrationoftheseionsisverylow,~1mol%orless.

Table2.4summarizesthecompositionofameltforAgsubstitutedfilms,andtheresultscorrespondingtodifferentgrowthconditionsonthec-axisLiNbO3substrates.Theopticalmeasurementswereperformedbyusinga1.15-mmlaserbeam.IndexvariationsinfilmscontainingCu,CrandFe,weretoosmalltobemeasuredwithaccuracy.InAgsubstitutedfilmsarefractiveindexof2.2361wasfound;withanaccountofthefactthatthesubstrateindexwas2.2300,thisvariation,Dn=6×10-3,allowedthelightpropagation,forinstance,tohave

Page 268: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page116

Table2.4ThecompositionofmeltforAgsubstitutedfilmsandresultscorrespondingtodifferentgrowthconditionsoncaxisLiNbO3substrates(Baudrant,Vial,Daval,1975)

Meltcomposition(molespercent)Nb2O5.9.8,Ag2O:2,Li2CO3:49,V2O5:39.2

Epitaxialgrowth

Temperature(°C)

Time(min)

Thickness(mm)

Growthrate

(m/min)

Observations

952 - 0 0 Tsaturation

950 10 2 0.2 Goodqualityfilmswithflatandsmoothsurfaces

945 10 6.5 0.65

945 30 22 0.7 Goodqualityfilmbuthillysurfaceaspect

942 10 14 1.4 Smallroughparts

935 10 - - Idem,withsmallcrystalsonthesubstrateedges

asinglemodeina5mmthickfilm.

Neurgaonkaretal.(1987)reportedthelimitofstabilityoftheLiM5+O3structurewithrespecttodopantsandtheLPEgrowthofmodifiedLiNbO3andLiTaO3forSAWdeviceapplications.

Toestablishsuchasituation,thestabilitylimitoftheLiNbO3structurewasdeterminedbyintroducingvariousionsfortheLi+,Nb5+orTa5+sites.Thesubstitutionsweremadeasfollows:

1)

Page 269: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

2)

3)

Allphasesweresynthesizedbythesolidstatereactiontechnique,andwerecharacterizedbyX-raydiffraction.Table2.5summarizesthesitepreference,solidsolubilityrangeandbehaviourofTcforthevarioussolid-solutionsystems.Basedonthiswork,theresultsmaybegeneralizedasfollows:

(1)ThesizeofsubstitutionalionsshouldbeclosetoLi+orM5+forcompletesolidsolutionintheLiNbO3orLiTaO3phase.

(2)ThesubstitutionsshouldbemadeonboththeLi+andNb5+sitessimultaneouslytoobtainhighersolidsolubilityinLiM5+O3-M2+M4+O3.

(3)Thevalencestatesofsubstitutionalionsshouldbeclosetothehostionstoachieveasubstantialsolubility,e.g.thesolubilityofA13+,Fe3+,ory3+isminimuminLiNbO3andLiTaO3.

TheresultsofthepresentstudyshowthattheunitcellaincreasesandcdecreasesforlargecationsinLiM5+O3.LargerionssuchasNa+wereusedin

Page 270: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page117

Table2.5CrystalchemicaldataonLiM5+O3phase,M=NborTa(Neurgaokaretal.1987)

Dopant Sitepreference Solidsolubility(mol%) Tc(°C)

Latticeconstants(Å)

Lisite M5+site LiNbO3 LiTaO3 a c

Na+ Na+ - 7 9 Decreased Increased Decreased

Ag+ Ag+ - 4 6 Decreased Increased Decreased

Cd2+orCa2++Ti4+

Ca2+ Ti4+ 20 20 Decreased Increased Decreased

Cd2+,Ca2++Zr4+

a)Ca2+ Zr4+ 20 - Decreased Increased Decreased

Mg2++Ti4+ Mg2+ Ti4+ 30 35 Increased Decreased Increased

Co2++Ti4+ Co2+ Ti4+ 30 35 Increased Decreased Increased

Co2++Zr4+ Co2+ Zr4+ 30 35 Decreased Increased Decreased

Fe3+,A13+ Fe3+,Al3+

Al3+,Fe3+1

1 1 - - -

Nd3+,Y3+ Y3+,Nd3+

Nd3+,Y3+

1 1 - - -

In3+ In3+ In3+ 1 1 - - -

a)Structuralchangewasobservedatx=0.21.

thepresentLPEgrowthworktoreducetheSAWvelocitytemperaturecoefficient.

Figure2.31showstheternaryphasediagramfortheLiVO3-NaVO3-LiTaO3system.TheLil-xNaxTaO3phasecrystallizesoveralargecompositionalrangeandisfoundtobeusefulforLPEwork.Asshownin

Page 271: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.2.31,twobinarycompositions,Li0.4Na0.6VO3-LiTaOandLi0.5Na0.5VO3-LiTaO3,werestudiedforLPEgrowth.Usingtheseformulations,about2mol%ofNa+inLiTaO3phasecouldbeincorporated.Theactualsolidsolubilityaccordingtothecrystalchemistryworkisapproximately9mol%and7mol%inLiTaO3andLiNbO3,respectively.AsimilarphasediagramhasalsobeenconstructedfortheLiVO3-NaVO3-LiNbO3systembyNeurgaonkaretal.(1980)anditexhibitsasimilarbehaviour.ThedippingtemperatureoftheLi0.4Na0.6VO3-LiTaO3systemismuchhighercomparedtotheLiNbOsystemasaresultofahighermeltingtemperatureofLiTaO3.

Fig.2.31LiVO3-NaVO3-LiTaO3systeminair,

at1250°C(NeurgaonkarandOliver1987).

Page 272: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page118

Table2.6GrowthconditionsandphysicalcharacteristicsofLiM5+O3films(Neurogaonkaretal.1987)

Flux Substrate/film* Growthtemperature

(°C)

Latticeconstant(Å)

TemperaturecoefficientSAWvelocity(ppm/°C)

a c

LiVO3 LiNbO3-S 700 5.148 - -

LiNbO3-F 5.142 - 86

Li1-xNaxVO3

LiNbO3-S 720 5.148 - -

Li1-xNaxNbO3-F

5.156 - 56

Li1-xNaxVO3

LiTaO3-Sb) 720 5.15213.785 -

Li1-xNaxNbO3-F

5.156 13.87 -

LiVO3 LiTaO3-S 1050 5.152 - 35

LiTaO3-F 5.146 - -

Li1-xNaxVO3

LiTaO3-S 1050 5.152 - -

Li1-xNaxTaO3-F

5.161 - 28

Li1-xNaxVOa)

LiNbO3-S 1050 - -

Li1-xNaxTaO3-F

- -

Page 273: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

*)S=substrate,F=film;a)Polingwasproblem,b)Unsuccessfulgrowth

ThegrowthofNa+-dopedLiTaO3andLiNbO3filmsbytheLPEtechniquewassuccessfulandfilms5to60mmthickweregrown.Table2.6summarizesthegrowthconditionsandlatticeparametersfortheseNa-modifiedLiNbO3andLiTaO3films.TheresultsofX-raydiffractionstudiesshowedthatthelatticeconstantaincreasedfortheNa+-dopedLiNbO3andLiTaO3films,andbasedontheunitcellvalues,approximately1.2mol%and1.8mol%Na+isincorporatedintheLiNbO3andLiTaO3films,respectively.TheadditionofmoreNainthesefilmswasunsuccessfulduetolatticemismatchandresultantcracking.

2.8Epitaxialferroelectricfilmswithperovskitestructure

2.8.1Liquid-phaseepitaxyofpotassiumniobate

Theoreticalandexperimentalinvestigationsontheapplicationofferroelectricthinfilmsintheintegratedoptics(OstrowskyandVanneste1978)andpeculiaritiesofnonlinearopticalpropertiesofpotassiumniobate(Uematsu1974;IngleandMisshra1977)makeitoneofthemostinterestingmaterialsofoptoelectronics.Potassiumniobatecrystalwithmeltingtemperature(T=1039°C)entersthenoncentrosymmetricspacegroupmm2,withtemperaturedecreasethecubicphaseturnsintoatetragonal(T=435°C)thenintoarhombic(T=225°C)and,finally,intoarhombohedralone(T=10°C)(ReismanandHoltzberg1955).

Thepossibilityofobtainingpotassiumniobatefilmsbytheliquidphasewasinvestigatedbytheauthorsusingtheepitaxynon-stationarytechnique.TheyalsodiscussedtheresultsofK2O-V2O5-Nb2O5triplesystemphasediagramstudyandtheconditionsforepitaxialfilmgrowth.

Page 274: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thephaseequilibriumwasstudiedbydifferentialthermalanalysis(DTA),

Page 275: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page119

byvisuallypolythermalanalysis(VTA)andbyX-phaseanalysis(XPA)(KhachaturyanandMadoyan1984).InvestigatedcompositionswerechosensothatthemoleratioNb/Nb+Vcouldvaryfrom0to1withanintervalof0.1.

Thephasediagramofthethree-componentsystemK2O-V2O5-Nb2O5wasinvestigatedalongthestraightlinefrom46mol%ofNb2O5-54mol%ofK2Oto50mol%ofK2-50mol%ofV2O5.

SuchachoiceofinvestigatedcompositionsisexplainedbyKVO3synthesisundersolidificationofthemeltofstoichiometriccompositionK2O:V2O5=1:1(Holtzbergetal.1956)whilepotassiumniobateprecipitationispossiblewiththemoleratioK2OtoNb2O5=54:46(ReismanandHoltzberg1955).Samplesaccordingtotheindicatedratiowerecarefullymixed,heatedinthefurnaceupto1300°C,keptthereforthreehoursandthencooledtoroomtemperature.

XPAoftransientcompositionsshowedKNbO3toprecipitatewhenthemoleratioofNb/Nb+Vinthechargevariesfrom0.1to1.IftheNbconcentrationisdecreasedfrom0.3to0,otherphasesappear.TheliquidusoftheKVO3-KNbO3pseudo-systemisbuilt(Fig.2.32),varyingfrom30to100mol%.

TheLPEofpotassiumniobatewasrealizedinanindustrialset'Svet-3'byanon-stationarytechniqueinathree-zoneresistancefurnace.

Thetemperatureinthereactorwaschangedatarateof10-300deg/h.

TheK2O-V2O5-Nb2O5fluxwaspreliminarilymeltedforthreehoursat1300°Cinaplatinumcrucibleandthenmountedonaholderintheoperatingzone.Substratesweremountedonaquartzrodplacedalongthecentre.Epitaxywascarriedoutbythecapillarytechniquefromthemeltenclosedbetweentwoparallelsubstrates,duetogoodwetting.Theslotwasadjustedwithin1-5mm.Thesubstrateswerepreparedof

Page 276: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

and{0001}platesofleucosapphireandoflithiumniobatewithdimensionsl×10×15mm.

Thesystemwasheatedupto1100°CandafterholdingforalongperiodoftimewascooleddowntotheinitialtemperatureTOofepitaxy(Fig.2.20a);thesubstrateswerethenwettedbythesolutioninmeltandwereslowlycooleddowntoT1=(850-875°C),theliquidzonetemperaturebeing1-3°higherthanthatintheexternalsideoftheplates(Fig.2.20b).Thesystembeingcooledwiththesubstratedippedintothecrucible,thelayerprecipitationwasnotobserved(KhachaturyanandMadoyan1980).

Coolingdowntoroomtemperatureproceededatarateofnotmorethan80deg/h.Thesolidchargebetweentheplateswaseasilyremovedbyboilingthesubstratesindistilledwater.

Theprincipalcharacteristicsofpotassiumniobateliquid-phaseepitaxyarepresentedinTable2.7.

HomogeneouslythickKNbO3filmswereobtainedduringepitaxyof54mol%ofK2O-23mol%ofV2O5-23mol%ofNb2O5fromthebufferedmelt.Theepitaxyinitialtemperatureof920°Ccorrespondstotheliquiduspointofthepresentsystem.TheinitialtemperatureTObeingheightenedto930°C,thesubstratesurfaceisobservedtodissolve.

KNbO3filmsobtainedbyLPEfromaK2O-V2O5-Nb2O5bufferedmeltarecolourlessandtransparent,theirboundarywiththesubstrateissharpandtheirsurfaceroughnessisabout0.1mm(Fig.2.33(a)).Thetransientregionthickness

Page 277: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page120

Table2.7Principalcharacteristicsofpotassiumniobateliquidphaseepitaxy

Substratematerial

Solutionmelt,mol.%

Initialepitaxytemperature°C

Coolingrate,Idgmin-

Layerthicknessmm

Growthratemmmin-1

Remarks

54K2O 950 0.8 to2 - precipitationinseparateareas

46Nb2O5

950 0.8 - - surfacedissolution

54K2O23V2O5

920 0.5 5 - singlecrystalinsmallvolumes

{0001}Al2O3 23Nb2O5

920 0.5 to10 - noprecipitation

920 0.5 6 0.1 singlecrystallayer

925 0.5 - 0.05-0.1 singlecrystallayer

52K2O24V25

930 0.5 - - surfacedissolution

24Nb2O5

930 0.2 - - surfacedissolution

{0001}A12O3 920 0.5 - - noprecipitation

920 0.5 - - surfaceintensivedissolution

Page 278: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.2.32LiquiduscurveofKVO3-KNbO3pseudobinarysystem(KhachaturyanandMadoyan1984).

isabout0.5mm(Fig.2.33(b)).AnX-rayweakdiffractionwithanangleof20-44.5°wasobservedfromthesamplesurface,whichcorrespondstotheKNbO3facet{200}.

Theeffectofthesystemcoolingrateontheepitaxyprocesswasfound.WithhighratesKNbO3wascrystallizedonlyintheformofplatecrystals.Atacoolingrateof0.2degmin-1thesubstratesurfacewasobservedtodissolve.ThelayerwasprecipitatedatdT/dt~0.5degmin-1.

Inallexperiments,platecrystalswereseparatedinthesolutioninmeltsimultaneouslywiththefilmgrowth.KNbO3filmswereobtainedonleucosapphiresubstratesof orientation.OnAl2O3{0001}substratesthelayerprecipi-

Page 279: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page121

Fig.2.33ChippingoftheKNbO3/AI2O3epitaxialstructure

(a)andthedistributionofAIandNbalongthethicknessoftheKNbO3/AI2O3heterostructure(b)(Khachaturyan

andMadoyan1984).

tationwasnotobserved.WhenanepitaxiallayergrewonLiNbO3substrates,theplatesurfacedissolvedinthebufferedmeltandbecamedulled.

2.8.2Growthofpotassiumlithiuniobatefilmsonpotassiumbismuthniobatesinglecrystals

Potassiumlithiumniobate(hereafterabbreviatedasKLNcrystal)isoneofthemostinterestingmaterialsforvariousapplicationsbecauseofitsexcellentelectro-optic,nonlinearopticandpiezoelectricproperties(ProkhorovandKuz'minov1990).Accordingly,thinfilmsofKLNsinglecrystalshaveprovedtobeexcellentactivemediaforintegratedoptics.ThetypicalcrystallographicpropertiesandrefractiveindicesofKLNatroomtemperatureareshowncomparedwiththoseofpotassiumbismuthniobate(KBN)K1.5Bi1.0Nb5.1O15crystalinTable2.8.Asingle-crystalthinfilmofKLNcanalsobegrownonaKBNsubstratebythesametechniqueasdescribedabove,becausethecrystallinestructuresofKLNandKBNarethesametungsten-bronzetypestructure,andbecausethemeltingpointofKBN

Page 280: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ishigherbyabout250°CthanthatofKLN,asshowninTable2.8.ThelatticemismatchbetweentheKLNfilmandtheKBNsubstrateisabout0.32%and2.3%atroomtemperatureforthea-andc-axesintheKLNcoordinatesystembecausetheKBNcrystalisorthorhombic,asopposedtotheKLNcrystal,whichistetragonal.Thus,itisexpectedthatasingle-crystalthinfilmofKLNgrownonaKBNsubstratewillactasanopticalwaveguide,anditcanbeusedasanopticalwaveguidemodulatorbycoupledwaveinteractionbetweentheguidedandradiationmodes(Adachietal.1979).Intheirpreviouspaper,Adachietal.(1978)describedtheepitaxialgrowthofKLNsingle-crystalfilmsbytherfsputteringtechnique.Intheir1979papertheyreportedtheepitaxialgrowthofKLNsingle-crystalfilmsonKBNsubstratesbytheEGMtechnique.

Single-crystalsofKBNweregrownbytherfheatingCzochralskimethod.

Page 281: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page122

Table2.8CrystallographicpropertiesandrefractiveindicesofKLNandKBNatroomtemperature(Adachi,Shiasaki,Kawabata,1979)

KLN KBN

Symmetry Tetragonal Orthorhombic

Latticeconstant,Å,a~b 12.58 17.85

c 4.01 7.84

Meltingpoint,°C 1050 1312

Refractiveindex,no 2.294 2.237

nc 2.156 2.253

Wavelength,l.,nm 632.8 450

(001)or(100)KBNsubstrateswerecutfromas-growncrystals,andtheirtopsurfaceswerelappedandopticallypolished.Ontheotherhand,reagentgradecarbonatesoflithiumandpotassium,and99.9%pureniobiumpentoxidewereusedasstartingmaterialsforthefabricationofKLNsingle-crystalfilms.Amaterialwithcomposition35mol%K2CO3,7.3mol%Li2CO3and47.7mol%Nb2O5wasmixedwellwithacetoneinaballmill,dried,pressedintoadisc,andcalcinedat800°CforthreehoursThecalcinedmaterialofKLNwasthengroundthoroughly.ThispowderofKLNwasuniformlylaidonthepolishedsurfaceoftheKBNsubstratewithasprayer.Thesubstrate,withthepowderonitstopsurface,washeatedtoabout1120°CinaresistancefurnaceinordertomelttheKLNcrushedpowderalone,andwasthencooledslowlyatarateof10°C/hthroughthemeltingpoint(1050°c)ofKLN.Inthisway,theKLNfilmcrystallizedepitaxiallyontotheKBNsubstrate.

Thetopsurfaceoftheas-grownfilmwasrelativelyrough,andtheKLNfilmobtainedwas~15mmthick.IntheX-raydiffraction

Page 282: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

patterns,thepeakscorrespondingtodiffractionsfromtheKLNfilmsandKBNsubstratesareclearlyseparated.Further,thevalueobtainedforthestandarddeviationangleooftheX-rayrockingcurveofKLNfilmisverysmallat0.2.ThelatticeconstantsaandcoftheKLNfilmobtainedbyX-raydiffractionmeasurementare12.53Åand3.98Å,respectively.ThesevaluesagreefairlywellwiththoseoftheKLNsinglecrystal,asshowninTable2.8.TheelectrondiffractionpatternsforKLNfilmsepitaxiallygrownonKBNsubstratesandalsotheKikuchistructureindicatethatthefilmsareofasinglecrystaloffairlygoodquality.Theseresultsshowthatasingle-crystalfilmof(001)KLNisepitaxiallygrownonan(001)KBNsubstrate,andalsothatasingle-crystalfilmof(110)KLNisepitaxiallygrownona(100)KBNsubstratebytheEGMtechnique.

2.9Diffusionliquid-phasemethodofgrowingimmersedwaveguidechannels

ChannelorstriplinewaveguidesonthebasisofLiNbO3arenecessaryelementsforcreationofelectro-opticmodulators,switches,directionalcouplersandotheractivedevicesofintegratedoptics(PhotonicseditedbyBalkanski1975;Tamir

Page 283: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page123

1979;Hunsperger1984;Yariv1983;House1988)suitableforjoiningwithopticalfibres.

Thephysico-chemicalpropertiesofbuffered-meltsystems,hightemperaturesoftheprocesses,alimitedchoiceofmaterialsforsolventandcontainerrestrictstronglythepossibilitiesofLPEinthecreationofvariousdevicestructuresascomparedwithmoretechnologicallyeffectivemethodsofdiffusion,exchangereactions,ionimplantation,etc.Inspiteoftheobviousadvantagesinstructuralperfectionofepitaxiallayers,thismethodonlyservesforobtainingplanarwaveguidelithiumniobatelayersonLiTaO3substrates(FukudaandHirano1980;MadoyanandKhachaturyan1983;BallmanandTien1976).

Tocreateeffectiveintegro-opticdevices,wehaveproposedacombinedmethodofliquid-phaseepitaxyofLiNbO3filmswhichusestheadvantagesofthermaldiffusionandLPEandpermitsobtainingpracticallyanyprescribedwaveguideconfigurationsandrefractiveindexprofiles(KhachaturyanandMadoyan1986).

2.9.1Striplinestructures

Toobtainastriplinestructure,itisnecessarytoprovideavariationofwaveguideparametersalongaLiTaO3substratesurfacebyagivenscheme.

Amaskwithagivenconfigurationisphotographedontoa20×30×2mmsubstratesurface(Fig.2.34),afterwhichametalliclayerisdepositedontothissurfacebysprayinginvacuum(Avakyanetal.1986).Ofparticularinterestarewaveguidelayersobtainedbytitaniumdiffusionintoalithiumtantalatesubstrate,sinceintheselayersmodesofbothpolarizationsarepossible(Zilingetal.1980;Atuginetal.1984;Sugiietal.1980;Shashkin1983).

Films,whichareiondiffusionsources,aretypicallydepositedonto

Page 284: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

thesubstratesurfacebythermalevaporationinvacuumorbyion-plasmasprayingoftargets.Accordingtorequirementsonthelightguideparameters,diffusant-filmthicknessisvariedfrom50to80nm.Thediffusiontemperatureis1150°Candthediffusiontime10-16h.

Thedepositedmetaldiffusesintothegrowinglayerthusincreasingitsrefractiveindexalongthephotographedpicture.Theaveragedmetalconcentrationintheline isdeterminedbythesputteredlinethickness

wherehmisthewaveguidelinethickness,Am,rmandMfrfareatomicweightsanddensitiesofthemetalandfilmmaterial,respectively.

Thediffusiondepth(theheightofthewaveguideline)isdeterminedbythediffusioncoefficientofagivenmetalintoasingle-crystalfilmandbytheepitaxytemperature.Therefractiveindexvariationalongthedirection perpendiculartothelayersurfacehastheform(Zilingetal.1980):

HereAe=Dno/c,m=rm×hmisthediffusantspecificmass,q=Dt,where

Page 285: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page124

tisannealingtime,D=D0exp(-U/kT),U=1.5eVistheconstantactivationenergy,D0=4×10-7cm2/s(fortitaniumdiffusion).

Theexpressionspresentedaboveallowustocalculatethenecessaryepitaxytemperatureforobtaininganyarbitraryrefractiveindexprofile.

FortherefractiveindexvariationDnetobeabout0.01whenthechannelheighthreachesapproximately2-4mm,theannealingtimeshouldbeoftheorderof5-10hours,whichexceedsgreatlythecharacteristicepitaxytimes(1-3hours).Consequently,thetimetcanberepresentedast=tpr+tan,wheretpristhelayerprecipitationtimeandtantheadditionalannealingtime.

2.9.2Symmetricwaveguides

Usingthecombineddiffusion-filmmethod,KhachaturyanandMadoyan(1986)obtainedsymmetricwaveguidechannels.Thesequenceofoperationswasthefollowing.Afterremovingtheresist(Fig.2.34),anepitaxialLiNb0.1Ta0.9O3layerwasbuiltupontheTi:LiTaO3substratebythecapillaryLPEmethod.Thefilmcompositionwasdeterminedbytherequiredrefractiveindexdistributionoverthestructurethickness.ThegrowthratevariationinawiderangeprovidedanopticalepitaxyregimeforobtainingperfectLi(Nb,Ta)O3/Ti:LiTaO3.

Thefilm-diffusionwaveguidewastheoreticallyconsideredbySpikhal'sky(1984).Hederivedthedispersionequationforcalculatingthecharacteristicsofmultilayerwaveguidestructures.Healsoestablishedtheparametercharacterizingthedegreeofthelight-fluxmodelocalizationinthevicinityofadefinedinterfacebetweenmediaconstitutingthewaveguide.

Thestudyoftheepitaxialgrowthoflithiumniobate-tantalatefilmswithtitaniumstripsdepositedontoaLiTaO3substratehasshownthat

Page 286: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

forveg<0.2mm/minthefilmsurfaceissmoothwithseparatelinescorrespondingtodislocations.Atsuchgrowthratesthelayergrowthislaminar.

Figure2.34showsthesurface ofaLiTaO3substratewithadepositedtitaniumstrips(a)andthemorphologyoftheepitaxialLi(Nb,Ta)O3filmgrownonthissubstrate.TheepitaxialstructuresLiNbO3/Ti:LiNbO3canbereadilygrowninasimilarmanner(KhachaturyanandMadoyan1988(a),(b)).

Distler(1975)reportedthepossibilityofepitaxialgrowthonsubstrateswithpreliminarilydepositedthin(nearly50nm)metalliclayers.ThethicknessofthestripsinvestigatedbyKhachaturyanandMadoyan(1988(a),(b))lieswithintherangeofapproximately100-500nm.Structuralinformationisnottransmittedthroughtitaniumstrips,andinthenormalmechanismthefilmmustsurelybedefectiveonthesestrips.Inlaminargrowththesituationwasdifferent.Thedensityofgrowthstructuresreflectingthedefectivelayerstructureisminimumjustoverthetitaniumstrips.Themetalliclayerobviously'screens'thestructuraldefectsofthesubstratewhichontheremainingsitesgrowintothefilm.Alowdensityofthenucleiguaranteesaninsignificantamountofsmall-angleboundarieswhichaffectneitherthestructuralperfectionofthefilmnortheabsenceofdisorientedsitescausedbynucleationontitaniumstripsthemselves.

Assoonastheepitaxialgrowthprocessisover,theremainingsolventisremovedfromthesurfaceoftheepitaxialfilmusingkaolincottonplugsormicro-channelslabsasliquid-phaseabsorbent(DudkinandKhachaturyan1988).

Page 287: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page125

Fig.2.34Schematicofobtainingadippedwaveguidechannel(a),thesurface

ofaLiTaO3substratewithdepositedtitaniumstrips(b)andthemorphologyofepitaxialLi(Nb,Ta)O3filmgrownonthissubstrate(c).

Amicrochannelslabisasetofregularlypositionedmicroslits-channelswithdiameterfrom7to25mmeachandthelengthchosenwithintherangeof0.3to1.2mm.Thecrosssectionofmicrochannelslabstypicallyvariesfrom30to40mm,whichexceedsthestandarddimensionsoftheworkingfieldofproductsfabricatedusingepitaxialtechnique.Whenmicrochannelslabsareusedforalongtimeattemperaturesexceeding600-1200°C,theslabsarepreliminarilywettedinliquidkaolin('kaolinmilk')andthendried.Themicrochannelslabsprocessedthiswaycanbeusedtoremovetheremainingliquid-phasefluxfromthesamplesurface.Tothisendthemicrochannelslabisbroughtclosetothegapbetweenthesubstratessothatitssurfacetouchessimultaneouslytheentirelayersurface,asshowninFig.2.35.Underequivalentcapillaryforcestheliquidresiduesaredrawnoffalongallthechannels,thatis,uniformlyalongtheentiresurface.

Page 288: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thus,themethodsdiscussedabovemakeitpossibletoobtainlayerswithvariouswaveguideconfigurationsinthefilm.Varyingthegrowthrateandtheannealingtime,wecanobtainsurfaceandimmersedwaveguides,striplinestructuresandlayerswithmetallicbufferedlayersonthesubstrate-filmboundary.

2.10GrowthofepitaxialfilmsintheKTiOPO4familyofcrystals

Asanalternativetodirectlyaddressingtheionicconductivityproblem,andasameanstomoreeffectivelyconfinetheopticalwavetoyieldhigherpowerdensity,filmswithwell-definedstep-likerefractiveindexprofilecanbegrown

Page 289: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page126

Fig.2.35Schematicoftheuseofmicrochannelslabsto

absorbtheliquid-phasefluxfromthefilmsurface:1)microchannelslab,2)singlechannel,3)substrate,

4)liquidphase5)epitaxialfilm,6,7)contactsofthemeltwithamicrochannelslab.

directlybyliquid-phaseepitaxy.TheKTPcrystalfamilyishighlyversatileandreadilyformssolidsolutionsamongitsmembers(BierleinandGier1976;JarmanandGrubb1988).Themonovalentcations(i.e.K,Rb,CsandT1)arefoundtobemobileduetotheirdirectcovalentlinkagetothebridgingoxygeninthelattice,thepentavalentPandAsions,andthetetravalentTiionsareexpectedtohavenegligiblemobilityevenatelevatedtemperatures.Thus,athinfilmconsistingofsolidsolutionoftheseions(e.g.KTiOAsxP1-xO4orKTixSn1-xOPO4)grownonapureKTPsubstrateisexpectedtohaveawell-definedabruptrefractiveindexprofilealongcdirection.

Effectivewaveguidingisobtainedbysatisfyingtheconditionthatthefilm'srefractiveindicesbehigherthanthatofthesubstrate.Deepchannelwaveguidescanbefabricatedontheseheteroepitaxialfilmsbysubsequention-exchange.Astheevanescentwavebarelypenetratesintothesubstrate,fluctuationinthediffusiveprofileofthesechannelguideswillnotsignificantlyaffecttheirwaveguidingproperties,therebyavoidingtheproblemofionicconductivity.

ThelatticeconstantsforseveralendmembersoftheKTPfamilyare

Page 290: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

summarizedinTable2.9.Amongthemanypossiblefilm-substratecombinations,theKTA-KTPsystemwaschosenintheexperimentscarriedoutbyChengetal.(1991).Therearetworeasonsforthis.Asthetitanylgroupisprimarilyresponsiblefortheopticalnonlinearity,replacementoftitaniumwithothertetravalentionsisexpectedtoleadtoasignificantlossinthenonlinearity,whichinturnreducestheusefulnessofthesefilmsinnonlinearfrequencyconversion.Thearsenicforphosphorussubstitutionprovidesthedesiredrefractiveindexincreasewithoutcompromisingonthenonlinearity.TheopticalandthecrystalgrowthpropertiesofKTPandKTAarebettercharacterizedthanthoseofallothermembersoftheKTPfamily(Bierleinetal.1989).Thisallowsforbettercorrelationbetweenexperimentalresultsandtheoreticalpredictions.

Boththetungstatefluxandthepurephosphate-arsenateself-fluxwereusedintheexperimentsbyChengetal.(1991).Theself-fluxusedconsistsofthephosphate-arsenatealongwiththeK6P4O13flux(abbreviatedasK6below)usedforbulkKTPgrowth(Gier1980;Borduietal.1987).Therelativecrystal-fluxcompositionswerechosensuchthatthegrowthtemperatureswere850°C.Althoughsignificantlylowergrowthtemperaturesarepossibleusingthetungstate,theK6fluxbecomesfartooviscousforgrowthbelow750°C.

Page 291: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page127

Table2.9LatticeconstantsforseveralKTPisomorphs(Chengetal1991)

Crystal Latticeconstants Cellvolume(A)

a(Å) bÅ) c(Å)

KTiOPO4 (KTP) 12.822 6.4054 10.589 869.67

RbTiOPO4 (RTP) 12.964 6.4985 10.563 889.89

TlTiOPO4 (TIP) 12.983 6.49 10.578 891.3

KTiOAsO4 (KTA) 13.125 6.5716 10.786 930.31

RbTiOAsO4 (RTA) 13.258 6.6781 10.766 953.2

CsTiOAsO4 (CTA) 13.486 6.8616 10.688 989.02

TlTiOAsO4 (TTA) 13.208 6.6865 10.724 947.09

KGeOPO4 (KGP) 12.602 6.302 10.006 794.65

KSnOPO4 (KSP) 13.146 6.528 10.727 920.56

Variouslyorientedsubstrates,namely{011},{110},{100},{111}and{201}plates,havebeensuccessfullyusedtogiveas-grownfilmswithhighlyspecularsurfaces.KTPandKTiOAsxP1-xO4substrateswereprimarilycutfromflux-growncrystals.

Theuseofhydrothermallygrownmaterialstypicallyleadstoopticaldegradationwiththeformationoffinewhitefilamentsinthesubstrate.Chengetal.(1991)speculatethatthisdegradationisduetotheprecipitationoffinewater-basedinclusionsinthesematerials.

Thesubstratesare~l×lcm2×mmthickplates,cutparalleltothenaturalgrowthfacets.Allplateswerepolishedwithsequentiallyfiner(3-0.25mm)diamondbasedpolishingpowder,andfinishedwitha30schemical-mechanicalpolishincolloidalsilica.Asmall(0.75mm)

Page 292: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

hole,drilledatonecornerofthesubstrate,allowsittobetiedontoacrystalrotation-pullingheadwithathinplatinumwire.Thesubstratewasheldverticallytoassistfluxdrainageafterdipping.Aslightetchingofthesubstrateinwarmdilutehydrochloricacidpriortothedippingwasfoundtoimprovetheequalityoftheepitaxialfilm.

Thedippingsetupisidenticaltothebulkgrowthfurnace.Itconsistsofa250mlcrucibleplacedatthebottomofashortzonetop-loadingcruciblefurnacelinedbya4.5-inchquartztube.

Themelt(~200ml)ishomogenizedatabout50°Caboveitsliquidustemperature.AsomewhatlongersoaktimeisoftenneededwhenusingtheK6flux.Thesubstrateisintroducedintothegrowthfurnaceslowly(~5-25mm/min).Themeltisthencooledtoabout1.5-3°Cbelowthesaturationpointandallowedtoequilibratefor30min.Thesubstrateisthendippedintothemeltandspununidirectionallyat10rpm.Thedippingtimeisvarieddependingonthedesiredfilmthickness,thedegreeofsupersaturationused,thechoiceoffluxandthegrowthtemperature.Experimentally,Chengetal.(1991)foundthataslightback-etchingofthesubstratepriortogrowthresultsinsignificantlybetterqualityfilms.Thisisaccomplishedsimplybytakingadvantageofthethermalinertiaofthesystemandsubmergingthesubstratebeforethemeltreachesthegrowthtemperature.

Page 293: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page128

Fig.2.36ProfileofKTiOP0.76AS0.24O4filmonaKTPsubstrate.Thetitaniumprofileisnotshownforclarity.Thespatialresolutionofthescanis~0.5mm(Chengetal.1991).

Uponcompletionofthedipping,theplateiswithdrawnfromthemeltandthefurnaceatapproximately5-25mm/min.Anyresidualfluxpresentiswashedoffwithwarmdilutehydrochloricacid.Thethicknessofthefilmisnearly±5mm.

Usingthedippingprocedureoutlinedabove,Chengetal.(1991)havegrownKTiOAsyP1-yO4filmsbetween4and20mmonsuitablychosensubstratesofKTPorKTiOAsxP1-xO4(wherex<y).Asanindependentconfirmationofthestep-likeofthestep-likerefractiveindexprofileofthesefilms,electronmicroprobetechniquewasusedtomapoutthecompositionofa50mm-thickKTiOP0.76AS0.24O4filmonaKTPsubstrate(Fig.2.36).The'abrupt'increaseinthearseniccontentfromthesubstratetothefilmconvincinglydemonstratesthatphosphorus-arsenicexchangeisnegligibleunderthegrowthconditions(~850°C).Sincetheas-grownfilmhasthesamemorphologyasthatofKTPandthesolidsolutionKTiOAsyP1-yO4istheonlystablephaseinthemelt,Chengetal.(1991)concludethatthefilmisepitaxialandisstructurallyanalogoustoKTP.Therefractiveindexofthefilmcanbeestimatedfromtheknownrefractiveindicesoftheendmembers,andisinexcellentagreementwiththem-lines

Page 294: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

spectrometryresults.Chengetal.(1991)havealsogrownthinfilmsofRb0.2Ko.8TiOPO4onKTP.ThesignificantpenetrationoftheRb+intothesubstrateverifiedthattheK+ionsarehighlymobile,andstep-indexfilmscannotbereadilyobtainedfromthecationicsolidsolutions.

Table2.10summarizesthepartitioncoefficientsforarsenicusingthetungstateflux.Thepartitioncoefficient,k,isdefinedas:

where[As]isthemolefractionofAsinthecrystalorthemelt.ThegreaterthanunitypartitioncoefficientsuggeststhatAsisfavouredintheKTiOAsxP1-xO4lattice.Figure2.37plotsthelatticeconstantsoftheKTiOAsxP1-xO4system.Theresultsindicatethat,unliketheRbxK1-xTiOPO4

Page 295: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page129

Table2.10Partitioncoefficient,k,ofarsenicfromatungstenmelt;(As)isdeterminedbyICPanalysisofAsandPinbulkcrystalsgrownatthesametemperature(Chengatal1991)

[As]crystal [AS]melt k

24 20 1.2

39.1 35 1.12

56.1 50 1.12

82.6 75 1.1

87.4 80 1.1

Fig.2.37LatticeconstantsoftheKTiOPxAS1-xO4system.

SolidlinesarepredictionsusingVegard'slaw(Chengetal.1991).

system,thelatticeconstantsa,bandc,increasemonotonicallywitharseniccontent.ThefollowingVegardlawsfittheKTiOAsxP1-xO4resultsverywell:

Page 296: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wherexisthemolefractionofAsinthecrystals.Itwasexperimentallyfoundthatthemaximumlatticemismatchforhighqualityfilmgrowthisabout1%,whichcorrespondstoa35%increaseinarseniccontentintheKTiOASxP1-xO4filmandtoanestimatedrefractiveindexincreaseofDnb~0.0177at1.064mm.Filmcrackingand'scaling'wereobservedforfilmswithlargerlatticemismatch.

SignificantlydifferentgrowthpropertieswereobservedfortungstatefluxandtheK6flux.Atabout850°Candwithcomparablesupercooling(about2°C),thegrowthratewassubstantiallyslowerintheK6fluxthanintungstate.ToachieveacomparablegrowthrateusingtheK6flux,asupercoolingroughlytwicethatusedintungstateisneeded.FilmsgrownfromtheK6fluxtendtohavefilm-substrateinterfacesofpoorerquality.Itislikelythatthisisdue

Page 297: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page130

totheslowdissolutionkineticsoftheK6flux(Chengetal.1991),whichmakestheimplementationofpre-growthetchingdifficult.Thetimelinearityoffilmgrowthforagivensupercoolingwasestablished.

TheKTAprocesseswerereportedtohaveappreciablyhigheropticalnon-linearityandloweropticalscatteringthanKTP(Bierleinetal.1989).Theidealfilm-substratecombinationisthereforeapureKTAfilmonsuitablychosenKTiOAslP1-xO4substrate.Thiscombinationalsoeliminatesanypossiblemicroscopiccompositionalfluctuationinthefilmduetothenon-unitypartitioncoefficientkofarsenic.AlthoughcompositionalvariationsinKTiOAsxP1-xO4substratescaninprincipleoccur,theireffectonthewaveguidingpropertieswillbenegligible.Thefilmwasshowntowaveguideeffectivelyat0.632mm,withnomorethantwoopticalmodes.

Chengetal.(1991)alsoexploredthefilmgrowthofsolidsolutionsinvolvingthetitanylgroup.ThegrowthofKTi1-xSnxOPO4films,thoughpreferredoverKTi1-xGexOPO4,provesdifficultduetotheanomalouslyslowdissolutionofKSP.Incontrast,usingtheprocedureoutlinedabove,Chengetal.(1991)readilygrew10mmKTi0.96Ge0.04OPO4filmson{011}KTPsubstratesusinga20%{Ge}solution.Discouragingly,evenwithalow4.3%Geincorporation,numerouscracksperpendiculartocwereobservedinthicker(30mm)films.Chengetal.(1991)attributethisincreasedfilm-crackingtendencytothefactthat,unliketheKTiOAsxP1-xO4films,theKTi0.96Ge0.04OPO4filmsareundertensilestress.Thisinterpretationisentirelyconsistentwiththeprediction,usingVegard'slawandTable2.9,thatthecracksshouldbenormaltocasobserved.Theseexperimentssuggestthatsolid-solutionfilmsofeitherKTi1-xSnxOPO4orKTi1-xGexOPO4areoflimitedpracticalutility.Thesituationcanhoweverbeimprovedsignificantlybyreversingthefilm-substrateconfiguration,i.e.KTPfilmonKTi1-xGexOPO4substrate-providedthattherefractiveindicesconditionforwaveguidingcanbe

Page 298: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

satisfied.

Page 299: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page131

3InfluenceofElectricCurrentuponLiquid-PhaseEpitaxyofFerroelectricsProgressofmicro-andoptoelectronicsdependsmuchonhowsuccessfullytheexistingmethodsforobtainingthin-filmstructuressolvetheproblemofreproducibleformationofperfectmultilayerheteroepitaxialcompositionsbasedonmulticomponentsemiconductorsolidsolutionsofA3B5andferroelectricsmanufacturedfromniobatesandtantalatesofalkalineandalkaliearthmetals.Requirementsonthetechnologyandcrystallographicperfectionofstructuresandonthepropertiesoffilmshaveincreasedsubstantially.Amongtheknownliquid-phasemethodsforobtainingepitaxialstructureswithpredeterminedproperties,liquid-phaseepitaxypossessesthewidestpotentialitiesforfilmcomposition,thicknessandstructurecontrol.Inthischapter,wepresenttheoreticalandexperimentalresultsofstudiesoftheinfluenceofdirectelectriccurrentupontheprocessesofliquid-phaseepitaxy.Wealsopresenttheresultsoforiginalpapersongrowthandinvestigationofthin-filmstructuresofferroelectricsonanexampleoflithiumniobateandsolidsolutionsoflithiumniobate-tantalate.Weaccountforthefactthatanelectricfieldand,inparticular,adirectelectriccurrentflowingthroughacrystalisoneoftheeffectivemeansforchangingcrystallizationconditionsthataffectcrystallographicperfectionandsomephysicalpropertiesofgrownstructures(Khachaturyanetal1987).

3.1.Electricfieldandcrystallization

Anelectricfieldisafairlystrongenergeticfactoraffectingthenucleationandgrowthofanewphaseunderfirst-orderphasetransitions.Butthenumerousreportsontheinfluenceofanelectric

Page 300: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

fielduponthecrystallizationprocessdonotprovidefinalunambiguousconclusionsconcerningaunifiedphysicalmechanismoffieldeffect.Inviewofthisweconsiderpossiblemechanismsoftheinfluenceofadirectelectricfielduponcrystallizationprocesses.

3.1.1Bulkcrystallization

In1956,A.F.Ioffegaveatheoreticaldescriptionofmotionofameltedzoneundertheactionofelectriccurrentingermaniumbars(Ioffe1956).This

Page 301: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page132

motionwasexplainedbythepresenceoftemperaturegradientintheliquidzoneduetoPeltierheatrelease(orabsorption)attheliquid-solidinterfaces.In1957,W.Pfann(Pfannetal1957)gaveanexperimentalconfirmationofthetheorysuggestedbyA.F.Ioffe.Awholenumberofnewexperimentalresults(Pfann1970)onthedirectionofmotioninameltedzonedependingonitscompositionrequiredspecificationofthetheory.

TheinfluenceofanelectricfieldontheformationofcrystallizationcentresinsupersaturatedsaltsolutionswasfirstdiscoveredbyShubnikov(1956)whoshowedthatasuperpositionofanexternalelectricfieldcausesasharpincreaseinthenumberofcrystallizationcentres.

Investigationoftheactionofelectriccurrentinacrystal-meltchainingermaniumcrystalgrowthusingCzochralskiandStepanovmethodshasrevealedvariationintheintensityandstriationperiodincrystals(Levinzonetal1969;Dudniketal1973).Germaniumsinglecrystalsweregrowninthe{111}directionanddopedwithantimonytoobtainaresistivityof5-10ohm.cm.

Thedensityofcurrentincreasedfrom0to50A/cm2inthecourseofgrowthofonecrystal.Stepanovgrowningotsexhibitedadecreaseoftheamplitudeandpitchofstriation,whichdoesnotdependonthedirectionofcurrentandisonlyduetoJouleheatrelease(i.e.theJouleheatexceedsthePeltierheat).

ItshouldbenotedthattheparametersofinhomogeneityofcontrolingotsgrowninasimilarmannerbytheCzochralskimethodremainedpracticallyunalteredwhenelectriccurrentwasapplied.

WhengermaniumstripsaregrownbytheStepanovmethod,thetransmittedelectriccurrenthasaneffectnotonlyuponthenatureofstriationinsinglecrystals.Itwasshown(Egorovetal1971)thatan

Page 302: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

applicationofadirectelectriccurrentthroughaninterfaceprovidescontroloverthecrystallizationfrontshapeduringzonecrystalgrowth.Tochoosethecurrentdensitynecessaryforcrystallizationfrontshapecontrol,oneshouldtakeintoaccounttherelationbetweenthePeltierandJouleheatswhicharerespectivelyequalto

PisthePeltiercoefficient,RistheresultantresistanceoftheportionsofliquidandcrystaladjoiningthecrystallizationfrontandJiscurrentdensity.

Theseeffectscanbesummeduporsubtracteddependingonthedirectionofcurrent.

InaregionwherethecurrentdensityissuchthatQJ>Qp,thecrystallizationfrontrises,whilefor itfalls.WhentheJouleandPeltierheatsareequaltoeachother, theappliedcurrentinducesnovariationsofthecrystallizationfrontshape.Thecorrespondingequilibriumdensityofcurrentwillbeequalto

Thedeviationoftheimpurityconcentrationfromtheequilibriumvalue(DC)atthesolid-liquidinterfacecanberepresentedinthegeneralformasan

Page 303: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page133

algebraicsumofthedeviationsoftheconcentrationsfromtheirequilibriumvalues,causedbyelectrothermaleffects(DC1standsfortheJouleeffect,Peltiereffectandothers)andelectrictransfer(DC2)

In1963-1964twomodelswereproposed(Tiller1963;Hurleetal1964)attemptingallowanceformigrationofmeltcomponentsundertheactionofanelectriccurrentinstationaryconditions.Althoughtheorderofmagnitudeofdifferentialmobilityofameltedzonecomponentwasdeterminedwithinthesemodels,theywereunabletoexplaintheresultsofsubsequentworksonepitaxialgrowth.

ThePeltiereffectwasappliedtodeterminethecrystallizationrateofInSbinCzochralskitypecrystalgrowth(Singhetal1968;Lichtensteigeretal1971;WargoandWitt1984).Applicationofapulsedcurrenttoacrystal-meltboundaryresultedintheappearanceofstriationinthecrystalstructure,andvariationofthefrequencyandpulseintensitycausedvariationsinthewidthandintensityofthesestriae.ThestriaeresultedfromvariationofimpurityconcentrationduetoachangeofinstantaneousgrowthratecausedbyPeltierheating(orcooling).Theauthorsnoticedthattheimpurityconcentrationinastriaremainsconstantduringallthetimeofapplicationofacurrent,changesinstantaneouslyattheendofapulseandremainsunchangedtillasubsequentpulse.Changingthemagnitudeofelectriccurrentpulseandthuschangingtheimpurityconcentrationinastria,theyestablishedadirectdependenceofimpuritysegregationonthedensityofthecurrentflowingthroughthesystem.TheelectrictransferwhichaccompaniesthePeltiereffectisobservedtorestrictitsactioninmulticomponentsystems.

SimilarresultswereobtainedforGe(Vojdanietal1975).ThetemperaturedistributioninasystemtowhichanelectriccurrentisappliedwasshowntobeafunctionofthePeltiereffect.

Page 304: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theprocessesproceedingduringthegrowthofpotassium-tungstenbronze(NaxWO3)andlanthanumhexaboride(LaB6)bythemethodcombiningelectrochemicalcrystallizationandCzochralskitechniquewereinvestigatedbyMatteietal(1976),HugginsandElwell1977)andDeMatteiandFeigelson(1978).Ifintheusualcrystalgrowththemotiveforceissupersaturationorthermalgradient,inelectrochemicalcrystallizationthekineticanddiffusionprocessesareactivatedbyanexternalelectricfieldwhosepotentialexceedstheequilibriumpotentialvalue.ElectrochemicalcrystallizationisaFaradayeffect,andtheprecipitationrateattheinterfaceisreadilycontrolledbythestrengthofcurrent.

ProblemsconnectedwiththeinfluenceofelectrictransferandPeltiereffectupontheimpuritydistributioncoefficientwerediscussedonanexampleofgrowthofBi-SbcrystalsdopedwithTe,Se,SnandPb(KrylovandIvanov1980).

Whengrowingchromium-dopedlithiumniobatecrystalsbyCzochralskitechnique,Räber(1976)andFeisstandRäber(1983)examinedtheinfluenceofthestrengthanddirectionoftheelectriccurrentflowingthroughacrystal-

Page 305: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page134

meltsystemuponthevalueofthechromiumdistributioncoefficient.

Applicationof50mApulsesofagainstthebackground5mAcurrentresultedinstriationcausedbyadecreaseofchromiumconcentrationbyaboutafactoroftwo,thecurrentontheseedcrystalhavingpolarity'+'.Thedistributioncoefficient(Kcff)asafunctionofthestrengthanddirectionofcurrentwasestimated.Astheelectriccurrentdensityvariedwithintherange15<j<18mA/cm2,thedistributioncoefficientdecreasedlinearlywithanincreaseofthecurrentdensity.Outsidetheindicatedcurrentdensityrangethecrystalgrowthbecameunstable.Highvaluesofthedensityofcurrentsappliedinducedtheappearanceofgasbubblesinthecrystal.Thecolourofthecrystalchangedwithreversalofpolarity,andthesurfacebecamerough.

Voskresenskayaetal(1985)reportedtheresultsoftheirinvestigationoftheelectricfieldeffectupontheprocessesproceedingatthecrystallizationfrontofbismuthgermanategrownbyCzochralskimethod.Crystalsweregrownfromacruciblewithcathodeandanodepolarizations,thedensityofcurrentswasvariedwithintherangeof(0÷20)mA.Anelectriccurrentwasshowntohaveagreateffectontheimpuritydistributioncoefficientandonthemagnitudeofremanentstressesinthecrystal.Inthecaseofcathodepolarization,thegrowthprocesswasstable,theresistanceoftheelectriccircuitincreasedmonotonicallywithcrystalgrowth.Achangeofpolarizationforananodeoneledtoadecreaseintheelectricresistanceattheboundarybyafactorof25andinducednonstationaryprocessesatthecrystallizationfront,whichareconnectedwithanunstablevalueofresistanceinthecrystal-melt-cruciblechain.Ananalysisofthevalueofremanentstressesindifferentpartsofcrystalsgrownfromacruciblewithcathodepolarizationshowedthatthestressesfalldownto70%ascomparedwithregionsgrowingwithoutanycurrentbeingapplied.

Page 306: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thus,ananalysisofthepapersinvestigatingtheinfluenceofadirectelectriccurrentuponcrystallizationofabulkmaterialrevealedthepossibilityofcontrollingtheimpuritycompositionandstructuralperfectionofgrownsinglecrystals.

3.1.2Thinfilms

Thewideapplicationofthinfilmsinmicro-andoptoelectronicsisexplainedbymanyfactors.Themostimportanthereisobviouslythefactthatitisonlythinfilmsthatpermitobtainingcompactschemesatalowconsumedpowerandahighdensityofschemeelements.Furthermore,themethodsofobtainingthinfilmsprovidehighlypuresubstancesormaterialswithacompositioncontrolledwithprecision.

Researchersengagedingrowingsinglecrystalsandfilmsareinterestedinfindingnewwaysofaffectingagrowingcrystal,whichwouldallowamoreeffectivecontroloverthegrowthrate,surfacemorphology,thedistributionofalloyingimpuritiesinacrystallizationmediumandtheconcentrationofstructuraldefects.

Alargeamountofexperimentalmaterialisavailableontheinfluenceofanelectricfielduponepitaxialgrowthfromthegasphase.Thegeneralchemicofphysicalconsiderationsimplythatsuperpositionofthedifferenceofelectricpotentialsonthesourceandsubstratemaygivethefollowingprincipaleffects:

Page 307: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page135

1.Changeofconditionsofchemicalequilibriumofheterogeneousreactionsonthesourceandsubstratesurfaces.Indeed,theGibbsexpressionforthefreeenergyofaphysico-chemicalsysteminanelectricfieldcontainsanadditionaltermshowingthattheworkofelectricforcesisproportionaltothestrengthanddependsonthedirectionoftheelectricfieldstrengthvector(Sychev1970):

where istheelectricfieldstrength, theelectricinductionandthedielectricpolarization.

2.Changeofdiffusionactivationenergyanddiffusionrateinthegasphaseonthesourceandsubstratesurfaces.Themaineffectisthatthediffusivemotionofparticlesissuperposedbyadirecteddriftofionsintheelectricfield(Boltaks1972;KolobovandSamokhvalov1975):j=mEC,wherejisachargedparticleflow,mismobilityandCisconcentration.

Electrodiffusionofchargedvacanciescanproceedsimultaneously.ThechangeinthediffusionactivationenergyundertheactionofelectricfieldwasreportedbyGorsky(1969).

3.ChangeinthepositionoftheFermilevelonthesurfaceofasemiconductorcausedbyatransverseelectricfield.Thisresultsindisplacementofequilibriumbetweenachargedandunchargedformsofchemisorptiononthesurface,whichleadstoanadditionaladsorptionordesorptionofmoleculesdependingonthesignofthefield.Thisphenomenonwascalledelectrosorption(Wolkenstein1973).Therelativechangeofadsorbtiveabilityisdescribedbytheformula

whereN0isadsorbtiveabilityintheabsenceofanelectricfield,DN=

Page 308: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

N-N0isthechangeofadsorbtiveability,DVs,isthesurfacezonebend, isarelativecontentofadsorbedparticlesonanunchargedsemiconductor(theminusreferstoacceptormolecules,theplustodonormolecules).

Thenear-surfacezonebendDVs,dependsontheelectricchargedensityonthesuperconductorsurfacecausedbothbythepresenceofelectricallychargedadsorbedparticlesandbysuperpositionofanexternalfieldofstrengthE.ForthisreasonDN/N=f(E),theexternalelectricfieldaffectingnotonlytherelationbetweentheevenlyadsorbeddonorandacceptormolecules,butalsothesorptionkinetics(Wolkenstein1973).Ifthecrystallatticeofasemiconductorischaracterizedbyasubstantialcontributionoftheioncomponentofchemicalbond,anelectricfieldcanalsoproduceadefiniteeffectuponthestoichiometryofcrystalcomposition

4.Changeofcriticalsupersaturationnecessaryfortheappearanceandstabilizationofcrystallizationnucleiinthecourseoflaminarcrystalgrowth.AsshownbySirota(1971),inthesimplestcase,whenthephasetransitionheatDH=0,thecriticalsupersaturationscritforcrystallizationnucleationisdescribed,accordingtothegeneralizedThomsontheory,bytheThomsonformula

Page 309: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page136

whereVandrarethevolumeandtheradiusofthecrystallizationnucleus,qistheelectricchargeofthecrystallizationnucleus,gisthesurfacefreeenergyandkistheconstantdependentonthenatureofthesubstance.

AccordingtoChernovandTrusov(1969),thesurfacechargeslowerthenucleationactivationenergybyabout10%.

Itisanexperimentallyestablishedfactthatanelectricfieldhasaneffectuponthegrowthrateandalloydistributionbetweenthegasphaseandthegrowingfilmsofgermanium,silicon(Lyutovichetal1971)andgalliumarsenide(Palienkoetal1971).ItwasnoticedthatthethresholdtemperatureofsiliconepitaxialgrowthlowersunderhydrogenreductionofSiCl4,andtheactivationenergyofprecipitationandthemorphologyofthefilmsurfacealsochange(Chopra1969).

Thestudiesoftheinfluenceofanelectricfieldunderthechemicaltransportofsubstancefromthenearsourceontothesubstrate,i.e.bythesandwichmethod(IkonnikovaandIvleva1974;Korobovetal1977)revealthepossibilityofcontrollingthegalliumarsenidelayergrowthandofsuppressinguncontrolledinhomogeneitiesinthebulkfilm(Korobovetal1977).

Thus,theuseofelectricfieldsofdifferentpolaritiesandstrengthinthecourseofepitaxialgrowthfromthegasphaseisconsideredtobepromisingforanincreaseofintegrationandcontrolledlocalintensificationoftechnologicalprocessesinmicroelectronics.

3.1.3Liquid-phaseelectroepitaxy

Themethodofliquidphaseepitaxyinanelectricfield,calledalsoliquid-phaseelectroepitaxy,wasfirstproposedforobtainingepitaxial

Page 310: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

filmsofsemiconductorsonanexampleofthecompoundGaSb(Golubevetal1974a,b).Thismethodisbasedoncrystallizationundertheactionofadirectelectriccurrentrunningthroughasource-bufferedmelt-substratesystem.Asopposedtoelectrocrystallization,wherethecrystallizedsubstanceisaproductoftheelectrodereaction,crystallizationinliquid-phaseelectroepitaxyisasecondaryphenomenon,aresultofthecurrent-inducedvariationinthetemperatureandconcentrationofthesubstance.

Theconcentrationandtemperaturegradientsarisingattheboundaryareaconsequenceofanumberofphysicalphenomenaduetoelectriccurrentindifferentpartsofthegrowthcell,namely,itmaybePeltierheatreleaseorabsorptionatboundaries,electromigrationofcomponentsintheliquidphase,Jouleheatandsomeothereffects.

Twotypesofliquid-phaseelectroepitaxywereinvestigated(Fig.3.1).Thefirsttypeisanequilibriumprocess,wheninthecourseoffilmgrowththeliquidphaseispermanentlyfedbyprecipitatedcomponentsfromthesource(Fig.3.1a),andthesecondtypewhentheliquidphaseisnotfed(Fig.3.1b).

Letusconsidertheessenceofliquid-phaseelectroepitaxy(Gevorkyanetal1977;Khachaturyanetal1977).Priortoepitaxy,thetemperatureofthecrystallizationcellwasT0.Intheinitialstatethesystemconsistsofasourceandasubstratewhichareincontactwiththebufferedmeltandwithcurrent-

Page 311: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page137

Fig.3.1Basictypesofliquidphaseelectroepitaxywithindicationof

temperatureandconcentrationdistributionatthecrystallizationfront:a)withliquidphasefeeding;b)withoutliquidphasefeeding.

conductingelectrodes.AnexternalheatermaintainstheconstanttemperatureT0.Atthistemperature,theliquidphaseissaturatedwiththematerialsofthesourceandthesubstratewhicharedissolvedinthesystem,andtheentiresystemisinthestateofthermodynamicequilibriumyieldingnomaterialtransport.

Ifadirectelectriccurrentofappropriatepolarityrunsthroughthecrystallizationcell,Peltierheatisreleasedatthesource-liquidphaseboundaryandisabsorbedattheliquidphase-substrateboundary.Asaresult,thetemperatureattheboundarieschanges,atemperaturegradientoccursintheliquidphaseleadingtotheappearanceofaconcentrationgradient,thesourceispermanentlydissolvedanditsmaterialistransportedtothesubstrate.Thus,liquid-phaseelectroepitaxyinfactcombineselementsofordinaryliquidphaseepitaxyandelementsofzonemeltingwithatemperaturegradient.Achangeinthecurrentpolarityisresponsiblefordissolutionofthesubstrate,whilethelayerisprecipitatedontothesource.Reversibilityandlowinertiaofheatrelease(Peltierheatreleaseswithinacharacteristictimeofexcessiveenergytransfertoelectronsbyatomsofthemainsubstance)provideaquickandconvenientcontroloverliquid-phaseelectroepitaxy.

Itisalsonoteworthythataflowofcurrentthroughacrystallization

Page 312: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

cellisresponsibleforthesubstancetransportontosubstrateduetoelectromigrationofliquid-phasecomponents.

Assoonastheelectriccurrentisoff,thetransportofsubstanceparticlesstopspracticallyinstantaneously,auniformdistributionofcomponentsisestablishedintheliquidzone,andthermodynamicequilibriumsetsupinthesystem.Thefilmgrownonthesubstrateisnotdissolved,andtheliquid-phasecompositionremainsexactlythesameasbeforethecurrentwasswitchedon.

Ifasourceisabsentinthecrystallizationsystemthensubstanceprecipitationontothesubstrateundertheactionofanelectriccurrent(underanymasstransfermechanism)maybeonlyduetoliquid-phasedepletion,whichleadstoanonequilibriumstateofthecrystallizationsystemaftertheprocessisover.

Applicationofoneortheothermethodshouldbecoordinatedwiththepurposesandtasksofaparticulartechnologicalprocess.

Page 313: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page138

Fig.3.2Schematicofgrowthcellforliquidphaseelectroepitaxy,1,5)electrodes,2)substrate,3)liquidphase,4)source.

3.2Physicalbasisofliquid-phaseelectroepitaxy(Thetheoryofthemethod)

WeshallconsidertheproblempresentedinFig.3.2.Thematerialoftheliquidzoneisnotsupposedtoformchemicalcompoundsorsolidsolutionswithmaterialsofthesourceandsubstrate.Thetheoryofzonemeltingwithatemperaturegradient(ZMTG)*(Lozovsky1972)predictstwopossiblezoneregimes:kineticanddiffusion.

Weshallconsideronlythediffusionregimewhichisattainedforafairlysmalltemperaturegradient.Inthiscase,thethermalequilibriuminthesystemwillsetinmuchquickerthanthediffusiononesincetheliquid-phasediffusioncoefficientofatoms,D,ismuchlessthanthethermalconductivityK.ThetimesofestablishingthediffusiontDandthermaltTequilibriaaregivenbytherelations

Since ,from(3.1)and(3.2)itfollowsthat .InasmuchasthestationaryregimeofzonemeltingwithPeltier-inducedmotionwasearlierconsideredbyTiller(1963)andHurleetal(1964),thesolutionoftheformulatedproblemfallsintothreepartsanalysedbyLozovsky(1972)andKhachaturyan(1974):

a.temperaturedistributioninasystemtowhichacurrentisapplied;

b.filmgrowthrateasafunctionofcurrentdensity;

Page 314: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

c.time-dependentvariationoffilmcomposition(compositiondistributionoverthickness).

3.2.1Temperaturedistributioninasystemundertheactionofanelectriccurrent

Weshallconsiderthesimplestcasewhenthematerialsofthesourceandsubstratearethesame.Intheproblemoftemperaturedistributionsuchaconsiderationisalmostalwaysadmissible.

Inthegeneralcase,thefollowingheatsourcesshouldbetakenintoaccountinthesolutionoftheproblem:

1.Peltierheat-asurfaceheatsource;

2.Jouleheat-abulkheatsource;

3.crystallizationanddissolutionheat-asurfaceheatsource;

*ItisobviousthattheprobleminindicatedgeometryissimilartoZTMG

Page 315: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page139

4.Thomsoneffect-abulkheatsource;

5.Dufoureffect-abulkheatsource.

Whenanelectriccurrentisappliedtoasource-solution-substratesystem(Fig.3.2),Peltierheatisinstantaneouslyreleasedorabsorbedattheboundaries(pointsz=0andz=L),withasurfacepower

where isthePeltiercoefficientfortheinterfaces,Jisthedensityofcurrentthroughthesystem(mA/cm2),a=(a1-a2isthedifferencebetweenthethermoelectromotiveforcesofthesolventandsource(substrate)material(inV/grad).

Allcalculationsarecarriedoutforthelow-densityregionsofcurrent,andthereforetheJouleheatquadraticinJcanbeneglected.

ThedissolutionandcrystallizationheatshavereversesignsofthePeltierheat.IntheregionswherePeltierheatisreleasedthedissolutionheatisabsorbed,whileintheregionwherePeltierheatisabsorbedthecrystallizationheatisreleased.So,inthegeneralcase,thiscausesadecreaseofabsorbedandreleasedPeltierheat,thatis,adecreaseofthetemperaturegradient.Undercertaingrowthconditionsthecrystallization(dissolution)heatcancompletelycompensatethePeltierheatandsetinisothermalconditionsofcrystalgrowth.Forthesurfacepowerofcrystallizationheatwecanwrite

whereHisspecificheatofcrystallization(dissolution)(kcal/g),disthedensityofsubstanceundercrystallization(dissolution)(g/cm3),visthecrystallization(dissolution)rate(cm/s).

TheThomsoneffectisduetothetemperaturedependenceofcurrentcarrierconcentration,andinoursystemitcanbeneglected(thezonematerialisaliquidmetal).Moreover,itisalsoquadraticinJ.

Page 316: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

TheDufoureffectinliquidsystemsisinsignificant(DeGrootandMazur1962).Thus,wecanneglectbulkheatsourcesandonlymakeallowanceforsurfacesources,thatis,Peltieranddissolution(orcrystallization)heat.Underthisassumption,theequationforthermalconductivityhastheform

whereKisthethermalconductivityoftheliquid-zonematerial,visthevelocityofzonemotion.

Weassumeherethezonethicknesstoremainunalteredandtheoriginofcoordinatestocoincidewiththeinterface(Petrosyanetal1974).Sinceinarealtechnologicalregimethecurrentdoesnotchangeatallorchangesveryslowly,inthesolutionoftheproblemitcanbethoughtofasconstant.

Thesecondtermintheright-handsideofequation(3.5)describestheinfluence

Page 317: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page140

oftheinterfacemotionupontemperaturedistribution.Sincethegrowthrateinthesystemisveryslow,itseffectcanbedisregarded.Indeed,forthispurposeitisnecessarythatthefollowingshouldholdtrue

IfliquidBiorGaisusedassolvent,then ,,andfortheliquidzonethicknessL=100mmandthe

crystallizationrate thisinequalityissatisfied.

Giventhis,astationarytemperaturedistributionsetsinwithinthecharacteristictimetTwhichisoftheorderofonemillisecond.Thus,settinginofequilibriumtemperaturedistributionactuallyappearstobehigh-speedandadmitscurrentpulsesthroughthesystemoffrequencyuptotensofHertz.

ThediffusionprocessesinthesystemarecharacterizedbyatimeconstanttD.Assumingthediffusioncoefficienttobeequalto5×10-5cm2/s,wefindthatitisoftheorderofasecondandgreatlyexceedstr.Inallfurthercalculations,thetemperaturedistributioncanthereforeberegardedasstationaryandthetimederivativein(3.5)canbeneglected.Theequationforthermalconductivityhastheform

Thisequationcanbesolvedforeachpartofthesystemseparately.

Kuznetsovetal(1983)solvedtheproblemoftemperaturedistributionforthesystemdepictedinFig.3.2withthefollowingboundaryconditions.Atthesource-liquidzoneandsubstrate-electrodeinterfaces,constanttemperatures,TIIandTI,aremaintained.Attheliquidzone-substrateboundary,thecrystallizationheatreleaseistakenintoaccountalongwithPeltiereffect.Undertheseconditions,thetemperaturedifferenceATattheliquidzoneboundariesisequalto

Page 318: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wherels,lL,Ll,Larethetemperatureconductivitiesandthicknessesofthesubstrate(source)andliquidzone,respectively,and .Itisreadilyseenthatat ,disregardingthecrystallizationheatandtakingintoaccount ,weobtainfrom(3.7)

Wecanseethatthetemperaturegradientisindependentofthezonethicknessandisdeterminedbythemagnitudeofthedensityofcurrentflowingthroughthesystem.

Page 319: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page141

WecanestimatethetemperaturejumpinthezoneandthetemperaturegradientinthesystemGaSb-Bi(Ga).Takingthefollowingvaluesoftheparameters(KhachaturyanaGdSb=150mV/grad,mBl=-20mV/grad.aGa=3mV/grad,L=10-2cm,J=25A/cm2,)lGa27W/mgrad,lBl=14W/mgradandT=723K,wefindthetemperaturedifferenceinthezone

thatis,thetemperaturegradientinthezoneisgradgrad/cm.ItmaybeseenthatthisvaluevarieswithintherangetypicalofZMTG(Lozovsky1972).

ForthesystempresentedinFig.3.2,Gevorkyanetal(1983)foundatemperaturedistributionwithsomewhatdifferentboundaryconditions:attheendsoftheelectrodesaconstanttemperatureismaintainedandattheelectrode-substrate,substrate-liquidzone,liquidzone-sourceandsource-electrodeboundariesthePeltiereffectistakenintoaccount.

3.2.2Filmgrowthrate

Inthesource-solution-substratesystemconsideredabove,alineartemperaturedistributionpracticallysetsinafteradirectelectriccurrentisswitchedon.Atthisstagethesystemisalreadynotinthestateofthermodynamicequilibrium.Ourtaskistodeterminethecomponentconcentrationdistributioninthezoneandthefilmgrowthrateinagiventemperaturefield.

Thecomponentconcentrationdistributionintheliquidzonewithallowancebothfordiffusionandelectromigrationisdeterminedfromthesolutionoftheequation

whereDisthediffusioncoefficient, istheparticledrift

Page 320: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

velocityintheelectricfieldE,zcffisaneffectiveparticlecharge,eistheelectroncharge,risresistivityoftheliquidphase.

Inexperimentsonliquid-phaseelectroepitaxy,thecondition istypicallyfulfilled.Forthisreason,thelasttermin(3.10)canbeomitted.Equation(3.10)withoutthelasttermwassolvedbyGevorkyanetal(1983).Solvingequation(3.10),wecometothefinalexpressionforv(t):

whereCsistheconcentrationinthesolidphase.As ,from(3.11)weobtainthestationaryvelocityofgrowth,vst,

Page 321: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page142

Asmightbeexpected,forE=0weobtainfrom(3.12)

From(3.12)wecanseethatvst,dependsnotonlyonthevalue,butalsoonthesignofE,thatis,thetypeofsubstrateandsourceconductivities.

3.2.3Chemicalcompositioncontrolofthefilm

Theliquid-phaseelectroepitaxymethodpermitsobtainingfilmswithcompositioncontrolledthroughoutthethicknessbymeansofcurrentdensityvariation.Birulinetal(1984),ZhovnirandZakhlenuk(1985),ZakhlenukandZhovnir(1985),Jastrebskietal(1978)andBryskiewiecz(1985)showedthepossibilityoffilmcompositioncontrolinliquid-phaseelectroepitaxyforathree-componentsystemwithaccountofPeltierandelectrictransfer.Itisassumedthatduringthewholeprocesstheliquidzoneattheboundarybetweenphasesisinlocaldynamicequilibriumwiththesourceandsubstrateatagiventemperature(thediffusionapproximation),andthefilmcompositionisdeterminedateachinstantoftimebytheliquidphasecompositionattheboundarywiththesubstrate.Ateachtimemoment,thefilmcompositionmustbeinproportionalrelationwithdiffusionfluxesatthesurface,andtheliquidphasecompositionisgivenbytheliquiduscurve.

Assoonasthecurrentthroughthecrystallizationcellisonandthetransitionprocessatthegrowthboundaryisover,acertainvalueoftheconcentrationofoneofthecomponents,Cx,setsin,whichisdeterminedontheonehandbythePeltier-inducedtemperaturevariationatthesolidphase-bufferedmeltboundaryandontheotherhandbyequilibriumoffluxesofparticlesofagivencomponent

Page 322: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

comingtoandfromtheboundary.Attheothermeltboundary(intheabsenceofconvection)oratadistanceofthed-layer(inthepresenceofconvection)theinitialconcentrationremainsunchangedandequalsC0.Thenecessaryconditionisheretheequalitybetweentheparticlefluxescomingthroughtheboundaryofthed-layerandgoingawayintothesolidphase(Birulinetal1984):

wherek0istheequilibriumsegregationcoefficient,visthegrowthrateoftheepitaxiallayer.

DependingontherelationbetweenthevaluesofthebufferedmeltcomponentsmandD,twocomponentconcentrationvaluesnearthesubstratearepossible,namely, and .Intheapproximationthatinthetransition(d)layeroftheliquidphasetheconcentrationvarieslinearly,Birulinatal(1984)derivedtheexpressionforparticleconcentrationofthecomponent

Page 323: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page143

intheepitaxiallayerasafunctionofelectriccurrentdensity

wherepisthemeltresistivity, thed-layerthickness,Jthecurrentdensity.

Theanalysisof(3.14)showsthatthedependenceofcrystallizedlayercompositiononthecurrentdensitymayonlybeabsentprovidedthattherelation

remainsunaffectedbycurrentdensityvariation,whichispossibleundertheconditionsthat

1)thetransitionlayerthicknessisverysmall,i.e.

2)thequantity isverylargeandthegrowthratedependslinearlyonthedensityofelectriccurrent;

3)vand dependlinearlyonthecurrentdensity.

Theoretically,whenthedependencev=f(J)isnonlinear,thelayercompositionmustalwaysdependonthecurrentdensity.TheformofthisdependenceisdeterminedforeachparticularcasebythevalueoftherelationbetweenmEandk0v.IfthemEvalueincreasesfasterthank0vwithincreasingcurrent(forexample, ),thecontentofthecomponentwillincrease,whereasifthemEvalueincreasesslowerthan orifthedependencev=f(J)islinear,thecomponentconcentrationwilldecrease.

Onthebasisofgeneralizedequationsofmasstransferandphaseequilibrium,ZhovnirandZakhlenuk(1985)gaveaqualitativeanalysisofsomesituationsoccurringunderliquid-phaseelectroepitaxyinthree-componentsystems,makingallowancefor

Page 324: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

electromigrationandPeltiereffect.

3.2.4Initialstagesofnucleation

Thepresenceofchargesandelectricfieldsareknowntospeedupnucleationofanewphase(ChernovandTrusov1969;AleksandrovandEntin1971).ChernovandTrusov(1969)estimatedtheprobabilityofnucleationinapoint-chargefieldonthesurfaceofadielectric.Theycalculatedthecontributionoftheelectrostaticfieldtothecriticalnucleationenergyandsolvedthefollowingelectrostaticproblem:apointchargeqislocatedunderthecrystalsurfaceatadepthH.Thedielectricpermittivitiesofthecrystalandmediumareequaltoecrandemcd,respectively.ThesupersaturationofthemediumrelativetothecrystalisDm.Thenucleusofthenewphasehastheshapeofafiatdiscofheighta(aisequaltothelatticeconstant),Fig.3.3(ChernovandTrusov1969).

Theworkofcriticalnucleationisequalto

Page 325: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page144

Fig.3.3Schematicofnucleationonthecrystal-mediuminterfaceinthepresenceofanelectriccharge.

wheree0isthedielectricpermittivityofthevacuum,thecriticalradiusr.determinedfromtheequation

whereaistheenergyoftheformationofaunitsidesurface,Vcisthevolumeofasingleparticleinthecrystal.

AleksandrovandEntin(1971)considerednucleationasadisplacementofaninfiniteplanecrystal-mediumboundarytowardsthemediumforadistanceequaltothecrystallatticeperioda.Withinsuchanapproach,theworkofcriticalnucleationDG*doesnotdependonthecriticalradiusr*

So,accordingtoChernovandTrusov(1969)andAleksandrovandEntin(1971),thepresenceofachargeonthesubstrateleadstoadecreaseofnucleationenergy,whichinturnspeedsuptheformationofcrystallizationcentres.

DhanasekaranandRamasamy(1986)investigatedtheinfluenceofanelectricfielduponatwo-dimensionalnucleation.Heconsideredcaseswheretheelectricfieldisperpendicularandparalleltothenucleation

Page 326: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

andshowedthatsubjecttotherelationbetweenthedielectricpermittivitiesofthenucleusandthemedium,thenucleationcanbeeitheracceleratedordecelerated.

Weshallpresenttheestimatesoftheinfluenceofanelectrostaticfielduponthenucleationrate.Weshallconsiderthecasewhenanewphaseisformedonanelectrode.Inthegeneralcase,betweentheelectrodestherearetwosubstances,AandB,inthesame(say,liquid)phase.Anew(solid)phaseCcannucleateontheelectrodeeitherfromthesubstanceAorfromB(seeFig.3.4).

Tofindouttheeffectoftheelectrostaticfieldonthenucleationrate,oneshouldcalculatethecontributionoftheelectrostaticfielduponthecriticalnucleationenergy.Weshallcarryoutthiscalculationfortwocases:1)whennewnucleiontheelectrodeformametaland2)whentheyformadielectric.

Weproceedtothefirstcase.Supposethenewnucleimakeuphalfofthe

Page 327: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page145

metalsphereontheelectrode.Tocalculatetheelectrostaticcontributiontothenucleationenergy,weshoulddeterminetheenergyvariationofthecondenserfilledwithdielectricA+B(withthedielectricconstante)whenaprotuberance,ahemisphereofradiusaappearsontheelectrode.Sincetheprotrusionandtheelectrodearemetals,theelectrodesurfacesareequipotentials.ThisisschematicallypresentedinFig.3.5.

Thechangeoftheelectrostaticenergyupontheappearanceontheelectrodeofahemisphericalnucleus,when ,isequalto

From(3.15)itisseenthat ,and,therefore,theappearanceofametallicnucleusontheelectrodeisenergeticallyadvantageous,thatis,thepresenceofthefieldE0mustpromotenucleation.

Thenon-electricpartoftheenergychangeuponnucleationintheformofahemisphereisgivenby(Aleksandrov1978)

whereoisthesurfacetensionattheinterface,Dmisthechemicalpotentialvariationunderphasechange,VtheparticlevolumeinthephaseC,lspecificheatofcrystallization,T-T0thesupercooling,T0theequilibriumtemperatureofphasetransition.

Summingup(3.16)and(3.15),weobtainthetotalenergyvariationundernucleation

From(3.17)wecaneasilydeterminethecriticalradiusofthenucleus,a*,andtheheightoftheenergybarrierundernucleation,DG*

Page 328: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.3.4Schematicofnucleationontheelectrode:1)metallicelectrodes;

2)energysource;A,Bareinitialsubstances;Cisnucleusofthenewphase.

Page 329: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page146

Fig.3.5Distributionofelectricpotentialincrystallisation.Horizontallinesareequipotentialsurfaces,verticallinesareelectricfieldstrengths,E0isthefield

strengthinadielectric,distheinter-electrodegap.

From(3.17)and(3.18)itisreadilyseenthata*andDG*decreaserapidlywithincreasingE0.ThisisdemonstratedinFig.3.6.

Thenucleationrateisgivenbytheexpression(Aleksandrov1978)

whereAisapre-exponentialmultiplier.Forthisreason,weassumethepre-exponentialfunctiontobeindependentofE0.Now,substituting(3.19)into(3.20),wecometothefinalexpressionforthenucleationrateasafunctionofthefieldstrength

Thenucleationrateisthusseentoincreasesharplywithincreasingfieldstrength.

Nowweturntothecasewhenthenucleusofthenewphaseisadielectric.Forsimplicityofcalculationsassumethenucleustohavetheshapeofacylindricalprotrusionofareasandheighthontheelectrode.Figure3.7presentstheschemeofnucleationinthesystemA+B.

Page 330: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Weexaminedacaseinwhichtherewasnoexternalfield,i.e.E0=0.SurfacetensionofthesurfaceboundarybetweenthephasesA+BandCiss,attheboundarybetweenthesidesurfaceofthenucleusandthephaseA+Bissh,attheboundarybetweentheelectrodeandthephaseA+Bitisosandatthenucleus-electrodeboundarys0(seeFig.3.7).Thentheenergyvariationuponnucleationhastheform

Itisofinteresttodeterminetheoptimumsizeofthenucleusforagivenvolume,thatis,forV=pr2h=const.Itisequalto .Inviewofthisfactwerewrite(3.22)as

Page 331: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page147

Fig.3.6Energyvariationuponnucleationasafunctionofparametera.

Differentiating(3.23)withrespecttohandequating tozero,weobtaintheequationfromwhichwecanfindtheoptimumvalueoftheheighth*ofthecylindricalnucleus

Thedependence(3.24)hasasimplephysicalmeaning.Asshouldbeexpected,h*increaseswithincreasingss.Forthegivenvolume,thenucleusacquirestheformwhichcorrespondstotheminimumofsurfaceenergy.

Substituting(3.24)into(3.23),weobtainthefollowingexpressionforDG*

From(3.25)wecanseethatDG*asafunctionofVhasamaximum,thatis,theappearanceofsmall-volumenucleileavesthesystemstable,butitbecomesunstableassoonaslarge-volumenucleioccur.Thecriticalnucleationenergycanbereadilyobtainedfrom(3.25)

Thecriticalheighth**andthecriticalvolumeV**havetheform

Page 332: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thecoefficientoftheformofthecentreofthenewphaseh**/V**canbeeasilyobtainedfrom(3.27)and(3.28)

Page 333: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page148

Fig.3.7Schematicofformationofacylinder-shaped

crystalnucleusonanelectrode.

Theresults(3.26)and(3.29)wereobtainedbyBolkhovityanovandYudaev(1986).

IfanucleusisformedinanexternalfieldE0,thecontributionoftheelectricenergyintothenucleationenergyfor hastheform

whence ,and,therefore,theexternalfieldmustpromotenucleation.Thisfacthasaclearphysicalmeaningsince,asiswellknown,adielectricwithahighdielectricpermittivityvalueisalwaysdrawnintoacondenserconnectedwiththeexternalvoltage.

Withallowanceforthecontributionoftheelectrostaticfield,theenergyvariationis

From(3.31)and(3.23)onecanseethatasubstitutionoffor( )informulae(3.26),(3.27)and(3.28)

givesthedependenceofDGonj.

Page 334: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thenucleationratewillbedeterminedfromtheformula

whichshowsthatfor thenucleationrateincreases.

3.3Theroleofthermoelectriceffectsinthecourseofliquid-phaseelectroepitaxyofferroelectrics

Theapplicationofadirectelectriccurrentinthecontrolovercrystallization

Page 335: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page149

ofepitaxialstructuresgrownfromaliquidphasearecloselyconnectedwiththermoelectriceffectsobservedduringthisprocess.WeshallagainturntothecrystallizationcellshowedschematicallyinFig.3.2.Thephenomenaoccurringinacrystallizationcellunderliquid-phaseelectroepitaxyarethefollowing(digitsrefertozonesorinterfaceswherecorrespondingphenomenatakeplace):

-(1-5)heattransfer,

-(1-5)Jouleheat,

-(1-5)Thomsonheat,

-(3)diffusion,

-(3)electrictransfer.

Thesewereheatexchangeeffects.Nextcomesurfaceeffects:

-(3-4)heterogeneouscrystallization,

-(4-3),(3-2)crystallization(dissolution)heat,

-(4-3),(3-2),(5-4),(2-1)Peltierheat.

So,inthegeneralcasesystemsofliquid-phaseelectroepitaxyinvolveseveralmechanismsofheatabsorptionmechanisms.Electrictransfer,crystallizationanddissolutionofsolidphasesleadstotheappearanceofconcentrationgradientsofacrystallizingsubstanceintheliquidzoneanddiffusionleadstolevellingupthesegradients.

Thefirstquestiontobeansweredintheanalysisofcrystallizationprocessesishowthemotiveforcesofcrystallizationdependuponcrystallizationconditions.Thesemotiveforcesaredeterminedbythevariationsoftemperatureandconcentrationofacrystallizingsubstanceatthecrystallizationfrontascomparedtoequilibriumvaluesoftheseparameters.

Page 336: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Whenadirectcurrentrunsthroughinterfaces,PeltierheatproportionaltotheproductofcurrentdensitybythePeltiercoefficientisinstantaneouslyreleasedandabsorbed.

Owingtothiseffectthetemperatureattheinterfacefalls,thisfallbeingequalto(Jastrzebskietal1978):

where isthedifferenceofthermoelectromotiveforcesbetweenthesubstrateandsolvent,L1isthesubstratethickness,lsthethermalconductivityofsubstratematerial,T0thetemperatureinthesystempriortoapplicationofcurrent.

Aconsequenceoftemperaturedifferenceinthesystemisconcentrationvariationintheliquidzone

wheremistheslopeoftheliquiduscurve.

Attheinterface,Peltierheatisabsorbedandcrystallizationheatreleased(sincetheyhaveoppositesigns).

Consequently,thisleadsintheendtoadecreaseofabsorbedandreleasedPeltierheat,i.e.toadecreaseofthetemperaturegradient.

Page 337: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page150

TheresultsofcomparisonoftheoreticalandexperimentaldatasuggestthatthecrystallizationheatcanbeneglectedascomparedtothePeltierheat.Then

wherelListhethermalconductivityofthemelt.

Thus,thetemperaturegradientoccurringattheinterfaceisindependentofthezonethicknessandisdeterminedbythevalueofthecurrentdensity.

Sincethetimewithinwhichthetemperaturegradientissetinthesystem, ,iscomparativelysmall,thecurrentrunsthroughanonuniformlyheatedsystem,thatis,fromtheverystartoftheprocessanadditionalThomsonheatisreleased

wheretTisThomson'scoefficient.

OwingtotheThomsonheat,thesystemcanbeadditionallyheated,thetemperatureincreasebeing

whereMandcarerespectivelymassandthermalcapacityofthesubstrate.

Whenadirectelectriccurrentisapplied,Jouleheatissimultaneouslyreleasedinthesystem:

whereRistotalsystemresistanceandRLisliquidphaseresistance.

Since ,theJouleheatmainlyaffectsthesubstrate.

Beginningfromsomeinstantoftime(tcr),theJouleeffectmaybecomegreaterthanthePeltiereffectsinceaconstanttemperature

Page 338: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

gradientattheinterfaceismaintainedbythePeltierheat,whiletheJouleandThomsonheatsareaccumulatedinthesystem.Consequently,theresultanttemperatureofthesystemstartsexceedingtheequilibriumtemperatureTOandthesystemmayappeartobeundersaturated,whichwillresultindissolutionofthecrystallizedlayer.

Ascanbeseenfromtheaboveformulae,theJouleheatisquadraticandthePeltierheatislinearinJ.ThismeansthatthereexistsacertainoptimumvalueJoptwhentheJouleheatbecomespredominantoverthePeltierheat.TheJouleheatcanthereforebeneglectediftheappliedcurrent

TheThomsoneffectishereduetotemperaturedependenceofcarrierconcentration,andinsuchasystemitcanbeneglected,providedthezonematerialisaliquidmetal.Moreover,thiseffectisalsoquadraticinthecurrent.

GabrielyanandKhachaturyan(1984)investigatedferroelectricfilmgrowthusingliquid-phaseelectroepitaxyandestimatedthecontributionofthermoelectriceffectstothisprocessonanexampleoflithiumniobate.

Page 339: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page151

Figure3.8presentstemperatureversuscurrentdensityunderliquid-phaseelectroepitaxyofLiNbO3withallowanceforPeltier,JouleandThomsoneffects.ThefigureshowsthatattheinitialinstantsoftimetemperaturevariationsduetoheatexchangeeffectsaresmallerbyseveralordersofmagnitudethantemperaturevariationsduetothesurfacePeltiereffectandcan,therefore,beneglectedatearlystagesofgrowth.Whenthegrowthtimeislong,theresultanttemperatureofthesystemexceedstheequilibriumtemperatureToandthesystemmayappeartobeincompletelysaturated,whichleadstolayerdissolution.

3.4Electro-LPEgrowthoflithiumniobate-tantalatefilms

Thestandardmethodsworkedoutforsemiconductormaterialscannotbeusedforcurrent-inducedliquid-phaseelectroepitaxyofferroelectricsbecauseofthephysico-chemicalspecificitiesofoxidesystems.Weproposetwowaysofcurrent-inducedliquid-phaseelectroepitaxyofferroelectrics:

-current-inducedliquid-phasecapillaryepitaxy

-liquid-phaseelectroepitaxyfromanunlimitedvolumeofthesolutioninmelt.

Filmgrowthinanelectricfieldopensnewhorizonsforgrowthofthin-filmferroelectricswithacurrent-controlledcomposition,thicknessandstructuralperfection.Ofparticularinterestisobtainingasingle-domain(polarized)stateoflayersinthecourseofgrowth.

Inthissectionweconsidertheuseofcurrent-inducedliquid-phaseepitaxialgrowthoffilmsoflithiumniobate-tantalate,electrochemicalprocessesproceedingintheliquidphaseandmodulationinthecompositionofferroelectricfilmsundertheindicatedgrowthconditions.WealsooptimizeconditionsofepitaxialgrowthofLi(Nb,Ta)O3filmswithaccountofJouleheat.

Page 340: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

3.4.1Epitaxialgrowth

Theuseofcurrent-inducedliquid-phaseepitaxyforgrowingLiNbO3andLi(Nb,Ta)O3filmsfromalimitedliquid-phasevolumecontainedbetweentwosubstrateslocatedclosetoeachotherwasproposedbyKhachaturyanetal(1986).Figure

Fig.3.8Melttemperaturevariationsduetothermaleffectsasafunctionofcurrentdensityinthecourseof

LEPoflithiumniobate.

Page 341: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page152

3.9presentstheschemeofafilmgrowthdevice.Thecompositionof90%LiVO3+10%Li(Nb,Ta)O3waschosenassolventforliquid-phaseelectroepitaxy.(0001),(1120)platesofLiTaO3servedassubstratesandcrystallineplatesofLi(Nb,Ta)O3servedasasource.Thesubstrateandsourcesizewas20×15×l.5mmandtheliquid-phasethicknesswas1.5÷2mm.Theelectrodesweremanufacturedusingplatinumblackeningandaconductinghigh-temperatureglue.

Apreliminarilypreparedplatinumnielloisdepositedoninoperativesubstrateandsourcesurfaces,thentheplatesareannealedforonehourat400°C.Afterthisashiningmetallizedsurfaceiscoveredwithahigh-temperatureconductingglue.Thesubstrateandsourceplateswithafixedgap(intermediateplane-parallelplatesofagiventhicknessareusedforfixation)aregluedtoaquartzholderwithelectrodes.Thegapbetweenplatesissochosenthatundertheactionofcapillaryforcesthebufferedmeltisuniformlydrawnfromthecrucibleintothespacebetweenthesourceandsubstrate.Foroxidesystems,thegapbetweenthesourceandsubstrateischosenwithintherangeof1-2mm,whichpermitsavoidingconvectivemixing.Thenthesystemismountedinafurnaceoveracruciblefilledwithbufferedmelt.

Thefurnacetemperatureisgraduallyincreasedtillitbecomes50-100°Chigherthantheinitialepitaxytemperature,whichismaintainedfor0.5-1huntilacompletehomogeneityisattained,andthenthetemperatureequaltotheinitialepitaxytemperatureisestablished.Aftersomeholding,theplatesareimmersed1-2mmintothecruciblecontainingthebufferedmelt,asaresultofwhichtheliquidphaseaffectedbycapillaryforcesisdrawnintothegapbetweentheplates.Themomentofcontactbetweentheplatesandthemeltisfixedbyanindicatorlamp.Thentheplateswithliquidphaseareseparatedfromthecrucibleandreturntotheinitialstate.Constant(orpulsed)voltageisappliedtotheplates.Thelayergrowthproceedswhenthepotential

Page 342: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

onthesubstrateispositive.Assoonasthecurrentisoff,thelayergrowthceases,andaliquid-phaseabsorberistakentothegapbetweentheplates(DudkinandKhachaturyan1986),afterwhichthesystemisslowlycooleddowntoroomtemperature.

Theessenceofliquid-phaseelectroepitaxyfromanunlimitedbufferedmeltvolume(GabrielyanandKhachaturyan1985)isillustratedinFig.3.9b.Thismethoddiffersfromtheoneindicatedaboveinthattheliquidphaseisnotfedfromthesource,andtheliquid-phasethickness

.

3.4.2Electrochemicalprocessesintheliquidphase

Inthestudyoftheprocessofliquid-phaseelectroepitaxyanimportantroleisplayedbyacorrectestimateoftherelativecontributionofdifferentstagesofthisprocess.Thedifferenceinthenatureofchargecarriersinoxidecompoundsleadstovariationofthephysicalprocessesproceedinghereascomparedwithliquid-phaseelectroepitaxyofsemiconductorsystems.Asaconsequencethereoccuranumberofspecificeffectstypicalofliquid-phaseelectroepitaxyofcomplexoxideswhicharetobeexaminedonanexampleoflithiumniobate.

Tospecifythecharacterofmasstransferunderliquid-phaseelectroepitaxyofoxidesystems,electrochemicalprocessesattheinterfacebetweencontactingphaseswereinvestigatedandthelayergrowthratewasdeterminedasafunctionofstrengthandtimeofthecurrentappliedtothecrystallizationcell(Khach-

Page 343: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page153

aturyan1988;Gabrielyanetal1989).

Figure3.10showsthetemperaturedependenceofthenumberoflithiumionstransferredinlithiumniobatesinglecrystalofcongruentcomposition.Wecanseethatinthetemperaturerangeof800-900°Csinglecrystalsaremixedconductorswithcomparablecontributionsoftheionandelectroncomponentsofconductivity.AsconcernsmeltsofthesystemLiVO3-LiNbO3,wecanassume,accordingtoPastukhovetal(1984)andShumov(1984),thattheconductionmechanisminthemiscompletelyionandisduetolithiumionmigration( ).Thisimpliesthatinthechain(Fig.3.2)thenatureofthemainchargecarriersdoeschange.AsaconsequenceofionconductivityofthemeltLiVO3-LiNbO3andamixedion-electronconductivityofthecrystalLiNbO3,electrochemicalprocessesproceedinthechainwhenadirectelectriccurrentisappliedtothecrystallizationcell.

Inregion2-3themostprobableistheprocess

withdissolutionofreleasedoxygeninthemeltandaccumulationofLiNb3O8attheboundarywiththeplatinumelectrode.

Throughtheboundary2-3thecurrentcanonlybetransferredbylithiumions,butthroughtheboundary1-2comesonlyhalf( )theamountoflithiumionsrequiredforcurrenttransferinthechain,whiletherestoftheionsareformed,accordingto(3.39),onthesurfaceofalithiumniobatefilm.Finally,attheboundary3-4thereproceedsoxidationofoxygendissolved

Page 344: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.3.9DeviceforLPEfilmgrowth:1)platinumcrucible;2)quartzholder;

3)alayerofcurrent-conductinghigh-temperatureglue;4)substrate;5)Li(Nb,Ta)O3source;6)platinumconductors;7)thermocouple;8)liquidphaseabsorber;9)quartztube;

10)ceramicstand.

Fig.3.10(right)Temperaturedependenceofthenumberoflithiumionstransferredinalithiumniobatesinglecrystalofcongruent

composition.

Page 345: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page154

inthemelt

whichobviouslyleadstoLi2O-enrichmentofthemeltnear(4),bythereaction

Thus,thekineticsofliquid-phaseelectroepitaxywillbedeterminedbytheratioofcrystallizationratesduetoPeltierheatabsorptionandtoelectrochemicalfilm(orsubstrate)dissolutionbythereaction(1)orthelike.

Theroleofdifferenteffectsunderliquid-phaseelectroepitaxyofoxidesystemscanbeconvenientlyillustratedusingafragmentofthesystemstatediagram(Fig.3.11).Supposethatthebufferedmelthasacompositioncorrespondingtopoint1.Peltierheatabsorptioncorrespondstoashiftofafigurativepointofthesystemtowardspoint2.ThesolutionappearstobesupersaturatedwithLiNbO3,andthelatteriscrystallizedonthesubstrate.

Alongapplicationofcurrentmayberesponsibleforheatingoftheentiresystem(GabrielyanandKhachaturyan1984),whichleadstogrowthdecelerationandthentofilmdissolution(thefigurativepointshiftstowardspoint3).Itshouldbenotedthatinthecourseofcrystallizationthemeltcompositionshiftsinthedirection'4'(liquid-phaseelectroepitaxywithoutfeedmaintenance),andinthepresenceofasourceitcanremainunalteredattheexpenseofequivalentfeeding(ZhovnirandZakhlenyuk1985).Accordingtotheanalysiscarriedoutabove,theiontransfer,causingvariationsinthemeltcomposition,inducesdisplacementofpoint1inthedirectionperpendiculartotheplaneofthepicture,thatis,achangeoftheLi2O/Nb2O5ratio.

Theprobablemechanismsconsideredaboveallowustoanalyzethe

Page 346: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

dataonlithiumniobatefilmgrowthbytheliquid-phaseelectroepitaxymethod.

WhenaLi(Nb,Ta)O3sourceisabsentfromthecrystallizationcellandcurrentisappliedforatimeexceeding50min,theobserveddecreaseofthegrowthrateorevendissolutionoflithiumniobatefilmiscausedbothbyadecreaseofsupersaturationduetoJouleheatreleaseandbyfilmelectrolysisgoingbyreaction(3.39)(GabrielyanandKhachaturyan1984).Filmdissolutioncanalsobestimulatedbythefactthatasaresultofalimitedamountofoxygendissolvedinthemelt,itsconcentrationfallswhenthecurrentisapplied,thatis,thespeedofthecathodereaction(3.40)necessaryforchargetransferfromthemelttotheelectrodedecreases.Then,tomaintainaconstantcurrentstrengthinthecircuit,thespeedofthereaction(3.39)whichistheonlymolecularoxygensupplierofthemelt,mustobviouslyincrease.Aconsequenceofcathodereactiondecelerationisanincreasedresistanceofthecircuit,whichleadstothenecessityofahighervoltagetobeappliedtothecellinordertomaintainJ=const.

Thus,theanalysisoftheavailableexperimentaldatashowsthatthebuffered-meltsystemLiVO3-LiNbO3isanion-conductingmediumwithaclearlypronouncedelectricproperty.Thedegreeofdissociationdecreaseswithincreasingcontentoflithiumniobateinthebufferedmelt.Themainchargecarriersin

Page 347: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page155

Fig.3.11FragmentofthephasediagramofthepseudobinarysystemLiVO3-LiNbO3.

theliquidphaseattheepitaxytemperaturearelithiumions.Electrochemicalandnear-electrodeprocessesintheliquidphaseleadtotheoccurrenceofLi2Omoleculesand , ionswhosecontributiontoepitaxialprecipitationofLiNbO3layersisinsignificant.

3.4.3Growthkineticsofelectro-LPEgrownlithiumniobate-tantalatefilms

Todeterminethecharacterofmasstransferinelectro-LPEofLi(Nb,Ta)O3,wehaveanalyzedthedependenceoffilmthicknessandgrowthrateonthetimeofapplicationofcurrentinanequilibriumelectro-LPEconsistingofsubstrate-bufferedmelt-source.Fromthethermodynamicpointofview,itwouldbemoreprecisetothinkofthisprocessasaliquid-phaseelectroepitaxywithfeedmaintenanceorwithasource.

Figure3.12presentsthedependenceoffilmthicknessonthetimeofapplicationofcurrenttothecrystallizationcellfordifferentvaluesofcurrentdensity.Therateoflayerformationalterswithintherangeof0.6-0.1mm/minandthefilmsurfaceappearstobemirror-smooth(Khachaturyan1987).MicroX-rayspectralanalysisshowedanevendistributionofthemaincomponentsoftantalumandniobiumovertheheterostructure.Theamountofvanadiumcomingtotheepitaxialfilm

Page 348: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

fromtheliquidphaseisminimum(0.005÷0.01at%).

Acharacteristicfeatureofelectro-LPEofferroelectricfilmsand,inparticular,oflithiumniobate,isthatsimultaneouslywithlayergrowththefilmismadesingle-domain(polarized).ThemethodofpolarizationofLi(Nb,Ta)O3filmswas

Fig.3.12ThicknessofaLiNbO3filmversusthetimeofapplicationofcurrenttothecrystallizationcell.

Page 349: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page156

workedout.Forheterostructures,thisprocessischaracterizedbyadifferenceintheCurietemperaturesofthesubstrateandthefilmandbythepresenceoftransitionregionswithasmoothlyvaryingcomposition.10×15and40×60mmcontainerswithplatinumcontactsforsixstructuresweremade.Regimeswereestablishedthatprovideminimumpotentialandtemperaturedifferences,whichisnecessaryfordecreasinginterdiffusionoffilmcomponents,forpalladiumdiffusionintothestructurealongthesidecontactsandforpreventingsamplecrackingundertheactionofcurrent.

Figure3.13presentsthecurvesofthedegreeofpolarizationasafunctionofcurrentdensityforvariousepitaxytimes.Whenthetimeofapplicationofcurrentisincreasedfrom10to35min,single-domainfilmsoflithiumniobateareformedwithinthecurrentdensityrangeof10-15mA/cm2.

TogrowfilmsofsolidsolutionsLi(Nb,Ta)O3,Khachaturyanetal(1987)appliedopposite-polaritypulsestothecrystallizationcell.Thecontrolparameterswerechosenfromthefollowingrelations:currentdensityinpulsesJdirect=3Jrev;therelationbetweenpulsedurationandpausesbetweenthem ,whereJdirectiscurrentdensityinadirectpulse(mA/cm2);Jreviscurrentdensityinareversepulse(mA/cm2);tdirectisdurationofadirectpulse(s);trevisdurationofareversepulse(s);tpauseispauseduration(s);tdifisthecharacteristicdiffusiontime(s).

Thegapbetweenthesourceandthesubstrateisdiminishedto0.5mmforthereasonthatinprecipitationoflayersofsolidsolutionsLi(Nb,Ta)O3.Thisreducesthetimeofdiffusion,fromthesourcetothesubstrate,ofcomponentsdissolvedintheliquidphase,whichimprovescompositioncontrolinsolidsolutions.

Theliquidphasecompositioncorrespondedto90mol.%LiVO3+5mol.%LiNbO3+5mol.%LiTaO3.InitialepitaxytemperatureTcpit=

Page 350: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

980°C.Jdirect=10mA/cm2,tdirect=30min,trev=3mA/cm2,trev=6min,tpause=1min.

Whenadirectpulseisapplied,anepitaxiallayerprecipitatesonthesubstratesurface.Then,toneutralizetheelectricallyinducedstateintheliquidphaseandtopreventelectrictransfer,a1minpauseismade,afterwhichareversepulseisappliedtomixionsintheliquidphase.Thenagaina1minpauseandthentheprocessisrepeated.ThelayercompositiondeterminedbymicroX-rayspectralanalysiscorrespondedtoLiNb0.5Ta0.5O3andhadathicknessh=10mm(seeFig.3.14a).

IfweapplyaunipolarpulsedcurrentwithamplitudesJ1andJ2,thecompositionofthegrowingfilmofthesolidsolutionLi(Nb,Ta)O3changesaccordingtoappliedpulses(Fig.3.14b).

ComponentdistributioninafilmwasdeterminedbyamicroX-rayspectralanalysis.ThecharacteristicdistributionspectraofthecomponentsNbandTaoverthestructurethicknessarepresentedinFig.3.15.Asdistinctfromdiffusionwaveguides,epitaxiallayersexhibitasharptransitionfromthesubstratetothefilm.Compositionconstancyofsolidsolutionsoflithiumniobate-tantalateoverfilmthicknessshowsthattheepitaxyprocessisstationary,thatis,theconcentrationprofileintheliquidphaseandtheeffectivecoefficientoftantalumsegregationremainunchanged.Thecalculationofthecompositionscorrespondingtothemicroprobecurveshasshownthatthecontentofniobiumandtantalumina

Page 351: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page157

Fig.3.13DegreeofLiNbO3filmpolarizationasafunction

ofcurrentdensity.Thetimeofapplicationofcurrent:1-10min;2-20min;3-25min;4-35min.

filmofsolidsolutionisconstantandisdeterminedbythelayergrowthrate.Asthecurrentdensityand,therefore,thegrowthratedecrease,theeffectivecoefficientincreasesfrom1.4to2.35(Fig.3.15).Thegrowthrateofthelayer,v,changeswithcurrentdensitybyalinearlawwithintheindicatedrangeofJvalues.

Inprecipitationofmulticomponentsystemsfromasolutioninmeltatahightemperature,thecompositionoftheprecipitatedlayerdifferstypicallyfromthecompositionofthedissolvedmaterialsincethepresenceinthelayerofeachcomponentisspecifiedbyanindividualsegregationcoefficient.InlithiumniobatetantalateepitaxyfromthesolutionintheLi2O-V2O5melt,thecompositionoftheLiNbl-yTayO3shiftsrelativetothecompositionofthedissolvedmaterialLiNbl-xTaxO3towardsanincreaseoftantalum,thatis, .

Thecompositionalshiftisdifferentunderdifferentgrowthconditions.Variationsoftheeffectivesegregationcoefficientarecustomarilyassociatedwithmasstransferintheliquidphase.Alimiteddiffusionofdissolvedcomponentsleadstotheappearanceofconcentrationprofilesintheliquidphaseandmakesitpracticallyimpossibletocontrolefficientlythecompositionofmulticomponent

Page 352: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.3.14TopogramoffilmsofLiNb05Ta05O3solidsolutionsof(1120)and(0001)orientations(a)anddistribution

ofcomponentsalongtheLi(Nb,Ta)O3/LiTaO3heterostructure(b).

Page 353: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page158

Fig.3.15Layergrowthrate(1)andeffectivesegregationcoefficient(2)ofTaversuscurrentdensityinLPEofLi(Nb,Ta)O3.

films.Masstransitioninliquid-phaseelectroepitaxyisduetodiffusionandelectrictransferofcomponentstothecrystallizationfront.Theniobium-to-tantalumratioinafilmisdeterminedbythekineticprocessesofcrystallization.

3.5Optimizationofconditionsofepitaxialgrowthoflithiumniobatefilmswithallowanceforjouleheat

Oneofthebasicnegativeeffectsuponliquid-phaseelectroepitaxyisJouleheat.Topreventthiseffectinliquid-phaseelectroepitaxyofferroelectrics,itisnecessarytospecifyitsroleandcontributiontothecrystallizationprocess(Avakyanetal1988).WecanconditionallydistinguishbetweentwomainsourcesoftemperaturenonuniformityatthecrystallizationfrontassociatedwiththeJouleeffectandleadingbothtopreventingPeltiercoolingandobtainingnon-planarstructures.Thefirstofthesesourcesisduetoconstructiveimperfectionofgrowthdevice,unsatisfactoryqualityofelectriccontactsbetweenconductingelements(Jastrzebskietal1978;Nikishin1984a)andtoinappropriategeometryoftheelements(BarchukandIvaschenko1982).ThesecondsourceisofamorefundamentalnatureandisconnectedwiththefactthatthegrowthdeviceisessentiallyinhomogeneousfromtheviewpointofreleaseanddispersionofJouleheat.Byvirtueofconstructivevarietyofrealgrowthdevicesfor

Page 354: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

liquid-phaseelectroepitaxyofsemiconductorsandferroelectrics,theroleofoneoranotherfactorandtheirinterrelationsarenotobvious(Milvidskyetal1982).

Themainunitofadeviceforequilibriumandnonequilibriumregimesofelectro-LPEofferroelectricsconsistsofgrowthcellsdepictedinFig.3.16a,b.Conductingelectrodesweremadeofplatinum.Applyingthemethodofequivalenceofthermalandelectricschemes(Stefanakosetal1976)withallowanceforJouleheatingofthegrowthcell,thetemperaturevariationofthecrystallizationfront,T,isdescribedbytheexpression

Page 355: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page159

where ,isthethermalconductivityoftheithelement, ,isthelineardimensionoftheithelement,R2andR4areresistancesofthesubstrateandsource,respectively.PlkisthedifferenceofPeltiercoefficientsbetweentheelementsiandk,Jisd.c.density,T0isthetemperatureofexternalsurfacesoftheelectrodescorrespondingtothesaturationtemperature,T1isthecrystallizationfronttemperature.

Whenderiving(3.42),thecontactresistanceswereassumedtoplayaninsignificantroleunderJouleheatrelease,whichisconfirmedbyexperimentalmeasurements.Thevaluesofcontactelectrode-substrateandsubstrate-liquidphaseresistanceswererespectivelyequalto5×10-3ohm/cm2and8×10-3ohm/cm2,whichismuchlessthanthesubstrateandsourceresistances,102ohm/cm2,

Withaccountofexperimentalconditions×12=×14=×1,×23=×34=×3,G2=G4G2,R2=R4=R,formula(3.42)acquiresthefollowingsimpleform

From(3.43)wecanwritethecriterionforcoolingthesubstrate-solution-meltboundary

andtherefore

Thequantity

Page 356: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

willcorrespondtothecriticalcurrentofelectro-LPE.Withaccountof

and ,formula(2.37)acquirestheform

Page 357: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page160

and

Itisofinteresttoexaminethephysicalnatureofcriticalcurrentunderelectro-LPEasafunctionofsystemtemperature.Thegraphofthedependenceforbothregimesisconstructedanalytically(Fig.3.17).

Aswecanseefromthegraph,thecriticalcurrentofelectro-LPEdependsonsubstratematerial.Thelimitofad.c.JcpitpreventingtheJouleeffectincreaseswithincreasingtemperatureT0.

Sincethecriticalcurrentofelectro-LPEisafunctionofgeometricaldimensionsofthesubstrate,itfollowsthat

wherer0isresistivity,sandlarerespectivelytheareaandthethickness;therefore,increasingthesubstrateareaanddecreasingitsthickness,wecanincreasetheboundaryvalueofJ0.

Anincreaseoftheareaandadecreaseofthethicknessofthesubstrateandthesourceprovideextensionoftherangeofoperatingcurrentdensitiesforelectro-LPEofferroelectrics.

ThethicknessofepitaxiallayersofLiNbO3grownonLiTaO3substratesis

Page 358: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.3.16Schematicofacellshowingtemperaturedistribution

a)equilibriumregimeofLPE;b)nonequilibriumregimeofLPE.1)platinumelectrode;2)LiTaO3orLiNbO3substrate;3)solutionin

melt[N%LiNbO3-(100-N)%LiVO3];4)LiNbO3source;5)thermalinsulation.

Page 359: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page161

Fig.3.17TemperaturedependenceofthecriticalLPEcurrent(J0).1)nonequilibriumregime,

2)equilibriumregime(dashedlinesareforLiNbO3,solidlinesforLiTaO3

Fig.3.18(right)ThicknessesofepitaxiallayersofLiNbO3onLiTaO3substratesasfunctionsofcurrentdensity

inequilibrium(+)andnonequilibrium()LPEregimes.

plottedagainstthecurrentdensityvariationinequilibriumandnonequilibriumregimesofliquid-phaseelectroepitaxy(Fig.3.18).Thegraphisdividedintothreeregions.Inregion(1),layergrowthproceedsandthefilmthicknessincreaseslinearlywithincreasing

Page 360: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

currentdensity.ThisdependencedeviatesfromlinearwhencurrentdensityisclosetoJ0=10mA/cm2inequilibriumregimeandJ0=17mA/cm2innonequilibriumregimeofliquid-phaseelectroepitaxy.Region(II)ischaracterizedbyadecreaseofgrowinglayerthicknessduetotheJouleeffect,whichresultsinasurfacedissolutionofthegrownlayerresponsiblefortheappearanceofetchingpatternsonthesurface.

Accordingtotheexpressions(3.19a,b),theJouleeffectmustexceedthePeltiereffectwithrespecttothechosenparametersforJ0=9mA/cm2inequilibriumregimeandJ0=17mA/cm2innonequilibriumregimeofliquid-phaseelectroepitaxy,andtheformationofLiNbO3layersundersuchcurrentsisexplainedbytheabove-saidapproximations.ForcurrentdensitiesJ0>9mA/cm2inequilibriumregimeandJ0>20mA/cm2innonequilibriumregimetherearenoLiNbO3layersonthesubstrates,thatis,theJouleheatcompletelyoverlapsthePeltiercooling(region(III).

Figure3.19presentsthegraphoftheexperimentaldependenceofepitaxiallayerthicknessonthesubstrateandsourcethicknessbothinequilibriumandnonequilibriumregimes.Asthesubstrateandsourcethicknessesincrease,thecriticalcurrentofelectro-LPEdecreasesand,therefore,theJouleheatincreases,andforthicknessesd>3mminequilibriumregimeandd>4mminnonequilibriumregimethegrowthprocessceases.Consequently,proceedingfromthesolutionofthesystemofequationsofequivalentthermalandelectricschemes

Page 361: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page162

Fig.3.19ThicknessesofepitaxiallayersofLiNbO3on

LiTaO3substratesasfunctionsofsubstrateandsourcethicknessesinequilibrium(x)and

nonequilibrium()LPEregimes.

forequilibriumandnonequilibriumregimesandfromcomparisonwithexperimentalresults,anoptimumrangeoftheprocessparametersischosenwhichprovidesanepitaxialgrowthofLiNbO3layersofaLiTaO3substrate:

Nonequilibriumregime Equilibriumregime

TosimplifytheanalysisoftemperaturedistributionatthecrystallizationfrontwithallowanceforJouleeffect,weneglectthecontactthermaleffectsassumingthatthephysicalpropertiesofcellelementsareisotropicandthattheisotropyofthepropertiesandthegeometryoftheelementsaretemperatureindependent.Fromthesolutionofthermalconductivityequationincylindricalcoordinatesweobtain,accordingtoBarchukandIvaschenko(1982),theanalyticexpressionforastationarytemperaturedistributionatthecrystallizationfront

Page 362: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

whereA.andBµarecoefficientsdefinedbytheboundaryconditionsoftheproblem,r1isresistivityofthei-thelement,Ri=j2r/4ki;kiarethecoefficientsoftemperatureconductivityoftheithelement,µaretherootsoftheequationj0(µa)=0,j0(µr)isthezero-orderfirst-classBesselfunction.TheexplicitexpressionsforAµandBµaretoocumbersometoberepresentedhere,andwereferthereaderto(Carslaw1945)wherethealgorithmfortheirdeterminationisgiven.Fromtheexpressionpresentedaboveitisseenthatinthegeneralcasethetemperaturefieldatthesubstrate-liquidphaseinterfaceisnonuniform.BecauseofcomplicacyoftheexplicitanalyticexpressionsforDT(h,r),theanalysisoftemperaturedistributionatthecrystallizationfronthasbeenper-

Page 363: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page163

Fig.3.20Temperaturevariationatthecrystallizationfrontfordifferentcurrentdensities:1)4mA/cm2;

2)17mA/cm2;3)10mA/cm2

Table3.1GrowthcellparametersofLPE-grownlithiumniobate

Cellelement

r,ohm.cm Wcm-1K,grad-1k,cm2/s-1

l,cm a,cm J,mA/cm2

Platinum 1.05×10-4 0.71 1.4×107 10-2 5×10-14÷17

electrode 4×10-4 2×103

Substrate 6×105 3×10-2 10-1 5×10-14÷17

(T=400°C)

2×10-1

Liquidphase

148 1.5×10-2

(T=1200°C)

5×102

(T=890°C)

Source 5×105 4.2×l0- 10-1 5×10-14÷17

Page 364: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

3

(T=400°C)

2×10-1

140 2×10-3

(T=1200°C

formed,inlinewithBarchukandIvashchenko(1982),onthebasisofthenumericalvaluesofgrowthcellparameterslistedinTable3.1.

Figure3.20illustratesthecalculationofAT(h,r)atthecrystallizationfrontinthegrowthcellbothinequilibriumandnonequilibriumregimesofliquid-phaseelectroepitaxyfordifferentcurrentdensities.

ThetemperaturegradientalongtheradialaxisforacurrentdensityofJ=10mA/cm2isaboutsixtimestheoneforJ=4mA/cm2,andforthecurrentdensityJ=17mA/cm2thesamegradientincreasesbyafactorof17.Accordingto(3.49),thegradientbecomesthreetimessmallerasthesubstratediameterdecreasesbyhalf.The'boundary'effectisnotobservedexperimentallyforcurrentdensitiesJ=(4÷6)mA/cm2andforthesubstrateradiusof0.5cm.Theepitaxialstructuresobtainedarecharacterizedbymorphologicaluniformityandplanarity.

Page 365: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page164

Thus,usingthemethodofequivalenceofthermalandelectricschemesforexperimentalcellsinequilibriumandnonequilibriumelectro-LPEregimesofferroelectrics,wehaveintroducedtheconceptofacriticalcurrentofelectro-LPEanddeterminedtheoptimumgrowthparametersforLiNbO3onLiTaO3andLiNbO3substrates,whichpermitplanarstructurestobeproducedunderliquid-phaseelectroepitaxy.

Page 366: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page165

4StructureandCompositionofLightGuidingFilmsForanefficientuseofepitaxialfilmsoflithiumniobatetantalateinoptoelectronics,itisnecessarytoobtainlayershomogeneousinthickness,possessingahighstructuralperfection,alowdefectdensityandalowcontentofuncontrolledimpurities,whichsubstantiallydecreasesattenuationinthecourseofwavepropagationoflightinthefilm.Thishasstimulatedinvestigationsofthecrystallinestructure,composition,orientation,surfacemorphology,substratefilminterface,domainanddislocationstructuresofthefilms.Theinfluenceofgrowthconditionsupontheseparametershasbeenestablished.

4.1Structureandphysico-chemicalpropertiesoflithiumniobateandtantalatecrystals

Lithiumniobate(LiNbO3)isoneofthemostinterestingandwidelyusedferroelectrics.FirstcrystalswereobtainedbyLapitsky(1952)andSue(1937).ThestudyofthestatediagramofthesystemLi2O-Nb2O5hasshownthepossibilityofformationoffourcompounds:Li2O-14N2O5,Li2O-3Nb2O5,LiNbO3andLi3NbO4(RusmanandHolzberg1958).

CrystallizationofLiNbO3ispossibleintheregionof40-60mol.%Nb2O5attemperaturesbetween1160and1253°C.Detailedstudiesofthephasediagraminthisregionhaverevealeddistinctionbetweencongruentandstoichiometriccompositions.TocongruentcompositiontherecorrespondstheratioLi2O/Nb2O5=0.946andthemeltingtemperatureTmelt=1170°C.Upontheliquidphasecompositionvariationwithintherangeof45-58mol.%Li2O,thecrystalcompositionvariesfrom47to50mol.%(Carruthersetal1971).Thus,crystalsofstoichiometriccompositioncanbegrownfromamelt

Page 367: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

containingupto58mol.%Nb2O5,butbecauseofthelargedifferenceinliquidandsolidphasecompositionsthisleadstothegrowthofinhomogeneouscrystals.

X-rayandneutrondiffractionanalyseshaverevealedthatlithiumniobatehasthestructurerelatedtoilmenite(Abrahamsetal1966).Boththestructuresare

Page 368: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page166

constructedfollowingthepatternofhigh-densityhexagonalpackagingbutdifferinalternationofoccupiedandunoccupiedoctahedra.InroomtemperatureLiNbO3crystals,octahedralintersticesformedbyoxygenionsinanalmosthigh-densityhexagonalpackagingarefilledwithniobiumions(1/3)andlithiumions(1/3),theremaining1/3beingvacant.Thesuccessionobservedwasasfollows:

Figure4.1showspositionofelementarycellsinlithiumniobate.TheoctahedronwithNbionsformsacommonfacetwiththevacantoctahedronwhichinturnformsafacetoftheoctahedronoccupiedwithlithiumion.Afteradistanceofc/2(cisthelatticeconstant)thepositioningofmetallicionsisrepeated:Nboccupiesthefourthoctahedron,thefifthremainsvacant,Lioccupiesthesixthoctahedron.Thenthecellisrepeated.

ThesymmetryofLiNbO3andLiTaO3crystalsistetragonal(class3m).IntheferroelectricphasethespacegroupisC3v-R3C,inparaphaseD3d-R3C.Therhombohedralcellcontainstwoformulaunitsandthehexagonalcellcontainssix.Thelatticeconstantsintherhombohedralcella=5.4944Å,a=55°52;inthehexagonalcella=5.14829±2×10-5Å,c=13.8631+4×10-4c/a=2.693.Interplanarspacesinthelatticeareequalto1.286Å(x-cut),1.489Å(y-cut)and1.15A(z-cut).Theprincipalcrystallographicdirections(planes)oflithiumniobatearepresentedinthestereographicprojectionofFig.4.2.The[0001]axiscorrespondstothespecialcrystallographicdirection(theopticalaxis)andcoincideswithspontaneouspolarizationdirection.

TheparametersofthecrystallographiccellsandionpositionsintheminLiNbO3aretabulatedinTable4.1.

Page 369: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Ionpositionsinthecrystallatticeareofinterestfromthepointofviewof

Fig.4.1CrystallinestructureofLiNbO3;a)seriesofdistortedoctahedralsalongthepolarc-axis;b)reallocation

ofoxygenatomsrelativetolithiumandniobiumatoms(Abrahamsetal1966).

Page 370: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page167

Table4.1Physico-chemicalconstantsofLiNbO3crystals(Prokhorov,Kuz'minov,1990)

Characteristic Experimentaldata

Densityofsinglecrystals(g.cm-3) 4.612

Mohs'shardness 5

Meltingpoint(°C) 1260

Curiepoint(°C) 1210

Parametersofaunitcell:

Rhombohedral

a(Å) 5.4920

Angle 55°531

Hexagonal

a(Å) 5.14829±0.0002

c(Å) 13.86310±0.00004

Numberofformulaunitsincell

Rhombohedral 2

Hexagonal 6

Thermalexpansioncoefficient

aaxis 16.7±10-6

caxis 2.0±10-6

Dielectricconstant

Refractiveindices(l=0.623µm) no=2.286ne=2.220

Page 371: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Loss-angletangent(v=1kHz) lessthan0.02

Specificresistance(Wcm)

200°C over1014

400°C 5×108

1200°C 140

Watersolubility(mol1-1)

25°C 2.8±10-4

50°C 4.3±10-4

100°C 7.4±10-4

Dissolutionheat(kcalmol-1) 6.2

DiffusionactivationenergyQD(kcalmol-1)

68.21±0.48

68.17±1.24

( tocaxis)

EvaporationactivationenergyQv(kcalmol-1)

70.6

59.0

( tocaxis)

Evaporationcoefficient,a 10-4

3

Thermoelectriccoefficientofmelta1(mV.K-1) -0.4

Thermoelectriccoefficientofcrystalas(mV.K-1) 0.76±0.02

Coefficientofcrystallizationemfav(mVs.m-1) 1.25±0.2

Page 372: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 373: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page168

theferroelectricpropertiesoflithiumniobate.Asdistinctfromotherferroelectriccrystals,lithiumandniobiumexhibitaconsiderableionshiftfromthesymmetricpositionintheparaphase.Theniobiumionisatadistanceof0.897Åfromthenearestplaneofoxygenatomsandat1.413Åfromthenextplane.TheLiionshiftmakesuprespectively0.714Åand1.597Å.So,appreciableshiftsoflithiumniobateionsarerequiredforreachingaparaelectricstateorpolarizationreversal.AtatemperatureexceedingtheCuriepoint,lithiumandniobiumionsshiftinthesamedirectionsothatNb5+occupiesthecentreoftheoxygenoctahedronandLi+liesintheplaneofoxygenlayers(Fig.4.1(b)).InLiNbO3crystals,theshiftonionsfrompositionstheyoccupyintheparaelectricphaseasthetemperaturelowersthroughtheCuriepointisresponsiblefortheappearanceofspontaneouspolarization.Spontaneouspolarizationmaybealignedeitheralongpositiveoralongnegativedirectionofthethird-orderaxis,boththesestatesbeingenergeticallyequivalent.

ThelargestandmostperfectwereCzochralskigrownlithiumniobatecrystals(Fedulovetal1965;Nassauetal1966).Crystalsobtainedinotherwayshadsmallersizeandsomestructuralimperfections.

Thegrowthconditionsoflithiumniobatecrystalsareconnectedwiththepresenceofcontrolledanduncontrolledimpuritiesinthemelt.Whenstoichiometryisviolated,lithiumandniobiumionsmayenterasimpurities.SolvabilityoftheNb2O5componentintheliquidphaseis45-58mol.%andinthesolidphaseitnarrowsto48-50mol.%.ThisleadstostoichiometryviolationandaffectstheCurietemperature,birefringenceandphasematchingtemperature.ThehighestperfectionofcrystalsisobtainedfortheratioLi/Nb=0.946whichcorrespondstocongruentcomposition.

Theexperimentaldataonthephysico-chemicalpropertiesoflithiumniobate(Kuz'minov1975)arepresentedinTable4.1whichshowsthat

Page 374: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ifimperfectcrystalsaredisregarded,theirdensityrangesbetween4.6and4.7g/cm3.ThemeltingtemperatureofstoichiometricLiNbO3crystalsis1253°C.Thephasetransitiontemperatureis1210±5°C.Atatemperatureof1200°C,lithiumniobatemeltinvacuumandinairisnonvolatile,whichisveryimportantforthetechnologyofthismaterial.ThesurfacetensionofLiNbO3measuredbythemoltendropmethodatthevacuum-meltboundaryatthemeltingtemperaturemakesup50-150dyn/cm.

Refractiveindicesoflithiumniobatearesensitivetostoichiometryviolation,whichleadstoopticalinhomogeneityinbulkcrystal.CrystalsgrownfromameltwithadditionofLi2OandMgOhasalowerrefractiveindex,thedecreaseofnebeingsubstantial,whichleadstoanincreaseofbirefringence.AnexcessNb2O5hasnoeffectuponnoandaverylittleeffectuponne.

AnimportantroleforliquidphaseepitaxyisplayedbythephasediagramofsolidsolutionLiNbO3-LiTaO3andthedependenceoftheCurietemperatureonthecomposition.

Thesolidusandliquidustemperaturesweredeterminedupto1575°Conthermoanalyser.TheresultsofdifferentialthermalanalysisareillustratedinFig.2.4.BothliquidusandsoliduscurvesshowasmoothvariationfromLiNbO3toLiTaO3.Asexpected,thesecurvesdonotmeetateitherendofthispseudobinarysectionsincethestoichiometricandcongruentmeltingcompositiondonotcoincide.

Page 375: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page169

Fig.4.2StereographicprojectionofLiNbO3

Awiderspacingwasfoundbetweenthesolidusandliquiduscurvesbecauseofthelowerhomogeneityofthesamples.

Curietemperaturesweremeasuredonpowderspecimenshydrostaticallypressedatroomtemperatureandsinteredat1100°Cfor12h.ThestraightlineshowninFig.4.3wasfittedtothedatabyleast-squareanalysis.Thestandarddeviationis13°C,andthecorrelationcoefficientof0.9966indicatesthatthestraight-lineapproximationisvalid.

Abrahamsetal(1966)havedeterminedthecrystallinestructureoflithiumniobateoverthetemperaturerangeof24-1200°CbymeansofapolycrystalX-raydiffractionanalysis.Theerrorsinvolvedinhigh-temperatureX-raypowderdiffractionarefrequentlylarge,thusthereisconsiderablescatterinthedatafortheoxygenpositionalparametersasfunctionsoftemperature.

Page 376: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.4.3VariationinferroelectricCurietemperaturewithsolidcompositioninLiNbO3-LiTaO3solid-solutionsystem(Petersonetal1970).

Page 377: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page170

Petersonetal(1970)havethereforedonealinearleast-squaresfittothedatawiththeconstraintthatthehighlyaccuratesingle-crystal(Abrahamsetal1966;1967)parametersshouldbereproducedatroomtemperature.Thepositionalparameterssocalculatedwere(Petersonetal1970)

x=0.005027(T/1000)+0.04908,

y=0.3451-0.0207(T/1000),

z=0.00401(T/1000)+0.06460

andthetemperatureTwasindegreesCentigrade.

LithiumniobatecrystalsgrownbyCzochralskimethodfromacongruentmeltpossessthemosthomogeneouscompositionbutarenonstoichiometricandlithiumdepleted(~1.4mol.%Li2O)(ScottandBurns1972;PetersonandCarnevale1972).Awideenoughhomogeneityregion,fluctuationsofgrowthparametersinthecourseofcrystalgrowthandotherfactorsareresponsiblefortheappearanceofregionswithlocalcompositiondeviationsinlithiumniobatecrystals(Holman1978).Inhomogeneityofcompositionisobservedbothalongtheboulelengthandinradialdirection.Asshownbygravimetricmeasurements(Holman1978),adeviationoflithiumniobatecompositionfromthemeanvalueforspecimenscutoutofonecrystalbouleisinmostcasesequalto0.2andcanevenreach0.66mol.%Li2O.Inhomogeneityofcompositionwasidenticalfordifferentregionsofoneandthesamecrystalcut.Congruentcompositionoflithiumniobatemakesup48.6±0.2mol.%Li2O(Holman1978;Chowetal1974).

Thelargewidthofhomogeneityregionoflithiumniobateisduetothepresenceofintrinsicpointdefectssuchasintersticeatomsandvacanciesincationandanionsublattices(Carruthersetal1971).Thenatureofpointdefectsofthecrystallatticeoflithiumniobate,which

Page 378: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

stemfromcrystalcompositiondeviationfromstoichiometry,isnotexactlyknown.Thereexistmodelsofthedefectstructureoflithiumniobate,oneofwhichisconstructedonanidealcationlatticeofniobiumwithlithiumvacancychargecompensationbytheformationofoxygenvacancies(Fayetal1968).Butthedependenceoflatticeconstantsanddensityoflithiumniobateonthecompositioncastdoubtonthemodeloflithiumvacancies.Lerneretal(1968)assumetheexcessniobiuminthelatticeofLiNbO3tooccupythevacantpositionsoflithiumandthustoformantistructureNbL1defects.TheNb+5ionchargeintheplaceofLi+iscompensatedbytheformationoffourVL1vacancies.NassauandLines(1970)proposedamodelofextendedcationpackagingdefectinthedirectionofzaxiswithalternationoflithiumandniobiumatoms.Inextensionofsuchdefectcomplexesthereoccursacomplicatedstructuraldisorder.AmoredetailedreviewandanalysisofthemodelsofdefectstructureoflithiumniobateisgivenbyBallman(1983)andJarzebski(1974).

X-raydiffractionmethodsareinconvenientfortheproofoftheexistenceofniobiumatomsoccupyingthepositionoflithiumatomsinthecrystallatticebecauseoftheirlowconcentration(~1%).PetersonandCarnevale(1972)discoveredtwotypesofsignalsfrom93NbinthespectraofnuclearmagneticresonancefromnonstoichiometricLiNbO3crystals.Theauthorsascribedthe

Page 379: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page171

firstandmostintenselinetotheniobiumthatoccupiescrystallographicallyregularpositioninlithiumniobatelatticeandthesecondtypeofsignaltoexcessniobium,NbL1.Buttheintensityofthesecondlinemadeup6%oftheintensityofthefirstone,thatis,NbL1concentrationexceededtheexpectedone.ThepresenceofanadditionallineintheNMRspectrumtestifiestotheexistenceofthesecondtypeofniobiumatompositioninthelatticeoflithiumniobatebutprovesneitherofthedefectstructuremodelsdescribedabove.Theabsorptionspectraof7LiNMRalsoexhibitedweakadditionallineswhosepresencewasassociated(YatsenkoandSergeev1985)withdynamicdisorderoflithiuminthecrystallinestructureoflithiumniobate.

So,lithiumniobatecrystalsshowappreciablecompositionvariations,aswellasacomplicatedpointdefectspectrum.

Peculiaritiesofconstructingthephasediagramoflithiumniobateandtheobserveddeviationsofcrystalcompositionfromstoichiometrymayleadtoprecipitationoflithiumtriniobateasasecondphaseinthesecrystalsundercertainconditionsofthermaltreatmentorundercoolingofgrowncrystals.Fewdataintheliteraturetestifytothefactthatphaseformationoccursbothinthebulk(ScottandBurns1972)andonthesurface(Armeniseetal1983)oflithiumniobatecrystals.

ThebasicresultsontheformationofLiNb3O8inbulklithiumniobatecrystalswereobtainedbySwaasandetal(1974).TheX-rayphaseanalysisandmeasurementsofopticaltransmissioncoefficientswereusedtoexaminethepropertiesoflithiumniobatecrystalsafteralong-termannealingintheairwithinthetemperaturerangeof600-1000°Cfor100-1000h.Afterthelithiumniobatespecimensofdifferentcompositionwerecooleddowntoroomtemperature,theiropticaltransmissiondecreasedconsiderablyduetotheappearanceofmilk-whiteopalescentregions.Transparencyofthecrystalsdecreasedwith

Page 380: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

increasingannealingtimeanddecreasingLi2Ocontentintheoriginalspecimens.So,lithiumniobatecrystalsgrownfromameltwithlessthan48mol.%Li2Oshowedopalescencealreadyaftera10hourannealingat800°C,whereascrystalsgrownfrommeltswithahigherLi2Ocontentrequireda500-hourannealingatthesametemperature.Theauthorsbelievethatachangeinthebulkcrystaltransparencyunderannealingisduetoprecipitationofasecondphase-lithiumtriniobateLiNb3O8whichbordersuponLiNbO3onthesideofniobium-enrichedcompositions.ThisassumptionwasfullyconfirmedinanX-rayphaseanalysisofannealedcrystals.

Uponasecondannealingatatemperatureexceeding1000°Candarapidcoolingtoroomtemperature,inspecimensoflithiumniobatecrystalscontainingthesecondphasethescatteringcentresdisappearedandthecrystalsbecameclearagain.TheX-raydiffractionpatternsofsuchspecimenscontainedreflectionsonlyfromlithiumniobate.Thetemperatureabovethatofbacktransformationdependedonthespecimencomposition,andhadavalueofabout910°Cforcrystalsgrownfromacongruentmelt.Onthebasisofmeasurementsofbacktransformationtemperatureforlithiumniobatespecimensofdifferentcomposition,theauthorstracedoutthelineofLiNb3O8-LiNbO3phaseequilibrium,foundthewidthofthesolidsolutionregionandbuiltthephasediagramfortemperaturesT<100°C(Fig.4.25).

Page 381: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page172

Thus,lithiumniobatecrystalsaremetastableatroomtemperature,unstableunderalong-termthermaltreatmentandwithinacertaintemperaturerangecancontainthesecondphaseLiNb3O8.

TherearecomparativelyfewdataontheconcentrationandlocalizationofLiNb3O8phase.Examinationbyopticalmicroscopyandlightscatteringmethodsshowsthatuponannealinginthetwo-phaseregion,thesubmicroscopicparticles(r<10-5cm)ofthephasearenucleatedheterogeneouslyatblockboundaries,ondislocationsand,alongwithinclusionsofplatinumparticlesandotherimpurities,arelightscatteringcentresinlithiumniobatecrystals.

IncoolingannealedorgrowncrystalsitisalsonecessarytotakeintoaccountthetemperaturefallratesincethisrateisresponsibleforthetimeduringwhichthecrystalwillremainwithinthetemperaturerangetypicalofprecipitationofLiNb3O8.Whenthecoolingrateincreasesto3-5°C/min,thelithiumniobatewaslesspronetocrackingthancrystalscooledataratelowerthanl°C/min.Withoutdenyingthecontributionofothermechanisms,ScottandBurns(1972)supposethattheprecipitatesofthesecondphasecanserveasnucleifortheappearanceanddevelopmentofcracksinlithiumniobatecrystals.Topreventlithiumtriniobatefromprecipitatinginbulkcrystaloflithiumniobate,thecoolingrateshouldbe>20°C/min(Holmanetal1978).

Pioneeringreportsonvariationofthephasecompositionoflithiumniobatecrystalsurfacecausedbytheformationoflithiumtriniobateappearedon1983asaresultofanalysisoftitaniumdiffusionintolithiumniobatecrystalsinthecourseofmanufacturingopticalwaveguides(Armeniseetal1983;DeSarioetal1985).ThecompoundLiNb3O8occurredonthesurfaceoflithiumniobateslabscoveredwithatitaniumlayerinthecourseofannealingwithinthetemperaturerangeof550-900°Cinoxygenatmosphere.Underascanningelectronmicroscopelithiumniobateshowedupasshapelessspotsofmorethan

Page 382: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

100µmlocatedinaTiO2layer.Analysisofatomiccompositionhasshownthatthecontentoftitaniumisdecreasedandthatofniobiumincreasedinsuchregionsascomparedtophase-freeregions.AstheannealingtemperatureheightenedtoT>900°C,LiNb3O8wasdisintegratedandspotsdisappearedfromlithiumniobateslabsurface.

InvestigationsofLiNbO3substrates(Armeniseetal1983)haveshownthatLiNb3O8isalsoformedintheabsenceoftitaniumlayer,thatis,phaseformationonthecrystalsurfaceisaspecificbehaviouroflithiumniobateitselfinthecourseofannealingwithintheindicatedtemperaturerange.ThepresenceofLiNb3O8phaseorientationrelativeto(0110)and(0110)LiNbO3substrateswasdiscoveredfromLauediffractionpatternstakeninvariablegeometryandfromthespectraofbackwardRutherfordheliumionscattering.PrecipitationofLiNb3O8phaseoncrystalsurfaceproceedsnotonlyunderannealinginoxygenatmosphere,butalsointheairaswellasinaN2orArflux.AdditionofwatervaporsintotheatmosphereofannealingpreventstheformationofLiNb3O8andinducesdisintegrationofthesecondphaseifithasalreadybeenpresentonthespecimensurface(DeSarioetal1985).DisintegrationofLiNb3O8underannealinginmoistatmospherewashypotheticallyexplainedbytheformationofthehydroxylgroupOH-and(Li1-yHy)NbO3moleculesduetoprotondiffusionintothecrystal.

Page 383: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page173

Phaseformationonthesurfaceoflithiumniobatecrystalswasalsoobservedunderradiationdamagesoflithiumniobate(JetschkeandHehl1985).

AchangeinthephasecompositionofLiNbO3surfaceirradiatedbyN*andP*ionswasdiscoveredbybackwardRutherfordscatteringatatemperatureof279°C.Niobiumconcentrationinthenear-surfacelayerwasfoundtobeincreased.ConnectionbetweenphaseprecipitationandstructuraldamageinthesurfacelayeroflithiumniobatesubstrateswasreportedbyGan'shinetal(1985,1986)whoobservedtheoccurrenceofthecompoundLiNb3O8afterannealingatT=450°Cfor3hofproton-exchangedwaveguidesmanufacturedon(0001),(0110),(2110)and(0114)facetsoflithiumniobate.

Theoperationareaofmanyacousto-andoptoelectronicdevicesisthenear-surfacelayer,aswellasthesurfaceoflithiumniobatesubstrates,andthereforeofparticularimportanceforthecreationofeffectivedevicesiscontroloverthestateoflithiumniobatecrystalsurface,itsstructureandphasecomposition.ThestudyofphaseformationinlithiumniobatecrystalsplaysapracticalrolesinceheattreatmentofLiNbO3isawide-spreadtechnologicaloperationinmanufacturingvariousdevicesonthebasisoflithiumniobatecrystals.

4.2X-raydiffractionanalysisoffilms

InvestigationsoffilmstructurewerecarriedoutusingtheX-raydiffractionmethod.Theanalysisofpatternsthusobtainedallowsustojudgeofpolarization,orientationandlatticeconstants.PolarizationandlatticeconstantswerealsodeterminedbytheelectrondiffractometryandthecompositionbytheX-raydiffractionmethodandlasermicroanalysis.

4.2.1Layercomposition

Page 384: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thedistributionofcomponentsoverthethicknessofthelightguidinglayerwasexaminedbymicroroentgendiffractionanalysis(MRDA).Figure4.4presents

Fig.4.4Distributionofcomponentsalongthethicknessof(a)LiNbO3/LiTaO3,

(b)Li(Nb,Ta)O3/LiTaO3and(c)LiNbO3/Al2O3heterostructure.

Page 385: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page174

graphsofcomponentdistributioninfilmsonLiTaO3(Fig.4.4(a,b))andA12O3(Fig.4.4(c)).Theconcentrationofthemaincomponentofthesubstrate(TaorA1)attheinterfacedecreasestozerowhileniobiumconcentrationbecomesmaximum(Fig.4.4(a,b,c)).IngrowingfilmsofsolidsolutionLiNb1-yTayO3onaLiTaO3substratetheTaconcentrationattheinterfacedecreasesfrom100%toequaltheTaconcentrationinthefilmFig.4.4(b).Analysisofconcentratedprofileshasshownthatthecompositiondoesnotchangethroughoutthefilmthickness.TherelativecontentofNbandTainafilmofsolidsolutionisdeterminedbytheircontentintheliquidphasewhentheeffectivecoefficientoftantalumconcentrationKcff~1.5.

Asdistinctfromdiffusedwaveguides,epitaxiallayersarecharacterizedbyasharpsubstrate-filminterface.Epitaxialfilmsoflithiumniobate-tantalatearecolourless.

Theresultsobtainedsuggestsomeconclusionsconcerningthegrowthprocess.Sincetantalumconcentrationinagrowinglithiumniobatefilmiszero,thesolution-meltattheinitialepitaxytemperatureisinthemetastableregion,andthesubstratesurfaceisnotadditionallydissolved.ThecompositionconstancyoffilmsofLiNb1-yTayO3solidsolutionsimpliesthattheconcentrationprofileremainsunalteredinthecourseofgrowth,whichcorrespondstothediffusionmodel.

Besidesthedistributionofmacrocomponents,theuncontrolledimpurityofvanadiumatomsinthefilmandthecontentofironions,introducedinconcentrationsof1and2mol.%intothesolution-meltintheformofFeCO3,weredetermined.MRDAdoesnotpermitqualitativeestimationofthecontentoflow-concentrationcomponents.Thepresenceofvanadiumandironimpuritiesinthefilmswasdeterminedbylaseremissionmicroanalysis.

Analysisofthespectraoftheexaminedpatternshasshownthatthefilmscontainvanadiuminconcentrationrangingundergrowth

Page 386: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

conditionsbetween0.005and0.1atm.%.ThespectraofLiNbO3filmsandLiTaO3substrateweremeasuredforthesecondtimeusingafour-stepGortmandiaphragmunderthesameconditions.Inthiscase,filmspectrawereinvestigatedbycomparisonwiththespectraofvanadiumandironoxides.Theresultsconfirmedtheabsenceofvanadiumspectrallinesinthelithiumtantalatesubstrate,whereasinthefilmstheywereclearlypronouncedinthesamewavelengthregion.Underoptimumcrystallizationconditions(thegrowthratev<0.2µm/min),aLiNbO3filmonaLiTaO3substrateof(0001)orientationcontains0.005-0.01atm.%ofvanadium.Themaximumconcentration(0.01atm.%)ofhomogeneousvanadiumimpuritywasobtainedataprecipitationrateof0.6-0.8µm/min.Ahomogeneoushighlyconcentratedvanadiumimpuritywasnotobservedwithafurtherincreaseofprecipitationrate.TheupperlimitofhomogeneousvanadiumimpurityconcentrationisobviouslyduetothedifferenceinV5+andNb5+ionradii(Rv=0.4Å,RNb=0.66Å),whichleadstostronglatticedistortionsunderthe substitution.

Asdistinctfromvanadium,theradiiofFe3+ions(0.67Å)areclosetothoseofNb5+andLi5+(0.68Å),whichmakesitpossibletoobtainlithiumniobatecrystalswithironimpurityreaching3weight%(Gabrielyan1978).Investigationofdopedsampleshasshownthatironconcentrationinthesampledepends

Page 387: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page175

Table4.2LatticeparametersandinterplanedistancesofLi(Nb,Ta)O3filmsandLiTaO3substrate(Madoyanetal1985)

No Filmmaterial Latticeparameters(Å)

Orientation Interplanedistances(Å)

a c

LiNbO3 5.137 13.828 (0001) 1.1523

1 ( ) 1.3884

( ) 1.2030

LiNb07Ta03O35.1385 13.808 (0001) 1.1507

2 ( ) 1.3888

( ) 1.2034

LiNb05Ta05O35.1395 13.798 ( ) 1.1498

3 ( ) 1.3891

( ) 1.2036

LiNb02Ta08O35.1408 13.78 ( ) 1.1483

4 ( ) 1.3894

( ) 1.2040

LiTaO3 5.1421 13.772 (0001) 1.1477

5 ( ) 1.3898

( ) 1.2042

onironcontentintheliquidphaseandremainsessentiallyunchangedastherateincreases.Theestimatesoftheeffectiveironsegregationcoefficientobtainedbylaseremissionmicroanalysisliewithinthe

Page 388: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

rangeof0.2-0.5.

4.2.2Monocrystallinityandinterplanardistances

X-raysincidentonthecrystallinestructuresurfacediffractinthenear-surfacelayerwhosethicknessisdeterminedbythesamplematerialandlightbeamintensity.X-raysincidentonthesurfaceofepitaxialstructurecanpenetrateintothesampledepthlargerthanthefilmthickness.Inthiscase,X-raysdiffractattwoanglesoneofwhichcorrespondstodiffractiononthefilmandtheotheronthesubstrate.Therelativeintensitiesofthesebeamsdependonfilmthicknessandonthedepthofthelayersonwhichdiffractiontakesplace.Superpositionofbeamsispossibleinthecaseofclosediffractionangles,andthepositionofthediffractionlinescannotthereforebepreciselydetermined.Figure4.5presentsdiffractioncurvesforLiNbO3andLi(Nb,Ta)O3filmsonLiTaO3substratesof(0001)and(1120)orientations.Thedifferenceinthediffractionanglesoflithiumniobateandlithiumtantalateequalto10'forthe(0001)planeand6'forthe(1120)planegivesdifferentpeaksfromtheLiNbO3filmandLiTaO3substrate.ForaLiNbl-yTayO3filmthediffractionmaximumisdisplacedfromthesubstratewithincreasingytowardsthemaximum(Madoyanetal1985;Madoyan1984).Thedifferencebetweenthemaximafromthefilmandsubstratereachesy=0.8.Furtheron,thepresenceofthefilmaffectstheasymmetryofthediffractionpeakprofilebroadened,dependingonthelayerthickness,towardsthefilmorsubstrate(Fig.4.5(c,d)).Theattempttoobtainseparatepeaksfromfilmson(1010)-orientedsubstratesfailed(Dq~3').Forclosevaluesofdiffractionangles,investigationswerecarriedoutonverythickfilms(Fig.4.5(e,f)).Sincethediffractiondepthmakesupabout60µm,forfilmsthickerthan

Page 389: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page176

Fig.4.5X-raydiffractionpatterns:LiNbO3filmsonLiTaO3substratesof(a)(0001)and(b)( )orientations,LiNb0.5Ta05O3onasubstrateof(c)(0001)and(d)( )orientations,LiNb02Ta08O3

onasubstrateof(e)(0001)and(f)( )orientations.

Fig.4.6

Page 390: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

HexagonalcellparametersversusLiNb1-yTayO3filmcomposition.

Page 391: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page177

50µmX-raysdonotpracticallyreachthesubstrate,andthediffractionangleisdeterminedbythefilmalone.Thevaluesofthediffractionanglesandlatticeconstantswereestimatedforthick(1010)-orientedLiNbO3andLiNb1-yTayO3films(y<0.8).

Table4.2presentsthevaluesofinterplanardistancesandlatticeconstantsofLi(Nb,Ta)O3filmsandLiTaO3substrate.

ThereiscontroversyintheliteratureastothecharacterofthedependenceofcrystallographicparametersandCuriepointofsolidsolutionsLiNb1-yTayO3ontheamountoftantalum,y.Shapiroetal(1965)andSugiietal(1976)pointtothenonlineardependence,whereasShimuraandFujino(1977)showthatthedivergenceisduetoalackofcorrespondencebetweentheparameteryinthesynthesizedsolidsolutionLiNb1-yTayO3andtheparameterxoftheinitialmaterialLiNb1-xTaxO3.TheconstructeddependenceofthelatticeconstantsaandConthetantalumcontentinthefilmisclosetolinear(Fig.4.6).

AnalysisofX-raydiffractionpatternsallowsustojudgeofstructuralperfectionofepitaxialfilms.Theexistenceofonlyonepeakindicatesthatthefilmissingle-crystal,andasmallhalfwidth(notlargerthanthatofthesubstrates)pointstothelackofblockstructureofthefilmandtoperfectionnotlowerthanthatofbulkcrystals.

Diffractionstudiesoffilmswerealsocarriedoutbytheelectrondiffractometrywhichprovidesahighaccuracyindeterminationoflatticeconstants.Itwasestablishedthatfilmsonsubstratesof(0001),( )and( )orientationsaresingle-crystal,whichfactaccountsforthepoint-likecharacteroftheelec-

Page 392: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.4.7ElectrondiffractionfromtheLiNbO3filmsurfaceonaLiTaO3(1120)substrate,Kikuchilinesareobserved.

Page 393: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page178

trondiffractionpattern(Fig.4.7).Furthermore,highstructuralperfectionofthenear-surfacelayerofthefilmpermitobtainingdiffractionintheformoftheKikuchi-lines.

Fig.4.8Schematicarrangementofatriple-crystalspectrometer(Sugiietal1978).

Sofaraselectrondiffractionpatternonlyprovidesinformationaboutanear-surfacelayer,itpermitsdeterminationoflatticeconstantsofafilmirrespectiveofitsclosenesstothesubstrateparameter.ThisisofparticularimportanceforthediffractionstudyofhomoepitaxiallayersandfilmsofLiNbO3ona( )-alignedLiTaO3substrate.WeshouldnotethatinallthecasestheinterplanardistancesdidnotdifferfromtheresultspresentedinTable4.1.

HomoepitaxialLiNbO3filmsareofinterestinthecasewhentheyaredopedwithtransitionmetalatoms.AdetailedanalysisofFeatomdistributionovercrystallographicpositionswasgivenbyRubinina(1976)whoshowedthatFe2+andFe3+ionssubstitutelithiumorniobiumones.Suchironimpuritymustnotleadtosubstantiallatticedistortions.VariationoflatticeconstantsofLiNbO3uponirondopingwasnotestablishedwithinexperimentalerror.ThediffractionstudiesofLiNbO3filmsonasapphiresubstrateshowedfilmpolycrystallinity.

CreationoflightguidinglayersinLiNbO3usingdiffusionofmetal(inparticulartitanium)ionsnecessitatesdeterminationofstrainsinthesurfacelayerandtheformationofmisfitdislocations.Tosolvetheseproblems,Sugiietal(1978)successfullyappliedX-rays.

Page 394: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

4.2.3Measurementofstrainsinthediffusedlayer

TheX-rayrockingcurvemethodwasemployedbySugiietal(1978)forprecisedeterminationofstrainsinthediffusedlayer.Rockingcurvesweretakenusingatriple-crystalspectrometerasshowninFig.4.8.ItconsistsoftwonearlyperfectgermaniumsinglecrystalsC1andC2,andasimplecrystalC3arrangedinthe(+,+,-)position.ForC1andC2thesymmetric(333)reflectionwasused,theBraggangleforCuKa1radiation,q,beingabout45°.TheangularandwavelengthdistributionsoftheX-raybeamdiffractedfromthesecondcrystalC2wereco=2×10-5rad(4''arc)andDl/l0=2×10-5(l0=1.5405Å),respectively.Theyweresmallenoughtoobtainanintrinsicrockingcurveofthesmallsampleforanylatticeplane(hkl).Inaddition,thebeamthusobtainedisalmost

Page 395: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page179

Table4.3StrainsintheTi-diffusedlayerofLiNbO3(Sugii,Fukuma,Iwasaki,1978)

Diffusiontime, t=10h Diffusiontemperature, T=1000°C

T(°C) ey×103 t(h) ey×103 ey×103

1000 -1.3 1.25 -2.19 1.2

1050 -0.71 2.5 -1.66 0.75

1000 -0.39 3.75 -1.28 0.62

- - 10 -0.759 0.52

o-polarized(anelectricfieldvectorEperpendiculartotheplaneofincidence)becausethescatteringangle,2q,isnear90°.AslitwasplacedbetweenC2andC3toobtainabeamofwidth0.5mmandheight2.0mm.Undiffusedsamplesproduced(030)rockingcurveswithwidthathalfmaximumintensity(WHMI)ofabout12''arc,whichisessentiallythetheoreticalWHMIforthe(030)reflectionofaperfectLiNbO3crystalundertheseexperimentalconditions.Ontheotherhand,thediffusedsamplesproduces(030)rockingcurvesaccompaniedbyadiffractionsatellite,displacedinanglewithrespecttothediffractionpeakoftheunperturbedregioninthesubstrate.Precisedeterminationofstrainsinthediffusedlayerispossiblesinceastandardoflatticeconstantisavailableinthesametraceasthediffusedlayer.Thestrainalongtheaaxis,ey(ex),isobtainedfromashiftinangleq030ofthesatelliteas

whereq030istheBraggangleforthe(030)reflection.However,strainalongthecaxis,ez,cannotbedirectlymeasuredonthediffusedlayer,sincethecaxisisparalleltothesurfaceinthey-platecrystal.IfashiftDqhklcanbeobtainedfora(hkl)reflectionwithnon-zerol,thestrain

Page 396: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

eziscalculatedfromapairofshiftsDq030andDqhklusingthefollowingexpression

Fig.4.9(a)Relationshipbetweenthe(036)latticeplaneandtheincidentX-raybeam.(b)Inclinationinthe(036)latticeplanesbetweenthesubstrateandtheTi-diffusedlayer.Thedottedlinerepresentsalatticeplane

parallelto(036)s(Sugiietal1978).

Page 397: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page180

Fig,4.10Familyof(036)rockingcurvesforthesamplesofdiffusedLiNbO3:Ti

(Sugiietal1978).

wheredisthe(hkl)latticespacingandqhklistheBraggangleforthe(hkl)reflection.A(036)reflectionwasusedforthispurpose.Thegeometricalrelationshipbetweenthe(036)latticeplaneandthesurfaceisshowninFig.4.9.Theanglebintheinterplanaranglebetweenthe(036)planeandthesurface.Inthe(036)asymmetricreflection,ashift foranincidentbeamwithaglancingangle(q036+b)isgenerallynotequaltoashift foronewithaglancingangle(0036-b),sinceaninclinationofthe(036)latticeplane,Db,isinvolvedinbothshifts(seeFig.4.9(b)).Itisreadilyshownthat( )/2givesDq036tobesubstitutedinequation(4.2),whichisashiftdueonlytothedifferenceinthe(036)latticespacingbetweenthediffusedlayerandthesubstrate.

Thelatticeconstantawasobservedinthediffusedlayersofallthesamplesinvestigatedinthisstudy.Figure4.10showsthreepairsof(036)rockingcurves andDq>036ofthesamples.Theratioofsatellitetosubstratepeakintensityincreaseswithdiffusiontimet,althoughtheabsoluteintensitybecomessmall,duetotheeffectofasymmetricreflection.Thesubstratepeakscouldhardlybedetectedsincetheywereabsorbedbythethickdiffusedlayers.

Usingequations(4.1)and(4.2),Sugiietal(1978)couldcalculate

Page 398: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

strainseyandezAlinearrelationshipisfoundbetweenln(ey)and1/T.ThestrainseyandezforLiNbO3:TisamplesaregiveninTable4.3.Thestrainezisaboutoneorderofmagnitudesmallerthanthestraineyineachsample.Thestrainseyareplottedagainstt.Theslopeln(ey)versusIn(t)plotiscalculatedtobe-1/2.Thesetworelationshipsfoundbetweeneyand1/T,andbetweeneyandtaresimilartothosebetweenCsandI/T,andbetweenCsandt,respectively.Therefore,itcanbeconcludedthatthestraineyinthediffusedlayerisproportionaltothesurfaceconcentrationCs.

4.2.4Tidistributionindiffusedlayers

Figure4.11showstheTidistributionsofLiNbO3samples.Here,apositiononthechartwasregardedasthesurfaceatwhichanEPMAresponsedecayedtoavaluehalfwaybetweenthemaximumandbackgroundlevels.Allthediffusedlayershavebell-shapedTidistributionscharacteristicoftheGaussiandistri-

Page 399: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page181

Fig.4.11TidiffusionasdeterminedbyEPMAof

slicesforthesamplesofLiNbO3:Ti(Sugiietal1978).

Table4.4TitaniumatomicfractionsatcrystalsurfaceNs,(Ti),anddiffusioncoefficientsD,diffusiontimet=10h,inLiNbO3:Ti(Sugii,Fukuma,Iwasaki,1978)

T(°C) Ns(Ti)×1021cm-3 D,10-12cm2s-1

1000 1.23 0.506

1050 0.82 1.06

1100 0.57 2.13

bution.TheGaussiandistributionC(y)isexpressedasfollows

whereyisthedepthbelowthesurface,pisthenumberofatomsperunitvolumeinthedepositedfilmofthicknesst,andDisthediffusioncoefficientgivenby

ValuesofEPMAresponseatthesurface,Rs,correspondingtoCs,and

Page 400: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ofthediffusioncoefficientDcouldbedeterminedinsuchawaythatthetheoreticaldistributioncalculatedbyEqs.(4.3)-(4.5)wasfittedtothemeasuredone.Then,theTiatomicfractionatthesurfaceNs(Ti)wasestimatedfromaratioofRstoR0ontheassumptionthattheEPMAresponsewasproportionaltoC(y).ThecalculatedvaluesofNs(Ti)andDaregiveninTable4.4.ItistobenotedthatTihasaremarkablyhighsolubilityinLiNbO3inthetemperaturerangefrom1000to1100°C.ThediffusiondatawerecalculatedasD0=2.19×10-4cm2sec-1andQt=2.18eV.

Page 401: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page182

Fig.4.12Lidepthprofiles(a),Hdepthprofiles(b)andionchanellingresults(c)forX-cutblink,afterprotonexchangeinbenzoicacidat180°C

for1handafterthermalannealinginairat350°Cfor10h(Hsuetal.1992).

4.2.5theStructureofproton-ExchangedLiNbO3

SeveralstudieshavebeenreportedonthestructuralcharacterizationofLiNbO3.Rice(1986)reportedanapproximatephasediagramforthestoichiometricLiNbO3-HNbO3system.Dependinguponcomposition,samplesundergoone,two,orthreephasetransitionswithtemperature.Canalietal(1986)reportedresultsofstructuralanalysisofproton-exchangedlithiumniobateopticalwaveguidesfabricatedinx,y,andz-cutsubstratesimmersedinpurebenzoicacid.Theymeasuredatomiccompositionprofilesandnotedamarkedlatticedistortion.HandLiconcentrationmeasurementsindicatedanexchangeofabout70%oftheLiatoms.Thehydrogendepthprofilemeasurementsshowedasteplikeshapeinagreementwiththerefractiveindexprofilemeasuredoptically.Theyconcludedthatexchangeincludesalargecrystaldistortionstronglycorrelatedtothepresenceofprotons.Leeetal(1986)studiedstructuralphasechangesinproton-exchangedLiNbO3usingtransmissionelectronmicroscopy.Regionsofdiffuseintensitywithinthesinglecrystalelectron

Page 402: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

diffractionpatternsofLiNbO3wereobserved.Minakataetal(1986)measuredthelatticeconstantsandelectro-opticconstantsofz-cutproton-exchangedLiNbO3crystalsbymeansofthex-rayrockingcurvemethodandthephasemodulationtechnique.Theyfoundthattthestrainalongthecaxis,Dc/c,wasextremelylarge(+0.45%)whilstthestrainperpendiculartothecaxis,Da/a,wasnegligiblysmallinproton-exchangedLiNbO3singlecrystals.Theelectro-opticcoefficientvalueinthelayerreducedtoone-tenthofthebulkcrystalvalue.Vohraetal(1989)measuredtheconcentrationprofilesofprotonandlithiumprotonexchangedLiNbO3crystalsusingsecondaryionmassspectroscopyandfoundprotonconcentrationprofilesnearlyrectangularinshape.Lonietal(1991)reported,usingsecondaryionmassspectrometry(SIMS)andanopticalmethod,adirectcomparisonof

Page 403: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page183

hydrogendepthdistributionsandrefractiveindexprofilesinannealedproton-exchangedz-cutLiNbO3waveguides.Novaketal(1992)havereportedSIMSdepthprofilemeasurementsofH,Li,Nd,andErinLiNbO3andLiTaO3.Theabovediscussionindicatesthatextensivestudieshavebeencarriedoutonthecharacterizationoftheproton-exchangeprocess.Someresultshavealsobeenreportedonthedegradationoftheelectro-opticcoefficient.Toourknowledge,noresultshavebeenreportedcorrelatingthedegradationofthenonlinearcoefficienttoitsstructuralaspects.Hsuetal(1992)reportedtheresultsofx-rayrockingcurvesstudiesaswellasdepthprofilesofHandLiandionchannelingmeasurementsusingforwardrecoilspectrometry(FRES),theioninducednuclearreactionLi(p,a)He4andRutherfordbackscattering(RBS)techniques,respectively,thatprovidesomestructuralcharacterizationofproton-exchangedandannealedLiNbO3samples.Thesemeasurementsarecorrelatedwithopticalmeasurementsoftherefractiveindexandsecondharmonicgeneration.

Figure4.12ashowstheLiprofilesfrombulkLiNbO3crystal,aproton-exchangedcrystalandanannealedsample.TheseresultsindicateasignificantlossofLifromthesurfaceuponproton-exchangeandrecoveryofitafterthermalannealing(althougharegionofabout0.1µminthicknessstillremainsLideficient).Figure4.12bshowsthehydrogenprofilesofthesamesetofsamples.ThehydrogenpeakatthesurfaceoftheuntreatedLiNbO3crystalcouldbeduetothemoisturepresentatthesurface.Thesimulationresultsindicateasteplikeprofileofhydrogenafterproton-exchangeinagreementwithLonietal(1991).Afterannealing,thehydrogenconcentrationfalls,exceptforasmallpeakinthenear-surfaceregionofthesample.TheRBSchannelingresultspresentedinFig.4.12cshowthattheproton-exchangeinducesdisorderintheNbsublatticeextendingfromthesurfaceofthesampletoadepthofapproximately0.7µm.This

Page 404: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

disorderedregioncoincideswiththeLidepletedandhydrogen-occupiedregionsshowninFig.4.12aandb,respectively.Inthermalannealing,mostofthelatticedisorderisrecoveredexceptforanarrowregion,approximately0.1µmthickclosetothesurfaceofthesample.Figures4.12aandbshowthatthisregionisalsoLi-deficientandpresumablyH-rich,respectively.Inthesecond-harmonicreflectancetechnique,thesecond-harmonicsignalisobtainedonlyfromthefrontsurfacesincetheskindepthforthewavelengthemployedisoftheorderof0.1µm.Thisimpliesthatthereflectancetechniquedoesnotprovideafullcharacterizationofthedegradationinwaveguidesthataretypically1µmdeep.Also,sincethereisamarkedrecoveryindeeperregionsofsample,efficientsecond-harmonicgenerationispossibleinLiNbO3,althoughconversionefficienciessmallerthantheoreticalvaluescanbeexpected.

TheRBSchannelingresultsofanx-cutLiNbO3samplethatwasproton-exchangedinbenzoicacidfor30minat180°Candsubsequentlyannealedinairfor2hat350°C,revealeddisorderinthecrystallatticeafterproton-exchangetoadepthofabout0.35µm.However,inthiscase(shortp-exchangetime)thereisalmostcompleterecoveryafterthermalannealing.Indeed,anSHGsignalwasobservedafterthermalannealing,butnotafterprotonexhcange.Also,theprismcouplingmethodindicatedawaveguideinthesampleafterthermalannealing,butnowaveguidewasobservedafterprotonexchange.The

Page 405: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page184

RBSchannelingresultsofanx-cutLiNbO3samplethatwasproton-exchangedfor30rainat230°Cinpyrophosphoricacidandsubsequentlyannealedinairfor1hat350°C,indicateddisorderinthecrystallatticeafterprotonexchangeextendingtoadepthof1.8µm,whichpartiallyrecoversuponthermalannealing.Therefore,protonexchangewithpyrophosphoricacidproducessimilarlatticedisorderasprotonexchangewithbenzoicacid.

ThelargestrefractiveindexofLiNbO3isaresultoftheextremepolarizabilityoftheNb-Obonds.TheprotonexchangeprocessinducesadistortionofthecrystallatticeandhenceadistortionoftheNb-Obonds.Thischangeoftheniobatestructureappearstocausetheindexincrease.Thiseffectappearstobealsothesourceofthedecreaseinthenonlinearopticalcoefficient,apropertythatisalsorelatedtothepolarizabilityoftheNb-Obond.Therefore,itappearsthatitisnotthepresenceoftheprotons,butrathertheireffectontheNb-Olattice,thataffectstheopticalproperties.Afullrecoveryoftheopticalpropertiesoccursnotbyremovingtheprotons,butbyrestoringthecrystallattice.

4.2.6Orientationrelations

X-raydiffractionstudiesalsodeterminedthedirectionofthecrystallographicaxesofsubstrateandfilmsurfaces.Theresultsweremostpreciseonsamplesthediffractionfromwhosesurfacegavetwoclearlyseparatedmaxima.Inthiscase,theabsolutelossoffilmandsubstrateorientationwasmeasuredbytheirorientationlossrelativetothestandard.ItwasestablishedthatcrystallographicdirectionsofthefilmofpurelithiumniobateandsolidsolutionsLiNb1-yTayO3coincidewithidenticaldirectionsofLiTaO3substratesupto20'for(0001)and( )sampleorientationsirrespectiveoforiginalorientationlossinthesubstratesurface.

Ninomuraetal(1978)describedtheprocessofobtainingLiNbO3

Page 406: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

filmsonaMgOsubstrate.Sputteringontothe(111)planeofthesubstrateresultedincrystallizationofa(0001)-orientedLiNbO3layer.Suchorientationrelationisexplainedbythefactthatthepositionofoxygenionsintheindicatedplanesisidenticalandtheircoordinatesintheplanedonotdifferbymorethan0.2%oftheoxygensublatticeperiod.

AsdistinctfromMgO,thestructureofLiTaO3isidenticaltothatofLiNbO3,andtheirparametersdifferby4%incand1%ina.

Becauseofsimilarityoflattices,filmorientationispreserved,asexpected,andthesubstrate-to-filmtransitionisduetoformationofthetransitionlayerofLiNb1-zTa2O3ofvariablecomposition,inthecourseofwhichthelatticeconstantchangesfromfilmtosubstrateparameter.Intheabsenceofadditionalsubstratedissolving,thewidthofthetransitionregionappearstobesmall(1µm)andisdeterminedbytheinterdiffusiondepthofsubstrateandfilmatomsafterprecipitation.

Ingrowinghomoepitaxialfilmswithironimpuritynodeviationoflayerorientationfromthatofsubstratewasobserved.

Alithiumniobatefilmgrownona( )sapphiresubstrateexhibitednoX-raydiffractionatananglecorrespondingtothesinglecrystal.ThemostintensescatteringcorrespondedtothezplaneofLiNbO3.Itismostlikelythat

Page 407: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page185

Fig.4.13Mechanismsofepitaxialgrowthoflithiumniobate.

a)model,b)photographsofsurfacemorphologyofLiNbO3

aLiNbO3filmprecipitatesontoan{ }A12O3plateintheformofapolycrystallinelayeroralayerconsistingofregionswithdifferentorientationswithpredominanceofthezdirection.Suchaconclusionisalsoconfirmedbythefactthatnopointelectrondiffractionpatterncorrespondingtoasinglecrystalcouldbeobtained.

4.3Morphologyandperfectionoflayers

Attenuationofalightwaveinawaveguideistheprincipalparameterresponsibleforefficiencyoftheepitaxialstructureinintegratedoptics.Inazigzagpropagationoflight,attenuationisdeterminedbytwofactors-bylightscatteringuponrepeatedreflectionfromsubstrate-filmandair-filminterfacesandbyabsorptioninthebulk.Thescatteringlosstypicallyincreaseswithincreasingorderofthewaveguidemode,whereasthebulklossremainsalmostunchanged.Inthisconnection,perfectionofthefilmsurfaceandofthesubstrate-filminterfaceisofimportance.Thebulklossisduetoabsorptionandscatteringoflightonstructuralinhomogeneitiesofthefilms,whicharedeterminedbythefilmformationmechanisms.

Accordingtomodernconceptsofthenucleationtheory,themost

Page 408: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

importantfactorwhichdeterminesbasicallythemechanismofsinglecrystalnucleationandthekineticsoftheirsubsequentgrowthisthestructureoftherealsurfaceofthesubstrate(Veinsteinetal1979).Oneshouldbearinmindthatthedifferenceinthelatticeperiodsofcontactingmaterialsaffectsthemagnitudeofthesurfaceenergyoftheinterfaceand,accordingly,thecharacterofelementarygrowthprocessesattheearlystageofheteroepitaxyestablishingeithertwo-orthree-dimensionalnucleationmechanism.Thecharacterofelementarygrowthprocessesessentiallydeterminesthestructureperfectionandthemorphologyofthinepitaxiallayersnearheteroboundary.

Figure4.13presentsmodelsofthelayergrowthmechanismfordifferentsupersaturationsintheliquidphaseandthecorrespondingsurfacemicromorphologies

Page 409: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page186

ofheteroepitaxialstructuresLiNbO3/LiTaO3(Khachaturyan1987;Khachaturyanetal1987).

Ananalysisofrecentpublicationsonthemechanismoforientedgrowthofvarioussubstancesshowsthattheircommontendencyisrevisionofconventionalandgenerallyacceptedviewpoints.Theseworksrejectthedimensionalgeometricapproachandmakeuseofphaseequilibriumasoneofthecriteriaofthepossibilityofepitaxy(Chernovetal1980;BolkhovityanovandYudayev1986).

4.3.1Micromorphologyoffilmsurfacefordifferentcrystallographicorientationsofthesubstrate

MorphologicalstudiesoflithiumniobateandsolidsolutionsLiNb1-yTayO3haveshownthatsurfacemorphologydependsonthefollowingfactors:materialandpreparationofsubstratesurface,orientation,compositionofprecipitatedlayer,growthrateandtemperatureregimeofepitaxy.

Platesofpreferentiallyzandycutsofsingle-domainsinglecrystalsaretypicallyexploitedtomanufactureintegro-opticelements.Thestateoftheirsurfacelayer,whichisofprincipalimportancefortechnologyoflightguideformation,dependsessentiallyonfinishpolishing.

Thedamagedsurfacelayerisadevelopedsystemofstructuraldefectsandviolationofchemicalcomposition.Directstructuralstudiesofreflectionusingelectrondiffractometryshowthataftermechanicalpolishingthesurfacelayeroflithiumniobateplatesiscompletelydisorderedandamorphous(Sugiietal1980;Rakovaetal1986).Itsstructuralperfectioncanbeimprovedbysubstrateannealinginoxygenatmosphere.Optimumannealingconditionsare1000°Cand1h.Aftersuchheattreatment,electrondiffractionpatternsofsamplesshowKikuchilines,whichisindicativeofhighperfectionofcrystal

Page 410: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

surfacestructure.

Figure4.14presentsthephotographsofsurfacemorphologyofLiNbO3filmsonLiTaO3substratesofz,yandxorientations.Perfectlysmooth,mirrorsurfacesaretypicalwhoseroughnessheightonthezplaneisnotlargerthan0.1µm(Fig.4.14(Ia,IIa)).Introductionofironimpurityintosolutionleadstotheformationofroundfiguresofgrowthonthefilmsurface.HeterolayersonLiTaO3substratehavemorphologyanalogoustohomolayersbutthefiguresofgrowthhavepronouncedcontours,theroughnessheightreaches0.5µm(Fig.4.14(IIb,c)).

Thepicturesshowthatthesurfacemorphologyoffilmsisdeterminedfirstofallbythesubstrateorientation.OnthexplaneofepitaxialLiTaO3,thefiguresofgrowthhavetheshapeofatriangleandsometimesofatruncatedpyramid1µmhigh.Longnarrowhillocksdirectedalongthex-axisareobservedony-orientedhomo-andheterolayers(Fig.4.14(lb,IIb,IIIb)).Themorphologyofepitaxiallayersissubstantiallyaffectedbyinterfaceinstability.Athighgrowthrates,thesurfaceonwhichcrystallizationtakesplacebecomesunstableanditsroughnessincreases.Atlowcoolingrates,theeffectofgradientsalongsubstratesincreases,whichleadstotheformationoflayerswithsignificantlydifferentthickness.InvestigationoftheeffectofgrowthrateuponsurfacemorphologyofLiNbO3filmshasshownthatthesmoothestlayerscorrespondtothegrowthrateofnotmorethan0.6µm/min.Anincreaseinthegrowthratehasaspecialeffectuponthemorphologyofz-orientedlayers,atratesnear

Page 411: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page187

Fig.4.14TypicalmorphologyofLiNbO3filmsurfacesofa)(0001);b)( )'c)( )substrateorientations.I)y=0.3,v~0.2µm/min;LiNbO3substrate;II)y=0.8,v~0.6µm/min;LiTaO3substrateIII)y=0.3,v~0.1µm/min;

LiTaO3substrate(Khachaturyanetal1984).

1µm/minthereappearsmosaicstructureofthesurface,andabovethisvaluethefilmiscompletelycoveredwithhillocks.Anincreaseofprecipitationrateonyandxplanesentailsanincreaseinthedensityofthefiguresofgrowthwhichsomewhatincreaseinsizeandhaveatriangularshape(Fig.4.14(IIIb,c)).

Thus,thesurfacemorphologyofLiNbO3filmsisbasicallydeterminedbysubstrateorientationandgrowthconditions.Theappearanceofthree-dimensionalpatternsisduetocrystallographicspecificitiesoflithiumniobatestructure:theyaredeterminedbytheshapeofcross-sectionofelementaryrhombohedronwith(0001),( )and( )planes.

ConnectionbetweenthelatticeparametermismatchandthesurfacemorphologyalsomanifestsitselfinepitaxyofsolidsolutionsLiNb1-yTayO3onaLiTaO3substrate.Figure4.14showsadecreaseinsurfaceroughnesswithincreasingTacontentinthefilmanda

Page 412: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

decreaseinthedensityandsizeofthegrowthpatterns.Thesurfaceroughnessdoesnotexceed0.2µm.Theresultobtainedtestifiesclearlytothefactthatsurfacemorphologyisdeterminedbythestructuredefectsoccurringattheinterfaceduetomismatchoflatticeconstants.Thefilmsurfaceroughnessisconsiderablyinfluencedbythemannerinwhichthesubstratesurfaceisprepared.Mechanicalpolishingleadstotheappearanceofadamagednear-surfacelayer.High-temperatureannealingorchemicaletchinginducetheappearanceonthesamplesurfaceofsomesignsofpolishinghiddenbythenear-surfacelayer.Scratchesonthesubstrateoccuronthesurfaceofthinlayersintheformofshallowgroovesupto3µmwide.Toobtainaperfectsurface,thesubstratewaspreliminarilytreatedinKOHatatemperatureof280-340°Cfor2-3min.

Examinationofsurfacemorphologyhasshownthattoobtainsmoothlayersitisofimportancetocompletelyremovetheresiduesofsolution-meltfromthefilmsurfacewhenthegrowthprocessisover.Arapidcoolingtoroom

Page 413: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page188

temperaturetypicallycausesanuncontrolledadditionalcrystallizationfromtheremainingdropsofliquid.

4.3.2Diffusion-induceddefectsinfilms

Thediffusedlayerandsubstratecanbediffractedseparatelybyutilizingthediffractionanglecorrespondingtoeachlatticeconstant.Thusseparatetopographiescanberecordedforthediffusedlayerandsubstrate.Thistechniqueisveryusefulfortheinvestigationofdefectsgeneratedbydiffusion.Sugiietal(1978)tooktopographiesoftheTi-diffusedlayerusingtheLangcameraappliedtothereflectioncasewithCuKa1radiation.

Figure4.15ashowstopographyofthediffusedlayersofthesamplesofgroupI.Theexcessdiffractionconstantobservedinallthesamplesisduetoahighdensityofdefects.Itisfoundthatthehigherthediffusiontemperature,thelessseriousthedegradationincrystallinityinthediffusedlayer.Thiscorrespondstotheresult,obtainedbytherockingcurvemeasurement,thatthemismatchdecreasedwithincreasingdiffusiontemperaturefrom1000to1100°C.

Figure4.15bshowstopographyofthediffusedlayersofsomesamplesofgroupII.Threetypesofdefectsareclearlyobserved:mismatchdislocations,cracksoftypeIrunninginthedirectionperpendiculartothexaxis,andcracksoftypeIIrunninginthedirectionperpendiculartothez-axis.AllofthedefectswereinducedbytheTidiffusion.Mismatchdislocationsshouldbegeneratedsoastorelievestressesinthediffusedlayer.ThedirectionsofthecrackssuggestthatthetypeIcracksmustbegeneratedbyastressalongthea-axisandthetypeIIcracksbyastressalongthec-axis.DensitiesofthemismatchdislocationsandofthetypeIcracksincreasewithdiffusiontimet,however,thedensityoftypeIIcracksisalmostindependentoft.

Page 414: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

WhentheTi-diffusedlayerisutilizedasanopticalwaveguide,thedefects

Fig.4.15Diffusion-induceddefectsinTi-diffusedlayersofsamples

ofLiNbO3:TigroupI(g=030)(a)1000°C,10h,(b)1000°C,2.5h,groupI[(Sugiietal1978).

Page 415: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page189

mayincreasethescatteringlossofopticalguidedwavesasobservedintheNb-diffusedLiTaO3waveguides(RamaswamyandStandley1975).

Applyingthecombineddiffusion-filmmethod,onecanobtainchannelsofan'immersed'orsymmetricwaveguide.Figure4.16ashowsaLiTaO3substrateof(1120)orientationwithan'Y'-shapedcouplerpreliminarilydeposedbytitaniumthermodiffusion.Thechannelwidthwasequalto6µmandthegapbetweenthechannelsfordepositingcontrolelectrodesto10µm.Onthissurface,anepitaxialLiNb0.1Ta0.9O3layerwasgrown.Figure4.16bshowsthesurfacemorphologyofepitaxialstructureLiNb0.1Ta0.9O3/Ti:LiTaO3.Thechannelsandthe'Y'-shapedcouplerareclearlyseen.

Varyingthelayercomposition,thesubstratematerial,thethicknessoftitaniumsputteredontosubstrateandthetimeoftheprocessweformdifferentprofilesoftherefractiveindexwithamaximumvalueonthesubstrate-filminterface.Thelighttransmittedthroughthewaveguidehasminimumscatteringlossontheinterface.Therefractiveindexvariationonthewaveguideboundary,whichdeterminesscatteringundercompleteinternalreflection,isbyanorderofmagnitudesmallerthanthatonthefilm-airinterface.

4.4Substrate-filminterfaceandtransitionregion

Thestateandpropertiesoftheinterfacebetweenthewaveguidinglayerandsubstratehaveaneffectuponthepropertiesofthefilmasawholeanduponitsstructure.Theinfluenceofthesubstrateupontheinterfacestructuredependsonthelayergrowthconditionsanddeterminethedensityanddistributionofdefects(inclusions,dislocations,impurityatomsandvacancies)andelasticstressinthetransitionlayer.

Page 416: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.4.16ThesurfaceofaLiNbO3substratewithaTi-diffused'Y'

coupler(a)andthesurfaceofanepitaxialfilmgrownonthissubstrate(b).

Page 417: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page190

Epitaxiallayersarecharacterizedbyaclearlypronouncedsubstrate-filminterface.Thethicknessofthetransitionregionisdeterminedbythegrowthconditionsandmaterials,aswellasbytheinitialepitaxytemperatureatwhichthesubstrateismoistenedbythesolution-melt.Thesubstratesurfacedissolutionincreaseswithincreasinginitialtemperatureforthesamesolutioncomposition.Thisleadstothefactthatunderepitaxy,beforethebeginningofprecipitationattheLiTaO3crystallizationfront,thiscausestheformationofathinliquid-phaselayerenrichedwithTaascomparedtotherestoftheliquidphase,andunderasubsequentcoolingalayerofvariablecompositionisprecipitated.Uponprecipitationofapurelithiumniobatefilm,onthesubstrate-filminterfacethereformsasolidsolutionLiNb1-yTayO3.ThisobviouslyoccursduetosubstratedissolutionsinceintheindicatedpapertheconcentrationofNb2O5inthesolution-meltisby5%smallerthaninstoichiometriccompositions.

Transitionregionswereexaminedonchipsandpolishedcutsofthegrownstructures.Underidealhomoepitaxythefilm-substrateinterfaceisnotpronounced.Figure4.17presentsphotographsofchipsofLiNbO3andLi(Nb,Ta)O3filmsonLiNbO3andLiTaO3showingaclearandstraightinterfaceandaflattransition.IdentityofcrystallinestructuresoffilmandsubstrateandequalNb5+andTa5+radiileadtointerdiffusionofniobiumandtantalumatomsthroughtheinterfaceandtotheformationofthetransitionregionLiNb1-7TazO3wherezvariesfrom0toy.

Theformationofthe'transition'regionisanundesirableprocesswhichmakesepitaxiallayerscloserinthepropertiesandstructuretothediffusionlayers.

Filmswithaconcentrationprofileclosetorectangularcanbeobtainedin

Page 418: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.4.17Boundariesbetweenepitaxialstructures:a)LiNbO3/LiNbO3;

b)Li(Nb,Ta)O3/LiTaO3;c)LiNbO3/LiTaO3(Khachaturyanetal1984).

Page 419: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page191

differentways.Precipitationontoz-LiTaO3throughabufferlayersubstantiallydecreasesinterdiffusion,andthethicknessofthetransitionregionappearstobelowerthanthemicroproberesolution(~0.2µm).Theconcentrationprofiledependsonthegrowthconditions.Theinterdiffusiondepthisdeterminedbytheheattimeanddecreaseswithdecreasingholdtimeafterprecipitation.Forstructuresobtainedatagrowthrateoflessthan0.2µm/minandannealingfor3hthetransitionregionistypicallywide(upto3-5µm)andtheinterfaceisonlypronouncedunderselectiveetchingasshowninFig.4.17a.Precipitationataratev~(0.2-0.3)µm/minandholdingfor1.5hleadstotheformationofstructureswithatransitionregionnotwiderthan0.5µm,whichisobservedatchipswithoutadditionaletchingoftheinterface(Fig.4.17c).

4.5Dislocationstructure

Tocreateeffectivewaveguideswithinsignificantattenuation,filmswithlowdefectdensity,sharpsubstrate-filminterface,mirror-smoothsurfaceoftheepitaxiallayerandhomogeneityoffilmpropertiesthroughoutthethicknessarenecessary.Investigationofstructuralinhomogeneitiesandsurfacemorphologyplaysanimportantroleforgrowingfilmswithprescribedparametersandlowdefectdensity(MadoyanandKhachaturyan1987).

Morphologicalstudieswerecarriedoutusingscanningelectronandlightpolarizingmicroscopes.Structuralinhomogeneitieswererevealedbyselectiveetchinginaboiling1:2mixtureofconcentratedacidsHFandHNO3andinKOH.Etchingtimewasvariedfrom1to40mindependingonthepolarizationvectordirection.

Themosttypicalinhomogeneitiesofepitaxiallayersaredislocations.Analysisofexperimentalpapersonexaminationofthedislocationstructureofferroelectricsshowsthatthemostlikelymechanismofthe

Page 420: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

occurrenceofdislocationsisthefollowing:

-penetrationofdislocationsfromthesubstratetothefilminwhichtheydegenerate;

-nucleationofdislocationsunderstresscausedbynonuniformimpuritycaptureunderlaminargrowth;

-occurrenceofdefectsduetothenonuniformimpuritydistributioninagrowinglayer.

Onthesubstrate-filmboundary,defectsmayoccurduetomismatchinlatticeconstantsbetweenthefilmandsubstrate.Tominimizethemismatchbetweenthetwolattices,elasticdeformationoffilmsisenergeticallyadvantageous.Ifthemismatchisnotcompensatedcompletelybytheelasticstress,mismatchdislocationsalsooccur(MilvidskyandOsvensky1977).Arelativecontributionofelasticstressesandmismatchdislocationstotheaccommodationofcrystallatticesdependsonthedifferenceinlatticeconstants,filmthickness,geometryofdislocations,characterofbondsontheinterfaceandelasticconstantsoftwointergrowingmaterials.Mismatchdislocationsslidefromthefreesurfaceintotheinterfaceregion.

PlaceswheredislocationsappearonthefilmsurfaceasconicaletchpitswithaclearlypronouncedvortexshowninFig.4.18e,f.Butamixtureofhydrofluoricandnitricacidsdoesnotpermitanexactlocationofdislocationetchpitson

Page 421: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page192

Fig.4.18Dislocationstructureanddomainconfigurationsinepitaxialfilms,successiveetchingoffilmsurfacewithataperedoutpositive

domain(a,b);domainconfigurationsinsubstrate(c)andinafilmgrownonthissubstrate(d);microdomainson(0001)(e)and( )

(f)surfacesofLiNbO3structureinhomogeneitiesonthesurface( )ofaLiNbO3film(g)andetching-revealeddislocationsandmicrodomainsina(0001)film(h)(Khachaturyanetal1984).

thepositivez-planeand,asanalysisshows,doesnotatallpossesspropertiesofselectiveetchingforthex-plane.ThedislocationstructurewasunambiguouslydeterminedbyetchingintheKOHmeltatatemperatureof400°C.Figure4.18eandfshowszandysurfacesofLiNbO3afteretchinginKOHfor2min.

Sincesubstratedislocationsemergingonthesurfaceunderpseudomorphousfilmgrowthcontinueinthegrownlayer,thestructuralperfectionofthelayerdependsondislocationdensityinthe

Page 422: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

substrate.Adirectcountofetchingpitshasshownthatthedensityofdislocationsemergingonthesubstratesurfaceisdeterminedbythepositionofthissurfacerelativetothegrowthaxisoftheoriginalcrystal.Thenumberofdislocationsonthey-planeofLiTaO3andz-planeofLiNbO3(thatis,ontheplaneperpendiculartothecrystalgrowthaxis)makesupN~104cm-2,fortheotherplanesitisbyanorderofmagnitudesmaller.

SelectiveetchingoflithiumniobatefilmsinKOHhasshownthatgrowthhillocksonthefilmsurfaceareofdislocationnature.Intheplaceofhillocks

Page 423: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page193

removedbypolishingtheretypicallyappeardislocationetchingpits(Fig.4.18c).Twomechanismsofthisphenomenonarepossible.

Inmatingtwosingle-typelatticeswithinterplanardistancesa1anda2thereoccurmismatchdislocationswiththelineardensity

where

Forapseudomorphouslygrownlayerthereexistsacriticalthickness

Onreachingthisthickness,thelayerstopsbeingpseudomorphous,andnetsofmismatchdislocationsappearontheboundary.

Dislocationsofthesubstrate,thatemergeonitssurfaceuponpseudoamorphousfilmgrowth,stretchtothegrownlayeruptothecriticalthickness.Afterthat,dislocationswiththeBurgersvectorparalleltothesubstratebend,becomemismatchdislocationsandthengotothegrownlayer.Inthiscasethereappearonlyseparateregions,insteadofawholenet,ofmismatchdislocations.Asubstitutionofthevaluesofinterplanardistancesoflithiumniobate,dx=1.284Å,dy=1.486Å,dz=1.152Å,andlithiumtantalate,dx=1.286Å,dy=1.487Ådz1.147ÅobtainedbytheX-raydiffractionmethodyieldsthevaluesoflineardislocationdensitiesNy=6.79×104cm-1,Nx=8.48×104cm-1,Nz=34.84×104cm-1andcorrespondinglythevaluesofpseudomorphouslayerthicknesshy.cr=0.074µm,hx.cr=0.059µm,hz.cr=0.014µm.

Thus,duringcrystallizationonthez-planeofLiTaO3themismatchdislocationdensityisminimum,andthesurfacemorphologymustbenearlyisotropic.Fory-andx-orientedlayersthenumberof

Page 424: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

dislocationscausedbymismatchbetweentheinterplanardistancealongthezaxisandalignedperpendiculartoitishigherbyanorderofmagnitude.Therefore,thesegmentsofmismatchdislocationsoccurringonthegrowthdislocationsthatstretchtothefilmareexpectedtobeperpendiculartothez-axis.

Suchamodelagreeswithsomeoftheexperimentalresults.Inparticular,thesurfacemorphologyonthezplaneisclosetoisotropic,andthedirectionofgrowthhillocksony-andx-orientedfilmsareperpendiculartothez-axis.Introductionoftantalumpentoxidetoalithiumniobatefilm(i.e.matingthelatticeconstantsofthefilmandsubstrate)decreasesthenumberandsizeofthegrowthhillocks.Butthereexistessentialcontradictions.Becauseofsmallthicknessofthepseudomorphouslayers,themismatchdislocationsegmentsmustoccurattheinitialinstantofepitaxy(0.1µm)andmustnothaveanyeffectuponthemorphologyfurtheron.Thefiguresofgrowthincreasewithincreasingfilmthickness,whereastheeffectoflatticemismatchdecreases.

Page 425: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page194

UnderhomoepitaxyontoaLiNbO3substratethelatticemismatchisabsent,butelongatedhillocksoccuronthefilmsurface.Growthpatternsondislocationsareobviouslyduetoalieninclusions.

Analysisofcrystallizationfromsolutionhasshownthatsheaf-shapedgrowthdislocationsoccuroninclusionsconcentratedforthemostpartalongplaneswhicharetracesofterminationoraccelerationofagrowingfacet.

Inepitaxialgrowth,suchaplaneisthesubstratesurface.Thedifferenceinionradiiofvanadiumandniobiumcausessegregationofsolventintheformofinhomogeneousmicroinclusions.Thedirectionofdislocationsinasheafisconnectedwithfreeenergyanisotropyofunitdislocationlengthwhichisdeterminedbytheelasticmoduliofthecrystal.Forlithiumniobateandtantalate,anisotropyony-andx-orientedplanesissingle-typerelativetothez-axis.Divergenceofthesheavesmustleadtoincreaseinthegrowthpatternsize.Captureofthesolventmayoccurbothunderhomo-andheteroepitaxy.Theshape,sizeandconcentrationofinclusionsaredeterminedbysurfaceprocesses.Introductionoftantalumoxideintheliquidphase,whichstimulatesanincreaseinthegrowthtemperatureandadecreaseinthegrowthratemustresultinadecreaseinthesolventcaptureprobability.Thepresenceofsheavesofdislocationsduetoinclusionsinalithiumniobatefilmisinagreementwiththesurfacemorphology.Thestructureoftheinterfaceisworsenedbyinclusionsleadingtoascatteringofthewaveguidemode.

Thedislocationdensityinthefilmisthusofthesameorderasinthesubstrateorevenhigher.Inadditiontodislocationsgrowthfromthesubstrate,newdislocationsoccurinthefilmduetolatticemismatchandsolventinclusions.Onthelayersurface,dislocationsappearascharacteristicgrowthpatternswhoseshapeisdeterminedbyorientationofthesubstrateandthesizebythethicknessandgrowth

Page 426: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

rate.Mismatchdislocationsoccurinpseudomorphouslayersnotthickerthan0.1µm.Theirdensityisminimumonthe(0001)plane.Onthe( )and( )planestheyappearashillocksstretchingperpendiculartothe(0001)axis(Fig.4.18g).Introductionoftantalumpentoxidetothemeltfromwhichalithiumniobatefilmisgrown(i.e.matingthelatticeconstantsofthefilmandsubstrate)decreasesmismatchdislocationdensityandthesizeofthegrowthhillocksintheplacesofdislocationoccurrence.

Duringcrystallizationfromsolution,growthdislocationsintheformofdivergentsheavesoccuroninclusions(Golubevetal1982).Inclusionsarelargelyconcentratedalongtheplaneswhicharetracesofterminationoraccelerationofagrowingfacet(inparticular,thesubstratesurface).Thedifferenceinionradiiofvanadiumandniobium(0.4Åand0.66Å)restrictssolventcapture,andforhighconcentrationsleadstosegregationintheformofinhomogeneousmicroinclusions.Forlowvanadiumconcentrations,strongdeformationsandlocalstressesappearinthelatticethatinitiatetheformationofdislocationsandmicrodomains.Figure4.18h)illustratesetchingofa(0001)filmofLiNbO3withadislocationstretchingthroughtheentirelength.Thefigureshowsthatdislocationsoccuralongwithmicrodomainsalignedperpendiculartothesurface.Dislocationsalignedalongthe( )axisaregeneratedatdifferentdepthsofthefilmandaremostlyconcentratedneartheinterface.

Figure4.19presentsagraphofthedistributionofdislocationdensityover

Page 427: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page195

Fig.4.19Distributionofdislocationdensityalongthethickness

oftheepitaxialstructureLiNbO3/LiTaO3.

thethicknessoftheepitaxialstructure.Dislocationsarebasicallygeneratedinthetransitionregionwhichisthickerbyanorderofmagnitudethanthecalculatedvalueofthepseudomorphouslayer(0.1µm).Therefore,besidesmismatchdislocations,othertypesofdislocationsmustdevelopinthefilm,whichoriginateontheimpuritycentresthatinducelatticedeformationandmicrostrains.Thelatterlead,inturn,totheformationofmicrodomainscoupledwithdislocations.

Structuralinhomogeneitiesoffilmsaffectessentiallytheiropticalproperties.Inparticular,theycausescatteringofchannelledlightonmicroinclusionsanddomainwalls.Thepresenceofdomainswithdifferentpolarizationlowerstheefficiencyofelectro-opticmodulation.

Wepresenttheresultsofmorphologicalstudiesofthefilmsurfaceandsubstrate-filminterfaceoflithiumniobatestructuresgrownbyLPEandliquid-phaseandelectroepitaxy.Figure4.20presentstypicalpicturesofsurfacemorphologyandtransversechipsofthesefilmsgrownbythetwomethodsmentionedabove.

Inthefigureonecanseeimperfectionsclosedonthesubstrate-filmtransitionregionunderliquid-phaseelectroepitaxyoflithiumniobate

Page 428: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

(lb,IIb),thicknessandplanarityofepitaxialfilms,aswellasregionsofgrowthdislocationclustersandandoccurrenceofmicrodomains(III).

Figure4.21presentsthedependenceoftheratioofdislocationdensitiesinlithiumniobateunderliquidphaseelectroepitaxyandliquidphaseepitaxy(1)andfilmthickness(2)onthecurrentdensity.Asisseenfromthefigure,anincreaseinthecurrentdensity(J>15mA/cm2)inducesasharpincreaseinthegrowthdislocationdensityascomparedwithliquidphaseepitaxyoflithiumniobate.ThisisapparentlyconnectedwithagrowinginfluenceofJouleeffectuponcrystallizationabovetheindicatedcurrentdensityrange.

4.6Domainstructure

Themosttypicalinhomogeneitiesinferroelectricsaredomainboundaries,growthdislocationsandmicroinclusionsofalienphases.Inplanarintegro-opticwaveguidesonthebasisoflithiumniobate,theseinhomogeneitiesleadtoanadditionalscatteringofchannelledlightandtoloweringofthedeviceefficiency.

Polydomainlithiumniobateandtantalatecrystalsconsistof180°domainswithpolarizationalongthe(0001)axis.Lithiumtantalateusedassubstrateisaperfectstructuralanalogueoflithiumniobate,butthedomainsizeissmallerbytwoordersofmagnitude(10µm).Thedislocationdensitymakesup~104

Page 429: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page196

Fig.4.20Photographsoftransverselayers(I)andmorphology

ofthesurface(II)oflithiumniobatefilmsgrownbyliquidphaseepitaxy(a)andliquidphaseelectroepitaxy

(b)(Khachaturyanetal1987).

Fig.4.21Dislocationdensityratiosinlithiumniobate

filmsgrowthbyliquidphaseepitaxyandliquidphaseelectroepitaxy(1)andthicknessofelectro-LPEfilm

asfunctionsofcurrentdensity(Khachaturyanetal1989).

cm-2,mostofthedislocationsoccurringduringgrowth.Thinrods(upto300µmlong)ofneedle-shapedmicrodomainswereobservedinlithiumniobatealongthe(0001)axiswithpolarizationreversetothatoftheprincipaldomain(Fig.4.22)(ProkhorovandKuz'minov1990).Thepresenceofvacantoxygenoctahedrainthestructurepromotesentrapmentofimpurityandfirstofallmetalions.

Page 430: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Defectstypicaloflithiumniobateareoxygenvacancieswhichcanbereadilywithdrawnbyhigh-temperatureannealinginoxygenatmosphere.

Lithiumniobatecrystalsarehighlysensitivetoheattreatmentwhichaffects,besidesoxygenvacancies,alsodislocationmigration,impuritydistributionandthecontentofmicrodomains.(Rakovaetal1986;Bocharovaetal1985)pointedouttheappearanceofalienphasesonthesurfaceofLiNbO3underannealingatT=900°C,(OhnishiandYizuka1974)reportedrepolarizationofnear-surfacelayersundermechanicaltreatment.

Page 431: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page197

Fig.4.22Needle-shapeddomainstructureofLiNbO3crystal(ProkhorovandKuz'minov1990).

Fig.4.23(right)Growthrateofalithiumniobatefilmversus

coolingtemperature.Thecoolingrates1)0.3deg/min;2)0.16deg/min, )onanegativedomain;)

onapositivedomain.

4.6.1Epitaxialfilmonadomainboundaryofthesubstrate

Nonsymmetricpositionofionsintheferroelectricphaseisresponsibleforthedifferenceinchemicalactivitiesofsurfaceswith

Page 432: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

differentpolarizations,whichisobservedinparticularinselectiveetching.

Underepitaxy,whenthegrowthrateisdeterminedbysurfaceprocesses(kineticregime),thesurfaceactivitymusttelluponthekineticsofcrystallizationprocesses.TheCuriepointoflithiumtantalate(660°C)islowerthantheepitaxytemperature,andprecipitationunderheteroepitaxyproceedsonsubstratesintheparaphase.Thesurfacepropertiesareidenticalthroughout,andspontaneouspolarizationhasnodirecteffectupongrowthkinetics.Underepitaxyon(0001),aLiNbO3crystalisintheferroelectricphase(Tc=1210°C),andprecipitationmaytakeplaceontosingle-andpolydomainsubstrates.

Crystallizationfromsolutionassumesthatprecipitatedatomscomefromthedepthofsolutiontothecrystallizationfront,areadsorbedontothegrowingsurfaceandbuiltinthecrystallattice.Forsmallsupersaturations,thegrowthrateislimitedbydiffusionmasstransferandsurfaceprocessesdonotaffecttheprecipitationrate.Filmthicknessesonpositivelyandnegativelychargedsingle-domainsubstratesareequal.Indiffusionregime,theinfluenceofdomainstructureisobservedwhenprecipitationtakesplaceontoapolydomainsubstrate.Ondomainswithdifferentpolarizationsthefilmthicknessisnotatalluniform,butitbecomesuniformfarfromdomainboundaries.Suchapicturecanbeeasilyexplainedifwetakeintoaccountthefactthatfarfromtheboundariesthegrowthrateisonlylimitedbymasstransferandnearthedomainboundariesadifferenceinsurfaceactivitiesleadstoafasterconcentrationloweringon

Page 433: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page198

thenegativedomainand,accordingly,toredistributionofthefluxofprecipitatingatoms.Thus,themasssupplyonthesidesoftheboundaryisdifferent,thegrowthrateonthenegativez-surfaceishigherbyafactorof1.5thanthatonthepositivesurface(Fig.4.23).

Asthesystemcoolingrateincreases,crystallizationislimitedbybuilding-inofatomsintothelattice(kineticregime).Butthereisnoessentialdifferenceinthegrowthratesonpositivelyandnegativelychargedsurfacesofsingle-domainsubstratessincethebreakingeffectofthelessactivepositivesurfaceleadstoanincreaseofsupersaturationandgrowthrate.So,thegrowthratesonsingle-domainsubstratesaredeterminedbythecoolingrateofthesolution-melt(Fig.4.23)(MadoyanandKhachaturyan1987;Madoyanetal1985).

Underepitaxyonapolydomainsubstrate,ahighactivityofthenegativesurfaceleadstotaperingoutofthepositivedomain.Whenthefilmthicknessexceeds30µm,thegrowingfilmsaretypicallysingle-domainandnegativelypolarized.

Figure4.18bdemonstratessuccessiveetchingoffilmsabout25µmthick.Thedashedlineindicatestheregionsofnegativelypolarizedsurface,onwhichpositivedomainsappearafteretching.

4.6.2Domainconfigurationsinfilms

Analysisofdomainstructureofepitaxialfilmshasshownthattheconfigurationandsizeofdomainsdependonsubstratematerialandorientationandonthethicknessoftheprecipitatedlayer.

Ithasbeenestablishedabovethattheboundaryofadomaingrowsthroughthesubstrate-filminterface.Investigationsshowedthatwhenfilmthicknessdoesnotexceed20µm,thedomainconfigurationsofthesubstratearefullyinheritedbythefilmbothunderhomo-andheteroepitaxy.UnderheteroepitaxyonLiTaO3,thesubstrateisin

Page 434: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

paraphaseandthelithiumniobatefilmiscrystallizedintheferroelectricphase.ThefinalformationofdomainconfigurationsproceedswhenthesampleiscooledthroughtheCuriepointofthesubstrate(Tc=660°C).Thepolydomainstructuresoffilmandsubstratewerefoundtobeperfectlyidentical.Experiencingnoactionoftheelectricfieldofthesubstrate,aprecipitatedfilmobviouslyacquiresthedomainconfigurationwhichisenergeticallymoreadvantageous.Takingintoaccounttheconnectionbetweenpolarizationdirectionandgrowthkinetics,wemayassumethatthefilmmustbenegativelypolarizedorpolydomainwithpredominanceofnegativedomains.Whenthesampleiscooledbelow660°C,thepolarizationoccurringinthesubstrateleadstofilmrepolarization.Thisprocessispromotedbyalargenumberofintergrainboundariesresultedfromgrowthofnucleiatthecrystallizationfront.Theseintergrainboundariesareplacesofpointdefectanddislocationpile-upalongwhichnewlyformeddomainboundariescanrun.Moreover,thepolarizationeffectofthesubstrateisstrengthenedduetothepresenceinepitaxialstructuresoftransitionregionswithsmoothlyvarying2µm-thickcompositionLiNb1-xTaxO3.Toobtainsingle-domainLiNbO3/LiTaO3films,itsufficestocarryoutcoolinginanelectricfieldthatprovidessubstratepolarization.

Figure4.18canddpresentsthedomainstructureofhomoepitaxialfilmandsubstrateoflithiumniobate.Thefilmnaturallyrepeatsthedomainstructure

Page 435: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page199

ofthesubstrate.Taperingoutofthepositivedomainisobserved,asmentionedabove,forthicknessesof30µm.Onsingle-domainsubstratesthefilmisalsosingle-domainandthepolarizationdirectionofthefilmisidenticaltothatofthesubstrate.

4.6.3Microdomainsinsubstratesandinepitaxiallayers

Atypicalfeatureofthedomainstructureoflithiumniobateisthepresenceofthinneedle-shapedmicrodomainswithapolarizationreversetothatoftheprincipaldomain(Bocharovaetal1985;OhnishiandYizuka1975).Uponselectiveetchingofanegative(0001)plane,needle-shapedmicrodomainsappearastrianglepyramidswithside-faceorientation( ).Theverticesofthesepyramidsareplaceswheremicrodomainsemergeonthefilmsurface(Fig.4.18d).Onthepositivezplane,insuchplacesthereformsmallirregular-shaped(upto1µm)etchingpitscorrespondingtoneedle-shapedmicrodomains.Thesizeofthepitsremainsunchangedastheetchingtimeincreases.Onthe( )planetheyappearasthin300µmstripsrunningalongthez-axis(Fig.4.18f).

Theinfluenceofalienfactorsuponthedomainstructurewasinvestigated.Mechanicalpressingwithadiamondneedle(P=5,10,15g,thediamondneedlepointcurvature~10µm)onthe(0001)planeofLiNbO3leadstotheappearanceofmicrodomainclusterswiththedensityinthecentreupto106cm-2andareasincreasingwithincreasingpressure.

LaserradiationproducesthesameeffectuponLiNbO3crystals.Thedensitiesofmicrodomainsformedundernear-thresholdradiationintensity(l=1.06µm,Jthrcsh=6.5GW/cm2)reached109cm-2inthecentreand105-106cm-2attheclusterboundaries.Thesizeoftheclusterareasdecreasesslightlywithdecreasingintensity,andonthewholetheclusterdiameterisdeterminedbythediameterofthefocalspot.Underselectiveetchingatypicalpatternisobservedinthe

Page 436: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

irradiatedarea.

Thisphenomenoncanbeinterpretedindifferentways.LevanyukandOsipov(1975)showedthepossibilityofaphotoinducedreversalofspontaneouspolarizationinferroelectricswithoccurrenceofa'frozen'bulkcharge.Butthismechanismdoesnotaccountfortheindicatedphenomenonsincetheresultantchargeofirradiatedregioniszero.Moreover,thepolarizationreversalregionisstrictlylimitedtotheirradiatedarea,whereasirradiation-inducedmicrodomainsareobservedoutsidetheirradiatedareaaswell.Themechanismofmicrodomainnucleationduetoelasticstrains,whichwasproposedby(Abul-FadlandStefenakos1977)andconfirmedbyexperimentswithmechanicaltreatment,seemstobemostrealistic.Becauseofashortirradiationtimeandalowheattransfercoefficient,irradiationwithahigh-intensitylaserbeaminducedathermalshockwhichisresponsibleforhighlocalstrainsandmicrodomainnucleation.

InepitaxialLiNbO3filmsmicrodomainsareonlyobservedin(0001)-alignedlayers.Themicrodomaindensityvariesfromsampletosample(from10to105cm-2),butasaruleexceedsthemicrodomaindensityonthesubstrate.Thus,microdomainsgrowfromthesubstratetothefilmandemergeinthelayeronlocalinhomogeneitiesandstrains.

Page 437: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page200

4.6.4PeriodicallyinverteddomainstructuresinLiTaO3andLiNbO3usingprotonexchange

SHGbyquasi-phasematching(QPM)ofthefundamentalandharmonicmodescanreleasehighconversionefficiencyandisversatileforgenerationofshorterwavelength,QPMisbasedonthemoodulationofnonlinearpolarizationbyperiodicallydomain-invertedstructure,andthusitispossibletophasematchanarbitarywavelengthbyanappropriatechoiceofperiodofmodulation.Byusingthistechnique,bluelightgenerationinLiNbO3waveguidehasbeenrealized(Liraetal1989;Webjornetal1989).Thisdeviceofferstheadvantageofefficientconversionoflaserradiation,becausethewaveguidealllowslonginteractionlengthwithstrongmodalconfinement.However,asphotorefractivedamageisknowntooccurinLiNbO3itspotentialathigherpowersmaybelimited.

LiTaO3wasreportedtobehighlyresistiveagainstphotorefractivedamageanditalsohastheadvantagesoflargenonlinearsusceptibilities,andshortwavelengthtransparencyfrom280nm.

SeveralmethodshavebeenusedtofabricateperiodicdomaininversioninLiNbO3andLiTaO3.Tiin-diffusion(Miyazawa1979)orLiout-diffusion(Webjornetal1989)neartheCurietemperaturearewell-knowntechniquestoreversethepolarizationinLiNbO3,buttheshapeoftheinverteddomainisnotrectangular.Electronbeambombardment(Keysetal1991;YomadaandKishima1991;Itoetal1991)hasalsobeenemployedtomake'well'-shapedinverteddomains.butitisdifficulttofabricateshortperiodpatterns.PeriodicallypoledstructuresinLiNbO3canberealizedthroughselectiveprotonexchange(PE)followedbyheattreatmentneartheCurietemperature(Mizuuchietal1991).Afewmicrondeepsemicircular-shapeddomainswithafirst-orderperiodhasbeenfabricatedusingprotonexchangeandaquickheattreatmentnearthe

Page 438: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Curietemperature,generating15mWofbluelight(MizuuchiandYamamoto1991).

Makioetal(1992)reportedontheformationoflong(>40µm),'spikelike'inverteddomainstriggeredbyprotonexchangewithone-directionalheating.Thesedomainshavestraightwallsandthesameperiodastheprotonexchangedgrid,whicharefavourableconditionstoachievefirst-orderQPMdevices.

Authorsdescribedtheirfabricationprocessasfollows;a30nmthickTamaskwasdepositedonthec+orc-faceof0.5mmthickLiTaO3orLiNbO3substratesusinganelectronbeamdepositionmethod.Thefirst-orderperiodicpatternwitha3.2µmperiodwasfabricatedontheTamaskbyconventionalphotolithographyandCF4dryetching,formingwindowstoallowprotonexchange.AsmallamountofpyrophosphoricacidwasdroppedontheTamasksideofthesubstrate,whichwasthenplacedonanalreadyheated(230-260°C)hotplateforseveralminutes,namely,one-directionalheatingfromtherearsurfaceofthesubstrate.AfterremovaloftheTamask,somespecimenswerecutintostrips,polished,andetchedwithHFandHNO3toexaminetheprotonexchangeandthedomaininversion.

Theyfoundthatthepolarizationflippedduringtheprotonexchangeprocess,farbelowtheCurietemperature.Figure4.24showsacross-sectionalviewofaLiNbO3sample,protonexchangedat260°Cfor30minandwithoutanypost-PEannealing.Althoughtheproton-exchangedlayerislessthan1µmthick,inverteddomainsstemmedandstretchedfromtheproton-exchangedregiondeep

Page 439: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page201

Fig.4.24Crosssectionalmicrographoftheperiodically

invertedspikelinedomainsfabricatedonLiNbO3(Makioetal,1992).

insidethesubstratefrommorethan40µm.Thedomainslooklikespikes,withthinandsharpends.

Thespikelikedomainscanbeformedonbothc+andc-facesofLiNbO3,unlikeothertypesofdomains.SpikelikedomainscouldbesuccessfullyfabricatedonLiNbO3aswell,inspiteofitshighCurietemperature.

Thesespikelikedomainsseentobesimilartotheso-called'needle-shaped'microdomains(OhnishiandIizuka,1975)whicharecommoninpoledcrystalsasresidualantidomains,usuallybeingisolatedandrandomlydistributed.Theinversionmechanismisnotclear,buttheperiodicstressduetoprotonexchangeislikelytotriggerthegrowthoftheantidomains,whichisacceleratedbythethermalgradientcausedbyone-directionalheating.

Thethermalstabilityofthespikelikedomainswasexaminedduringpost-PEannealing.Heattreatmentwascarriedoutat525°Cforupto2min.Thoughthedataarespreadoutoverawiderange,theyindicatethetendencyforthedomainstobecomeshorterandfinallyvanishastheheattreatmenttimeincreases.Atlowertemperature,though,theysurvivelongertreatmenttime.Fromthepracticalpointofview,itis

Page 440: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

essentialforthedomainstosurvivethe350-

Fig.4.25Measureddepthofinvertedregionswitha20µmperiodagainsttheheattreatment

temperatureforvariousproton-exchange(PE)conditions(Mizuuchietal1991).

Page 441: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page202

380°Cheatcycleinordertofabricatewaveguidesonthesubstratebytheannealedprotonexchangemethod.

Thedependenceoftheinverteddepthontheconditionofprotonexchangeandheattreatmenttemperaturewasexaminedforthe-cfacesubstratewithaTamaskof20µmperiod.Onlythe-cfacedoesproduceinversion.Thereasonwhyinversioncannotbeobservedin+cfaceisnotclear,andinvestigationoftheformationprocessofdomaininversionisbeingconductedtoresolvetheinversionmechanism.Figure4.25showstheinversiondepthasafunctionofheattreatmenttemperatureforaheattreatmenttimeof10min.Theinvertedregionbecamedeeperwithincreasingtemperature,butabove610°Caperiodicstructurecannotbeobserved,becauseitisabovetheTcofpureLiNbO3.Thefigurealsoshowsthatthethresholdtemperaturetocausedomaininversionbecomeslowerwithincreasingproton-exchangetimeandsaturatesatalowerlimitof450°C.ThissaturationperhapsindicatestheTcofproton-exchangedLiNbO3.Furthermore,thelargedifferencebetweenthislowerlimitandtheTcofpureLiNbO3showsthelargeextenttowhichtheLiionsareexchangedbyprotonsforthecaseofpyrophosphoricacid.Byknowingthisthresholdtemperaturefordomainreversal,Mizuuchietal(1991)wereabletocarryoutotherprocesses,suchasannealing,atanylowertemperaturewithoutdisturbingthedomain-invertedregions.

4.6.5Waveguideperiodicallypoledbyapplyinganexternalfield

Yamada,etal,(1993)reportedthefabricationofaperiodicallyinverteddomainstructureinaLiNbO3substratebyapplyinganexternalelectricfield,whichyieldsanefficientfirst-orderQPM-SHGdevice.

ItwassaidthatthedomaininversionofLiNbO3isdifficultatroomtemperature.LiNbO3isusuallybrokenwithoutdomaininversion

Page 442: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

whenanexternalfieldisappliedatroomtemperature.TheexternalfieldfordomaininversionofLiNbO3isclosetothatoftheelectronavalanche,sotheLiNbO3substrateisbrokenwithoutitsspontaneouspolarizationbeinginvertedwiththeapplicationofanexternalfield.

Yamadaetal,(1993)fabricatedtheperiodicdomainstructureforfirst-orderQPM-SHGdevicesinLiNbO3asfollows.Figure4.26showshowexternalfieldisapplied.Theyalsousedaz-cutLiNbO3crystalasthesubstrate.AnAlthinfilm200nmthickwasdepositedonthepositiveandnegativec-faceofthe

Fig.4.26Schematicofapplyingvoltageforperiodically

domaininversion(Yamadaetal1993).

Page 443: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page203

LiNbO3substrate.TheAlthinfilmonthepositivec-facewasperiodicallypatternedwitha2.8µmperiodbywetetching.Electrodeswerethenfabricatedonbothc-faces.

Next,atroomtemperature,anegativepulsewithawidthof100µsandavoltageof24kV/mm(theelectriccoerciveforceofLiNbO3isabout20kV/mm)wasappliedonaplaneelectrodeonthenegativec-faceandaperiodicelectrodeonthepositivec-facewasgrounded.Afterapplyingthevoltage,theAlelectrodewasremovedinanaqueoussolutionofNaOH.

Thereasontheperiodicelectrodesshouldbefabricatedonthepositivec-faceisthattheinverteddomainnucleiappearonthepositivec-face.Thereasonwhypulsedexternalfieldshouldbeappliedcanbeunderstoodiftheprocessofdomaingrowthisobserved.Whenthereexistsadependenceofthedomaingrowthonthetimetheexternalfieldisapplied,firstthedomainsgrowalongthec-axis,thengrowundertheelectrodes.Iftheexternalfieldisappliedtoolong,thedomainsspreadoutfromundertheelectrodesandcomeintocontactwitheachother.Theexternalfieldmustbeshutoffbeforethedomainsgrowoutformundertheelectrodes.

Usingtheaboveprocedure,az-cutLiNbO3substratewitha2.8µmperiodlaminardomainstructurewasobtained,whichissimilartothatillustratedinFig.4.24.Fromthefigureitisseenthatthedomainsboundariesareparalleltothec-axis.Thisperiodicallyinverteddomainstructureisidealforfirst-orderQPM-SHGdevices.

4.6.6DomaininversioninLiNbO3usingdirectelectron-beamwriting

Directelectron-beamwritingwasachievedusingascanningelectronmicroscope(SEM)convertedforthispurpose(Nuttetal,1992).Beamcurrentsusedwereintherangeof3-7nAandthebeamvoltagerangedbetween20and30kV.Theelectron-beamspotsizewas0.5

Page 444: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

µm.Patternswerewrittenwithsaturatedfilamentcurrentatbeamvoltagesof20,25,and30kV.Thebestgratingresolutionwasobtainedat30kV.Althoughsurfacecrackingwasobservedathighvoltages(30kV)andatlowerscanvelocities(235µm/s)withabeamcurrentof7nA,surfacecrackingwasavoidedbyreducingthebeamcurrentwhilstkeepingthebeamvoltagehigh.Samplesusedinthisstudywere500µmthickz-cutLiNbO3.Thedomaininversionprocessiscontrolledbytheelectricfieldcreatedbyelectronbombardment.Hence,a30nmfilmofTametalwassputteredonthec+face,whichactedasagroundelectrode.Sampleswerescannedonthec-facewheretheelectronbeamdepositedavxechargeonthesurface.Thescanvelocitieswerebetween200and800µm/s.Typicalsheetresisitanceofthemetalfilmwas200W/cm2.DomaininversionwasrevealedbyetchingtheLiNbO3sampleinasolutionoftwopartsHNO3andonepartHFat90°Cfor5minsincetheetchrateforthec-faceismuchhigherthanthatofthec+face.

Tounderstandthedomaininversionmechanismunderdirectelectron-beamwriting,metallinesweredepositedonthec+facethatwere200µmwideandspaced280µmapart.Thisgaveaperiodicgroundplane.Singlelinesusingdifferentbeamscanspeeds(500,250,166.7,71.4,and33.3µm/swith30kWbeamvoltageand7nAbeamcurrent)werewrittenperpendiculartothemetallinesonthec-face.Theseresultsshowthatdomaininversioncanbeachieved

Page 445: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page204

betweenmetallineswherethereisnodirectgroundand,secondly,domainspreadingoccursatthemetaledges.Theseresultsimplythatdomaininversionisrelatedtotheelectricfielddensity,whichishigheratthemetaledges.Nosignificantdomainspreadingwasobservedonthec+face.

Thewidthofthedomain-invertedregiononthec+facewasabouttwicethedomainwidthonthec-face.Thisspreadinglimitsthefabricationofhigh-resolutiongratingsonthec+face.

Surprisingly,domaininversionthroughthethicknessofthesamplewasobservedonLiNbO3,whichhadnometalfilmgroundingwhatsoeveronthec+face.However,high-resolutiongratingsonthec+faceshoweddistortion.Thisispossiblyduetocharginganddischargingeffectsobservedduringthewritingprocess.Thisimpliesthatmetalgroundingisneccessaryforhigh-resolutiongratingsalthoughlarge-periodgratingscanstillbewrittenwithoutdirectgrounding.Moresurfacecrackingwasobservedwithsampleswithoutmetalgrounding.

Electronbombardmentwithfocusedbeams(0.5µmindiameter)onthec-faceofLiNbO3withthec+faceasgroundedcanproducehighelectricfieldsnearthesurface.Thedistributionofthenormalcomponentofelectricfield,E(x),duetoapointchargeinauniformdielectricmediumnearaconductingplaneisgivenby(Becker,1982)

where

wherexandyaretheperpendiculardistancesofapointchargefromtheconductingplaneasshowninFig.4.27.Thechargeisqandeis

Page 446: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

thedielectricconstantofthemedium.Asexpected,ahighelectricfieldisproducednear

Fig.4.27Normalizedelectricfieldlog(4pea2E(x)/q)contours

duetothepointchargeqneartheconductingsurface(Nuttetal1992).

Page 447: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page205

thepointcharge.Beamcurrentsusedinthisstudywereoftheorderofafewnanoamperesandthetypicalscanvelocityusedwas300µm/s.Thebeamdiameterwas0.5µm.Thiscorrespondstoadwelltimeofabout1.5msper0.5µmtravel.Hence,thechargedepositedisabout10-10Cin0.5µm.Ifwetakethisasapointchargeq,thenthefieldintensityatadepthof5µmisabout108V/m.Thisisinthevicinityofthebreakdownvoltagefordielectrics.Hence,veryhigh-fieldintensitiesareproducednearthepointcharge.Thefieldintensitynearthepointchargeissimilarinmagnitudetothatofthepolarizationfieldsintheferroelectricmaterial.Thisfieldcanproducereverseddomainsnearthesurface.

Theroleofelectronenergyinthedomain-inversionprocessrequiresfurtherinvestigation.HaycockandTownsend(1986)proposedamechanismfordomaininversioninLiNbO3andLiTaO3whereexcitationofthecrystallatticebyanenergeticbeamofelectronsisrequiredwhileanexternalfieldisapplied.IntheexperimentscarriedoutbyNuttetal(1992),energeticelectronscanprovideexcitationofthecrystallatticeandatthesametimeanelectricfieldiscreatedduetoagroundelectrodeonthec+face.Itisalsopossiblethatlow-energyelectrons(<10keV)maynotproducedomaininversionduetosurfaceconduction,whilehigher-energyelectronspenetratedeeperinthecrystal.

Thedomain-inversionprocessstartswithnucleationofdomains,withtheirpolarizationPorientationantiparalleltotheoriginalpolarizationfieldPsatthesurface.Thereisrapidgrowthofthesenucleiintolongdomainsthroughthethicknessofthecrystal.Finally,thereissidewisegrowthorexpansionofdomains.Theinitialshapeofthedomainmayfollowthefieldprofileduetothepointcharge.Therewillbeacriticalfieldfornucleation.Theinverteddomainsinduceadepolarizingfieldthataidstheexternalfieldinthefurthergrowthofinvertedregionsalongthec+axisofthecrystal.So,theinverteddomainshapewillbe

Page 448: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

essentiallyparalleltothecaxisofthecrystalasitgrowsfurther.Thedomainwidthonthec+andc-facesoftheLiNbO3crystalincreasedasthescanspeeddecreased;thissuggeststhatthereisafieldlimit,which,whenexceeded,allowsdomainreversaltooccurspontaneously.Whensmaller-periodmetallines(10µm)wereused,nolateraldomainspreadingwasobservedonthec+faceoftheLiNbO3crystal.The10µmperiodgratingobviouslyactedexactlylikeacontinuousground.Therefore,thesamplethicknessplaysapartinthereversalmechanismbecauseofthedropinfieldintensityacrossthesample.

4.7Annealing-inducedvariationofthephasecompositionandcrystallinestructureofthelithiumniobatecrystalsurface

4.7.1Annealing-inducedvariationofthecrystallinestructureofthelithiumniobatecrystalsurface

Electrondiffractionstudieshaveshownthatthesurfaceofmechanicallypolishedx-,y-andz-cutsoflithiumniobatesubstratesiscoveredwithalayerwithadamagedcrystallinestructure,whichisformedduetobrittlefailureofthematerialinthecourseofmechanicaltreatment.Theelectrondiffractionpatternscontainingonlythediffusionbackgroundwithoutanyreflexessuggestamorphityofthethinnear-surfacelayerofthecrystal(Bocharova1986).

Todeterminethedamagedepthinmechanicallypolishedsamples,thedam-

Page 449: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page206

agedlayerswereetchedonebyoneinamixtureofacidsHF+HNO3atroomtemperaturewithsimultaneouscontrolofthesurfacestructure.Aportionofthesurfacewascoveredwithpiceinwhichpreservedthesurfacefromtheetchingagent,andtheheightofthestepwasindicativeoftheetchedlayerthickness.Thedegreeofstructureperfectionoftheetchedsurfacewascontrolledbyelectrondiffractometryandtheheightofthestepwasdeterminedusinganopticalinterferencemicroscope.Thethicknessoftheamorphouslayervariedwithintherange5nm<d<30nm,wasdependentonthequalityofpolishingandremainedunalteredfromsampletosample.

Betweentheamorphouslayerandtheperfectcrystalthereliesadamagedarea.Thedepthofthedamagedlayerinlithiumniobatecanbeestimatedbyellipsometryandrepeatedtotalinternalreflection.Theellipsometricmeasurementscarriedoutonthey-cutlithiumniobatehaveshownthattheeffectivethicknessofadamagedsurfacelayerdependsstronglyonpolishingqualityandrangesbetween35and160nm(Yakovlev1985).Themethodofrepeatedtotalinternalreflectionwasappliedtorevealanincreaseoflightabsorptionina200nmsurfacelayeroflithiumniobate,whichisexplainedbyahigherdefectdensityinthislayer(Zverevetal1977).

Electrondiffractometricandopticaldatasuggestthatnearthelithiumniobatesurfacethereexistsathinstronglydamagedamorphouslayer(~30nm)andadeeper-lyinglayer(~200nm)ofstrainedmaterial.Therealstructureoflithiumniobatecrystalscontainsdislocations,blockboundaries,microdomainsandothertypesofdefects.Accordingtotheresultsofselectivechemicaletching,thedislocationdensitywas104-105cm-2andthelineardislocationdensitywas~3×104cm-2.

Duringannealingofmechanicallypolishedcrystalsthefollowingtwoprocessesproceed:

-damagedlayerrecrystallization,

Page 450: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

-phasecompositionvariation,

thatcanberecordedbyhigh-energyelectrondiffractionbyreflection.Theseprocessesaresimultaneousanddependessentiallyontheannealingtemperature.

Recrystallizationinsolidbodiesconsistsofachangeintheircrystallinestructureandremovalofstructuraldefectscausedbypreliminarymechanicaltreatment.Thestructureofmatterisorderedbythenucleationandgrowthofgrainsaswellasbyenlargementofsomegrainsattheexpenseofothergrains.Thisprocedureresultsinreliefofinternalmicro-andmacrostrains.Theassembled(theassembledrecrystallization)recrystallizationmayequallyoccurinstrainedandunstrainedmaterialsandtypicallyfollowsthedamagedlayerrecrystallization.

Asshownbyelectrondiffractionanalysis,beginningwithT=300°Crecrystallizationofthedamagedlayerinducedbyannealingproceedsataratherhighspeed.Figure4.28a-dpresentsaseriesofelectrondiffractionpatternsoflithiumniobatesamplesalignedparalleltothecrystallographic(0001)planeandannealedatdifferenttemperaturesduringequaltimeintervals(t=4h).Reflectionsfromthesamples,annealedatT=300°C,intheformofarcsandringsarrangedconcentricallyneartheprimarybeam(Fig.4.28a)characterizethechangeinthestructureoftheuppersubstratelayers.Moreover,theelectrondiffractionpatterns

Page 451: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page207

Fig.4.28Electrondiffractionpatternsofthebasefacet(0001)oflithiumniobateversusannealing

temperature(annealingtimet=4h):a)300°C,b)650°C,c)750°C,d)950°C(Bocharova1986).

exhibitweakKikuchilines,farfromtheprimarybeam,formeddeepinsidethecrystal.Thepresenceofarc-andring-shapedreflectionsisindicativeoforderingofthesurface-layerstructureandofformationofsmallcrystallineaggregatesinthislayer.TheestimateofthesizelofthesecrystallitesobtainedfromthehalfwidthofreflexesBgivestherangeof10-50nm.ThecrystallitesformedatT=300°Chavebasicallyrandomposition,butshowatendencyfortextureformation.

Anincreaseofannealingtemperaturefrom300°Cto700°Ccausesadecreaseofazimuthaldisorientationandsegregationofcrystalliteswithpreferentialorientationparalleltoalithiumniobatesubstratesurface.

Page 452: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

TheelectrondiffractionpatternsofsamplesannealedatT>650°C(Fig.4.28bandc)show,togetherwitharcsfromthetexture,alsoasystemofpointreflexesformedbyamosaicsinglecrystal.Withafurtherincreaseoftemperaturefrom700°Cto900°Cthereflectionsfromthetexturedisappear,andtheelectrondiffractionpatternsonlycontainanetofpointreflexes,whichtestifiestothepresenceofsimilarlyalignedgrains.AnnealingoflithiumniobatesamplesatT=950°Cfor4hsufficesforacompleterestorationofcrystallinityofthenear-surfacelayer.Theelectrondiffractionpatternsofsuchsamplesexhibit

Page 453: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page208

Kikuchilines(Fig.4.28d).Thevariationofthecrystallinestructureoflithiumniobatefacets( )and( )dependingontheannealingtemperatureproceedsinasimilarmanner.

Thus,recrystallizationofthedamagednear-surfacelayerofcrystalsproceedsgraduallyintheentiretemperaturerangebeginningwith300°C.Thesurfacestructurechangesfromamorphousthroughtexture(T=300-650°C)andmosaic(T=650-900°C)uptosingle-crystal.Thefinalrestorationofasingle-crystalstateofthenear-surfacelayerisachievedatatemperatureT>900°C.

Aspecificfeatureoflithiumniobaterecrystallizationisthatwithinacertaintemperaturerangeitproceedsintheexistenceregionofatwo-phasesystem.

4.7.2Annealing-inducedvariationofthephasecompositionofthelithiumniobatecrystalsurface

Diffractionanalysisofspecimensannealedbetween300and900°Crevealsphasetransformationproceedingonthesurfaceoflithiumniobatecrystalssimultaneouslywithrecrystallization.ThisisalsoconfirmedbytheelectrondiffractionpatternsshowingasimultaneousdiffractionfromLiNbO3andLiNb3O8,bywhichonecantraceoutannealing-inducedvariationofthecrystallinestructureandofthephasecompositionofsubstratesurfacesofdifferentorientations.

VariationsofthephasecompositionandcrystallinestructureofthelithiumniobatesurfaceareobservedalreadyatT=300°C.Thesystemofring-andarc-shapedreflectionsobservedinelectrondiffractionpatterns(Fig.4.28a)isinducedinamonocliniccellwithparametersa=15.26Å,b=5.033Å,c=7.46Å,b=107.33gradcorrespondingtolithiumtriniobatewhichbelongstothespacegroupP21/a(Lundberg1971).DuetoclosenessoftheinterplanardistancesofLiNb3O8andLiNbO3andreflexsmearing,partofreflectionsfromthematrixand

Page 454: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

phasearenotseparates,butapermanentstrengtheningofindividualreflexestestifiestothepresenceofatwo-phasesystemonthesamplesurface.

Reflexesfromthemonoclinicphaseoflithiumtriniobateandfromtrigonallithiumniobateareseenmoreclearlyinelectrondiffractionpatternsastheannealingtemperatureincreases.WithinthetemperaturerangeT=300-700°Cthenewlyformedcrystalsofthesecondphasegetlargerandacquireepitaxialorientationrelativetothesubstrate.Pointreflexesappear(Fig.4.28b),andatT=700-900°Ctwophasesareformedconnectedwitheachotherbycertainorientationrelations(Fig.4.28c).Thissuggestssolid-phaseepitaxialgrowthofamonoclinicphaseonthelithiumniobatesurface.

Theoccurrenceofthesecondphaseisvisualizedasatypicalthindullcoatingonthesubstratesurfaceandcanalsobeidentifiedbylightscatteringinplacesofphasenucleation.Thephasechange

proceedsbasicallyinthenear-surfacelayerofalithiumniobatecrystaldamagedinthecourseofmechanicaltreatment.AfterthesurfacelayerhadbeenremovedbyetchinginthemixtureHF+HNO3,theelectrondiffractionpatternsshowedreflectionsonlyfromlithiumniobate,whichisindicativeofspatiallimitationofnucleationandgrowthoftheLiNb3O8phase.Therateoflithiumtriniobatenucleationonthecrystalsurfaceisratherhigh:themonoclinicphaseappearsonelectrondiffractionpatternsaftera10minstayofthesubstrateinthehotregionatT=750°C.

Page 455: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page209

Fig.4.29PhasediagramoftheLi2O-Nb2O5system(Holman1978).

Opticalinhomogeneityofthebulkcrystalbeforeandafterannealinginthetwo-phasetemperatureregionwasdeterminedbycomparingtheRayleighIRandstimulatedBrillouinISBcomponentsofscatteredlight.

UnderannealingatatemperatureT=750°Cfor5-20h,thenumberofscatteringcentresinthebulkcrystalremainsunchanged,whereasalayeroflithiumtriniobatephaseformsonthecrystalsurface.Aconsiderableincreaseinthenumberofscatteringcentresinthebulkcrystalwasonlyobservedafterannealingatthesametemperaturefor40h.

Anincreaseofthenucleationrateonastronglydamagedsurfaceascomparedwiththecrystalbulkisduetotheloweringofthenucleationbarrierandthehigherdiffusionrateofcomponentsintheamorphouslayer.Thisconclusionisconfirmedbythefactthatthelithiumdiffusionactivationenergyinasinglecrystal,equalto68±1.2kcal/molfallsdownto14.28±1.6kcal/mol(Carruthersetal1974;JetschkeandHehl1985).

Electrondiffractionanalysisshowsthatthevariationofthephase

Page 456: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

compositionofthelithiumniobatesurfaceduetomonoclinicphasenucleationisareversibleprocess,andatT>900°Cthephasechange

isobserved.TheboundaryoftheexistenceregionoftwophasesforcrystalsofcongruentcompositionliesnearT=900°C,whichagreeswiththephasediagram.Abovethistemperature,onlyLiNbO3ispresentonthesamplesurface,andreflectionsfromLiNb3O8disappearfromelectrondiffractionpatterns(Fig.4.28d).Thephasechange onthesurfaceoftitanium-dopedlithiumniobatecrystalsproceedsinasimilarmanner.

WenotethatatT<900°Cnomonoclinicphasewasobservedonthesubstratesurfaceifannealingwascarriedoutinalithium-enrichedatmosphere,thatis,thepresenceofLivapoursinannealingandtheirabsorptiononthesurfaceinhibitsphasenucleation.Initsnature,theindicatedtransition referstosolid-phaseorder-disordertypetransitionsoccurringinsolidsolutions.ThenucleationofthemonoclinicphaseLiNbO3correspondstodissolvingofexcesssolid-stateniobium.

Page 457: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page210

Lithiumniobatecrystalsofcongruentcompositionaremetastableatroomtemperatureandcontainpointdefects,duetolithiumdeficiency,inaconcentrationexceedingtheequilibriumone.Accordingtothephasediagram(Fig.4.29),atatemperaturebelow900°C,LiNbO3andLiNb3O8canexistsimultaneously.ThenarrowingofthehomogeneityregionwithloweringtemperatureleadstoLiNb3O8phasesegregationaccompanyingannealingofmetastablenonstoichiometriclithiumniobatecrystalswithinthetemperaturerange300-900°C,whichbringsthesystemtoastateenergeticallymoreadvantageousandlowerstheconcentrationofpointdefectsinthecrystals.ThetemperaturerangeT>900°Ccorrespondstotheone-phaselithiumniobatesystemandhasawidehomogeneityregion(upto6mol/%Li2O)withinwhichtheexistenceoflithiumniobatewithwidelydifferentcompositionisenergeticallyadmissible.Atannealingtemperaturesexceeding900°C,thechange isobserved,themonoclinicphasedisappearsandthesamplesurfacebecomessingle-phase.

ThephysicalandchemicalpropertiesoflightguidingferroelectricfilmsaretabulatedinTable4.5.

Temperaturevariationsaffectnotonlythestructureandphasecomposition,butalsothesurfacemorphologywhichisdeterminedbycrystallographicorientationofthesamplesurface.

Theshapesofgrowinglithiumtriniobatecrystalsandthespecificitiesofmicrocrystalpositionsonthesubstratesurfaceinthemonoclinicphasearebestofallpronouncedinthetemperaturerangeof700-900°CthatcorrespondstoanorientedgrowthofLiNb3O8.Thesizesanddensityofislandsofthesecondphasedependontheannealingtimeandonthedegreeofdamageofthenear-surfacesamplestructure.ThethicknessoftheLiNb3O8layerwasestimatedbytheheightofthegrowthpatternsonelectron-microscopicpicturesand

Page 458: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ellipsometrically.AfterannealingatT=750°Cfor4h,thegrowthpatternsofLiNb3O8rangedontheaveragewithin150-500nm,andtheellipsometricallymeasuredthicknessoftheislandlayerofthephasemadeup15-40nm.TheislanddensityNofthephasevariedfromsampletosamplewithinarangeof107to1010cm-2,thedistributionofislandsoverthesurfaceofoneandthesameislandbeingnonuniform.Phasesegregationareconcentrated,inparticular,inthevicinityofscratchesresultingfromsamplepolishing.Theislanddensityinsuchplacesmakesup1010-1011cm-2.

Accordingtoelectrondiffractiondata,lithiumtriniobateisorientedrelativetothe(0001)substrateasfollows:( )

TheshapesofgrowingLiNb3O8crystalsonthebasefacetoflithiumniobatearebasicallyrepresentedbypinacoidal and{h00}typeplaneselongatedalongthe[010]direction(Fig.4.30a).Itshouldbenotedthatthepinacoid( )paralleltothesubstratesurfaceisnotalwayspresentinthehabitusofmicrocrystalsofthenewphase,andisoccasionallytaperedoutwithitsotherfacetspositionedatanangletothesurface.InFig.4.30aphaseislandswithsuchfacetsareshownbythearrows2;thearrow1indicatesaLiNb3O8microcrystalwhosehabituscontainsthe( )facet.Thisisindicativeofthedifferenceingrowthconditionsofislandsononeandthesamesubstrate,which

Page 459: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page211Table4.5Physico-chemicalparametersofcrystalsandfilmsofoxideFerroelectrics(Ivleva,Kuzminov,1985)

Crystal Solvent Meltingpoint

Latticeparameters Refractiveindex

Electro-opticcoefficient

Films-substrate T,°C a,Å c,Åno ne r33 r13l=0.63µm 10-12 m/V

1LiNbO3 1253 5.14813.8622.289 2.201 30.8 8.6

2LiNbO3-LiNbO3 LiVO3 5.142

3LiTaO3 1650 5.15213.7852.177 2.183 35.8 7.9

4LiNbO3-LiTaO3 LiVO3 13.851

5LiNbO3-LiTaO3 LiVO3 13.85 2.288(4)2.191(4)

6LiNbO3-LiTaO3 2.200 2.184 12 2.3

7LiNbO3-LiTaO3 2.29 2.20 28.5

8LiNbO3:Li+-LiTaO3 Li2WO4 5.143

9LiNbO3:Nb5+-LiTaO3 K2WO4 5.153

10Li1-xNaxNbO3-LiNbO3 LiVO3 5.154

11Li1-xCOxNb1-xZrxO3--LiVO3 LiNbO3 5.144

12LiNbO3:Ag+-LiNbO3 LiVO3 2.2361

13LiTaxNb1-xO3-LiTaO3 LiVO3 13.80

14KNbO3 1039

15Sapphyre(Al2O3) 2030 4.75812.9911.766 1.758

16KNbO3-Al2O3 KVO3

17LiNbO3:Cr3+(Fe3+,Cu2+)-LiNbO3 LiVO3

18K289Li1.55Nb5.11O15 1050 12.584.01 2.294(8)2.156(8)

19K1.5Bi10Nb5.1O15 1312 17.857.84 2.237 2.253

Page 460: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

K1.5Bi10Nb5.1O1520K239Li155Nb5.11O15--K1.5Bi1.0Nb5.1O15

12.533.98

Comments:1.Prokhorov,Kuz'minov,1990;2.Baudrantetal,1975;3.Kuz'minov,1975;4.Miyasawa,1973;5.Miyasawaetal,1975;6.Fukunishietal,1974;7.Tienetal,1974;8.Baudrantetal,1975,Ballmanetal,1975;9.Baudrantetal,1975,Ballmanetal,1975;10.Neurgaonkar1981;11.Neurgaonkaretal,1979;12.Baudrantetal,1975;13.Kosminaetal,1983,Tienetal,1974;14.Prokorov,Kuz'minov,1990;15.Schaskolskaya1982;16.Khachaturyanetal,1984;17.Baudrantetal,1975;18,19,20.Adachietal,1979.

isevidentlyduetoinhomogeneityoflithiumniobatecompositionandinhomogeneityofstrainsinthesurfacelayerofthecrystal.

Accordingtothesymmetryofthebasefacetoflithiumniobate,LiNb3Omicro-crystalsoccupythreeequivalentpositionsonthesubstrate,makinganangleof120°(Fig.4.30b),whichformdendrite-typeadhesions(joints)showninFig.4.30a.

Page 461: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page212

Fig.4.30(a)Surfacemorphologyofthe(0001)facetoflithium

niobateafterannealingatT=750°Cfor4h.(b)Positionsoflithiumtriniobateisletsonthe(0001)

facetoflithiumniobate,(Bocharova1986).

Page 462: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page213

5PhysicalPropertiesofWaveguideLayersPracticaluseofvarioustypesofthin-filmferroelectricstructuresneedsadetailedstudyofthephysico-chemicalpropertiesofthesubstancesinvolved,aswellastechnologicalperfectionofobtainingthesesubstances.Thiswillpermitcreationofmaterialswiththerequiredphysicalpropertiesoptimumforaparticularapplication.

Inthischapterwedescribetheinvestigationsofwaveguiding,nonlinearopticandferroelectricpropertiesofepitaxialfilmsoflithiumniobateandlithiumtantalateandtheirsolidsolutions.Thedielectricandpyroelectricproperties,andthetemperaturedependenceofthermoelectriccoefficientsarepresented.Wealsoconsidertheopticalpropertiesofthethin-filmstructures:surfaceresistanceandtheeffectoflaserradiation,therefractiveindicesandthemodestructureoffilms,lightextinctionuponwaveguidepropagation.

5.1Opticalpropertiesoflithiumniobateandtantalatesinglecrystals

Lithiummeta-niobatesinglecrystalsareuniaxialnegative(no-ne),transparentfromabout0.4to5mm(Fig.5.1)(Boydetal1964).Thenatureoftheirtransmissionspectradependsontheconditionsofheattreatmentandpolarizationofcrystals.Crystalspreparedwithnodirectcurrentmaintainedthroughthemduringthegrowthareclearandcolourless.

ThedispersiondependencesofnoandneoverawidefrequencyrangeforlithiumniobatecrystalsgrownfromcongruentmeltcompositionsarecollectedinTable5.1.

Thetemperaturedependenceofrefractiveindiceswasmeasuredusingalithiumniobateprismwiththeopticalaxisparalleltothetwomajor

Page 463: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

facets.Theprismwasarrangedinasmallfurnaceonaspectrometerstage.Therefractiveindicesweretakenateighttemperaturesbetween19and374°Cforeightlinesoftheheliummetalvapourlampat447.1,471.3,492.2,501.6,587.6,667.8,and707.6nm.

Page 464: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page214

Table 5.1 Refractive indices of lithium niobate crystals (Weiss andGaylord1985)

l,nm Laser Stoichiometric(T=25°C)

Congruentlymelting(T=24.5°C)

no ne no ne

441.6 He-Cd2.3906 2.2841 2.3875 2.2887

457.9 Ar2.3756 2.2715 2.3725 2.2760

465.8 Ar2.3697 2.2664 2.3653 2.2699

472.7 Ar2.3646 2.2620 3.3597 2.2652

476.5 Ar2.3618 2.2596 2.3568 2.2627

488.0 Ar2.3533 2.2523 2.3480 2.2561

496.5 Ar2.3470 2.2468 2.3434 2.2514

501.7 Ar2.3535 2.2439 2.3401 2.2486

Page 465: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

514.5 Ar2.3370 2.2387 2.3326 2.2422

530.0 Nd2.3290 2.2323 2.3247 2.2355

632.8 He-Ne2.2910 2.2005 2.2866 2.2028

693.4 Ruby2.2770 2.1886 2.2726 2.1909

840.0 GaAs2.2554 2.1703 2.2507 2.1719

1060.0Nd2.2372 2.1550 2.2323 2.1561

1150.0He-Ne2.2320 2.1506 2.2225 2.1519

Fig.5.1Thedispersionspectrumoflithiumniobate.

Page 466: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Ananalysisoftheexperimentaldatahasyieldedtwoequationsforthetemperaturedependencegivingtherefractiveindicesbetween400and4000nm:

whereTisthetemperature,K,listhewavelength,nm.

Page 467: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page215

Table5.2Refractiveindices,noandne,formixedLiNb1-yTayO3crystalsat (accordingtoShimura1977)

lÅ y=0.81 y=0.92 y=0.97 y=1.00

no ne no ne no ne no ne

58932.2057 2.1986 2.1984 2.1946 2.1902 2.1933 2.1862 2.1910

63282.1954 2.1888 2.1888 2.1853 2.1800 2.1829 2.1766 2.1815

80002.1702 2.1638 2.1643 2.1604 2.1561 2.1589 2.1531 2.1579

85002.1666 2.1606 2.1598 2.1559 2.1516 2.1545 2.1484 2.1529

90002.1615 2.1553 2.1557 2.1519 2.1478 2.1507 2.1446 2.1491

106002.1517 2.1457 2.1460 2.1422 2.1385 2.1413 2.1351 2.1396

Thestandarddeviationof112experimentallydeterminedvaluesoftherefractiveindicesfromthosecalculatedaccordingtoformulae(5.1)and(5.2)is2.2×10-4.

Thevalueofthenegativebirefringencedecreaseswitharisingtemperatureanddropsofftozeroat882°Cforl=632.8nmandat

Page 468: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

888°Cforl=1152.3nm.

Thechangein(no-ne)withtemperature,aspredictedbyequations(5.1)and(5.2)differsby±0.0010fromtheexperimentaldataforabout600°C.Abovethistemperaturehigher-ordertermscomeintoplay.Inthelithiumniobatecrystal,itistheextraordinaryrefractiveindex,ne,thatdependssignificantlyonthemeltcompositionratio,whiletheordinaryrefractiveindex,no,remainsvirtuallyataconstantlevel(Fig.5.2)(Bergmanetal1968).Thecompositionofthemeltand,hence,thecompositionofcrystalsgrowntherefrommayvarythroughoutthegrowthprocess.Anisomorphicdopantofniobiumistantalum.Thestartingmaterialmaycontainacertainamountoftantalumoxide.Sometimes,toreducetheCurietemperatureandnaturalbirefringence,mixedLiNb1-yTayO3crystalsaregrown.Suchcrystalshavedifferentrefractiveindicesandtheirdispersions.Table5.2isacompilationofthedispersionsoftherefractiveindices,noandne,forvariouscontentsoftantaluminmixedlithiumniobatetantalatecrystals.ForpracticalapplicationsrefractiveindicesforvariouswavelengthsarecalculatedaccordingtotheSellmeierrelation(DiDomenicoandWemple1969):

where istheaverageoscillatorpositionandS0istheaverageoscillatorstrength.The andS0-valuesforvarioustantalumcontentsarelistedinTable5.3.TherefractiveindicesnoandneandthebirefringencecalculatedusingtherelationaregiveninFigs.5.3and5.4,respectively.

5.2Opticalwaveguidemodesinsingle-crystalfilms

Theopticalpropertiesofplanarwaveguidescanbearbitrarilydividedinto

Page 469: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 470: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page216

Fig.5.2Refractiveindicesno(uppercurve)

andne(lowercurve)oflithiumniobateversusmolarratioLi2O/Nb2O5inthe

melt(Bergmaneta11968).

Fig.5.3(right)Refractiveindicesno(fullcircles)andne(opencircles)versusTacontentinmixedLiNb1-yTayO3crystalsfor

variouslightwavelengths(Shimura1977).

Table5.3Sellmeierconstants andS0forcalculationofrefractiveindicesofLiNb1-yTayO3crystals(accordingtoShimura1977)

y ,mm>

no ne nb ne

Page 471: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1.00 1.2195 1.2123 0.1687 0.1696

0.97 1.2121 1.2121 0.1695 0.1698

0.92 1.2036 1.2121 0.1709 0.1699

0.81 1.1905 1.2121 0.1724 0.1703

twogroups,thefirstresponsibleforwaveguidepropagationandthesecondforlightcontrolefficiency.Thefirstgroupincludesrefractiveindices,theirprofiles,themodecompositionandopticallosses.Thesecondinvolveselectro-,acousto-andnonlinearopticalfilmparameterswhosevaluesdependonthewayinwhichthewaveguidewasmanufactured.

5.2.1Waveguideandradiationmodes

Tien(1971)gaveavisualinterpretationoftheoccurrenceofmodesincoplanarwaveguides,whichwerepresentbelow.

Thefilmconsideredherehasathicknessoftheorderof1mmorless;itissothinthatithastobesupportedbyasubstrate.Wethusconsiderthreemedia:afilm,anairspaceabove,andasubstratebelow.AsshowninFig.5.5,thethicknessofthefilmisintheX-Yplane.Forathinfilmtosupportpropagatingmodesandtoactasadielectricwaveguideforthelightwaves,therefractiveindexofthefilmn1mustbelargerthanthatofthesubstratenoandnaturallythanthatoftheairspaceaboven2.Mathematically,theprobleminvolvesasolutionoftheMaxwellequationsthatmatchestheboundaryconditionsatthefilm-substrateandfilm-airinterfaces.Thesolutionsindicate

Page 472: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page217

Fig.5.4Birefringence(ne-no)inmixedLiNb1-yTayO3

crystalsversus forvariousTacontentsinthecrystal(Shimura1977).

Fig.5.5(Right)Thelightwavepropagatesinthefilmto

thex-axis.Thesurfaceofthefilmisinthexy-planeanditsthicknessinthezdirection(Tien1971).

threepossiblemodesofpropagation.Thelightwavecanbeboundandguidedbythefilmasthewaveguidemodes.Itcanberadiatefromthefilmintoboththeairandsubstratespacesastheairmodes,oritcanradiateintothesubstrateonlyasthesubstratemodes.TheairandsubstratemodesaretheradiationmodesdiscussedbyMarcuse(1969,1970).ThemodesdescribedabovecanbeexplainedsimplyandelegantlybytheSnelllawofrefractionandtherelatedtotalinternalreflectionphenomenoninoptics.

Let(Fig.5.6a)n0,n1,andn2berefractiveindicesand , ,and betheanglesmeasuredbetweenthelightpathsandthenormalsoftheinterfacesinthesubstrate,film,andair,respectively.Here We

Page 473: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

havethenfromtheSnelllaw

and

Letusincrease graduallyfrom0.When issmall,alightwave,forexample,startsfromtheairspaceabovethefilm,canberefractedintothefilm,andisthenrefractedagainintothesubstrate(Fig.5.6a).Inthiscase,thewavespropagatefreelyinallthethreemedia-air,film,andsubstrate-andtheyaretheradiationfieldsthatfillallthethreespaces(airmodes).Next,as isincreasedtoavaluelargerthanthecriticalangle ofthefilm-airinterfaceasshowninFig.5.6b,theimpossibleconditionincurredinequation(5.4), ,indicatesthatthelightwaveistotallyreflectedatthefilm-airboundary.Nowthewavecannolongerpropagatefreelyintheairspace.Wethusdescribeasolutionthatthelightenergyinthefilmradiatesintothesubstrateonly(substratemodes).Finally,whenq1islargerthanthecriticalangle ofthefilm-substrateinterface,thelightwave,asshowninFig.5.6c,

Page 474: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page218

Fig.5.6(a)When ,thelightwaveshown

representstheairmode.Thelightwaveoriginatedinthefilmisrefractedintoboththesubstrateand

airspace(b).As increasessothat ,thelightwaveshownnowrepresentsthesubstratemode.Itisrefractedintothesubstratebutistotallyreflectedatthefilm-airinterface(c).When increasesfurthersothat ,thelightwaveshownistotally

reflectedatboththefilm-airandfilm-substrateinterfaces.Itisconfinedinthefilmasistobeexpectedinthewave

guidemode(Tien1971).

Fig.5.7(right)(a)Lightwaveinthewaveguidemodecanbeconsideredasaplanewavewhich

propagatesalongazigzagpathinthefilm.ThewavecanberepresentedbytwowavevectorsA1andB1.(b)ThewavevectorsA1andB1canbedecomposed

intoverticalandhorizontalcomponents.Thehorizontalcomponents determinethewave

Page 475: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

velocityparalleltothefilm.Theverticalcomponents determinethefielddistributionacrossthethicknessof

thefilm(Tien1971).

istotallyreflectedatboththeupperandlowersurfacesofthefilm.Theenergyflowisthenconfinedwithinthefilm;thatistobeexpectedinthewaveguidemodes.

Itisinterestingtonotethatinthewaveguidemodesthelightwaveinthefilmfollowsazigzagpath(Fig.5.6c).Thelightenergyistrappedinthefilmasthewaveistotallyreflectedbackandforthbetweenthetwofilmsurfaces.ThiszigzagwavemotioncanberepresentedbytwowavevectorsA1andB1,asshowninFig.5.7a.Thenthewavevectorsaredividedintotheverticalandhorizontalcomponents,asinFig.5.7(b).ThehorizontalcomponentsofwavevectorsA1andB1areequal,indicatingthatthewavespropagatewithaconstantspeedinadirectionparalleltothefilm.TheverticalcomponentofthewavevectorAtrepresentsanupwardtravelingwave;thatofthewavevectorB1,adownwardtravellingwave.Whentheupward-anddownwardtravelingwavesaresuperposed,theyformastandingwavefieldpatternacrossthethicknessofthefilm.Bychanging ,wechangethedirectionofthewavevectorsA1andB1andthustheirhorizontalandverticalcomponents.Consequently,wechangethewavevelocityparalleltothefilmaswellasthestandingwavefieldpatternacrossthefilm.

Sincewediscusshereaplanargeometry,thewavesdescribedaboveareplanewaves.TheyareTEwavesiftheycontainthefieldcomponentsEy,Hz,andHx;theyareTMwavesiftheycontainthefieldcomponentsHyEzandEz.Herexisthedirectionofthewavepropagationparalleltothefilm.ThewavevectorsA1andB1discussedabovehavethusamagnitudekn1,where ,wandcare,respectively,theangularfrequencyofthelightwaveandthespeedof

Page 476: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 477: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page219

Fig.5.8(a)Alightwaveinthewaveguidemodeisaninfinitelywidesheet

ofplanewavewhichfoldsbackandforthinazigzagmannerbetweenthetopandthebottomsurfaceofthefilm.(b)Alightwavepropagatinginsidethefilmistotallyreflectedatthetwofilmsurfaces.Thefigure

showsthatinorderthatthewaveanditsreflectionscouldaddinphase,thetotalphasechangeforthelightwavetotravelacrossthethicknessofthefilm,upanddowninoneroundtrip,must

beequalto2mp.Thefigurealsoshowsthatthelightwavesuffersaphasechangeof and attheupperandlowerfilm

surfaces,respectively.Thesephasechangesdeterminethefielddistributionacrossthethicknessofthefilm,whichisshownattherightofthefigure

forthem=3waveguidemode(Tien1971).

Fig.5.9(right)Anyradiusofthequarter-circleattheright

sideofthefigurerepresentsapossibledirectionforthewavevectorB1.Intheblackregionofthecircle,thewavevectorrepresentsthesubstrateorairmode.Inthewhite

Page 478: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

regionofthecircle,thewavevectorrepresentsthewaveguidemode,butonlyadiscretesetofthedirectionsinthisregionsatisfiestheequationofthewaveguidemodes.

Eachdirectionofthisdiscretesetrepresentsonewaveguidemodeandeachwaveguidemodehasitsownfielddistributionasshownintheleftsideofthefigure

(Tien1971).

lightinvacuum.Inthepictureofwaveoptics,thewavevectorsA1andB1arethenormalsofthewavefronts,whenaninfinitelywidesheetofplanewavefoldsbackandforthinazigzagmannerbetweenthetwofilmsurfaces(Fig.5.8a).Nowconsideranobserverwhomoveswiththewaveinthedirectionparalleltothefilm.Hedoesnotseethehorizontalcomponentsofthewavevectors.Whatheobservesisaplanewavethatfoldsupwardanddownward,onedirectlyontopoftheotherasshowninFig.5.8b.Thecondition,then,forallthosemultiplereflectedwavestoaddinphase,asseenbythisobserver,isthatthetotalphasechangeexperiencedbytheplanewaveforittotraveloneroundtrip,upanddownacrossthefilm,shouldbeequalto2mp,wheremisaninteger.Otherwise,ifafterthefirstreflectionsfromtheupperandlowerfilmsurfaces,thephaseofthereflectedwavediffersfromtheoriginalwavebyasmallphased,thephasedifferencesafterthesecond,third,...,reflectionswouldbe2d,3d,...,andthenthewavesofprogressivelylargerphasedifferenceswouldaddfinallytozero.AsshowninFig.5.8b,theverticalcomponentsofthewavevectorsA1andB1haveamagnitude ThephasechangefortheplanewavetocrossthethicknessWofthefilmtwice(upanddown)isthen .Inaddition,thewavesuffersaphasechangeof duetothetotalreflectionattheupperfilmboundaryand,similarly,aphasechangeof atthelowerfilmboundary.Herethephase and represent,infact,theGoos-

Page 479: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 480: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page220

Haenchenshifts(Lotsche1968).Consequently,inorderthewavesinthefilmcouldinterfereconstructively,thecondition

musthold,whichistheconditionforthewaveguidemodes.Herem=0,1,2,3,...,istheorderofthemode.AccordingtoBornandWolf(1970)onthetheoryoftotalreflection,

fortheTEwaves,and

fortheTMwaves.

Itisclearthatinspiteofthezigzagwavemotiondescribedabove,thewaveinthewaveguidemodeappearstopropagateinthehorizontaldirectiononly;theverticalpartofthewavemotionsimplyformsastandingwavebetweenthetwofilmsurfaces.Toavoidconfusion,itisdesirabletousebandvexclusivelyforthephaseconstantandthewavevelocityparalleltothefilm.Thus,

Anotherquantitywhichwillalsobeusedfrequentlyistheratiob/k.Asshowninequation(5.9),itistheratioofthespeedoflightinvacuumtothespeedofwavepropagationinthewaveguide.

Aftersubstitutingequations(5.7)and(5.8)intoequation(5.6),Tien(1971)foundthatboth(5.6)and(5.9)aretranscendentalequations.Fortunately,thetranscendentalfunctionsinvolve only.Foragivenn0,n1,n2,andmonecanreadilycomputebothb/kandWforacommon ,andthentabulateb/kandWbyassigningdifferentvalues

Page 481: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

for .ThecurvesshowingWversusb/kusingmastheparameterarethemodecharacteristicsofthewaveguide(seeFig.5.15below).

Tosummarize,anyradiusofthequarter-circleshowninFig.5.9representsapossibledirectionforthewavevectorB1describedabove,and istheincidentanglemeasuredbetweenthewavevectorandtheverticalaxis.Thewaveguidemodesoccurintherange

.Withinthisrangeof thereisadiscretesetofthedirectionswhichsatisfiestheequationofthemodes(5.6).Eachdirectioncorrespondstoonewaveguidemodeofthefilm.Thehorizontalcomponentofthewavevector, ,determinesthewave

Page 482: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page221

motionparalleltothefilm,whileitsverticalcomponent, ,determinesthestandingwavefieldpatternacrossthefilm.AsshownintheleftsideofFig.5.9,whenm=0thestandingwavepatternhasaformsimilartoahalf-sinewave.Whenm=1,ithasaformsimilartoafullsinewave,andsoon.Theairandsubstratemodesoccurintherange ;theyoccupytheblackregionofthequartercircle.As isvariedcontinuouslyfrom0to fortheairmodesand

to forthesubstratemodes,thecorresponding andsweepthroughtheentirespaceofthesubstrateandtheairspace.Itisthuspossibletoexpressanyradiationfieldbysuperposingwavesoftheairandsubstratemodes.WhathasbeendiscussedhereisthereforesimplyanexpansionofthesolutionoftheMaxwellequationintoplanewavesofallpossibledirections.

5.2.2Waveequationandfielddistribution

Havingbeendescribedpurelyonanintuitivebasis,themodesoflightwavepropagationcannowbederivedmathematically.Forsimplicity,assumethelightwaveinthefilmtobeinfinitelywideintheYdirectionsothat (Fig.5.5).LetXbethedirectionofthewavepropagationparalleltothefilm.TheMaxwellequationsinEyforTEwaves(orHyforTMwaves)canbereducedtothewaveequationbelow

wherenJistherefractiveindexofthemediumj.Thesubscriptsj=0,1,and2denotethesubstrate,thefilm,andtheairspace,respectively.Atimedependenceexp(-iwt)isusedinequation(5.10),where .Thesolutionofthewaveequationisintheformofexp

,whichmaybesubstitutedintoequation(5.10)toobtain

Page 483: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theboundaryconditionsatthefilm-airinterfacesdemandthesamewavemotionparalleltothefilminallthethreemediaconsidered;thiscanbewrittenas

Allthefieldsthusvaryintimeandxaccordingtothefactor.Thiscommonfactorwillbeomittedinallthelater

expressionsforsimplification.Combiningequations(5.11)and(5.12)givesanimportantrelation

Inthefilm, and arethehorizontalandverticalcomponentsofthewavevectorA1orB1discussedbefore.Theyarerespectively

Page 484: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page222

and .Inthewaveguidemodes,onecanfindfromequation(5.13)andfromthecondition that , isreal,and and areimaginary.ThefielddistributioninFig.5.10aisthusastandingwaveinthefilmandexponentialinthesubstrateandintheairspace.Next,forthesubstratemodes,thereholdsequation(5.13)andfromthecondition that and arereal,butisimaginary.Thefieldsinthiscasearestandingwavesinthefilmandinthesubstrate,butexponentialintheairspace(Fig.5.10b).Finally,fortheairmodes, ,and , ,and arereal.Thefieldsinallthethreemediaarenowstandingwaves(Fig.5.10c).Itisconvenienttodenote by whenitisrealandby whenitisimaginary.For thewaveguideisasymmetric.Theupperandtheupperandlowerfilmsurfacesarechosentobe and .Thethicknessofthefilmisthen .

Thefielddistributionsarederivedbychoosingz=0atthepositionwhereEyismaximumforanywaveguidesubstrate,orevenairmode,andEy=0foranyoddairmode.Itisimportanttonotethatthesepositionsofz=0aredifferentfordifferentmodesinanasymmetricwaveguide.Thesechoicesarenecessarytosimplifymathematicssothatthefielddistributionsofvariousmodescouldbeeasilywecanvisualized.Toavoidconfusion,EyofaTEwaveonlyisconsideredbelow.

Forthewaveguidemodes,asmentionedearlier,thewavesuffersaphasechangeof attheupperfilmsurface,andaphasechangeof

atthelowerfilmsurfacebecauseoftheinertialtotalreflections.Thefieldsatthetwofilmsurfacesmustthereforebe and

,respectively,whereAisaconstant.Letthefieldatz=0beamaximumvalue,A.Thenonecanchoose sothatthefieldattheupperfilmsurface, ,canbeA .Similarlyonecanchoose sothatthefieldatthelowerfilmsurface, ,canbeA ifm=evenand-A ifm=oddsshownin

Page 485: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.5.10a.Thesechoicesgive ,whichsatisfiesequation(5.6).TheboundaryconditionsrequireEyandtobecontinuousatthetwointerfaces.Therefore,

Fig.5.10Theelectricfielddistributionof(a)aTEwaveguidemode;(b)aTEsubstratemode;(c)aTE(even)airmode(Tien1971).

Page 486: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page223

intheairspaceand

inthesubstrate.

Forthesubstratemodes,oneagainassumesamaximumfieldAatz=0andchooses (Fig.5.10b).Thefieldat isstillAandthatintheairspaceisstillA .ThefieldatthelowerfieldsurfaceisthenA andthatinthesubstrateis

Fortheairmodes,theevenandoddmodesmustbetreatedseparately.Foranasymmetricwaveguide,thez=0planecanbechosenanywherebetween and .However,onceitischosen,thesamez=0planeshouldbeusedforalltheairmodes.Fortheevenmodes,thefieldisamaximumatz=0andthefieldsatthetwofilmsurfacesareA andAcos ,respectively(Fig.5.10c).Theboundaryconditionsrequirethefieldsinthesubstrateandintheairspaceintheform

wherej=0and2.Fortheoddmodesthefieldiszeroatz=0andisAand-A atthefilmsurfaces.Thefilmsinthesubstrate

andairspacearethen

wheretheplussignisforj=2andtheminussignisforj=0.TheresultsdiscussedabovearesummarizedinTable5.4.

Page 487: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Mathematically,thefielddistributionsdescribedaboveareidenticaltothoseoftheproblemofasquarepotentialwellinquantummechanics.Heretheairspaceandthesubstratearethepotentialbarriers.Thewaveenergyisdividedhereintothehorizontalandverticalcomponents,keepingthetotalenergyconstant.Itistheverticalcomponentofthewaveenergythatnegotiates

Page 488: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page224

Table5.4Electricfielddistributionin(a)awaveguidemode,(b)asubstratemode,and(c)theevenandoddairmodes(Tien1972)

Waveguidemode

Medium Ey(TEwave)

Film =b =b1 A

Substrate =b = A

Air-space =b = A

Substratemode

Medium = Ey(TEwave)

Film =b =b1

Substrate =b =b0

Air-space =b = A

Evenandoddairmodes

aInderivingtheseexpressions,wehavechosenz=0atthepositionwhereEyiseitherzeroormaximum.Thesepositionsofz=0arethereforedifferentfordifferentmodes.

thepotentialbarriersmentionedabove.Thewavevectorrepresentsthe

Page 489: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

momentumanditssquare,thewaveenergy.Withintheinterval and,becauseofthelargehorizontalcomponentofthewavevectorb,

theverticalcomponentoftheenergyissmallenoughsothatthewave,ortheparticle,istrappedinthepotentialwell.Themodespectrumortheenergylevelisthusdiscrete(waveguidemodes).Asthehorizontalcomponentofthemomentumisreducedtoavalue ,theverticalcomponentofthewaveenergyislargeenoughtoovercomethelowerpotentialbarrier.Thewavefunctionspillsovertheentiresubstratespaceandoneentersintotheregionofthesubstratemodes.Themodespectrumortheenergylevelisnowcontinuous.Astheverticalcomponentofthewaveenergyisincreasedfurtherbyreducingbbelow thewavecanspillovertheupperandthelowerbarriers.Themodespectrumremainscontinuousanditbelongstotheairmodes.

5.2.3OpticalmodesinepitaxialLi(NbTa)O3waveguides

Solid-solutiongrowthof single-crystalfilmsonLiTaO3substrateshasbeendiscussedabove.ThesefilmsaregrownbyEGM(epitaxial

Page 490: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page225

growthbymelting)method.However,thespecialprocessusedbyTienetal(1974)permittedobtainingverythinfilmswithagradedcomposition.Thecompositionofeachfilmismaximumattheair-filminterface,anditdecreasesgraduallytozerotowardsthesubstrate,asillustratesbycurveAinFig.5.11b.Becauseofthisgradedcomposition,anyeffectduetomismatchinlatticeconstantbetweenthefilmandthesubstrateisminimized,andconsequentlyfilmsasgrownareuniformandsmooth.InFig.5.11a,thezaxisisnormaltothesurfaceofthefilm,andz=0andz=daretheair-filmandfilm-substrateinterfaces,respectively.Alltheopticalmeasurementswereperformedbyusinga0.6328-mmhelium-neonlaser,andthexaxiswaschosenasthedirectionoflightwavepropagation.Becauseofthedifferencesintherefractiveindicesandthegradedcompositionofthefilm,therefractiveindexvariesinsidethefilmasshownbycurveAinFig.5.11c.Thesolid-solutionfilmhas andathicknessof3.87mm.Thefilmsformedexcellentopticalwaveguides;allthewaveguidemodesobservedarewellseparated,andtheycanbeindividuallyexcitedbyaprismcoupler.Moreover,severalfilmshadoneTEandoneTMwaveguidemodeonly.Tienetal(1974)reportedsomeinterestingobservationsofthewaveguidemodesanddiscussedasimplemethodofcalculationforthegradedwaveguides.Thissimplemethodcanbeusedforcalculationoftheeffectiveindicesofthewaveguidemodesaswellasfortheevaluationoftheindexdistributioninthefilm.Theprismcoupler(Tien1971;Tienetal1972)isanimportanttoolforthestudyofthefilmproperties.

Tostudythewaveguidemodes,afilmwithnineTEmodeswaschosen.ThefilmwasgrownparalleltooneofthecleavageplanesofLiTaO3.Thecaxisthusformsanangleof33°fromthesurfaceofthefilm(Fig.5.11(a)).Letabeaprojectionofthecaxisonthefilmandletbbenormaltoa.TheTEwaveisanordinarywavewhenthelightpropagatesalonga,and

Page 491: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.5.11(a)Positionofthec-axiswithrespecttothegeometrical

axesinasolid-solutionLiNbO3-LiTaO3film.(b)CurveAshowsthegradedcompositioninthefilm.(c)CurvesAandBshow,respectively,theindexvariationinasolid-solutionfilmandthatinadiffusedfilm.(d)Photographofthemlinesofasolid-solutionfilm.(e)Photograph

ofthemlinesofauniformwaveguidemadeofaTa205filmonaglasssubstrate(Tienetal1974).

Page 492: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page226

Fig.5.12(a)Modeindicescalculatedonthebasisofanexponentialdistributionofrefractiveindex.

(b)Modeindicesmeasuredfromoneofthesolid-solutionfilms.(c)Modeindicescalculatedonthebasisofanindexdistributionintheformofa

Fermifunction(Tien1974).

itisanextraordinarywavewhenthelightpropagatesalongb.Themlines(Tien1971;Tienetal1969)observedforthecaseoftheordinarywaveareshowninFig.5.11(d).TheTMwaveisalwaysanextraordinarywave.Consequently,asthedirectionofthelightpropagationvariesfromatob,theeffectiveindices(Tienetal1972)b/koftheTEmodesvarycontinuously,whereasthoseoftheTMmodesdonotvary.Toavoidconfusion,onecanuse'uniformwaveguides'forthosehavingaconstantrefractiveindexnFthroughoutthefilmand'gradedwaveguides'forthoseinwhichnFvariesinz.Forcomparison,themlinesobservedinauniformwaveguidemadeofaTa2O5filmonglassareshowninFig.5.11e.Thedifferencebetweenthemodepatternsofauniformandagradedwaveguideisthatthemodespacingincreaseswiththemodenumbermintheformer,whereastheoppositeistrueinthelatter.

Modesinthegradedwaveguideshavebeencalculatedbymanyauthors(Tayloretal1972).Inparticular,aneleganttheoryhasbeen

Page 493: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

developedbyConwell(1973).Sheusedanindexdistributionforthefilminthefollowingform:

where istherefractiveindexofthesubstrate.SuchadistributionisillustratedbycurveBinFig.5.11c.ThistheorywasusedtocalculatetheeffectiveindicesofthemodesforthecaseofaTEwavepropagatingalonga.Forhavingninemodes,theargument(Conwell1973)oftheBesselfunctionX=29,d=2.23mm, ,and

werechosen.TheresultsofthecalculationsareplottedinFig.5.12aandtheyshouldbecomparedwiththemeasuredvaluesofFig.5.12b.Obviously,theexponentialdistributiongivenbyequation(5.14)doesnotapplytothesolid-solutionfilms,sincethemodespacingshowninFig.5.12adecreasesmuchmorerapidlywiththemodenumbermthanthoseobservedinFig.5.12b.

Searchforatheorywhichappliestoanydistributionofthefilmhasled

Page 494: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page227

totheWKBmethod(DickeandWittke1960).Recallthatforauniformwaveguidethemodeequations(Tien1971)are

and

Hereweareconsideringazigzagplanewavepropagatinginthefilmas ,wherebandbarerespectivelytheaandxcomponentsofthewavevector,manddarerespectivelythemodenumberandthefilmthickness, ,wherewistheangularfrequencyandcisthevelocityofthelightwaveinvacuumand,finally, and arerespectivelythephasesadvancedbythezigzagwaveduetothetotalreflectionsofthewaveatthefilm-substrateandfilm-airinterfaces.OnthebasisoftheWKBmethod,foragradedwaveguideofanyindexdistribution

and

Here istheturningpointoftheWKBmethodand,at , and.Consequently,a,canbeconsideredasafunctionofb.For

Page 495: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.5.13ValuesoftheintegralAversusthemodeindices,b/kforthetwocasesdescribedin

thetext(Tieneta11974).

Page 496: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page228

Table5.5Modeindices,b/k's(Tienetal1974)

Case1:9modes

m Conwell'stheory Tien'smethod

0 2.2400 2.2399

1 2.2196 2.2192

2 2.2059 2.2057

3 2.1961 2.1959

4 2.1889 2.1888

5 2.1838 2.1835

6 2.1802 2.1800

7 2.1781 2.1778

8 2.1771 2.1771

Case2:2modes

m Conwell'stheory Tien'smethod

0 2.1897 2.1898

1 2.1789 2.1790

allthefilms, issmallandtheindexofthefilmissubstantiallylargerthanthatoftheair;onecantake .AccordingtothestandardlinearapproximationoftheWKBmethod(DickeandWittke1960)attheturningpoint, isobviouslyp/4.Lettheintegralin(5.17)beA.Withagivenindexdistribution ,Tienetal(1974)couldcomputeb(z)from(5.18)and from(5.19),andthenevaluatetheintegralAforanyvalueofb.Infact,wecanplotAversusb/k,andthevaluesofb/kcorrespondingtoA=(m+0.75)pform=0,1,2,...,aretheeffectiveindicesofthewaveguidemodes.Tosubstantiatethis

Page 497: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

method,thedistributiongivenbyequation(5.14)wasusedandthecalculationswereperformedfortwocases.Onecasehasninemodesand ,ns=2.177,andd=2.23mm;theothercasehastwomodesonlyandDn=0.043,ns=2.177,andd=0.931mm.TheA-versus-b/kcurvesforthesetwocasesareshowninFig.5.13.TheresultsobtainedbythismethodarethencomparedinTable5.5withthosecalculatedfromtheexacttheoryofConwell(1973).Theagreementbetweenthetwomethodsiswithin .

Itisalsopossibletouseequations(5.17)-(5.19)toevaluatetheindexdistributionofthefilmfromthemeasuredb/k'softhewaveguidemodes.Asnoticedearlier,themodeindexb/kistherefractiveindexofthefilmattheturningpoint.Thelocationsoftheturningpointsforthewaveguidemodescanbesolvedintermsofthemeasuredb/k'sbyforming,basedon(5.17),asetofsimultaneousequations,oneequationforeachmode.Extensivecalculations

Page 498: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page229

ofthisnaturehaveshownthattheindexdistributionofthesolid-solutionfilmscanbecloselyrepresentedbyaFermifunction

SuchadistributionisshownbycurveAinFig.5.11b.Thereisaregionnearz=0,inwhichtherefractiveindexisrelativelyconstant,indicatingthebeginningoftheformationofahomogeneousepitaxiallayer.Thishomogeneousregionisfollowedbyabroadtransitionregionwheretherefractiveindexvariesmorerapidly.Theparametersdandadetermine,respectively,thethicknessofthefilmandthesharpnessofthetransitionregion.Currently,theseparametersarecorrelatedwiththegrowthprocess.Fortheparticularfilmdescribedabove,Dn=0.0710,a=0.286mm,andd=3.87mm.Basedontheseconstants,thecalculatedmodeindicesareshowninFig.5.12c,whichagreeswiththemeasurementshowninFig.5.12bwithintheexperimentalerroroftheorderof .

5.2.4Characteristicsofout-diffusedwaveguides

Theasymmetricplanarslabwaveguide,producedbydepositingauniformguidinglayeronasubstrate,andtheplanargradedindexguidearesimilarintheirwaveguidingpropertiesbutdiffersomewhatindetail.Carruthersetal(1974)comparedtwocharacteristicsoftheslabandgradedguides,namely,thenumberofthemodesNsupportedbytheguideandtheeffectivepenetrationdepthwlforenergyinthei-thmode.

TherefractiveindexprofilesfortheslabandgradedguidesareillustratedschematicallyinFig.5.14.Forbothguides,n=1forx<0,and for .Fortheslab,

Page 499: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

andforthegradeguide,

Thewavefunctionsfortheslabaresinusoidalintherange andexponentiallydecayingoutsidethisrange.Formodessufficientlyfarfromcutoff,mostoftheenergyisconfinedwithin .Thus,neglectingtheevanescenttail,onecandefineaneffectivepenetrationdepthforallTEslabmodesas

Page 500: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page230

Fig.5.14Refractiveindexprofilesfor(a)anasymmetricplanar

slabwaveguideand(b)aplanargradedindexwaveguide.TE0andTE1wavefunctionsareindicatedschematicallyalongwithturningpointsx1(Carrutherseta11974).

Thevariousmodeshavepropagationconstantsbithatareplottedasindexlevels inFig.5.14(a),with andltheopticalwavelength.ThenumberofTEmodesthatcanbesupportedistheintegerlessthan

withasimilarexpressionforTMmodes(NelsonandKenna1967).Theanalogywiththequantummechanicalproblemofaparticleinaboxhavingturningpointsatx=0andx=Bisapparent.Intheopticalproblem,theturningpointsrepresentreflectingsurfacesforraystrappedintheguide.

Thegradedindexproblem,likemostquantummechanicalpotential-wellproblems,cannotbesolvedanalyticallywithoutapproximationexceptinspecialcases.Marcuse(1978)givesWKBsolutionstoathree-segmentpiecewiselinearapproximationtoanarbitraryindexprofile.Ifequation(5.22)isapproximatedbylinearsegmentsthat

Page 501: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

passthroughthepoints , , and ,thenitisfoundthat

Thefactor1.38isofcoursedependentonthechoiceof ,butitcanbeseenthatNsandNgaresimilarforcomparableA,Banda,bparameters.Forexample,ifA=a,then whenB=0.69bforlargeN.

ThewavefunctionsandindexlevelsfortheTE0andTE1modesareshownschematicallyinFig.5.14b.Theintersectionoftheindexlevelwiththecurven(x)definestheturningpoint ,atwhichanequivalentopticalrayoraquantum-mechanicalparticleinasimilarpotentialwellwouldreverseits

Page 502: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page231

direction.Mostoftheenergyinamodefarfromcut-offisconfinedtotheregion ,sothepenetrationdepthcanbedefinedas

where increaseswithincreasingmodenumberi.Thewavefunctionsareoscillatoryintherange ,andincreaseinamplitudenear ;theydecayexponentiallyoutsidethisrange(Marcuse1978;Smithgalletal1977;Conwell1973).

Toobtainanestimatefor ,thequantityn(x)maybeapproximatedcrudelybyastraightlinetangentton(x)atx=0asshowninFig.5.14b.Itcanbeseenthatthevalueof obtainedfromsuchanapproximationwillbesmallerthanthetruevalueandwillgivealowerboundon .Forthisapproximation,Marcuse(1978)found

with86%oftheTE0modeenergywithin .Combiningequations(5.25)and(5.27)yields

Solutionsforthewavefunctionsofthe erfc(x/b')profile(seeFig.l.9),whichshouldbesimilartothosefor ierfc(x/b),havebeencomputednumericallyandcomparedgraphicallywiththosefortheslabguide(Smithgalletal1977).Theseresultsshowclearlythatthemodeenergyisburiedmoredeeplyforhigherordermodes.Herea'=a,b''=0.73bforcoincidenceatDn=a,a/2,and0.

Theexponentialfunction

alsogivesareasonablygoodfittothedata,asshowninFig.l.9.ForcoincidenceatDn=a,a/2,and0,Carruthersetal(1973)requirea''=a,b"=0.506b.AsshownbyConwell(1973),theexponentialprofile

Page 503: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

isoneofthefewthatgivesexactanalyticalsolutionstothewaveequation.Thesesolutionsalsoshowanincreaseinthestrengthofthewavefunctionsasxapproachestheturningpoint,withdeeperpenetrationforhigher-ordermodes.Althoughthenumberofmodes,wavefunctionsandpropagationconstantscanbecalculatedwhena"andb"areknown,simpleexpressionsforNandwintermsofa"andb"arenotgiven.However,usefulexpressionscanbeobtainedincertainlimitsasfollows.

Definethefunctions

Page 504: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page232

then,for

where and ,arerelatedsothattheBesselfunction

Nearcut-off, ,andinthislimitthezero'sinequation(5.33)aregivenapproximatelyby

Themaximum isgivenbyequation(5.30);andthenumberofmodesisthelargestintegeri+1obtainedfromequation(5.34)atcut-off

whichmaybecomparedwithequation(5.25)forb=1.97b".Becauseofitsextensivetail,theexponentialprofileoverestimatesbothNand.

Theturningpoint maybeobtainedbyequatingtheright-handsideofequation(5.32)to ;then

Intheotherlimit,farfromcut-off,miand ,arelarge;fori=0,equation(5.33)issatisfiedfor

Equation(5.37)maybeinsertedintoequation(5.32)toobtainthedispersioncurvefarfromcut-off.Theturningpointmaybeestimated

Page 505: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

byequatingtheright-handsideofequation(5.32)to for ;then

Page 506: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page233

Fig.5.15Normalisedguideindex

versusnormalisedfrequency (Carruthersetal1974).

whichisnearlyidenticalwithequation(5.27)forb"=0.506b.

UniversaldispersioncurvessuitableforbothTEandTMmodesoftheexponentialprofileinequation(5.29)calculatedfromcomputersolutionsofequations(5.32)and(5.33)for areplottedinFig.5.15.TheexponentialTE0modeshowsmuchlessdispersionthantheTE0modeforaslabhavingthesamecut-off,thatis,A=a",B=4b"/3.

ItisclearfromtheprecedingdiscussionthatNandwforthegradedguidecanbeadjustedjustasfortheslabguideprovidedaandbcanbecontrolledindependently.Toassuresinglemodeoperation,itisnecessarytorestrictNtotherange: .SuchguideshavebeenmadeinLiNbO3for mmbyrestrictingttoafewminutes.Anexampleofasinglemodeguideisasampleforwhicht=5minandT=1100°C,yieldinga=1.65x10-4andb=20mm.Fromequations(5.25)and(5.27),respectively,itiscalculatedthat and .Ontheotherhand,usingConwell'sexponentialapproximation(Conwell

Page 507: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1973),itisfoundthatNe=1.95and mm.

From(5.27)and(5.38),thepenetrationdepthw0islimitedbytherangeofsurfacegradient a/bavailablebyvaryingT.ForLiNbO3,

mm-1ispracticallytemperatureindependentbecause,so mmfortheavailablerangeT<Tc.Therefore,itmaybe

preferabletoout-diffuseatlowertemperatureswheretherequireddiffusiontimesarelongertomaintainbettercontrolovertheprocess,i.e.theheatingandcoolingtransientswillhaveasmallereffectontheprofile.ForLiTaO3,ontheotherhand, a/bcoverstherange

,so coverstherange6-16mmasTvariesfrom1400°Cto930°C.Therefore,smallerpenetrationdepthsareachievedathighertemperatures;however,theshorttimesrequiredmakecontroloftheprocessdifficult.Anevengreaterchangeofpenetrationdepth,w0withTwouldbefoundinmaterialsforwhichQvandQDdiffermorewidely.

Page 508: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page234

Thus,verylow-lossout-diffusedlayerscanbefabricatedwithcharacteristicssimilartothoseofasinglemodeslabguidethickness

,where mmforLiNbO3and forLiTaO3.Theseratherlargeeffectivewidthsmaylimittheoperationofdevicesbasedoninteractionswithsurfacefieldsofshortwavelength.Ontheotherhand,thelargewidthmayproveadvantageousinapplicationswheretheplanarguideisconvertedtoaridgeorstripguidebyetching.Inthesecases,fieldscanbeappliedalongedgesoftheridge;andcouplingcantakeplaceattherelativelylargefacets.

5.2.5Propertiesofdiffusedwaveguides

Toestablishtheparametersoftherefractiveindexprofileindiffusedwaveguides,thefollowingmethodsareused:

1)interferentionalmicroscopy,2)directmeasurementofTiconcentrationdistributioninthewaveguidecross-section(X-raymicroanalysis,Augerspectroscopy),definitionofthefunctionn(y)fromtheobservedspectrumoftheeffective values(Naitohetal1977;Zolotovetal1976).

Inviewofthefactthatinterferentionalmicroscopyisonlysuitableforastudyofthickenough(>10mm)diffusedlayersandthesecondgroupofmethodsrequiressophisticateddevicesandasubsequentcalibration,Zolotovetal(1980)usedidentificationofdiffusedwaveguideprofilesfromthespec-tramofeffective values.Theparametersofn(y)distributionoveradiffusedwaveguidewereidentifiedfromthespectrumof valuesusingthecombinationoftheparabolicandexponentialfunctions(Zolotovetal1976)forwhichthereexistsananalyticalsolutionofdifferentialequationsofthetype

thatdescribetheelectricfielddistributioninweak diffused

Page 509: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

waveguides.

ThedependenceofthewaveguideparametersonthetimeofdiffusionwasdeterminedusingmeasurementsforE-andH-waves(ifthecrystalorientationisfixed,theordinaryrefractiveindexn0(y)correspondstoE-waveswhiletheextraordinaryrefractiveindexne(y)correspondstoH-waves).InthewaveguidesinvestigatedbySugiietal(1978),two-threeE-modesandfive-sixH-modescouldbeexcitedatawavelengthof0.63pro,whileatawavelengthof0.44mmfour-fiveE-modesandsix-nineH-modeswereobserved.Thespectrumofvalueschangedwithdiffusiontime.Theanalysisofthespectra

obtainedhasshownthatthewaveguideprofilesforordinaryandextraordinarypolarizationsareapproximatedfairlywellbythecombinationoftheparabolicandexponentialfunctions

Page 510: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page235

Hereaandbareparabolaparameters,histheexponentparameter,cisthedistancefromtheparabolavertextoitsconjugatepointwiththeexponent.

Thedistributionsof obtainedforawaveguidewithdifferentdiffusiontimesarerepresentedinFig.5.16andTable5.6givesthenumericalvaluesoftheirparameters.ThedistributionsoftherefractiveindicesofTi-diffusedLiNbO3waveguidesforwaveswithdifferentpolarizationsdifferpracticallyonlyintheincrementoftherefractiveindexonthewaveguidesurface,Dn,andintheexponentialfunctionparameterh.ThedifferenceAncanbeexplainedbydifferentproportionalitycoefficientsbetweenthetitaniumconcentrationCT1,andtheincrementsoftheordinaryandextraordinaryrefractiveindices.Theassumptionofdirectproportionalitybetween and isconfirmedbythelackofdependenceoftheratio onthediffusiontime(seeTable5.6).

Thedifferenceintheexponentparameterhinthedistributionsofn0(y)andne(y)isduetothefactthattheincrementoftheextraordinaryrefractiveindexiscaused,besidestitaniumdiffusion,alsobythereversediffusionofLi2Owhichincreasessubstantiallythewaveguidelength.

Themodefieldsintheabove-mentionedwaveguidesareobtainedfromthesolutionofthewaveequation(5.39)forordinarywaves(E-polarization)and

Table5.6Numericalvaluesofdiffusedwaveguideparameters( )(Zolotoval.1980)

,h E-waves H-waves

b/a c/a h,m b/a c/a h,mm

5 0.0161 2.99 -0.6 0.89 0.88 0.0374 2.99 -0.6 0.98 3.32 2.32

10 0.0127 4.27 -0.6 0.89 1.23 0.0296 4.00 -0.6 0.97 4.10 2.33

12 0.0115 4.56 -0.56 0.9 1.09 0.0259 4.56 -0.56 0.97 4.73 2.25

Page 511: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

15 0.0112 5.20 -0.45 0.85 1.63 0.0231 4.95 -0.45 0.97 4.83 2.26

19 0.0088 6.27 -0.45 0.85 1.86 0.0192 6.17 -0.45 0.95 4.60 2.18

Fig.5.16Distributionofordinary(a)andextraordinary(b)refractiveindicesforTi-diffusedwaveguides(dashedlinesindicatecalculatedvalues).1)diffusiontime h;

2)10h;3)15h(Zolotovetal1980).

Page 512: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page236

havetheform

here isadegenerategeometricalfunction, istheBesselfunction

Forextraordinarywaves(H-polarization)

Fig.5.17DispersionofordinaryandextraordinaryrefractiveindexincrementforwaveguideswithdiffusiontimetD=12h(dashedlinesindicatecalculatedvalues-seethetext)(Zolotoveta11980).

Page 513: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig,5.18(right)Opticalwaveguidingapparatus(KaminowandCarruthers1973).

Page 514: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page237

TheconstantsC1,C2andC3aredeterminedfromtheconditionofequalitytozeroofthewavefunctionattheboundarywithairandcontinuityofthefuctionatthesewingpoint

Animportantcharacteristicofopticalwaveguidesisthedispersionoftherefractiveindexincrement.Thedataonthewaveguidedispersionarenecessaryforcreationofsomeintegro-opticaldevices,inparticular,nonlineartransducers.Zolotovetal(1980)investigatedthedispersionofwaveguidecharacteristicsinawidewavelengthrange:0.44,0.53,0.63,0.89,1.06,1.15mm.Itisanexperimentallyestablishedfactthataslvariestheshapeoftheprofilesofno(y)andne(y)remainsunaltered,anditisonlytherefractiveindexincrementsDnoandDnethatexhibitdispersion(Fig.5.17).

Guidingcanbedemonstrated(Tien1971;TienandUlrich1970)withtheprismcouplerarrangementshowninFig.5.18,wherecrystalsareorientedwitha,b,andcalongz,x,andy,respectively,andanincidentbeamispolarizedasanextraordinary(TE)wave.Abrightstreakappearsalongthesurfacewhenqisadjustednearanangleq0slightlylessthanthecriticalangle.Thereisnoobservabledecayinthestrengthofthescatteredlightoveracentimetrelengthofthestreak,whichsuggeststhatthelossis<1dB/cm.Themodesradiatesfromtheendoftheguide,producingafar-fieldpatternnarrowintheydirectionbutelongatedinthexdirection.Measurementofbeamangleaprovidesanestimatefortheextenthofthefieldinthexdirectionintheguide: .ForsampleI-3, (KaminowandCarruthers1973),whichindicatesthat,beingcoupled,theopticalenergyforthe

Page 515: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

modesisconfinedtotheneighbourhoodofmaximumDnenears=0,wheresisthedepth.

Anoutputprismcouplerproducesawell-definedspotatq'=q0whenq=q0.Afaint'm-line'passesthroughthespot,indicatingonlyminorscatteringintodegeneratemodespropagatinginotherdirectionsintheplane.Waveguiding,asdemonstratedbythecoupled-outspot,existsoverarangeofanglesDq0.CalculationsshowthatDq0foreachsamplecorrespondstoarangeofwaveguidepropagationconstantsDbgivenapproximatelyby2pA/l.Thus,thewaveguidesupportsalargenumberofunresolvedmodes.Toproduceguidesthatsupportonlyafewlow-ordermodes,theproductA1/2BmustbereducedbyadjustmentoftandT.

5.3Secondharmonicgenerationinwaveguides

Integratedopticsisawidefieldforheighteningtheefficiencyofnonlinear

Page 516: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page238

interactions.Theuseofopticalwaveguidespermitsobtaininghighintensitiesoflight,inafilmwiththicknessoftheorderofthelightwavelength,fromcomparativelylow-powersources,e.g.gaslasers.Asdistinctfromthecasewhennarrowingthelightbeamtosmalldimensionscausesitslargediffractiondivergence,asmallcross-sectionofthebeam(andthereforeitshighdensity)inawaveguideremainsunchangedthroughout.Anotheradvantageofthin-filmwaveguidesisthepossibilitytoattainphasematchingofinteractingwavesduetomodedispersion.Thisallowstheuseofisotropicmediapossessinghighnonlinearcoefficients.Anisotropicwaveguidesdonotrequiretemperaturetuningforattaininga90-degreematchingthatcanbereachedthroughthechoiceoftherefractiveindexprofile.

Butinspiteoftheobviousadvantagesofopticalwaveguidesfornonlinearconversion,thesuccessinthisfieldremainsrathermoderate.Inparticular,theefficiencyofsecondharmonicgenerationreachedexperimentallyinvariousmaterialswastwoorthreeordersofmagnitudelowerthanthetheoreticallypredictedone(Itoetal1974;VanderZieletal1975),whichisobviouslyexplainedbyalowqualityoftheguides.Toobtainaneffectivenonlinearconversion,thefilmnonuniformitythroughthethicknessmustnotexceed0.01mmper1min.Non-observanceofthisconditionleadstophasemismatchand,therefore,toaloweringofthesecondharmonicpower(Boyd1972).

Planarwaveguidesonthebasisoflithiumniobatearenowpromisingforthestudyandpracticaluseofnonlinearsecond-ordereffects.Thisisconnectedwithalargevalueofthenonlinearsusceptibilitytensorofthecrystalaswellaswiththepossibilityofangularandtemperaturetuningofmatchedinteraction.

Weshallmentionsomemosttypicalpapersoutofacomparativelysmallnumberofpublicationsconcerningnonlinearprocessesinplanar

Page 517: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

waveguides.

Fejeretal(1986)obtainedsecondharmonicgeneration(SHG)inalaseronagarnetwithneodymiuminaTi:MgO:LiNbO3waveguide,inwhichatemperature-inducedphasematchinggeneratedradiationatawavelengthof532nmwithanefficiencyof1.5×10-2.SHradiationof22mWwasobtainedinanon-stopregime;inapulsedoperationtheconversionefficiencywasoftheorderof25%.Phasematchingwasreachedbothforthecase (thezerothmodeoffundamentalradiationisconvertedintothezerothmodeofsecondharmonic)andfor .

ThecorrespondingmatchingtemperaturesareequaltoT=102ºCand21.7ºC.

SHGinTi:LiNbO3waveguideswasobtainedbyArvidssonandLaurell(1986)andRegeneretal(1981)whoreached,usinganadditionalresonatorforproducingthefundamentalfrequency,asubstantialincreaseofthefieldstrengthinthewaveguide,whichresultsinasharpheighteningoftheefficiencyofnonlinearopticconversion.InasimilarwayRegeneretal(1981)reachedanefficiencyoftheconversionintoasecondharmonicoftheorderof10-2forameaninputradiationpowerof1.5mW.

Othernonlinearprocessessuchasdifferencefrequencygeneration(Uesugi1980;Suche1984),parametricamplificationandgeneration(Sucheetal1985)werealsoattainedinplanarwaveguides.

Page 518: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page239

5.3.1Phasematchinginanopticalwaveguide

Asiswellknown,aneffectivesecondharmonicgenerationrequiresphasematchingofinteractingwaves.Inanisotropiccrystals,dispersionatfrequenciesoffirstandsecondharmonicsiscompensatedbyexploitingdifferentpolarizationsofinteractingwaves.Thephasematchingdirectionwillcoincidewiththedirectionofintersectionofindicatricesoftheirrefractiveindicesn(j0,w)=n(j0,2w),whichinthethree-dimensionalcaseisdeterminedbybirefringenceanddispersionofthecrystal.Ifthematchingdirectiondoesnotcoincidewiththeopticalaxis,theinteractionlengthwillbelimitedtothedivergenceofwavesofthefirstandsecondharmonicsduetobirefringence.Therefore,toobtainaneffectivenonlinearinteractionitispreferabletousea90-degreematchingwhichgivesnobirefringenceandinthethree-dimensionalcaseisreachedbytemperaturetuning.

Inopticalwaveguides,therefractiveindiceshaveincrementsDnoandDnerelativetothesubstrate.Iftheseincrementsexceeddispersionoftherefractiveindices,nw-n2watthefrequenciesoffirstandsecondharmonics,thenthenw-n2wcanbecompensatedbymodedispersion.Isotropicmediacanwellbeusedinthiscase,too.Inthecaseof'weak'waveguidesinwhichtheincrementoftherefractiveindexofthewaveguidinglayerismuchlessthantherefractiveindexofthesubstrate ,phasematchingisonlyduetobirefringence.Theuseofmodedispersionwidenssignificantlytheregionofphasematching.ThiscanbereadilyseenfromFig.5.19whichshowspossiblepositionsofmodeindicatricesatfrequenciesofthefirstandsecondharmonicsinananisotropicwaveguideinanegativecrystal.Theregionswhichcancontainindicatricesofordinarilyandextraordinarilypolarizedmodesaredashed,andtheoverlapoftheseregionsdeterminestherangeofpossiblematching.Foreachpairofmodes,phasematchingoccursatacertainangleatwhichmode

Page 519: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

indicatricesintersect.Varyingthedepth,shapeoftheprofileorincrementoftherefractiveindexofawaveguide,wecanvarythematchinganglesofnonlinearmodeinteraction.Itshouldbenotedthattoperformsuchvariationsoneshouldknowthedependenceofphasecharacteristicsofawaveguideonitsstructureparametersandbeabletocontrolthemduringwaveguidemanufacturing.For

Fig.5.19Indicatricesofordinaryand

extraordinarypolarisationmodesinLiNbO3(Zolotovetal1979).

Page 520: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page240

Ti-diffusedwaveguidesinLiNbO3,theanglesofpossiblemodematchingliewithintherange ,thatis,a90-degreematchingcanbeattainedwithouttemperaturetuning.

5.3.2Overlapoffieldsofinteractingmodes

Phasematchinginanopticalwaveguideisnotasufficientconditionforobtaininganeffectivenonlinearconversion.Thedecisiveroleisplayedbythedegreeofoverlappingofopticalfieldsofinteractingmodeswhichischaracterizedbytheoverlapintegral

whereYw(y)andY2w(y)isthetransversedistributionofmodefieldsatafrequencyofthefirstandsecondharmonics.Theoverlapintegralentersintheexpressionfortheefficiencyofsecondharmonicgeneration(derivedforthecaseofphasematchingintheplainwaveapproximation(ZernikaandMidwinter1973;Conwell1973):

wheredisanonlinearcoefficient,Ppumthepumpingpower,P2wthesecondharmonicpower,Ltheinteractionlength,lthepumpingwavelength,ntherefractiveindexofthesubstance,Wthebeamwidthinthewaveguideplane.

Asisseenfromtheexpression(5.41),theoverlapintegraldependsonthefielddistributionofmodeofbothharmonics,whichareverydifficulttofindfordiffusedwaveguidessincetheirprofilesarenotknowninadvance,buteveniftheywereknown,itisnotalwaysthatthereexistsananalyticsolutionofthewaveequationforthem.IfLiNbO3isused,thesituationbecomesevenmorecomplicatedbecauseananisotropiccrystalandwaveguideshavedifferentprofilesforordinaryandextraordinarypolarizations.Moreover,inTi-diffused

Page 521: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

waveguidesofLiNbO3awaveguideformsnotonlyduetoTidiffusionintoacrystal,butduetoareversediffusionofLi2Oaswell.Theseprocesseshavedifferentkinetics,andthereforethewaveguideprofileforextraordinarypolarizationiscomplex.

ThemethoddevelopedbyZolotovetal(1977)wasusedtodetermineYw(y)andY2w(y).Thismethodpermitsdeterminationofthecharacteristics(includingmodefieldsanddispersiondependences)ofdiffusedwaveguideswithanyprofileofrefractiveindexdistribution.Themethodisbasedonapproximationoftheunknownwaveguideprofilebythefunctionsthatallowobtainingsolutionsofthewaveequationinananalyticform.InTi-diffusedwaveguidesofLiNbO3(Y-cut),theprofileofthetransversedistributionn0(y)forordinarypolarizationisdefinedbythecombinationofasmoothlysewedparabolaandexponent(5.40).

Page 522: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page241

Fig.5.20Overlapintegralsfordifferentinteractionsversusdimensionlessthicknessaofawaveguide(dashedlinecorrespondstothicknessofsampleunder

investigation)(Zolotovetal1979).

TheoverlapintegralsI1m(m-1,2,3,4)fortheinteractiono+o=ewerecalculatedusingtheobtainedmodefielddistributionsinaTi-diffusedLiNbO3waveguide.ThedependencesofI1monthevalueofdimensionlessthickness fortypicalparametersoftheTi-diffusedwaveguide(seeTable5.6)areshowninFig.5.20.Thecalculationsdidnotmakeallowanceforinsignificantvariationsofthestructureparameterratiosc/a,h/awithvaryingasincetheydidnotpracticallyaffectthecharacterofthedependencesoftheoverlapintegralsI1m(a).TheoverlapintegralsInmofmodesinthickerwaveguides(a>6),wheren>1,isnotconsideredsinceinthesewaveguidesphasematchingisattainedforhighermodesonly(m>3),andthereforetheoverlapintegralsaresmall.

AnanalysisshowsthatforoptimizationofsecondharmonicgenerationinT-diffusedwaveguides,fromtheviewpointoftheoverlapintegralofinteractingmodesoneshouldchoosenotverythick

waveguideswiththeuseoflowermodeinteraction.

5.3.3Angularmatching

Secondharmonicgeneratedusingawaveguideobtainedby

Page 523: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

thermodiffusionofTiintotheY-cutofLiNbO3.Thewaveguidemodespectrum wasmeasuredonagoniometerbyradiationoutputthroughaphotoresistivegrating(l=0.3462mm)depositedonthesurface(Zolotovetal1976).TheresultsareshowninFig.5.21.ModesH1-H4,E1andE2wereexcitedinawaveguideatawavelengthl=0.53mmandmodesE1andH1atawavelengthD=1.06mm.Figure5.22presentsindicatricesofrefractiveindicesofwaveguidemodesatthefrequenciesoffirstandsecondharmonics.Phasematchingconditionsareonlymetforthefollowingo+o=etypeinteractions:

TheindicatrixofthemodeH1doesnotintersecttheindicatricesofofmodesoffirstharmonic,andthereforethephasematchingforH1isunattainable.

Page 524: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page242

Fig.5.21Distributionofrefractiveindicesandopticalfieldsforordinaryandextraordinarywavesofdiffused

waveguides:a)l=1.06mm,b)l,=0.53mm(Zolotovetal1979).

Fig.5.22Indicatricesofeffectiverefractiveindicesofdiffusedwaveguidemodes(Zolotovet

al1979).

Theprofilesofrefractiveindexdistributionforordinaryandextraordinarypolarizations,whichwererespectivelycharacterizedbytheparameters ,Dno=0.0035,ao=4mm,(c/a)o=0.7,ho=1.5mm, ,Dne=0.015,ae=14mm,(c/a)e=0.97,(b/a)e=-

Page 525: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

0.63,he=8.5mmwerefoundfortheinvestigatedwaveguideonthebasisoftheobtainedspectra .

Themodefieldsoftheinvestigatedwaveguide(Fig.5.21)wereobtainedandtheoverlapintegralsI1m(m=2,3,4)weredeterminedusingtheprofiles.TheintegralI12ismaximumandclosetotheoptimumvalue(Fig.5.20),andtherefore

Page 526: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page243

Fig.5.23Theoretical(dashedline)andexperimental(solidline)dependencesofeffectiveSHGonthepumpingpower(experimental)pointscorrespondtoCWlaserpumping

(D),apulsedlaserpumpinginfreegenerationregime(o)apulsedQ-switching,()(Zolotov,etal,1979).

theconversion wasused.PumpingwasrealizedbyYAG:Nd3+-lasersoperatinginpulsedandnon-stopregimes.Alightbeamwasfedinto(andout)withthehelpofrutileprismsinthedirectionofmatching,thebeamwidthbeing .

TheefficiencyofsecondharmonicgenerationasafunctionofpumpingpowerisgiveninFig.5.23.Themaximumconversionefficiencywasobtainedthroughpumpingof andmadeup16%.

Thedependenceoftheefficiencyofnonlinearconversiononthepumpingpower(seeFig.5.23)wasnoticeablyoverestimatedincalculationsascomparedwithexperimentalvalueswhichweresaturatedalreadyfor .Suchadifferenceisexplainedbynonuniformityofthewaveguideoverthickness andbytherefractiveindexinhomogeneities,inducedbysecondharmonicradiation,whichwereobservedatapumpingpowerof .So,afurtherincreaseinthenonlinearconversionefficiencywasduetotheimprovementofthewaveguidesurfacequalityaswellastotheheighteningofthethresholdoftheoccurrenceofoptical

Page 527: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

inhomogeneities.

Thedependenceofsecondharmonicpowerontheanglebetweenthepump-

Fig.5.24Angulardependenceoftheoutputsecondharmonicpowerinadiffusedwaveguide(Zolotoveta11979).

Page 528: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page244

ingwavepropagationdirectionandtheopticalaxisofthecrystal(Fig.5.24).Thefigureshowsthatthiscurveisnonsymmetricrelativetothecentralmaximum(theinteraction )sinceitsleftsideisoverlappedbythemaximacorrespondingtotheinteractions and

.Therelativeheightofthemaximaisinsatisfactoryagreementwiththevaluesoftheoverlapintegrals.Thewidthofthecentralmaximumwasfourtimesthetheoreticalvalue,whichisexplainedbyinhomogeneityofthewaveguide.

5.3.4Temperaturematching

Figure5.25showstheexperimentalsetupusedbyUesugiandKimura(1976).Thefundamental-frequencylaserbeamatawavelengthof1.064mm,generatedbyacwNd:YAGlaser,wasfedintoasingle-modefibrewitha×20microscopeobjective.Thecoredimensionofthefibrewasequalto5.5mmandtheindexdifferenceDnbetweenthecoreandcladwas0.25%.Thefibrewasthenbutt-joinedtoaLiNbO3waveguidewithamanipulator.Single-modelaunchingwithacouplinglossaslowas1.4dBwaspreparedwiththebutt-joinedprocedure.TheLiNbO3opticalwaveguidewasmountedonacopperblockwhosetemperaturewascontrolledwithathermoelectricelement.Theopticalwaveguideandthecopperblockwerekeptinadry-nitrogengasambienttopreventwater-vapourcondensation.Thewaveguidetemperaturewasmeasuredatthecrystalsurfacebyacopper-constantanthermocouple(Uesugietal1976).

Thethree-dimensionalLiNbO3opticalwaveguidewasfabricatedbyTi-in-diffusionintoac-plateofLiNbO3crystalat1050ºCfor20h.TheindexdifferenceAnwas0.002-0.003andthecoredimensionwasabout5mm.Thewaveguidelengthwas1cm.Therefractive-indexdistributionwasassumedtobeGaussian.Itwasestimated,fromlighttransmissionexperiments,thattheextraordinaryrefractive-indexdifferencebetweenthecoreandsubstrateislargerthanthatofan

Page 529: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ordinarywave.ThisisattributedtoLi2Oout-diffusionduringthefabricationprocess(Nodaetal1975).TheguidecansupportonlydominantTE00andTM00modesat1.064mm,anduptothird-ordermodesat0.532mm.

Figure5.26showsthesecondharmonicpowerversusfundamentalfrequencypowerunderaphasematchedconditiondescribedinthesequel.Experimentalresultscoincidewiththoseshownbythesolidlinewithaslopeof2.The

Fig.5.25Experimentalconfigurationofthesecond

harmonicgenerationusingathree-dimensionalLiNbO3opticalwaveguide(UesugiandKimura1976).

Page 530: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page245

Fig.5.26Dependenceofsecondharmonicpoweron

fundamentalfrequencypowerunderphase-matchingcondition(Uesugiand

Kimura1976).

fundamental-wavepolarizationcorrespondstotheTE(ordinary)wave,andthegeneratedsecond-harmonicwaveisfoundtobelinearlypolarizedwithTM(extraordinary)polarization,whichisinducedbythesecond-ordernonlineartensorelementd31.Opticaldamagewasnotobservedintheexperimentuptoabout3mWfundamentalinput.

ThephasematchingconditionissatisfiedbyusingthetemperaturedependenceofLiNbO3birefringence.Figure5.27showsthetemperaturedependenceoftheharmonicpower.Inthismeasurement,thecrystalwascooledatfirstto-29ºCandthetemperaturewasraisedatarateofabout1ºC/min.Photographsshowingtypicalnear-fieldpatternsofthesecondharmonicwaveguidemodesaredepictedinFig.5.27.Thepeaksat-2and15ºCcorrespondtothesecondharmonicTM00andTM20modes,respectively.Thepeakat10ºCisestimated,fromthenear-fieldpattern,tobeCherenkovradiation.TheCherenkovradiationisgeneratedwhenthenonlinearpolarizationpropagationconstantislargerthanthatoftheharmonicwaveinthebulkcrystal(Tienetal1973).For2mWfundamentalfrequencyinputpowerintheTE00mode,theconversionefficiencyat-2ºCwas1.5×10-4.A

Page 531: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

conversionefficiencyashighas0.1isexpectedforan1.4Winput.Theconversionefficiency,calculatedonthebulk-crystaldata,is3.1×10-4fora2mWfundamentalplane-waveinput,whichisconfinedina5×5-mmcross-sectionforthelengthofacm.Thedifferencebetweentheexperimentalandcalculatedvaluesmaybeduetofractionalspatialoverlapofthenonlinearpolarizationandtheharmonicwaveguidemode,waveguideloss,andinsufficientcoherentinteractionlengthbetweenthefundamentalandharmonicwaves.Thegeneratedsecondharmoniclightwaseasilyobservedonascreenandatthewaveguideendsurfacewithanakedeye.

Theconversionefficiencyofsecondharmonicpowerintheopticalwaveguideisproportionaltothesquareoftheoverlapintegralbetweenthefielddistributionofthefundamentalandsecondharmonicwaves.TheoverlapintegralisthelargestwhenthefundamentalandsecondharmonicwavesarebothinthedominantTE00andTM00modes,respectively.TheharmonicTM10modewashardlyobserved.TheTM20modewasweakerthanthedominantmode.ThephasematchingtemperatureoftheLiNbO3opticalwaveguidedepends

Page 532: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page246

Fig.5.27Harmonicpowertemperaturedependence.Insettedphotographsshowtypicalnear-fieldpatternsofsecondharmonicwaveguidemodes(Uesugiand

Kimura1976).

Fig.5.28Calculatedphase-matchingtemperaturedifference

betweenTM00andTM20ofathree-dimensionalLiNbO3opticalwaveguide.FundamentalfrequencymodeisassumedtobeTM00.

Theexperimentaltemperaturedifferenceisshownontheordinate.Thewaveguideheightbisestimatedtobeabout5mmfromaninterference

fringemeasurement(UesugiandKimura1976).

onthecompositionofLi2OandNb2O5andonwaveguidedispersion.Itisalsoaffectedbythepyroelectriceffectwhenthecrystaltemperatureisswept.However,thephasematchingtemperaturedifferenceDTbetweenthesecondharmonicdominantTM00modeandthehigherTM20modeareinsensitivetothecompositionand

Page 533: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

pyroelectriceffect.Figure5.28showsthecalculatedtemperaturedifferenceDTasafunctionofthewaveguideheightb.Hereitisassumedthattheindexprofileisastepdistributionoverthecross-section.ThepropagationconstantiscalculatedaccordingtoMarcatili'sapproximation(Marcatili1969).Sellmeier'sequationwasusedtoexpressthetemperatureandwavelengthdependenceofrefractiveindices.Figure5.28servestoexpressseveralaspectratios(a/b).ThesolidlinecorrespondstotherefractiveindexdifferenceDn=0.0025.TheexperimentalresultshowninFig.5.27isequaltoDT=17ºC.

Page 534: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page247

LiNbO3hasapyroelectriccoefficientaslargeas4×10-9C/cm2Cat25ºC.Whenthecrystaltemperatureisraisedby1ºCandthespontaneouspolarizationremainsuncompensated.theelectricfieldalongthec-axisbecomes1.67kV/cm.Thiselectricfieldinducesbirefringence,whichcorrespondstoatemperaturechangeof0.4ºC.Inthisexperiment,theobservedphasematchingtemperaturesarehigherthanrealphasematchingtemperatures,duetothepyroelectriceffect.Itwasobservedthatwhenthecrystaltemperatureissweptfromhightolow,thephasematchingtemperatureislowerthanthatintheoppositesituation.Thehysteresisseemstoresultfromthepyroelectricsurfacechargecompensation.Thepyroelectriceffectcouldbeavoidedifab-platecrystalwithshort-circuitedelectrodesonc-surfaceswereused.

5.3.5Second-harmonicgenerationinawaveguidewithperiodicallydomain-invertedregions

Second-harmonicgeneration(SHG)thatusesaquasi-phasematching(QPM)inLiNbO3opticalwaveguidewithperiodicallydomain-invertedregions(PDRwaveguide)isapromisingapproach(Limetal1989(a)).Suchwaveguidespossessahighpowerdensityandalargenonlinearcoefficient.However,sincetheQPMconditionisverydifficult,thehigh-conversionexperimentsweremadearrangingsuitableperiodsofdomain-invertedregionspreciselyorusingatunablelaserforthefundamentalwave(Limetal1989(b)).

Shinizakietal(1991)describedaself-quasi-phase-matchedSHGthatusesaPDRwaveguide.ThefundamentalwavesatisfyingtheQPMconditionwasgeneratedbyanLD(laserdiode)whichwaslasedbyafeedbackwavesfromthePDRwaveguide.Astheopticalrefractiveindexofthedomain-invertedregionsisslightlyhigherthantheundopedregion,theperiodicaldomain-invertedregionsactasadistributedBraggreflector(DBR).Astheperiodofthedomain-

Page 535: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

invertedregionswasdesignedtosatisfytheQPMconditionsandthehigh-reflectanceconditionsofthequasi-phasematchedfundamentalwave,theLDwaslasedatthewavelengthsatisfyingtheQPMcondition.

Intheexperimentalarrangements,showninFig.5.29,thePDRwaveguideandtheLDwithantireflectioncoatingfacetsareopticallyconnectedbysingle-modefibre(SMF).Periodicaldomain-invertedregionswereformedbyTi-diffusion.TheTilayerevaporatedonac-cutLiNbO3substratewaspatternedbythelift-offtechnique.TheTilayerwas5nmthickandtheTilineswere4mmwide.Heattreatmentconsistedofa2hrampupfromroomtemperatureto1050ºCand1hsoakat1050ºC;afterthisthefurnacewasturnedoff.Thedomain-invertedperiodwasL=13mm.Theopticalwaveguidewasfabricatedtooverlapperpendicularlyontheperiodicaldomain-invertedgrating.Thewaveguide(6mmwide,2mmlong)wasfabricatedbyproton-exchangedprocess(seeChapter1).TheLDwaslasedbyfeedbackwavesfromthePDRwaveguide.Theperiodofdomain-invertedregions,actingasDBR,is13mm.Iftheeffectiveguideindexfortheradiatedwaveat1.327mmisequalto2.195,thehighreflectanceconditionissatisfied.WhenrgwLDlasedat1.327mminwavelength,thesecond-harmonic(SH)wavewasobserved.TheSHspectrumwhichwasmeasuredisshowninFig.5.30.ThewavelengthoftheSHwaveis662.4nm,whichcorrespondstothehalfwavelengthofthefundamentalwave.The

Page 536: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page248

Fig.5.29Experimentalarrangementoftheself-QPMSHG.TheSHGdeviceiscomposedofPDRwaveguideonthe+cfacetofthelithiumniobatewafer.LDswithanantireflectioncoatingfacetareopticallyconnectedtotheSHGwaveguidebysingle-mode

fibre(Shinozakietal1991).

Fig.5.30SHGspectrumfromthePDRwaveguide.The

fundamentalwavewasgeneratedbytheInP/InGaAsPLDwithAR-coatedfacets

(Shinozakietal1991).

normalizedSHconversionefficiencywas4.1%/Wcm2.

TheQPMconditionsaresatisfiedifthehalf-periodofdomain-invertedregions,L/2,isequaltooddtimesofthecoherencelength.Thecoherencelength isgivenby

Page 537: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wherelisthewavelengthofthefundamentalwaveinvacuum,n(l)istheopticalindexforwavelengthl.TheconditionforQPMis

Page 538: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page249

Fig.5.31Lengthofdomaininvertedregions(Lc)infirstorderofQPMandthehalfperiodsof43rdorderofDBR(Lw)versusthefundamentalwavelength.These

linesintersectat1.327mminfundamentalwavelength,6.5mminLcorLw(Shinozakieta11991).

wheremispositiveinteger,andk1andk2arethewavevectorsforthefundamentalandSHwaves,respectively.Thentheperiodofthedomain-invertedregions,L,isgivenby iftheLsatisfiestheQPMconditiongivenasequation(5.46).Theperiodicaldomain-invertedregionsactasDBR.IftheperiodLisdesignedtosatisfythehighreflectanceofthefundamentalwave,theQPMconditionissatisfied.Thatis,iftheLDwithanantireflection-coatedfacetislasedbythefeedbackwavesfromtheperiodicaldomain-invertedregions,theradiatedwavesatisfiestheQPMcondition.Theself-QPMconditionsareasfollows

wherepispositiveinteger.Figure5.31showstherelationshipsgivenbyequation(5.47),thelengthofthedomain-invertedregions, ,inthefirstorderofQPM(m=0)andthehalf-periodof43rdorderofDBR(p=43),Lw[=pl/4n(l)],againstthefundamentalwavelength.Thedispersionfunctionoftheproton-exchangedLiNbO3materialisgivenbyn(l)=n'(l)+0.05(DeMichelietal1983),wheren'(l)isanopticalindexdispersionofcongruentLiNbO3.Thesetwolinesintersectat1.327mminfundamentalwavelength,6.5mminLcor

Page 539: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Lw,asshowninFig.5.31.Intheexperiment,thewavelengthofthefundamentalwavewas1.327mm,thehalfperiodofDBR,L/2,was6.5mm.TheallowanceoftheDBRperiodDLisequalto0.039mm.Itisverydifficulttodesignandfabricateadomain-invertedregiontoachieveahighSHconversionefficiency.

5.3.6Effectofprotonexchangeonthenonlinearopticalproperties

Protonexchangeusingbenzoicacidhasbeenshowntobeaccompaniedbyasubstantialreductionintheelectro-opticcoefficient(Becker1983;Yan1983);somedecreaseinthenonlinearopticalcoefficient(d)hasalsobeenobserved(Suharaetal.1989;Caoetal.1991).Limitedrecoveryofanelectro-opticalcoefficientandanonlinearopticalcoefficientoccursunderthermalannealing(Caoetal,1991;Suchoskietal,1988).Laurelletal(1992)havereporteda30-foldreductionintheopticalnonlinearityforLiNbO3,theyfoundthattheopticalnonlinearitycannotbeeffectivelyrestoredbythermalannealing.

Page 540: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page250

Bortzetal(1992)havemeasuredthed33nonlinearcoefficientinproton-exchangedLiNbO3usingangle-dependingreflectedSHGandobservedareductionto<1%ofthebulkLiNbO3value.

Recently,animprovedprotonexchangesourceusingpyrophosphoricacidhasbeenimplementedbecauseofitshigherboilingtemperature(300ºC)andlowvapourpressure.Low-loss(0.5dB/cm)waveguideshavebeenpreparedinLiNbO3andLiTaO3usingpyrophosphoricacidandefficientblue-lightgenerationhasbeenachieved(Mizuuchieta1.1991)However,theeffectoftheprotonexchangeprocessusingpyrophosphoricacidonthenonlinearopticalcoefficientisnotknown.Hsuetal.,(1992)reportedtheeffectoftheprotonexchangeprocesscarriedoutusingbenzoicacidandpyrophosphoricacidonnonlinearopticalpropertiesofLiNbO3andLiTaO3andrecoveryofthenonlinearcoefficientunderthermalannealing.Thenonlinearopticalcoefficientwasevaluatedusingareflectiontechnique.

X-cutandZ-cutLiNbO3andLiTaO3crystalswereusedinthisstudy.Waveguideswerepreparedbyprotonexchangeinbenzoicacidandinpyrophosphoricacid(H4P2O7)withaheatingrateof10ºC/minandcoolingrateof20ºC/min.

Iftheincidentbeammakesanangleqi,withthesurfacenormal,hasapolarizationanglejwithrespecttothenormaltotheplaneofincidence,andhasanintensityI,thenthenonlinearpolarizationforZ-cutLiNbO3withtheY-axisperpendiculartotheplaneofincidencecanbewrittenas(Dicketal.1985)

wheredijarenonlinearcoefficientsandfiarelinearFresnelcoefficients.Themeasuredintensityofthes-andp-polarizedSHGin

Page 541: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

reflection(neglectingbirefringence)ispropotionaltononlinearpolarization.

Figures5.32and5.33showresultsofsuchmeasurementsat1064nmandtheoreticalcalculations.Theratioofd33/d31andd22/d31wasobtainedas6.2and-0.30byfittingthetheoreticalresultswithexperimentaldata.Thesevaluesareslightlydifferentfromthepublishedvalues(7.0and-0.53fromNishiharaetal1989),butthereappearstobequiteavariationintheliteraturedata(Yariv1984).

Resultsofd-coefficientmeasurementsatfundanmentalwavelengthsof532nmforproton-exchangedLiTaO3usingbenzoicacidandpyrophosphoricacidarepresentedinTable5.7.Theincidentbeampowersusedwerebelowthresholdforphotorefractiveeffectstobeobservedasnochangeinsignalwasobservedevenfor1hexposuretotheincidentbeam.Theshapeofthepatternisrelatedtothestructuralsymmetryofthecrystalandofthesurface.Thelargescatterintheexperimentaldataattheincidentp-polarizedlightonX-cutcrystaloccursbecauseofpossiblesmallmisalignmentsofthecrystal.

Page 542: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page251

Fig.5.32VariationofSHGintensitywithincidentpolarizationangleforaZ-cutLiNbO3crystalwiththeXaxisperpendiculartotheplaneofincidence.Crossesareexperimentalpointsandthesolidlineisfromtheoreticalcalculationsfor(a)p-polarizedand(b)s-polarized

outputbeams(Hsuetal1992).

Fig.5.33(right)VariationofSHGintensity

withincidentpolarizationangleforX-cutLiNbO3crystalwiththeZaxisperpendiculartotheplaneof

Page 543: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

incidence.Crossesareexperimentalpointsandthesolidlineisfrom

theoreticalcalculationsfor(a)p-polarizedand(b)s-polarizedoutputbeams(Hsuet

a11992).

Insitumeasurementofrecoveryofd33wasmadeunderthermalannealing.ThesaamplewaslocatedinaheatingfurnaceandtheSHsignalwascontinuouslymonitoredwhilstthesamplewasmaintainedatatemperatureof310ºC.Figure5.34showstherecoveryoftheSHsignalasafunctionoftime.Norecoveryisseenfortheinitial30minduringwhichthefurnacewasheatedupfromroomtemperaturetothefinalannealingtemperature(310ºC).Thereisquickrecoveryofd33,whichbeginsatapproximately1.25hintotheannealingprocess,whichsaturatestoavalueofapproximately50%oftheblankLiNbO3value.

Becker(1983)hasshownthataprotonexchangeprocessusingbenzoicacidgivesrisetoaconsiderablereduction,byafactorof2.7,intheelectro-opticcoefficient.Ifthenonlinearresponseispurelyaresultofelectronicpolarizations,theelectro-opticanddcoefficientsareproportional(Yariv1984),andanydecreaseintheelectro-opticcoefficientisnecessarilyaccompaniedbyacorrespondingdecreaseind.However,theelectro-opticcoefficientforLiNbO3isknowntohavecontributionsformionicpolarizations.SuchpolarizationshavenoeffectupontheSHGprocess.Hence,itispossiblefortheelectro-opticandSHGprocessestobeaffecteddifferentlybyprotonexchange.Suharaetal.(1989)reporteda50%reductioninthedcoefficientat1064cmforprotonexchangeinbenzoicacid.Similarly,Caoetal.(1991)havereporteda40%reduction,howeverannealingrestoredthedcoefficientto90%ofthebulkvalue.Intheexperimentsat532nm,Laurelletal.(1992)findthattheopticalnonlinearitycannotbeeffectivelyrestoredbythermalannealing.Bortzetal.(1992)suggestthatthedifferencebetweentheirresultsandthosereported

Page 544: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 545: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page252

Table5.7Measuredvaluesofdcoefficientforx-cutp-exchangedLiNbO3andLiTaO3relativetotheblankcrystal.Measurementerroris±10%.Annealingtemperature350ºC

Annealingtime

Protonexchangetime(h)

LiNbO3,%recoveryofd33comparedtoblank

LiNbO3

LiTaO3,%recoveryofd33comparedtoblankLiTaO3

0h 1h 3h 7h 17h 0 1h

0.5 0% 52% 51% 59% 54%

1 Norecoveryobserved

1.5 Norecoveryobserved 69%* 56%*

0.5 Norecoveryobserved

1 Norecoveryobserved 39%** 0%**

*protonexchangedat200ºC

**at230ºC

Fig.5.34VariationofSHsignalwithannealingtime

foranx-cutLiNbO3samplethatwasproton-exchangedinbenzoicacidfor0.5hat180ºC.Annealingtemperaturewas310ºC(Hsu

Page 546: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

etal1992).

byCaoetal.(1991)isduetoneglectofthereflectedsecond-harmonicfieldonboththed33discontinuityatthefilm-substrateinterfaceandangulardependenceofthenonlinearpolarization.TheresultsreportedbyHsu,etal.(1992)indicatethatLiNbO3samplesproton-exchangedfor0.5hat180ºCshowedsomerecoveryofthenonlinearcoefficient,whilstsamplesthatwereproton-exchangedfor1and1.5hdidnotshowanymeasurablerecoveryunderthethermalannealingconditionsused.

Theprotonexchangeprocessfollowedbyannealingmayproducehigherlatticedisorderatthetopsurface,whichcouldexplainwhyitispossibletoseesomewaveguideSHconversioneventhoughthenonlinearcoefficientisdegraded.

IncontrasttoLiNbO3,LiTaO3showedonlypartiallossofopticalnonlinearitymeasuredat532nmuponp-exchangeusingeitherpyrophosphoricacidorbenzoicacid.ThermalannealingproducedonlysmalllossinnonlinearityofLiTaO3p-exchangeinbenzoicacid.Completelossofnonlinearitywasobservedinthecaseofpyrophosphoricacid.TheseresultsalsodifferfromannealingresultsforLiNbO3wheresomerecoveryoftheopticalnonlinear

Page 547: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page253

coefficientwasobserved.TheLiTaO3indexincreasesafterannealingwhiletheLiNbO3indexdecreases.Increaseintheindexmaycausesomedistortioninthestructure,whichcanaffecttheSHsignal.Tounderstandthedegradationmechanism,structuralcharacterizationofproton-exchangedandannealedLiNbO3andLiTaO3isongoing.

5.3.7Sum-frequencygenerationinwaveguides

Therehasbeenrecentincreasedinterestincompactshort-wavelengthlightsourceswiththeobjectiveofrealizingoutputpowersinthemWrangebasedondiodelasers.OneofthemostpromisingtechniquestodothisistousenonlinearfrequencyupconversioninQPMwaveguides(Limetal.1989;vanderPoeletal.1990;Mizuuchi,etal.1991).Byfarthemostwidelyusednonlinearprocessissecond-harmonicgeneration(SHG)sinceonlyonelightsourceisrequired.AnalternativetoSHGissum-frequencygeneration(SFG),especiallywhenfinetuningofthegeneratedwavelengthisrequiredorfundamentallightsourceforSHGisdifficulttofind.SFGcanalsobecombinedwithSHGinsuchawaythattwoIRlightsourcesgeneratethreevisiblewavelengthssimultaneously(Yamamotoetal.1991).WaveguideSFGhasbeenreportedusingbirefringencephase-matching(Useugietal.1978).Cherenkovradiation(SanfordandRobinson1989;Laurelletal.1990).Amajordrawbackwithalltheseexperimentshasbeenthelow-outputpowderobtained.

Laurell,etal.,(1992)reportedefficientSFGinsegmentedKTPwaveguides(Bierleinetal.1990)usingQPM(vanderPoeletal.1990).

Twoconditionshavetobefulfilledtoobtainquasi-phased-matchedSFG,energyconservation

Page 548: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

andmomentumconservation,

wherel1andl2arethefundamentalwavelengths,l3theSFwavelength,N(l)istheeffectivemodeindexatthecorrespondingwavelengths,andmandLaretheorderandtheperiodoftheQPMstructure,respectively.

A4.5mm-longflux-grownz-cutKTPsamplewasmaskedwithatitaniumfilmwithrectangularopeningsforionexchangetoformthewaveguideinthex-direction.Thesamplewasthenendpolishedandimmersedfor45minina98mol%RbNO3:2mol%Ba(NO3)2moltensaltbathat330ºCforsimultaneousionexchangeanddomainreversal.Thewaveguidesinvestigatedonthesamplewere4mmwideandhasperiodsof3,4,5and6mm.Fortheseperiods,theratiobetweentheexchangedandunexchangedregionswas2/1,3/1,4/1and5/1respectively.Theseperiodswerechosentogiveup

Page 549: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page254

Fig.5.35Tuningcurveforthesumfrequencygenerationvsfundamentalwavelengthsinwaveguideswith

(a)3mm,(b)4mm,(c)5mmand(d)6mmperiods(Laurelletal1992).

convertedlightfromnearUVtoblue-greenbyfirstorder(m=1)QPM.

Toanalyzethenonlinearpropertiesofthewaveguide,twoindependentlytunableTi-sapphirelaserswereused.ThelasersystemconsistedofanArionlaserwhichpumpedtwocwTi:sapphirelaserstogeneratetunableradiationbetween730and1070nm.Theradiationfromlaserswascombinedusingabirefringentbeamsplitterandusedasthefundamentalwavelengthsforthesum-frequencygenerationexperiment.ThewaveguidesonthesamplewerefirstinvestigatedinSHGexperiementswherethelaserwavelengthwastunedoverthephase-matchingpeakandtheSHintensityrecorded.ThewavelengthofthefundamentalandtheSHwavewasmeasuredwithawavemeterandamonochromator,respectively,andthepowersweremeasuredwithcalibrateddetectors.FromthewidthandshapeoftheSHcurveswereofhighhomogeneity,sothefullwaveguidelengthwasutilized

Page 550: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

forconversion.BoththemodeatthefundamentalandattheSHwavelengthswereapproximatelycircularinalwaveguides.Atdegeneracy,thesecond-harmonicwavelengthwas394,425,454,and480nmforthe3,4,5and6mmperiodwaveguides,respectively.Agoodagreementwasobtainedbetweenthemeasuredandthecalculatedphase-matchingwavelengths.

TheSHGmeasurementswerefollowedbySFGexperiments.Here,bothlaserswerefirsttunedtoSHGandthenthewavelengthofthelaserstunedinoppositedirections,maintainingthephasemathcing.Thetuningrangewaslimitedbythewavelengthregionthelaserscouldcover.Figure5.35showsthetuningcurveforthefourperiods.Theaccuracy(0.1nm)ofthemonochromatorwasfoundtobeinsufficienttouseintheplotofthetuningcurve,andtheSFGwavelengthwasthereforecalculatedfromthefundamentalwavelengths,Eq.(5.48).ThelargesttunabilityoftheSFwavelengthwas3nmobserved

Page 551: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page255

forthe5mm-periodwaveguide.Thiswaveguidealsogavethehighestoutputpowerintheblue,2.7mWofthe454nmradiation,generatedwith149mWat942nmand106mWat875nmcoupledthroughthewaveguide.Thefundamentalpowersmeasuredattheoutputofthelaserswereapproximatelythreetimeshigher.Normalizedattheoutputofthewaveguide,thiscorrespondstoaconversionefficiencyof84%W-1cm-2or17%/W.ThehighestefficiencyforSFGwas112%W-1cm-2,obtainedwiththe4mm-periodwaveguide,butlowertotal-fundamentalpowersinthiscaseresultedinlowerSGFoutput.

5.4SecondharmonicgenerationintheformofCherenkovradiation

Enhancedfluxdensityoflightandlargeinteractionlengthexplainanincreasinginterestinnonlinearopticaleffectsinopticalwaveguidestructuresforrealizingefficientfunctionaldevices(StegemanandStolen1989).Amongtheseeffects,thesecond-ordernonlineareffectpermitsobservingfrequencyconversionsuchasSHGandsum-ordifference-frequencygeneration.Inparticular,SHGinopticalconfinementstructuressuchasopticalfibreschannelwaveguideswillfindmanyapplicationsthatrequireaminiaturizedvisiblelightsourcewithlightcoherence.Anefficientguided-waveSHGdevicestructurewhichcanextractbluelighthasbeendemonstrated.ItemploysaCherenkovradiationschemetoachievephasematchingata0.84mmwavelengthfromaGaAslaserdiode(TaniuchiandYamamoto1987,SanfordandConnors1989),andbluepowerontheorderof1mWfrom50to100mWinputhasbeendemonstratedwitha6mmdevicelength(TaniuchiandYamamoto1987).Inthisscheme,thephasematchingconditionbetweenthefundamental(pumping)guidedmodeandthesecondharmonicradiationmodecanbeautomaticallysatisfiedbyadjustingthewaveguideparameters(Tienetal1970).However,thesecondharmonicpowergenerateddependsontheparametersinacriticalfashion,andthereforeitisofgreatimportance

Page 552: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

todetermineoptimumparametersfortheguidestructure,crystallineorientation,refractiveindex,etc.(SanfordandConnors1989;HayataandKoshiba1989;Hayataetal1990).

AnotherpossibilityforperformanceofCherenkovtypeSHGdevicesbymeansoftailoringthetransverse(ydirection)nonlinearsusceptibilityprofileintheguidingregionisexamined.Moreradiationefficiencyisexpectedasaresultoftheincreasingoverlapbetweenthenonlinearpolarizationwave(dividingsource)andthegeneratedSHwave(drivenfield)inanalogywiththebeamsteeringtechniqueinaphased-arrayantenna.Linearanddomain-inverted(poled)channelsembeddedinanonlinearsubstrateareconsidered,andtheSHGefficiencyforeachcaseiscomparedwiththatforaconventionalnonlinearchannelwithoutdomaininversion(SanfordandConnors1989).NumericalresultsobtainedbyawaveopticstreatmentshowthataremarkableenhancementoftheSHGisrealizable,particularlywithadomain-invertedchannel.

TheschematicillustrationsareshowninFig.5.36,wherenisthebuilt-inrefractiveindexdependentonthewavelengthanddisthethicknessofthechannel.InFig.5.36bthevalueofthechannelwidth(W)isimplicitlyincludedthroughanapplicationofaneffectiverefractiveindexapproximation

Page 553: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page256

Table5.8ParametersofLiNbO3waveguidesn1=n'1(air)

l,mm n2x n2y n2z n3x n3y n37

0.84LDpumping 2.373 2.293 2.373 2.25 2.17 2.25

1.06YAGpumping 2.352 2.276 2.352 2.232 2.156 2.232

l,mm n'2x n'2y n'27 n'3x n'3y n'32

0.84 2.601 2.491 2.601 2.411 2.301 2.411

1.06 2.514 2.425 2.514 2.324 2.235 2.324

(HayataandKoshiba1989;HayataandSugawara1990).HayataandYanagawa1990)thusconsidertheslabwaveguideasshowninFig.5.36binwhatfollows.

Here,caremustbetakentoemploythisreducedgeometry.AlgebraicmanipulationofMaxwell'sequationswithnonlinearpolarizationyieldsthefollowingequationforthey-polarized(TM)mode(HayataandKoshiba1989):

whereh'xistheslowlyvaryingenvelopeofthelateralcomponentoftheSHmagneticfield,e=[ex,ey,ez]Tisthepumpingelectricfield(Tstandsfortransposition), ,bisthepropagationconstant,k0isthefree-spacewavenumber, , ,Z0=337W,[e']isthelinearrelativepermittivitytensorwhosediagonalelementsaree'x,e'y,ande'z[d']isthesecondordernonlinearopticaltensor,andtheprimeandthehatdenoterespectivelythequantityforthesecondharmonicwaveandaunitvector.Inthederivationofequation(5.50),theslowlyvaryingenvelopeapproximationhasbeenemployedandpump

Page 554: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

depletionhasbeenneglected,thatis, .

ConsidertheZ-cutLiNbO3(caxis/yaxis)asasubstratematerial.WaveguideparametersusedintheanalysisareasinTable5.8;theexplicitvalueof[d']hasbeenobtainedfromtheTableshownbyYarifA.Yehp(1984).TheTM0modeisconsideredasapumpingconditionontoz=0.

Asanonlinearsusceptibilityprofileinthefilm(|y|<d/2;thefilmcentreisaty=0),Hayataetal(1990)consideredthreecases:(A)linearfilm,i.e.alltheelementsin[d']vanishanywhereinthefilm;(B)nonlinearfilmwiththesamesignofnonlinearsusceptibilityinthesubstrate;and(C)domaininvertedfilmwithoppositesignofnonlinearsusceptibilityinthesubstrate,thatis,[d']film=-[d']substrate.Occurrenceofthecasesconsideredabovedependsontheactualfabricationprocess.Forinstance,case(A)maybeobservedin

Page 555: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page257

Fig.5.36Schematicsofproblem(a)3Dview;(b)sideview(Hayataetal1990).

Fig.5.37TotalSHpowerversusguidethickness(w=2.0mm).Solid,dottedanddashedlinesindicatedomain-inverted[case(C)],linear[case(A)],andnonlinearchannelwithoutdomaininversion[case(B)],respectively.(a)l0=0.84mm,

(b)l0=1.06mm(Hayataetal1990).

asituationinwhichdegradation(damage)oftheidealcrystallinestructureinthechannelcannotbeignored.Ontheotherhand,case(C)canberealizedbyadequatelypolingacertainkindofferroelectriccrystalsuchasZ-cutLiNbO3(Limetal1989;ThaniyavarnandMiyazawa1979).

Figure5.37showsacomparisonbetweenthesecases,wheretheSHGefficiencyisdefinedbyP'/P2withP'asthesecondharmonicpowerandPasthepumpingpower.Theseresultsareobtainedfromastationaryanalysis inequation(5.50)],withwhichtheoptimumgeometryoftheguideispredictable.Thevalidityofthisapproachhasalreadybeenensuredintheliterature(Nodaetal1975;Tienetal1973)throughacarefulcomparisonwiththeresultsobtainedbya

Page 556: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

moreinvolvednonstationaryanalysisandwithexperimentalresults.Thesharpminimaoccurringinthefiguresareduetointerferenceeffectsacrossthefilmforgrazinganglesofthesecondharmonicwave(Tienetal1973).Itisevidentfromtheseresultsthattheutmostsecondharmonicpowerisobtainableincase(C).Inthevicinityoftheoptimumgeometry,d=0.35mmforl0=0.84mmandd=0.53mmforl0=1.06mm,theefficiencyofcase(C)isanorderofmagnitudegreaterthanthatofcase(B)(i.e.theorderof10mWfroma50-100mWinputwithl0=0.84mmanda5-10mmdevicelength).ThissignificantenhancementoftheSHGcanmathematicallybeattributedtotheincreasingoverlapquantifiedbytheintegraloftheproductbetweenthenonlinearpolarizationtermandthedesiredsecondharmonicmodepropagatingalongtheCherenkovangle.Inordertoprovidephysicalinsightintotheresults,Fig.5.38givesschematicillustrationsfortherelationshipbetweenthenonlinearpolarizationwave(source)andthe

Page 557: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page258

secondharmonicwave(radiation).Itshouldbenotedthat1)aconsiderablepartofthenonlinearpolarizationwavepenetratesthesubstrateasaresultoftheextendedevanescenttailofthepumpfieldand2)thewavefrontofthesecondharmonicwavetiltswiththeCherenkovangleagainstthatofthenonlinearpolarization(z-direction).AsisseenfromFig.5.38,secondharmonicwavesgeneratedatdifferentlocations(oneinfilmtheotherinsubstrate)alongthey-directionaddpartiallyoutofphaseandcanceleachotherintheconventionalgeometry(Fig.5.38a),whereastheyaddinphasebymakingthefilmdomaininverted(Fig.5.38b).Thelinearfilm(case(A))isintermediatebetweenthetwoextremecases.Itisinterestingtonotethatonecanfindananalogousmechanismtobeamprofilinginaphased-arrayantennasysteminwhichtherelativephasedifferencebetweenadjacentdipoleelementsistailoredsothatinterferenceisinphaseforthedesireddirection.Thisfactindicatesthattheuseofhomogeneouslydomain-invertedchannelisveryeffectiveinenhancingCherenkov-typeSHGefficiencyinLiNbO3opticalwaveguides.

5.5Electro-opticeffectsinopticalwaveguides

Electro-opticcoefficientsinwaveguidesofsolidsolutionsoflithiumniobatetantalateweremeasuredbytheinterferentionalmethod.TheschemeofmeasurementsispresentedinFig.5.39.

Acoherentlightbeamisseparatedbyaseparationprismintotwoindependentlightbeamseachofwhichisfedintoalightguidebytheprism

Page 558: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.5.38SchematicillustrationsforexplainingtheenhancedSHG,NLPandSHareabbreviationsfornonlinearpolarizationandsecondharmonic,respectively.(a)Conventionalgeometry(caseB),

(b)domain-invertedfilm(casec)(Hayataeta11990).

Fig.5.39Schematicillustrationofadeviceformeasuringelectro-opticcoefficients:

1)radiationsource;2)l/4-plate;3)focusinglens;4,6)input-outputprismsforopticalradiation;5)investigatedsample;7)objective;8)screen;

9)microscope;10)controlelectrodes;11)mounting.

Page 559: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page259

method.Oneofthebeamsisledintheinterelectrodegapofthesystemofcoplanarelectricguides(10),thesecondbeampropagatesoutsidetheelectrodesysteminthedirectionparalleltothefirstone.Theoutputofopticalradiationfromthespecimenisrealizedusingthesecondprism(6).Thecollectinglens(7)providesconvergenceofbothlightbeamsintheplane(8)inwhichinterferenceisobserved.

Whencontrolvoltageisappliedtotheelectrodes,therefractiveindexofthemodechangesbyaquantityDnproportionaltotheelectro-opticcoefficientsofthelightguidematerialandtotheappliedvoltage.Thisleadstoachangeoftheopticalpathlengthofthelightbeampropagatinginafilmneartheelectrodes.ThischangeisequaltoDL=Dnl,wherelisthelengthofthecontrolelectrodes,whichinturninducesadisplacementoftheinterferencepatternbyMfringes(DL=Ml).

Inthecaseoflinearelectro-opticeffect,thechangeoftherefractiveindexofagivenmode,Dn,isgivenbytheexpression

wherenistherefractiveindexofthefilmforagivenlightmode,rijistheelectro-opticcoefficient,Ezisthelongitudinalcomponentoftheelectrodefieldinthefilm.

Inthecase ,del>2s,wheredelistheinterelectrodedistance,histhefilmthickness,sishalfwidthofthelightbeam,thequantityEzisdeterminedbytheexpressionEz=2U/pdel(Uisthevoltageappliedtotheelectrodes).SincethequantityAncanalsobeexpressedas

,thevalueoftheelectro-opticcoefficientisdeterminedbytheexpression

Whenlightpropagatesinthex-directionalongtheY-cutofLiNb1-yTayO3,wehaverij=r33.

Page 560: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thevoltageappliedtothestructureofelectricguidesischangedinthecourseofmeasurements,andthedisplacementMiscontrolledvisually.IftoameasuredMtherecorrespondstheappliedvoltageU,thenknowingthelightwavelengthl,theelectrodelength ,theinterelectrodegapdelandtheeffectiverefractiveindexofthemode,onecancalculatetheelectro-opticcoefficientusingtheexpression(5.52).

Investigationshaveshownthatinepitaxialstructuresthathavenotbeenmadesingle-domaintheelectro-opticcoefficientsaresmall,butthesensitivityofthedevicewasnothighenoughtomeasurethesecoefficients.Afterfilmsarepolarized(andthusbecomesingle-domain),theirelectro-opticcoefficientsincreasesignificantly.Measurementsofthecoefficientr33foranumberofsingle-domainspecimenshaveshownthatitsvaluevarieswithintherange(15-24)×10-12m/V,whichisclosetothevalueofthiscoefficientforlithiumtantalate.

Page 561: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page260

Thedependenceofinducedbirefringenceontheelectricfield(3×102-5×105V/m)islinearandisindicativeofahighpolarizationofheteroepitaxialfilms.

Theelectro-opticconstantsofproton-exchangedLiNbO3opticalwaveguidesweremeasuredbyMinakataetal(1986)bymeansofphasemodulationtechnique(Yariv1985)633nmlaserlightwasfedintothewaveguidefromtheendfacet,andthepropagationmodewasthefundamentalTM-likemode.Therelevantelectro-opticconstantwasr33.Themodulationcharacteristicsweremeasuredbyapplyinga50MHzsinusoidalsignalviaelectrodes.ThemodulationspectraweredetectedbyusingthescanningFabry-Perotresonator.Figure5.40showstheexperimentalresults.Thepowerratio(orpeakvalueratio)ofthefirstsidebandfrequencytothecarrierfrequencywasgivenbytheBesselfunctionasaparameterofamodulationindexuasfollows:

wherel=633nmand anddarecoplanarelectrodelengthandthegap,respectively.G,determiningthemodulationefficiency,isgivenbythefollowingequation(Minakata1978):

whereE(yz),Ez(yz)areanopticalelectricfieldandanappliedelectricfieldofthezcomponent,atpointP(yz)inthecrystal;x,y,zarethecoordinates.Aguidedwavepropagatesalongthex-axis.They-andz-axesareparallelandperpendiculartothesubstratesurface,respectively.E0=V/dandEGistheaverageappliedelectricfieldviaelectrodes,whichiscalculatedbythesuccessiveoverrelaxationmethod(Minakataetal1978).ThecalculatedGvaluewas0.32forthetestsamples.InFig.5.40,opencirclesareexperimentaldata,thethreesolidlines,asaparameterofr33,aretheoreticalcurves.When

Page 562: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

r33=3.3×10-12(m/V),thetheoreticalvaluesareingoodagreementwiththeexperimentalones.Thusitisclearthatthevalueofr33reducedtoone-tenthincomparisonwiththevirgincrystal.

Figure5.41showstherelationshipbetweentheLi%,thestrainDc/c,themeasuredr33,andtheDnequotedfromDeMichelietal(1983).ItisclearthatstrainDc/candDnearereduced,andr33isincreasedwithanincreaseinLi%.

5.6Lightresistanceoflightguides

Theopticalqualityoflightguidesisbasicallycharacterizedbytheopticallossfactorandbyradiationresistance.Theradiationresistancemustbetakenintoaccountinworkwithlasersofpowerhigherthan1mW.Atthisandhigherpower,itsdensityinthelightguidecanreachthevalueof105-106

Page 563: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page261

Fig.5.40Measuredmodulationspectraandphasemodulation

characteristics;opencirclesareexperimentaldata,threesolidlines,asparameterr33,aretheoreticalcurves

(Minakataetal1986).

Fig.5.41RelationbetweenLi%,strainDc/c,

measuredr33,andDnequotedfromDeMichellietal1983(Minakataetal1986).

Wcm-2atwhichnonlinearandthermaleffectsaffecttherefractiveindicesofthematerial.

Asisknown,thedamageofthesurfaceofoxygen-containingcrystals(LiNbO3,LiTaO3,BaTiO3,etc.)possessessomespecificfeatures:thedamageisduetoaccumulationwhichlowersthelightresistanceof

Page 564: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

thesurfaceandleadstoacharacteristictemperaturedependenceofthedamagethreshold.Zverevetal(1977)hypothesizedtheexistenceinLiNbO3ofanoxygen-depletedabsorptionsurfacelayercontainingtwotypesoftrapslinkedwithoxygenvacanciesandwithreducedNb4+.Anincreaseofabsorption,frompulsetopulse,inthesurfacelayerisduetoaccumulationofelectronsonshallowtrapswhoseabsorptioncross-sectionislargerthanthatofdeeptraps.Anincreaseoflightresistanceofthesurfacewithincreasingspecimentemperatureiscausedbytheemptyingofshallowtrapsforthetimebetweenlaserpulsesduetotheirthermoionization.

InvestigationsofradiationresistanceofLiNbO3filmsandtheirsubstrateshaveshownthatthemechanismsoftheirdamageareabsolutelyidentical.

AQ-switchedgarnet-neodymiumlaser(l=1.06mm,pulseduration10

Page 565: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page262

Table5.9DamagethresholdvaluesforsurfacesofepitaxialLiNbO3filmsondifferentsurfaces

No.Material Breakdownthreshold(GW/cm2)

Accumulationthreshold(GW/cm2)

Maximumnumberofflares

1 LiNbO3 3.2 0.45 10-15

2 LiTaO3 12 4.1 8-12

3 LiNbO3/LiNbO3 6.5 0.25 50

4 LiNbO3/LiTaO3 6.1 1 30-40

5 LiNbO3(Fe)/LiTaO3 4.5 0.3 50

ns)wasusedasaradiationsource.Theradiationwasfocusedbyashort-focuslens(f=11mm)ontofilmspecimensunderinvestigation.Theneckdiameterwas15mm.Thelaseroperatedinasingle-pulseregime,pulserecurrenceratebeingequalto2Hz(Khachaturyan1980).

Table5.9presentsaveragedvaluesofthedamagethreshold,aswellasthedamagethresholdvaluesdeterminedbytheaccumulationeffectbothinfilmsthemselvesandintheirsubstrates.

Itwasestablishedthatthethresholdintensityofthedamageofalithiumniobatefilmincreasedseveraltimesascomparedwithabulkcrystal.BreakdownthresholdsofahomoepitaxialLiNbO3filmandofaheterolayeronLiTaO3donotdiffermuch,andanintroductionofironimpurity(upto0.5at.%)lowersthethresholdby .

Analysisoftheresultsobtainsshowsthatthethebreakdownthresholdoflithiumniobatefilmsisdeterminedbyperfectionofthespecimenstructureandsurface.Zverevetal(1977)reportedthepresencein

Page 566: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

lithiumniobatecrystalsofasurfaceabsorptionlayerofabout2mmthick,buttheydidnotdescribethemethodsofsamplesurfacepreparation.Asisknown,mechanicalpolishingofthesurfaceleavesadamagedlayerofabout1mm.Mirror-smoothsurfacesofepitaxialfilmsrequirenoadditionaltreatment.Theincreaseinthedamagethresholdofthefilmisevidentlyduetothelackofadamagedsurfacelayeronit.

Investigationoftheeffectoflaserradiation(l=1.06mm)uponlithiumniobatefilmshasshownthatat'under-threshold'radiationintensityahighlydense( attheclustercentreand105-106Wcm-2ontheperiphery)clusterofmicrodomainsoccursataplaceofirradiation.Whentheirradiatedpositivez-planeundergoesselectiveetching,becauseoftheirhighdensitytheetchingholesmergetoformatypicaltracery.Clusterareasdecreasewithdecreasinglightintensity.Thesevariationsintheclusterareasarehoweverinsignificant,andthediameteroftheclusterismainlydeterminedbythediameterofthefocalspot.

Thisphenomenoncanbeinterpretedasfollows(LevanyukandOsipov1975;HolmanandGressman1982).LevanyukandOsipov(1975)haveshownthe

Page 567: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page263

possibilityofaphotoinducedchangeofspontaneouspolarizationinferroelectrics.Whenaregionofacrystalisexposedtolight,polarizationreversalinthisregionleadstotheappearanceofadepolarizingfieldwhich,actingonfreecarriersthatinteractunderimpurityionization,causestheoccurrenceoffreechargeattheboundariesofthisregion.Assoonasthelightisoff,thephotoexcitedstatesofimpuritiesrelax.Thespacechargemayremainforalongtimesinceitsonlyclean-outchannelinalow-conductivitycrystalisatemperature-inducedejectionofcarrierstrappedondonorsintotheconductionband,whichishardlyprobableatalowtemperature.Thus,whenaspecimenisexposedtolight,spontaneouspolarizationisreversedandthechargedistributionoverthebulkis'frozen'afterthelightisoff.Thismechanismdoesnotobviouslycorrespondtotheobservedphenomenonsincetheoccurrenceofmicrodomainsimpliesadecreaseofthetotalpolarizationintheexposedregion,andthe'frozen'volumechargeisclosetozero.Moreover,thepolarizationreversalregionmustbestrictlylimitedbytheexposedregion,whereastheradiation-inducedmicrodomainsarealsoobservedoutsidetheexposedregion.

Themechanismofoccurrenceofmicrodomainsduetoelasticstrainisobviouslyclosertotherealprocess.Asmentionedabove,localstraininaspecimenleadstotheappearanceofatenseregionofmicrodomainclusters.Whenahighlyintenselaserbeamisused,athermalshockisobserved.Becauseofashortradiationtreatmenttimeandasmallheattransfercoefficient,thisthermalshockcausesahighlocaltensionand,asaconsequence,theappearanceofmicrodomains.Thegeometryoftheobservedpatternisdeterminedbythecrystalsymmetry.Theclusterareaisdeterminedbythediameterofthelightspot.Thislimitationisnotstrict,andathighradiationintensitiesthetensionnearthespotmayprovesufficientfortheoccurrenceofmicrodomains.

Page 568: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Wehavecarriedoutcomparativestudiesofopticaldamageofsingle-modelightguidesformedusingautodiffusion,metaldiffusion,ion-exchangedoping(Goncharenko1967)andliquid-phaseepitaxy.Theoutputpowerwasmeasuredasafunctionofexposuretimeandoftheinputlightintensity.Thelatterwasvariedwithintherangeof0.5÷7mW,andtheobservationtimereached200h.Allthespecimensexhibitedloweringoftheoutputsignalwithsaturation.ThedependenceofoutputlightintensityontheinputintensityisdepictedinFig.5.42whichshowsthatTi:LiNbO3lightguidespossessthelowestopticalstrengthandepitaxialonesthehighest.

Experimentsonlightresistancesuggestthattheopticalstrengthoflightguidesisfirstofalldeterminedbytheconcentrationoftrapstheroleofwhichcanbeplayedbyoxygenvacanciesinthecrystallattice(particularlyforlightguidesformedinavacuum).Importantisalsotheimpurityionizationenergyvariationsinacrystal,trapdepthandequilibriumconcentrationshiftinoxidizedandreducedformsofactiveimpurities.JudgingbytheresultsreportedbyHolmanandGressman(1982),thelowlightresistanceofTi:LiNbO3isexplainedbytheappearanceinthelightguidestructureofaspecialtypeoftrapsforphotoinducedelectron-holepairsoccurringduetoanuncompensatedchargeexchangeunderthe substitutioninthecrystallatticesitesinthecourseofdiffusion.

Page 569: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page264

Fig.5.42DependenceofthepowerlossT,atthesaturationlevel,ontheinputpowerPininlightguides:1)LiNbO3:Ti;2)LiNbO3:Tl;3)out-diffused;

4)epitaxial.

5.7Photorefractivepropertiesoflightguides

Theinterferometricmethodisusedtoexaminephotorefractivepropertiesofepitaxialstructures,namely,refractiveindexchangesundertheactionofphotoactiveradiation.

Thismethodisrealizedinthesameschemeasthestudyofelectro-opticpropertiesoffilms(seeFig.5.39).Thepartofthewaveguidebetweenelectrodesisexposedtolaserradiationperpendiculartotheplaneofthewaveguidelayer.Argon(l=488,514nm;P=6W)andkrypton(l=647nm;P=8W)laserswereusedforphotorefractiverecording.

ThevaluesofinducedrefractiveindexchangeDne(t)weredeterminedfromthenumberofdisplacedfringesMintheinterferencepatterngivenbytheformulae

Theestimatesofthemaximumlight-inducedrefractiveindexchangeshowthatwithintheexperimentalerror theDnevalueispracticallyindependentofthewavelengthofrecordinglightand

Page 570: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

(Dne)maxmakesup .Thelimitingvalue(Dne)maxdoesnotpracticallydependontheLi(Nb,Ta)O3filmcompositioneither.

Thechange(Dne)maxisaresultofelectro-opticeffectinthebulkcrystal.Fromitsvalueonecanestimatethestationaryvalueoftheinternalelectricfield:

Usingthevaluesne=2.187,r33=2×10-11m/Vand(Dne)st=2×10-3atthewavelengthl=632.8nm,weobtainthelowerestimateoftheexternalelectricfieldinthefilm,Est~191kV/cmwhichagreeswiththevaluesobtainedforbulkmaterials(188kV/cmforLiNbO3and250kV/cmforLiTaO3(Schwarz1986)).

Page 571: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page265

TheobtainedEstvalueisindicativeofahighelectricresistanceoftheinvestigatedepitaxialstructuresandisnotlimitingsincethevalue(Dne)maxthatcanbereachedinexperimentsisrestrictedbyelectricbreakdownsalongthefilmsurface(whichleadstoaspontaneousloweringofDne).

Assumingthelightabsorptioncoefficientalayerintheepitaxiallayertobeclosetotheabsorptioncoefficientinthesubstrate(a<5cm-1forl=488nmanda<1cm-1forl=647nm),onecanestimatethephotorefractivesensitivitySph:

whereWistheabsorbedenergy,Iistheincidentlightintensity,tistheexposuretime.

Substitutingtypicalexperimentalvalues forl=488nm,W/cm-2andt=15min,weobtain

Theobtainedvalue(l=0.488m)isanoverestimation.Sinceforlithiumniobatetheboundaryoffundamentalabsorptionliesatl<0.4mmandforlithiumtantalateforl<0.3mm(ed.byShaskol'sky1982),onemayassumethataLi(Nb,Ta)O3filmhas,infact,alaycr(l)>lsubstr(l)for>0.3mm.

TheSvaluesobtainedforLi(Nb,Ta)O3filmsareincloseagreementwiththevaluesofphotorefractivesensitivityoflithiumniobate,S=2×10-8,andlithiumtantalate,S=6×10-11cm2/J(Kuz'minov1982),andindicatethatthewaveguidestructuresobtainedpossesshigheropticalresistancethanlithiumniobatestructures.

5.7.1Holographicformationofgratingsinopticalwaveguidelayers

Theformationofthickphase(Bragg)gratingsinopticalwaveguidesbyelectro-optic(Hammeretal1973)oracousto-optic(Kuhnetal

Page 572: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1970)effectsiswellknown.Suchgratingsmayfindapplicationinintegratedopticsdevicessuchasswitches(Kenanetal1974;TaylorandYariv1974),modulators(TaylorandYariv1974),mirrors,beamsplitters,etc.Gratingsthatareformedphotorefractively,thatis,throughchangesintheindexofrefractionoccurringwhenamaterialisilluminatedwithlightcapableofalteringthedistributionormagnitudeofthepolarizabilitiesofitsconstituents,appeartoofferthefollowingadvantages:(i)thegratingspacingcanbesmallenoughsothatarbitrarilylargediffractionanglescanbeachieved;(ii)therefractiveindexchangesproducedcanbequitelarge,consequentlyefficientdiffractiongratingsarepossible;and(iii)noexternalstructuresareneededandnooperatingpowerisrequired.

Woodetal(1975)haveproducedsuchgratingsbyintersectingguidedcoherentbeamsof0.488-mmwavelengthinwaveguidesformedonthesurfaceofLiNbO3crystalsbyeffusionoflithiumandinawaveguideformedonthesurfaceofaLiTaO3crystalbyin-diffusionofavapour-depositedlayerofNb,

Page 573: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page266

bywhichmeansavarying-compositionlayerofLiTa1-xNbxO3wasformed.Formingthegratingthiswayismuchsuperiortousingexternalbeamsintersectingatthewaveguidelayer.Theprincipaladvantagesofusingintersectingguidesbeamsarethattheavailablewritingpowerdensitiesarehigh,thepropergratingorientationisachievedautomatically,andthegratingislocatedintheregionofmaximumenergydensityoftheguidedwave.

AschematictopviewoftheexperimentalarrangementusedtowriteanddetectthegratingsisshowninFig.5.43.TheLiNbO3orLiTaO3slabandtherutileprismcouplersarerotatableasaunitabouttheaxisAAwhichliesintheslab.Thisdegreeoffreedomisrequiredfortheadjustmentofthecouplingangle.Thegratingiswrittenbythephotorefractiveeffectutilizingthe0.488µmlineonanargon-ionlaser.Thepowerdensityinthewaveguideisestimatedtobeabout1W/cm2.Writingtimesforthegratingswereinthe1-10minrange,dependingupontheironcontentofthesample.

Afterthegratingwaswritten,mirrorsM1andM2wereusedtoindependentlyadjustthedirectionandpositionofthe0.633µmbeamtomaximizetheamountof0.633µmlightdiffractedbythegrating.Sincetheacceptanceangleofthegratingis mrad,thisadjustmentiscritical.

ThegratingsineffusedwaveguidesweredoneusingY-cutcrystalsofundopedLiNbO3heatedinoxygentoformLi-deficientsurfacelayerswithhigherextraordinaryrefractiveindicesthanthebulk.SuchlayerscanbeproducedtosupportanywherefromonetoseveralhundredTEmodes;TMmodesarenotguided.Whileitwasnotdifficulttoformgratingsinsuchlayers,andwhileadiffractionbeamcouldbeobserved,itsintensitywasverylow.Thisappearedtoresultfromthelowmaximumdiffractionefficiency(generallyunder1%)obtainableinundopedorverylightlydopedLiNbO3.

Page 574: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thehighestdiffractionefficiency(definedaspowercoupledoutinthediffractedbeamdividedbysumofpowerscoupledoutinboththediffracted

Fig.5.43Schematicofapparatususedtowriteanddetectgratingsina

slabwaveguide.Thegratingvectorisparalleltothec-axisoftheLiNbO3slab.Allopticalbeampolarisationsareparallelto

thesurfaceoftheslab.PinandPoutareprismimputandoutputcouplers(Woodetal1975).

Page 575: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page267

andundiffractedbeams)inaneffusedguidewasobtainedinamultimodeguideinheavilyiron-doped(1000ppminmelt)LiNbO3.Aninterferencephotographshowedthatthisguidehadanoverallextraordinaryindexchangeofabout0.004andadiffusionlengthofabout140µm;itshouldsupportaround60TEmodesatthe0.488µmhologramwritingwavelength(KaminowandCarruthers1973).Adiffractionefficiencyof52%at0.488µmwasattained.

GratingformationwasalsostudiedinashallowguideproducedbyheatingaLiNbO3platefor14minat1118°C.Suchaguideshouldsupportonlyabout5TEmodesat0.633µm;individualmodescouldnotberesolvedexperimentally.Thisplatewasfromaboulegrownfromameltdopedwithjust50ppmiron,andthemaximumdiffractionefficiencyobtainableinthebulksample(withoutthewaveguide)foragratingwrittenwith0.488-µmlightandreadat0.633µmwas2.4%.Themaximumdiffractionefficiencywasobtainedwiththeread-beampolarizationparalleltothecaxis,thesameorientationasintheguideTEmodes.Themaximumdiffractionefficiencyat0.633µmforagratingwrittenwith0.488-µmlightinthewaveguidewas3.1%greaterthanthatobtainableinthebulkcrystal.Neitherthedifferenceingratingthickness(extentinthedirectionoftheincidentbeam)northedifferenceintheanglebetweenthewritingbeamsissufficienttoaccountfortheobserveddifference.Possiblythehigherpowerdensityintheguidedbeamledtoahighermaximumrefractiveindexchange.

Shallowwaveguidelayerswithlargeindexchanges,supportingonlyafewmodes,maybeproducedbydiffusingNbintoLiTaO3(seechapter1).

TEmodespropagatingalongtheaaxiswereusedtowrite(at0.488µm)andread(at0.633µmandat0.488µmbyblockingonewritebeam)agratinginthewaveguide.Anefficientgratingwithaperiod

Page 576: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

of1.4µmformedreadilydespitethepresumablyunpoledstateofthesample.Themaximumdiffractionefficienciesobtainedwere28%at0.633µmand65%at0.488µm.Forcomparison,nodiffractionefficiencyabove1.2%couldbeobtainedateitherwavelengthforgratingsformedthroughoutthebulkLiTaO3crystal,eitherwithorwithouttheinfusedNblayeratthesurface.

Analternativelinearphotorefractivetechniqueistheuseofshort-wave-lengthlighttoformthehologramsandlong-wavelengthlight,forwhichthephotorefractivesensitivityisnegligible,astheoperatingwavelength.Thistechniqueissatisfactoryonlyforsimpleplane-gratinghologramssincecomplexthickhologramssufferlargelossesinfidelityandefficiencyifthereadandwritewavelengthsdiffer.

Aholographicwritingtechniquewhichhastheusefuladvantagesofavoidingdestructivereadout,producingstableholograms,andretainingthelowopticallossofout-diffusedwaveguidesinundopedcrystalsisbasedupontheuseofmultiphotonabsorption(vanderLindeetal1974)forinitiatingthephotorefractiveprocess.Veberetal(1977)havedemonstratedthathologramsmayberecordedbyatwo-photonabsorptionprocessinout-diffusedLiNbO3waveguidesbyintersectingtwoguidedwaves,andthattherequiredenergyandintensityarereadilyachievedinthewaveguideusingcommerciallyavailablelasers.

Page 577: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page268

TheabsorptionofabeamoflightofintensityI(W/cm2)inatwo-photonprocessisdescribedby

wherea2isthesecond-orderabsorptioncoefficientandxisdepthinthecrystalmeasuredfromthesurfaceuponwhichthebeamisincident.Theindexchangeassociatedwiththephotorefractiveeffectisproportionaltothenumberofelectronsexcitedintotheconductionband.Forthetwo-photonprocess,thisnumberwillbeproportionalto(1/2)N,whereNisthenumberofphotonsabsorbedpercm3.Theindexchangeisthen

whereSisaproportionalityconstantcharacteristicofthematerialandthegeometry.Foranopticallythinsample,Dnisnotafunctionofxand

wheretisthetimeduringwhichthesampleisirradiatedandhnisthephotonenergy.IftheirradiationoccursintheformofMequalrectangularpulsesofdurationDt,then

whereallconstantshavebeenabsorbedintok.Thetwo-photonprocessisthenindicatedbyaquadraticdependenceofDn/MuponI.

ThisquadraticdependencewasobservedusingaNd:YAGlaserwithanintercavitydoublerwhichproduced140nspulsesof0.53µradiation.Afterreflectionfromawedgebeamsplitterthelaseroutputwasprismcoupledintoanout-diffusedwaveguideinthesurfaceofanundopedLiNbO3slab.ThevalueoftheinducedAnwasmonitoredbymeasuringthediffractionefficiencyoftheholographicgratingformedinthebeamoverlapregion.Thedatashowninthelog-logplotin

Page 578: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.5.44clearlydisplaythequadraticbehaviourindicativeofthetwo-photoneffect.Fromthemaximumpowerincidentuponthecouplingprismof2kWandestimatesofthecouplingefficiencyandeffectivewaveguidethickness,onecanestimateamaximumpowerdensityof106W/cm2inthewaveguide.Diffractionefficienciesofseveralpercentwereobservedwithnosignofsaturation.Comparisonoftheseresultswiththedata(vanderLindeetal1974)obtainedusingthesamewavelengthbutinabulkconfigurationshowsafargreatersensitivityforthewaveguidecase.Thediscrepancyislargerthancanbeaccountedforbyexperimentalerrorsorerrorsinestimatingthepowerdensityinthewaveguide.Thediscrepancymaybeduetovariations

Page 579: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page269

Table5.10DiffractionefficiencyhandphotorefractivesensitivityaSofplanarTi-diffusedwaveguidesat0.458µm(Glass,Kaminow,Ballman,Olson,1980)

Inputpower(µW)

Exposuretime(s)

EnergydensityEinguide(J/cm2)

h h/E(cm2/J)

(cm2/J)

17 120 20 0.011 0.0052 1.3×10-7

120 20 24 0.1 0.013 3.0×10-7

250 10 25 0.1 0.016 3.0×10-7

Fig.5.44Log-logplotofDn/pulseversuspowerdensityforagratingwritteninanout-diffusedLiNbO3waveguidewithpulsed0.53µradiation.Thesolidlinehasaslopeof2.Thegratingspacingis0.55µ

(Vebereta11977).

inducedbytheout-diffusionprocessortoothercompositionaldifferencesinthesamplesusedforthetwosetsofmeasurements.

5.7.2PhotorefractiveeffectinplanarTi-diffusedguides

Theformationofelementaryhologramshasbeendescribedaboveforout-diffusedLiNbO3waveguides(Glassetal1980).AsimilarmethodisemployedusingaTi-diffusedplanarguide.Thetechniqueinvolved

Page 580: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

couplingtwobeamsintotheplanarguide,asshowninFig.5.45sothattheyformathickhologrambymeansofthephotorefractiveeffect.Themagnitudeoftheindexchangecanbemeasuredfromthediffractionefficiencyofthehologram(Kogelnik1969)

where istheinteractionlengthandqistheanglebetweenthetwobeams.Thewritingbeamswerecoupledinandoutofthewaveguideusingasingleprism(Saridetal1978),andthediffractionefficiencywasprobedwithaHe-Nebeambyrotatingtheentireprism-waveguideassemblytoobtaincouplingatdifferentwavelength.

Hologramscouldnotberecordedat0.633µm,with300µWofoptical

Page 581: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page270

Fig.5.45Experimentalarrangementformeasuring

photorefractivesensitivityofplanarTi-diffusedLiNbO3waveguides.Thepolaraxisisinthe

planeofthewaveguideparalleltotheprismapex(Glassetal,1980).

power.Theresultswerethesamewithinexperimentalerrorsat0.515µm.Boththeexposureandthediffractionefficiencycouldbemeasuredwithanaccuracyofbetterthan5%,thusthemajorerrorliesintheestimateoftheenergydensityintheguide.InTable5.10theenergydensityinthewaveguidewasestimatedasfollows.Thewidthofthetwobeamswas0.3mm,andtheeffectivedepthoftheguidewastakentobe3µm.(Twomodescouldbelaunchedintheguide.)At0.458µmthetotalinsertionlossoftheentireprism-waveguideassemblywas15dB(at0.633µm,loss=10dB).Thislossisconsiderablygreaterthanthatreportedforoptimizedprisms(Saridetal1978)presumablybecausenospecialprecautionsweretakentooptimizethetaperbetweentheprismsandguidesforanywavelength.Glassetal(1980)assumedthat10dBofthelossoccurredattheinputcouplergivinganenergydensityintheguideofabout104timestheincidentpower.Anerrorinestimatingthecouplingefficiencyof±5dBleadstoanerrorintheestimatedpowerdensityintheguideofafactorof3.

Page 582: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theinducedhologramwasfoundtorelaxveryrapidlyafterexposure.Forthisreason,longexposureswerealwaysfoundtobelessefficientthanshortexposuresforrecordingholograms.ForshortexposuresthedatainTable5.10gives

Usingthevalueofa=0.08l=0.633and0.515µm(Glassetal,1980)theresultisaphotorefractivesensitivityof

Thisresultisevensmallerthanthatobtainedforthesubstratecrystal,andhencedespitetheexperimentalerrorstheyprovideconclusiveevidencethat

Page 583: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page271

TiimpuritiesdonotcontributesignificantlytothephotorefractiveeffectinLiNbO3waveguidesdirectly.Theresultsofequation(5.63)and(5.64)areconsistentwiththeinterpretationthatthephotorefractiveeffectinTi-diffusedwaveguidesisduetoresidualFe2+impuritiespresentintheLiNbO3substratematerialbeforediffusion.

Fujiwaraetal(1989)reportedonanewnovelmethodofquantifyingthephotorefractivesensitivityofTi-indiffusedLiNbO3waveguides.TheproposedmethodissimilartotheonebyBeckerandWilliamson(1985)inusingawaveguideMach-Zehnderinterferometer.Byseparatingtheirradiationlight(includingtheindexchange)andprobelight,theintensityandthewavelengthoftheirradiationlightcouldbereadilyvariedemployingthesamewaveguidepattern.Frommeasurementsofthephotorefractivesensitivityatvariousirradiationwavelengths,Fujiwaraetal(1989)estimatedthelevelofcrosstalkdegradationasafunctionofirradiationintensityandwavelength.

ThewaveguidepatternwasdesignedandfabricatedbyFujiwaraetal(1989)asshowninFig.5.46.ItisbasicallyaMach-Zehnder(MZ)interferometerforthe1.3µmwavelengthinwhichtheirradiationbeamofwavelengthlirisfedintotheupperarm.LightinputfromportAbroughtaboutaphotoinducedindexchangeandconsequentlyanasymmetryoftheopticalpathbetweenthetwointerferometerarms.Thephaseretardationoftheupperarmrelativetothatofthelowerarm,

causedtheprobeoutputtobemodulatedas

where isthelengthoftheinterferometerarms,lp,theprobe

Page 584: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wavelength,andDn(t)theaverageindexchange

Theprobelightof1.3µmwasinputfromportB.SinceopticalwavesoftwowavelengthsweremixedatoutputportC,theprobelightwaschoppedat270HzbeforeenteringportBandtheprobeoutputwasmeasuredbyalock-inamplifierplacedafteraphotodetector.Theprobelightintensitywaskeptbelow5µWtoensurethatnophotorefractiveeffectwascausedbytheprobe(Fujiwaraetal1989).PortDmonitoredanytemporalvariationofthe1.3µmprobelightduetoinputfibre-waveguidecoupling.

InFig.5.46,thewaveguidewidthis7µmandtheangleqofwaveguidebendingis1.7°.ThelengthLoftheinterferometerarmsis16mm.

Boththeirradiationandprobebeamswerefedthroughopticalfibresbutt-coupledtoinputportsAandBThequantitiesDneandDnocanbedeterminedseparatelybyadjustingtheinputprobepolarizationtotheTMandTEmode,

Page 585: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page272

Fig.5.46ConfigurationoftheTi-diffusedwaveguidepattern

fabricatedinanLiNbO3substrateforthemeasurementofaphotoinducedindexchange(Fujiwaraetal1989).

Fig.5.47Typicaltimedependenceoftheprobeoutputofthe

Mach-Zehnderinterferometeraftertheonsetofirradiationofwavelength0.633µm(Fujiwaraetal1989).

respectively.Theirradiationbeampolarizationwasadjustedtobe45°fromtheopticalaxisofthesubstrate.Thewaveguides,designedtobesinglemodeatl=1.3µm,naturallysupportafewmodesforl=0.63-1.06µm.

Atypicalrelationbetweenprobeoutputversusirradiationtimetforlu=0.633µmisshowninFig.5.47.SincetheMZinterferometerwasinitiallysymmetrical,theoutputIpisatamaximumintheunirradiatedstate.Inthefigure,theintensityratioofthefirstmaximumandthefirstminimumcorrespondstoanextinctionratioof18dB,whichwasatypicallevelforallirradiationwavelengths.Inthe'symmetric'Ybranchinwhichtheirradiationwasfedintotheupperarm,a3dBlossofthe1.3µmprobelightwasexpected.Hence,

Page 586: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

unequalpowerinthetwoarmswouldlimittheextinctionratioofthemodulatortoabout15dB.However,sincetheirradiationintheupperbranchinducesanindexchange,theYbranchbecomesasymmetric,reducingthebranchinglossfrom3dB.Thisopticallyinducedasymmetryexplainstheextinctionratiohigherthan15dB.Further,therelativelyhighextinctionratioindicatesthataspatiallyhomogeneousindexchangewasmeasured;scatteringduetospatialinhomogeneityofindexchangewasnotappreciable.

AphotoinducedindexchangeofDn10-5wasdetectedandafurtherimprovementofthesensitivityshouldbefeasiblewithdesignmodificationssuchasmodulatingtheprobelightbyanexternalfieldapplieduponthelowerarmoftheinterferometer.

Sincetheinterferometeroutputcanbeexpressedbyequation(5.65),theobservedtemporalchangeoftheoutputcanbeconvertedtothetimeevolutionof .ForallwavelengthslirandirradiationintensitiesIir,agoodfittoanexpression

Page 587: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page273

Fig.5.48PhotorefractivesensitivitySplottedasafunctionofirradiationintensityIirforeachwavelength

(Fujiwaraetal1989).

couldbeobtained,wherethebarovern(t)denotesspatialaveragingalongthepath .Thephotorefractivesensitivitywasdefinedas

Attheinitialstage,

wheretistheirradiationtimeand isthesaturatedindexchange.InobtainingIir,thewaveguidewasassumedtobeuniformlyilluminatedinsidethecrosssectionof5×10-7cm2forallirradiationwavelengths.IndeterminingthedependenceofSontheirradiationintensity,thesubstratewasannealedat180°Cfor30minaftereachmeasurementtoerasetheinducedindexchange.Theannealingtemperaturewasfoundtocompletelyreverttheinterferometertoasymmetricone.

TheopticalintensitydependenceofSforeachwavelengthisshowninFig.5.48.TheirradiationintensitywasmeasuredatthearmoftheMZinterferometerbycutbackofthewaveguide,andthespatially

Page 588: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

averagedirradiationintensityIiratthearmwascalculated.ThedependenceofSonIircanbedecomposedtothebehaviourof andtasisseeninequation(5.66).The wasfoundtobeinitiallyproportionaltoIirandthenshowedaslightsaturationathigherIir,whereastheinversetimeconstantofbuildup,1/t,wasnearlyconstantuptoIirof40W/cm2andthenshowedasharpupturnathigherirradiationintensities(Izutzuetal1982).InthefirstregionwhereIirissmall, isproportionaltoIirwhile1/tisconstant,renderingStobenearlyconstant.

Page 589: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page274

Inthesecondregion,the vsIirrelationdeviatesfromlinearity,while1/tisstillconstant,andthereforetheratio graduallydecreaseswithincreasingIir.Inthethirdregionatstillhigherirradiationintensitylevels,thesharpincreaseof1/twithIirpredominatesthebehaviourofS .Acombinedeffectofthesecondandthethirdregionsresultsinadipinthethreecurves.Themechanismforthesharpincreaseof1/tisyettobeclarified.

Intheintensity-independentregion,SdecreaseswithincreasingwavelengthforbothTMandTEmodes.TheSfortheTMmode,STM,isaboutthreetimesgreaterthanthatfortheTEmodeforalllirandIirTheratioofthephotoinducedphasechangesfortheTMandTEmodesis ,whereGTMandGTEare,respectively,theoverlapintegralsbetweentheinternallyinducedelectricfieldandtheTMandTEopticalfields(Glass1978).At1.3µm, isabout3.2(Holmesetal1983).Althoughtheoverlapintegralscouldnotatthatstagebereliablyestimated,takingtheratio accountsfortheexperimentallyobservedratioSTM/STEof3.2-3.4.

5.7.3Relaxationofindexchange

Norelaxationoftheinducedindexchangewasobservedinbulksingle-crystalTi:LiNbO3overaperiodofdays;theindexchangepersistsforalongtimeduetothehighresistivityofcrystalsandthepresenceofdeeptrappingsites.Inwaveguides,ontheotherhand,theinducedindexchangerelaxesoveraperiodofhours.Therelaxationratedecreaseswithincreasingtime,asshowninFig.5.49.Therelaxationdoesnotfollowanexponentiallaworthesumoftwoexponentials.

ThisbehaviourhadbeenobservedpreviouslyinthedecayofX-rayinducedcentresinMgO.Inthatcasethedecaywasshowntobehyperbolicnotexponential.Thisbehaviouroccursifthermallyactivatedcarriershaveahighprobabilityofbeingretrappedinsteadof

Page 590: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

recombiningattheequilibriumsites(SearleandGlass1968).InTi-diffusedLiNbO3therelaxationoftheindexchangewasfoundtobehyperbolic,i.e.Dnl/t(Glassetal1980).AgoodfittotheexperimentalrelaxationcurveisshowninFig.5.49.Thisbehaviour

Fig.5.49Relaxation(at300K)oftheinducedrefractiveindexchangeinplanarLiNbO3waveguides.ThepointsarecalculatedassumingabimoleculardecayDna/t

(Glassetal1980).

Page 591: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page275

impliesthatthetrappedcarriersareinshallowtraps(thenatureofwhichisnotknown)andthatprobabilityofrecombinationatasimilartrappingsiteislargecomparedwithrecombinationatFe3+(excitedFe2+)centres.Inanycasethedatadosuggestamuchlowerdensityofdeeptrappingsitesinthewaveguidesthaninbulkcrystals.SinceitisknownthatFe3+ionsareindeeddeeptrapsinbulkLiNbO3crystals,therelaxationbehavioursuggestsalowdensityofFe3+ionsintheTi-diffusedlayers,thatis,allunexpectedFeionsareinthereducedstate.ThiswouldalsoaccountforabimolecularrelaxationifthedensityofshallowtrapsismuchgreaterthanthedensityofFe3+ions.

ItisprobablethatTi4+ionssubstituteforNb5+ionsintheLiNbO3crystalinwhichcasetheTi-ionsitecarriesaneffectivenegativecharge.CompensationmaybeaccomplishedbyreducingimpuritiessuchasFe3+tothebivalentstate,i.e.theTiin-diffusiontendstostabilizethereducedstatesoftheimpurities.TheFe2+-Ti4+complexisneutralifitcompensatesforaLi+-Nb5+pair.Thereducedstateofseveralions(Fe2+,Mn2+,Cu1+)isknowntoenhancethephotorefractiveeffectinLiNbO3(Petersonetal1971;StaeblerandPhillips1972).

ReductionofallmultivalentimpuritiesinthecrystalisalsolikelytoresultinincreasedphotoconductivitysinceithasbeenestablishedthatthefreecarriermobilityinFe-dopedLiNbO3singlecrystalsisgreatlyincreasedinreducedcrystalsduetothereductionoftheFe3+trapdensity(StaeblerandPhillips1974).ThisfactmayexplainthehighphotoconductivityobservedinTi-diffusedLiNbO3filmscomparedwithbulkcrystals.Itshouldbepointedoutthatindevicesrequiringanappliedfield,photoconductivityleadstospacechargefieldsandindexchangesinthesamewayasthezerofieldphotorefractiveeffect.

5.7.4Photorefractiveeffectinannealedproton-exchangedLiNbO3waveguides

Page 592: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fujiwara,etal.(1992)presentedacomparativestudyofthephotorefractiveeffectinPEandAPELiNbO3waveguidesatanirradiationwavelength(lir)of488nm.Fromaquantitativemeasurementofthetemporalbehaviourofthephotoinducedindexchangeduetoirradiationatseveralintensities,theintensitydependenceofthesaturatedindexchangeaswellasthebuild-uptimeconstantinPEandAPELiNbO3waveguidesaredetermined,andthephotorefratorysensitivityinbothwaveguidesisevaluated.Theresultsindicateanincreaseinthesaturatedindexchangeofthephotorefractiveeffectduetoannealing,ahigherphotorefractivesensitivityofAPEwaveguidesthanthatofPEwaveguidesandalargercontributionofthedarkconductivitytothephotorefractiveeffectintheintensityrangeusedintheexperiments.

SevenmicrometerwidePEandAPEwaveguides,sinlgemodeatthewavelengthof1.3µm,wereusedinthemodifiedMach-Zehnderinterferometerconfiguration.ThewaveguidepatternwasdelineatedonanaluminiummaskevaporatedonthecfaceandLiNbO3substratebyetching.Proton-exchangewascarriedoutinbenzoicacidat220°Cfor88minforPEand20minforAPELiNbO3waveguides.AfterremovingtheAlmask,theAPEwaveguideswereformedbyannealingat350°Cfor6h.

Bymeasuringtheoutputintensityoftheprobelightduringirradiationexposure,theauthorsobtainedthetimedependenceofthephotoinducedindex

Page 593: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page276

changeDn(t).Figure5.50showsthetypicalresultsforDn(t)forirradiationintensities(Iir)of65.4and105.3W/cm2forAPELiNbO3waveguides.Theabovevaluesoftheintensityrepresentspatialaveragesacrossthewaveguidecross-section,assuminguniformilluminationandareestimatedbytakingintoaccountthelossesatthearmintheinterferometer.Theauthorshaveusedthevaluesof7.0×10-8cm2forPEand2.7×10-7cm2andAPEwaveguidecross-sectionsinobtainingtheirradiationintensityforalltheexperimentaldata.ThebuildupoftheindexchangeshowninFig.5.50isexponentialandiswrittenas

whereDnsisthesaturatedindexchange,andtisthebuild-uptimeconstant(Fujiwara,etal.1989).ThesolidlinesrepresentthefitofthedatapointstoEq.(5.67).

BasedontheGlassmodel,Dnsisproportionaltothesaturatedspace-chargefield(Eswhichisexpressedas wherekistheGlassconstant,aistheabsorptioncoefficient,andsdandspharethedarkandphotoconoductivityrespectively.Assumingthatthephotoconductivityisproportionaltoboththeabsorptionandtheirradiationintensity, ,theauthorsobtained

whereneistheextraordinaryindex,r33istheelectro-opticcoefficient

andaisaconstantexpressedas ,whereeistheelectroncharge,

Page 594: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.5.50Timedependenceofrefractiveindexchange

Dn(t)inAPELiNbO3waveguidesforirradiationintensitiesof65.4and105.3W/cm2atanirradiationwavelengthof488nm.Solidcurvesrepresentfitto

Eq.(5.67)(Fujiwaraetal1992).

Page 595: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page277

hnthephotonenergy,µtheelectronmobility,t0thecarrierlifetimeandfthequantumefficiency.AccordingtoEq.(5.68),inthelowerintensityregionwherethedarkconductivityispredominant,thesaturatedindexchangecanbeexpressedapproximatelyas ;therefore,parameterArepresentstheresponseofthesaturaedindexchangeinthelowerintensityregiondominatedbythedarkconductivity.Inthehigh-intensityregion,wheretheresponseisgovernedbythephotoconductivity, approachesA/B,whichisindependentofboththeirradiationintensityandopticalabsorption(Fujiawaetal1989)anddependsupontheratio(r33k/a)only.

Ontheotherhand,thebuild-uptimeconstanttcanbeexpressedas,whereeristhedielectricconstant.Theintensity

dependenceof1/tisgivenby

where .Therefore,theintensitydependenceof1/t,givenbyEq.(5.69),yieldsthevaluesofbothdark-conductive(1/td)andthephotoconductive(aa/ere0)terms.

Moreover,ifwewriteEq.(5.69)as

Fujiwaraetal.(1992)havefittedthemeasureddependenceofDns,onIirtoEq.(5.68)usingAandBasadjustiveparametersandtheresultsareshowninFig.5.51.ThevalueofAisgiveninTable5.11forbothPEandAPELiNbO3waveguides.Inbothcases,thesaturatedindexchangeDns,varieslinearlywithintensityinthecornerintensityregion,andtendstodeviateslightlyfromthelinearbehaviourinthehigherintensityregion.Thisalmostlinearbehaviourindicesthatthedark-conductivitycomponentisdominantincreatingthespace-chargefieldandthecontributionofthephotoconductivityisnegligible.Inotherwords,productBIirisstilllessthanunitywithintheintensity

Page 596: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

rangeusedintheexperiments.DnsofAPELiNbO3waveguidesisabouteighttimesthatofPEwaveguidesatirradiationintensityofupto100W/cm2ThealmostlinearbehaviourofDns(Iir)doesnotpermitanaccuratedeterminationofBbytheabovefittingprocedure.

Figure5.51alsoshowsthefitoftheintensitydependenceof1/ttoEq.(5.69).Fromtheintercept,thedarkconductivityofthePEandAPEwaveguidesisobtained,whichislistedinTable5.11.Theratiooftheslopeandtheinterceptofthe1/t(Iir)straightlinesyieldsB.ThevaluesofBarelistedinTable5.11.

FromEqs.(5.68)and(5.70),thephotorefractivesensitivityS(definedby )(Fujiwaraetal1989)isexpressedas

Figure5.52presentsaplotofthedependenceofirradiationintensityofDns/tforPEandAPEwaveguides,andinthelastcolumnofTable5.11thereis

Page 597: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page278

Fig.5.51IntensitydependenceofDnsand1/t

forPEandAPELiNbO3waveguidesatanirradiationwavelengthof488nm.Solid

andbrokenlinesrepresentthebestfitofthedatatoEqs.(5.68)and(5.69),

respectively.

Fig.5.52(right)IntensitydependenceofDnsand

1/tforPEandAPELiNbO3waveguidesatanirradiationwavelengthof488nmshowinga

linearbehaviour.Theslopeofthelinesgivesthephotorefractivesensitivityforthe

correspondingwaveguide(Fujiwaraetal1992).

Table5.11ThevaluesofparametersdescribingthephotorefractiveeffectinPEandAPELiNbO3waveguidesatanirradiationlengthof

Page 598: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

488nm(Fuyiwaraetal1992)

A×10-7(cm2/W)

sd×10-4(ohmcm)-1

B×10-3(cm2/W)

Dns×10-4

S×10-9(cm2J)

PE 0.88±0.04 1.5±0.1 0.37±0.08 2.6±0.7 0.54±0.01

APE 6.6±0.4 0.56±0.17

6.1±3.2 1.6±0.9 1.8±0.06

alistofvaluesofthephotorefractorysensitivityforPEandAPEwaveguides,obtainedfromtheslopoftwostraightlines.

Theeffectofannealingonthephotorefractivepropertiesofproton-exchangedLiNbO3waveguideswillnowbediscussed.Firstofall,theparametersAincreasesbyalmostanorderofmagnitudeasaresultofannealing.Thisiscausedbyalmostafactorof3increaseinther33coefficient(Becker1983)andadecreaseinthedarkconductivitybyalmostthesamefactor.Whilethereducedelectro-opticcoefficientinPEwaveguidesisattributedtothenear-cubicsymmetryoftheproton-richLiNbO3,thehigherdarkconductivityofPELiNbO3waveguidesmaybeaconsequenceofthepresenceofshallowdonorlevels(traps),probablyresultingfromtheincorporationofprotonsatinterstitialsites.

Page 599: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page279

5.8Energylossinwaveguides

5.8.1LossesinTi-diffusedLiNbO3waveguides

Animportantconsiderationintheperformanceofanyopticalwaveguidedeviceisitsinsertionloss,L=-10logT,whereTisthepowertransmissioncoefficient.Aconvenientmethodforobtainingthewaveguidepowerattenuationcoefficienta(indB/cm)istomeasureLasafunctionofguidelength .Foratitanium-diffusedLiNbO3stripguide,however,theproblemistochange withoutchangingthecouplingintoandoutoftheguidethroughtheendfacetsofthecrystal.Polishingtheendswithoutroundingrequiresgreatcare;butcleavinghasthepotentialforprovidingreproducibleandrectangularendswithlittledifficulty(HsuandMilton1976).However,thecleavingmethodrequiresaspecialcrystalorientationand,inaddition,reflectionsfromtheparallelendfacetsleadtostanding-wavebehaviourthatmustbetakenintoaccount.KaminowandStulz(1978)describedlossmeasurementsinacleavedcrystalcontaininga4-µm-widesingle-modeTi-diffusedwaveguide.Inordertoillustratetheisolationfrommetalelectrodesprovidedbyadielectricbufferlayer,theauthorsalsomeasuredaguideovercoatedwithametallayerseparatedfromguidebyAl2O3orSiO2.

TheexperimentalsetupisillustratedinFig.5.53.ThepowerincidentontheinputmicroscopeobjectivefromthepolarizedHe-Nelaser,Pin,ismaintainedatlessthan2.5µWtoavoidopticaldamageinthecrystalandnonlinearityintheunbiasedphotodiodeusedtomeasurePinandPout.Theoutputobjective(×20,0.57N.A.)hasasufficientlylargeaperturetocollectallthelightfromtheguide.Anirisisprovidedtoisolatethewaveguidemodefromextraneousscatteredlight.Thepolarizationoftheoutputspotisobservedtobethesameasthatoftheinput.Aheater,shownschematicallyinFig.5.53,tunestheFabry-Perotformedbythecleavedendfacetsthroughmaximaand

Page 600: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

minimabythermallyvaryingtherefractiveindexn.With ,theFresnelreflectioncoefficientR=0.14,whichiscalculatedbytheformulaR=[(n-1)/(n+1)]2.

IfT=Pout/Pin,theinsertionlossListhesumofthreecontributions:ThetwolensesintroducelossL1whichismeasuredintheabsenceofthecrystalas1.2dB.ThemismatchbetweenthecircularGaussianinputwavefunctionandthestrip-guidewavefunctionintroduceslossL2.ThecrystalintroduceslossL3duetothewaveloss, ,andtheeffectsoftheFresnelmirrors.

BurnsandHocker(1977)haveshownthatbychoosingtheGaussianinputspotradiuswtobethegeometricmeanoftheequivalentspotsizesw1andw2measuredalongtheprincipalaxesofthewaveguidemode,themismatchlossL2maybeassmallas0.8dB.Fortheguideunderinvestigation,the

Fig.5.53Intersectionlossmeasurementapparatus(KaminowandStulz1978).

Page 601: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page280

value .Thecondition wasachievedbytestingvariousmicroscopeobjectivesinordertofindonethatgaveminimumL.ForanobjectivewithnominalnumericalapertureNandpupildiameterDfocusingalaserbeamofGaussiandiameterd,KaminowandStulz(1978)estimatedwusingparaxialGaussianbeamopticsas

Forthepresentmeasurementsatl=0.63µmwithd=1mm,itwasfoundthata×10lenswithnominalN=0.25andD=8mmgavetheminimumloss.Thespotdiameter2wcalculatedfromequation(5.72)was12pro,whichmaybereasonableforanominal4µm-widestripguide,allowingforlateraldiffusionandsmallguide-substrateindexdifference.

Thetransmissionthroughthecrystalwas

iftheendfacetsdonotprovidecoherentreflections,butwithFabry-Perotbehaviourthetransmissionrangesbetween

Inequations(5.73)and(5.74)thetransmissionthroughthewaveguidewas

whereaismeasuredindB/cm.ItshouldbenotedthatbyconvertingTtoL,equations(5.73)and(5.74)give

for ,sothatL0isalsotheaverageFabry-Perotloss.

TheorientationofthecleavedcrystalisindicatedinFig.5.54.The250µmthickplateisnormaltothecrystalxaxisandcontainstheopticz

Page 602: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

axisatanangleof32.75Åfromthecleavededge.Ascribemarkismadeonthewaveguide-containingsurfaceatoneedgeoftheplate;twopairsoftweezersoneithersideofthemarkareusedtomakethebreak.Asisusualoncleavedsurfaces,anumberofterracesappears,asindicatedschematicallyinFig.5.54.TheedgesoftheterracestepsareindicatedbythedottedcurvesinFig.5.54.Thecharacteroftheterracesandthenatureofthecleavedendfacetdependuponwhetherthebreakstartsnearthenegativeorpositiveendofthezaxis.

ThecleavageplaneinLiNbO3wasidentifiedasa{102}plane.However,

Page 603: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page281

Fig.5.54Cleavedcrystalorientationshowinga4µmwideguideandevaporatedelectrodespaces9µmapart.Thedottedcurvesonthecleaved

facerepresentterracesteps;thefirstfewofthesestepsstartnearthescribemarkonthesurfaceoftheplate(Kaminowand

Stulz1978).

thereissomeambiguityinassociatingthegeneric{102}planewitheitheroftheactual(102)or(012)planesinthecrystallattice.Nevertheless,examinationofacrystallatticemodel(Megaw1973)revealsthelikelyplaneastheonewhichcontainsthelayerofvacantoctahedralsitessurroundedbyalayerofLiononesideofthecleavageandalayerofNbontheother(indicatingpossiblechargeneutrality).Theatomicspacingsacrosstheproposedcleavageplanearerelativelylarge,indicatingweakbonding.

Lightpolarizednormaltothecrystalplate,paralleltothexaxis,isanordinarywave.Theguideisorientedperpendiculartotheendfacetswithin1/4°.InsertionlossLcanbeobserved(withanoscilloscopeconnectedtothephotodiode)topassthroughFabry-Perotmaximaandminima,asinequation(5.74),asthetemperaturevariesoverafewdegreesofCentigrade.Ontheotherhand,lightpolarizedintheplaneofthecrystalplateisanextraordinarywave.Inorderthatthe

Page 604: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Poyntingvectorbeparalleltotheguideaxis,theincidentbeammustenteratabout4.5°fromthenormal(BurnsandWarner1974).Thewave-normalvectoristheguideisthenabout2°fromtheguideaxisandthewavefrontsarenolongerparalleltothecleavedfacets.Thenthelossbehaviourcorrespondstoequation(5.73)andnomaximaorminimaareobserved.

Waveguideswerefabricatedbydiffusing4µmwide180ÅthickTistripesinflowingO2usingstandardacousticgradeLiNbO3substrates.Tiwasevaporatedfromatungstencoil.ThelossmeasurementsonsuchaguideareplottedinFig.5.55.Agoodfittothedatafortheordinary-wavemaximaandminimawasobtainedfora0=1.0dB/cm,L1=-1.2dB,L2=0.8dB,andR=0.14.Theestimatedaccuracyofthelossmeasurementswas±0.2dB.Notefromequation(5.74)thatameasurementofLmaxandLminatone issufficienttoobtaina0forgivenL1,L2,andR.However,measurementsatseveralvaluesof giveaddedprecision.Theextraordinary-wavedataisfittedbyalinewiththeslopeae=1.5dB/cm,forthesameL1,L2,andR.

Metalelectrodes(consistingof300ÅofTiplus700ÅofAg)20lainwideandspaced9µmapart,wereevaporatedalongsideasimilar4µmwideguide

Page 605: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page282

Fig.5.55InsertionlossLversuswaveguidelength for

a4-µmwideTi:LiNbO3guide.Solidlinesgivemaximum,minimumandaverageloss(Lmax,

Lmin,andL0)ofFabry-Perotresonatorcalculatedfora0=1.0dB/cmandthedashed

linegivesthelossforae=2.5dB/cm.Soliddotsaremeasuredfortheordinarywaveandcirclesaremeasuredfortheextraordinary

wave(KaminowandStulz1978).

asinFig.5.54.Theattenuationcoefficientsmeasuredinthiscasewerea0=3.0dB/cmandae=2.5dB/cmindicatingthatsomeoftheopticalfieldsisincontactwiththeelectrodes.Theelectrodeswerethenstrippedoffandthemeasuredattenuationcoefficients,a0andae,werewithinexperimentalerrorofthoseobtainedinFig.5.55.

Inapracticaldevice,Rcanbereducedtozerobyantireflectioncoating,andL1andL2couldalsobemadesmallbycouplingdirectlyfromasingle-modefibrewithsuitablecircular-to-ellipticalmodetransformerortaper.Thenonlythewaveguideinsertionlossalwillremain.TheattenuationcoefficientinbulkLiNbO3isverysmall:lessthan0.1dB/cmatl=1.15µm.However,thesourceoftheexcessattenuationinthesestripwaveguidesisnotunderstoodatpresent.The

Page 606: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

attenuationmightbeduetoabsorptionbyimpuritiesintheLiNbO3substrateorbythediffusedTi,oritmightbeduetoscatteringfromgeometricalimperfectionsintheguideoronthecrystalsurface.Thus,Ti-diffusedLiNbO3waveguideswithlosssubstantiallylessthan1dB/cmarearealpossibility.

5.8.2Absorptionlossinstripguides

TomeasuretheabsorptionlossinTi-diffusedLiNbO3(Kaminowetal1980)theguideswerepreparedbydepositing300ÅofTiontotheLiNbO3substratefollowedbyheatingfor6hat980°Cinoxygenandcoolingtoroomtemperatureforseveralhours.ThefirstarrangementwastousetheelectrodegeometryshowninFig.5.56,whichhasbeenusedforelectro-opticmodulation.Coplanarelectrodesspaced9µmapartweredepositedalongtheentirelengthofthecrystaloneachsideofthe5-µmwidewaveguide.Withabout100µWoflightmodulatedat150Hzcoupledintotheendofthewaveguide,thepyroelectricsignalduetoabsorptionoflightintheguidecouldbeeasilymeasuredwithalock-inamplifier.Thepyroelectricresponsewasverysensitivetothecouplingefficiencyintothewaveguideandcouldbeusedasamoreconvenientmeansofcouplingalignmentthanthefar-fieldpatternof

Page 607: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page283

Fig.5.56ExperimentalarrangementforpyroelectricmeasurementofabsorptionlossinLiNbO3stripguides.Thepolarc-axisisintheplaneofthewaveguideat32.75°

fromthecleavedends(Glassetal1980).

thetransmittedlight.Thismethodofalignmentwouldalsolenditselftoservocontrolofthecoupling.

Thecoplanarelectrodegeometrywasnotsatisfactoryforabsolutemeasurementoftheabsorptionlossbecauseofthegeometricalcorrectionfactorforthefielddistributionbetweentheelectrodesandbecausethermaldiffusionfromthewaveguideintothesubstratewasveryrapid.Thecorrespondingattenuationofthepyroelectricsignalisalsodifficulttocalculatebecauseofthegeometry.Theattempttouseshortopticalpulsesfailedbecausetwo-photonabsorptionintheguideswasdominantatthehighintensitiesrequiredtoobtainameasurablesignal(Glass1978).

ThepreferredgeometryforabsolutemeasurementsofabsorptionlossinthewaveguidewastoevaporateelectrodesonthetwosidesofthesubstratecrystalalongtheentirelengthasshownshadedinFig.5.56.Thenthepyroelectricresponseoftheentirewaveguideandsubstratewasmeasuredwiththelock-inamplifier.Equation(5.76)canbeusedforthisgeometry,andthethermalrelaxationtimetothesurroundingsisnowlong(1s)andcanbeneglected.TodeterminethelossintheTi-diffusedwaveguide,theincidentlightisfirstinjectedintothesubstrate,andthevalueofthepowerabsorbedinacrystalofgood

Page 608: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

quality ,wheredistheopticalpathlengththroughthecrystal.Hence,thevaluesofafortheundopedsubstratearemeasured.Thenbycouplingthelightintothewaveguide(withordinarywavepolarization)thechangeinpyroelectricresponsegivesthechangeofabsorptionlossintheTi-diffusedregiondirectly.Intheseexperimentsthesignal-to-noiseratioallowedachangeof5%inthelosstobedetected.TheexperimentaldataaresummarizedinTable5.11.

Thevaluesofalistedforthewaveguideat0.514and0.488inTable5.11representalowerlimitsincethefollowingfactorscanacttodecreasethedifferencebetweenthepyroelectricsignalsforlightcoupledintowaveguideandsubstratemodes.First,theintensityoflightcoupledintothewaveguidemodemaynotbethesameasthatcoupledintothesubstratemodeeventhoughcouplingwasoptimized(insertionlossminimized)usingthefar-fieldpatternofthetransmittedlight.Withasimilarexperimentalarrangementthisfactorhasbeenmeasuredtobe0.8dB(KaminowandStulz1978).Second,theintensityofthelightintheguidemaybedecreasedbyscatteringfromtheguideintothesubstrate.Thiscanbecorrectedbymeasuringboththeinsertionlossandelectricalresponsefortwoormoredifferentwaveguidelengths.(Thetotalinsertionlossofthe1.8-cmcrystalwas5.5dBat0.633µm,increasing

Page 609: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page284

to9dBat0.488µm).Anotherfactorthatcanaffecttheaccuracyofmeasurementofwaveguidelossinthisexperimentisabsorptionofscatteredlightbythemetalelectrodes,whichinturnheatsupthecrystal.Thisdoesnotseemtohavebeensignificantintheseexperimentssincethiswouldgiveanincreasedpyroelectricresponseat0.633forlightcoupledintothewaveguidewherescatteringisgreaterthaninthesubstrates.

At0.633µm,noincreaseoflossinthewaveguideregioncouldbedetected.Thepyroelectricsignalwasthesamewhetherthelightwascoupledintothewaveguideorthesubstrate.Thusatthiswavelengththeabsorptionlossis0.3dB/cmintheguideandislimitedbythelossinthesubstrate.NoadditionalabsorptionduetoTicouldbedetectedat0.633µm.Atshorterwavelengthsincreasedlossinthewaveguidewasmeasurable.At0.515µmand0.458µmpyroelectricsignalsincreasedby50and60%,respectively,whenthebeamwascoupledintotheguidepresumablyduetotheshiftoftheabsorptionedgetothevisible.

5.8.3Lossinepitaxialwaveguides

Thelosswascalculatedfromthemeasureddistributionofscatteredlightfromthewaveguidemode.Thescatteredlightdistributionwasanalysedusingamicroscopemountedonamicromanipulator,aphotodetectorandaselectivemicrovoltmeter.ThevoltmeterreadingUwasproportionaltotheintensityofscatteredlight.HavingmeasuredthescatteredlightintensityattwopointsspacedbyadistanceL,onecancalculatetheattenuationcoefficientbytheformula

LightlossmeasurementsforseveralexaminedsampleshaveshownthatTM-modeattenuationisasarulehigherthanthatofTEmodes.ThisisevidentlyduetothefactthatTMmodesaremorecriticalto

Page 610: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

interfacenonuniformitythanTEmodes.Itshouldbenotedthatsomeofthesamplesusedintheexperimentexhibitedadecreaseoflossto0.7dB/cmforTEmodes.

Inepitaxiallayersofsolidsolutionsoflithiumniobate-tantalatetheattenuationisequaltoldB/cmforl=0.63µmand0.8dB/cmforl=1.15µm.Thephotorefractivefilmsensitivitystudiedbycomparisonwasnohigherthanthatofthesubstrate.

Thelowestattenuationisobservedin(0001)-orientedlayers.InaLiNbO3filmonaLiTaO3substratelossesdonotexceed2dB/cmforlowermodes.ItisestablishedthatlightpropagationoccursinLiNb1-yTayO3filmsfory=0÷1fororientation(0001);y=0.3÷0.99for( )andy=0.4÷0.99for( );thelightattenuationinthewaveguidedecreaseswithincreasingtantalumcontentinthefilms(Fig.5.57).Attenuationinbestsamplesdoesnotexceed1dB/cmfory>0.2,0.6and0.9fororientations(0001),( )and( ),respectively,andincreasessharplywithincreasingorderofthemode.

Absorptioninlithiumniobate-tantalatefilmsisinsignificantanddoesnotexceed0.3-0.5dB/cm,whichshowsahighstructuralperfectionofthelayer.

Page 611: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page285

Fig.5.57Waveguidepropertiesandinsertionloss

versusfilmcomposition:-effectivewaveguides;

-rapidlyattenuatingwaveguides;-nowaveguiding.

Increaseinlightattenuationwithincreasingorderofmodesisaconsequenceoflightscatteringonsubstrate-filmandfilm-airinterfaces.Thepresenceofirregularitiesoninterfacescausesenergytransferfromonewaveguidemodetoothers.Inhomogeneityoftheinterfaceisanimportantfactordeterminingefficiencyofthepracticaluseofstructures.Periodicirregularitiescanbeused(asacouplingelement)forlightoutputfromadielectricwaveguide.Butrandominhomogeneitiesthatoccurinwaveguidemanufacturingweakenapropagatingwave.Thelossfactorvariesinproportionwithroot-mean-squareroughnessofthewalls.Roughnessontheinnerfilmboundariesisapparentlyofairregularnature.Theindicatedweakattenuationoflow-ordermodesshowsthatwaveguidesobtainedthroughliquidphaseepitaxyoflithiumniobatemeetthestrictrequirementsimposedonwallsmoothnessinintegratedopticsschemes.

5.9Ferroelectricpropertiesofwaveguides

5.9.1Dielectricproperties

Thecapacity(c)andconductivity(s)ofcapacitorsformedbythe

Page 612: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

planarstructureofplatinumelectrodesonthefilmsurfaceweremeasuredtodeterminethetemperaturedependenceofdielectricpermittivity(e)offilms.Measurementswerecarriedoutinthetemperaturerangebetween20and970°Cinthe'weak'fieldregime(Emcas<104V/m)bythebridgemethod.Figure5.58representstypicaltemperaturedependencesofcandsfora6µmLiNb0.1Ta0.9O3filmonaLiTaO3substrateoforientation( ).

Typicalofthestructuresinvestigatedisthepresenceoftwopeaksofc(T)ands(T),thefirstlyinginthevicinityof580°Cforc(T)andat575°Cfors(T),thesecond,amoresmearedone,at770°Cforc(T)andat750°Cfors(T).Thepeaksofc(T)ands(T)near580°Careduetophasetransitioninthesubstrate,whichisclearfromasmallersmearingandarathersmalldisplacementofthemaximumofc(T)relativetos(T).ThisfactisalsoconfirmedbywellknowndataindicatingthatforasinglecrystalLiTaO3thephasetransitiontemperaturelieswithintherangeof550÷680°C(ed.byShaskol'skaya1982).SincephasetransitioninLiNbO3crystalsoccursat1140÷1180°C,itisnaturaltoexpectthephasetransitioninLiNb01Ta0.9O3tooccurwithintherangeof550÷1190°C,thatis,smearedmaximainc(T)ands(T)at770(750)°C

Page 613: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page286

Fig.5.58Temperaturedependenceofdielectricpropertiesof

LiNb01Ta09O3/LiTaO3:a)capacity(1)andconductivity(2);b)dielectricpermittivityofsubstrate(1)andfilm

(2),calculatedvalues.

maybeduetophasetransitioninthefilm.

Assumingthedielectricpermittivitiesofthefilme1andsubstratee2tohaveonlyonemaximum(each)thatcorrespondstotheirphasetransition,onecansolvetheproblemofestimatinge1(T)ande2(T)bymeasuringthecapacityCstofthestructure.ThefollowingfactsandassumptionsareusedtodetermineCst

1.Itcanbeeasilyshownthat

whereCstisthecapacityofthestructure, thestructureperiod(300µm),atheelectrodewidth(100µm),dthefilmdepth(6÷20µm).

2.IntherangeT>750°C, and,asfollowsfrom(5.78),e1(T)canberestoredwithasatisfactoryaccuracy.

3.Knowingthebehaviourofe1(T)forT>750°Cande(20°C)=46(WangHongandWangMing1986)onecaninterpolatee(T)totheregionT<700°Cand,usingthisinterpolation,restoree2(T)inthistemperaturerange.Fortherelationsbetweenfilmthicknessandlattice

Page 614: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

period,e2alwaysrestrictsthestructurecapacityfromabove.TheresultsofthecalculationsforthedielectricpermittivityofthefilmandsubstrateispresentedinFig.5.58b.

ThebehaviourofthestructureinstrongelectricfieldswasinvestigatedforT>750°C,wheretheinfluenceofthesubstrateissmall,sinceatthesetemperaturesitisintheparaelectricphase.AtypicaloscillogramofthedependenceofspontaneouspolarizationPsonthestrengthoftheelectricfieldEispresentedinFig.5.59.

Analysisofdielectrichysteresisloopsshowsthatat750-800°CthestrengthofthecoercivefieldforLiNb0.1Ta0.9O3filmsonLiTaO3( )makesup(2-3)×105V/mandPs=0.46C/m2.Theobservedeffluentonhysteresisloopsisobviouslyduetochargeescapefromsmalltrapsduetoredistributionoftheappliedelectricfieldcausedbyadecreaseofferroelectricimpedanceatthemomentofrepolarization(LinesandGlass1977).

Page 615: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page287

Fig.5.59OscillogramofahysteresisloopofaLiNb0.1Ta0.9O3

film.T=750°C,f=60Hz,[email protected]/m2,Ec2.3105V/m.

5.9.2Pyroelectricproperties

Thepyroelectricpropertiesoffilmsweremeasuredbythethermalpulseandlow-frequencysinusoidaltemperaturemodulationmethods(Antsygin1987).

5.9.2.1Thelow-frequencysinusoidaltemperaturemodulationmethod

TheabsolutevalueofthepyroelectriccoefficientgwasfoundusingasetupshownschematicallyinFig.5.60(Antsyginetal1986).ThebasicelementofthisdevicesetupisathermoelectricdeviceenablingthesampletemperaturetochangeaccordingtoastrictlysinusoidallawwithamplitudeDT.Thetemperaturemodulationfrequencywischosentobesuchthatitcouldprovideauniformtemperaturedistributionthroughouttheentiresamplethicknessd,thatis, ,where isthethermalrelaxationtimeofthesample.ThenatureofpyroelectriccurrentissuchthatmagnitudeofpyroelectriccurrentJpisproportionaltodT/dt.Thisisjustwhatdiffersthepyroelectriceffectfromallotherphysicalphenomenathatarecharacterizedbyvariationofcurrentthroughaspecimenwithvaryingtemperatureandpermitsdistinguishingthecontributionofpyroelectriccurrentintothetotaltemperature-inducedcurrent.Temperaturevariationinasamplebysinusoidallawisresponsibleforthesamelawforvariationof

Page 616: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

pyroelectriccurrentJpbutwithaphaseshiftp/2.

Thismethodhasbeenemployedtoinvestigateferroelectriccrystals(CarnandSharp1982).Uniformtemperaturedistributionthroughoutthecrystalthicknesscanbeattainedonlyatverylowmodulationfrequencieswsince .Determinationofthephaseshiftbetweenpyroelectricandnonpyroelectriccurrentsischaracterizedbylowsensitivity.Thephaseshiftj,ascanbereadilyshown(CarnandSharp1982),isequaltoarctan(Jpmax/Jnpmax).Examinationofthinferroelectricfilmsbythismethodhasmadeitpossibletosingleoutthecontributionofpyroelectriccurrentandtomeasurelvaluesuptoabout3%.Thepyroelectriccoefficientisfoundfromtherelationl=Jp.max/(SDTw),wheresisthesamplearea.

5.9.2.2Thethermalpulsemethod

Thedirectionofpyroelectriccurrentinaferroelectricisdeterminedbythe

Page 617: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page288

Fig.5.60Schematicofadeviceformeasuringpyroelectriccoefficient.

1)thermalbath;2)sample;3)temperaturegauges;4)meansampletemperaturegauges;5)heatconductingbufferlayer;6)thermocouple;7)electrometer;8,9)amplifiers;

10)two-coordinatex,yrecorder;11,12)unitsforthermocouplecontrol;13)printer;14)crate'Camak';15)computer;16)display;

17)monitor.

spontaneouspolarizationvectorPs,whichfactcanbeusedininvestigationofpolarizationdistributionthroughoutthesamplethickness.

Themethodconsistsinprobingasamplebyshortradiationpulsesthatheatthethinabsorbingelectrode.Movingfromtheheatedelectrodeinthesampletowardstheoppositeelectrode,thethermalfluxinducestheoccurrenceofpyroelectricsignal.Theinitialpolarityofthiscurrentisdeterminedbythepolarizationdirectioninthevicinityoftheabsorbingelectrode.Ifinabulkferroelectricthepolarizationdirectionreverses(head-ondomainstructure),thisisexpressed,beginningfromsomeinstantoftime,asasharpdecreaseinthemagnitudeofofpyroelectriccurrentevenreachingpolarizationreversal.Thethermalpulsemethodshowsahigherresolutioninfilmstudiesthanincrystalstudies(Chynoweth1956).Thispromotedinvestigationofpyroelectricprocessesdirectlyneartheelectrodesurface.Thetimeresolutionofabout10-9sattainedinthe

Page 618: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

measurementscorrespondstothethicknessresolutionof3-5×l0-8m.Analysisoftheeffectofradiationonbothelectrodesmadeitpossibletodirectlydiscoverthehead-ondomainstructureinthesample.Suchastructurecausesoppositepyroelectriccurrentpolarityuponirradiationofeachoftheelectrodes.Currentpolarityisdeterminedonlybythepolarizationdirectionanddoesnotdependontheheatdistributiondirection.

Structureswiththecaxisnormaltothesubstrateplanewereusedinmeasurements;chromiumfilms(10-7minthicknessand(1-3)×10-6m2inarea)manufacturedbythethermalsputteringmethodwereusedaselectrodes.

AtypicaloscillogramofpulsepyroelectricsignalsispresentedinFig.5.61.Analysisofthebehaviourofpulsepyroelectriccurrentresponseofthestructuretothelightpulsebothfromthefilmandsubstratehasshownthatspontaneouspolarizationofthefilmisalignedalongthesubstratepolari-

Page 619: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page289

zationdirection,andthepyroelectriccoefficientoffilmsestimatedbytheinitialslopeofthecurrentresponseis grad.Thisvalueagreeswellwith gradobtainedforsolidsolutionsofthesamecomposition(WangHongandWangMing1986),whichisindicativeofhighqualityoftheepitaxialstructure.

Theobserveddecreaseofpyroelectricresponsewith s,aswellasthenonlineardependenceofpyroelectricstressonloadimpedanceatsubsonictemperaturemodulationfrequenciesindicatetheexistenceofanonferroelectriclayerinthestructure.Theabsenceofcurrentresponsedelayrelativetothelightpulse(under10-8s)uponlightabsorptionbyelectrodesbothonthesideofthefilmandsubstrateimpliesthatthislayerislocatedonthefilm-substrateinterface.

5.10Temperaturedependenceofthermoelectriccoefficientsoflithiumniobateandlithiumtantalate

Thermoelectriceffectsinlithiumniobateandlithiumtantalateferroelectricsaffectgreatlythefilmcrystallizationconditions.

Khachaturyanetal(1988)investigatedthermoelectricSeebeck,ThomsonandPeltiereffectsforLiNbO3andLiTaO3singlecrystalsandtheirtemperaturedependenceintherangeof300-1400K.

Themainresultsofthethermodynamictheoryofthermoelectricphenomenacomedowntoestablishingrelationshipbetweenvariousthermoelectriceffects(SamoylovichandKorenblit1953),namely:

wheretisThomson'scoefficient,IIisPeltier'scoefficient,aisSeebeck'scoefficientandTistemperature.

So,havingmeasuredtheSeebeckcoefficientforaparticularmaterialonecanreadilyobtainthevaluesofPeltierandThomsoncoefficients.

Page 620: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

TheexperimentalsetupfordeterminationofSeebeckcoefficientincludedamainfurnace,upperandlowermicroheaters,thermocouplesandaspecimen(RekasandWierzbicka1983).

Fig.5.61Oscillogramofapyroelectricsignaltolightpulse.1)lightpulse,2)pyroelectricresponseofthefilm,

3)responseofthesubstrate.

Page 621: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page290

Fig.5.62TemperaturedependenceofSeebeckcoefficientsofLiNbO3andLiTaO3.

Table5.12Thermoelectriccoefficientsoflithiumniobateandtantalate

LiNbO3 LiTaO3

T,K amV/deg IImV tmV/deg amV/deg IImV tmV/deg

700 0.3 210 -5.2 0.04 28 1.2

750 0.05 37.5 -5.1 0.13 97.5 5.52

800 -0.65 -520 -5.0 0.91 728 6.9

850 -0.65 -552.5 -5.0 1.12 952 7

900 -0.2 -180 5 1.5 1350 7.1

950 0 0 5.1 1.69 1605.5 7.2

1000 0.2 200 5.1 1.66 1660 1.1

1050 0.35 367.5 5.2 1.6 1680 -1.6

1100 0.2 220 -2.5 1.44 1584 -1.5

1150 0.1 115 -2.4 1 1150 -9

Page 622: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1200 0.1 120 -0.37 0.8 960 -9.1

1250 0.1 125 -0.36 0.53 662.5 -9.1

SamplesofLiNbO3andLiTaO3crystals(10×10×10mm)werepositionedbetweentwoplatinumelectrodes.Thecrystalsurfacescontactingtheelectrodeswascoveredwithplatinumniello.Twoinnermicroheatersweremountedonrodsandenabledtemperaturegradientstooccurthroughoutthespecimenthickness.Temperaturewascontrolledbythreeplatinum-rhodiumthermocouples,measurementswerecarriedoutbythecompensationmethodinairataconstantnormalpressure,thetemperaturegradientwas10deg/cm.Thethermo-electromotiveforceofcrystalswasmeasuredwithinexperimentalerror

Page 623: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page291

of1-3%.Figure5.62presentsthetemperaturedependenceoftheSeebeckcoefficient(a)forLiNbO3andLiTaO3singlecrystals.Withintheexperimentalerror,nodependenceofaoncrystallographicorientationofthecrystalwasobserved.Thedislocationdensityof(2-4)×104cm-2remainedunalteredinallthespecimens.

AsisseeninFig.5.62,the300-1400KtemperaturevariationoftheSeebeckcoefficientforLiNbO3canbedividedintothreetemperatureranges.Intherangeof300-750KtheSeebeckcoefficientstartsincreasingandthenfallssharply,whichsuggestsanintricatenatureofconductionofLiNbO3singlecrystalsintheindicatedtemperaturerange.AtlowtemperaturesthereprevailstheimpurityconductionofLiNbO3(Kuz'minov1987;Kuz'minov1975).Inthetemperaturerangeof750-950K,achangessign,whichisindicativeofthecontributionoftheelectroncomponenttotheintrinsicconduction.AsubsequentsignchangeintheSeebeckcoefficientinthetemperaturerangeof950-1400KagreeswiththefactthatthemaincarriersareLi+ions(D'yakovetal1985).

ThevaluesofthecoefficientaforLiTaO3arepositiveintheentiretemperaturerangeunderexamination.Atthephasetransitiontemperature(T=933K)amaximumisobserved,whichsuggeststheinfluenceofthephasetransitionuponthecharacterofconduction.ItisobviousthatthemaincarriersinLiTaO3singlecrystalsareLi+ions.ComparingthevaluesofSeebeckcoefficientsforlithiumniobateandtantalatesinglecrystalswithintheinvestigatedtemperaturerangeonecanassumethatthehighertheavalue,thehighertheconductionofthematerial.For

ThecalculatedvaluesofPeltierandThomsoncoefficientsintheindicatedtemperaturerangearetabulatedinTable5.12whichshowsthatforlithiumniobatethePeltiercoefficientchangesfrom-662.5

Page 624: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

mVto367.5mV,whileforlithiumtantalateitchangesfrom28mVto1680mV.Attemperaturesabove1200K,Thomsoncoefficientsforlithiumniobateandtantalatedonotchangeappreciably.

Page 625: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page292

6Thin-FilmStructuresinIntegratedOpticsIntegratedopticsismainlydevelopedinthedirectionofintegrationofwaveguideandoptoelectroniccomponentsonasinglesubstratetotheeffectofcreationofmultifunctionaldevices.

Opticalfilmwaveguidesarethebasiccomponentsofintegro-opticalmodulators,switchers,filters,nonlinearopticalfrequencyconverters,commutators,andlightbeamdeflectorsforcorrelationandspectralanalysisoflightsignalsduringtheirprocessing.Hybridbistableopticaldevicesonthebasisofchannelwaveguidesoperatingatsmalllevelsofopticalpowerareusedassensorsoflightintensityinautomaticsystemsandopticalmultivibrators.

Forintegralnonlinearopticaldevices,channelwaveguidesareofgreatinterestandhaveadvantagesoverplanarones.Propagationofalightbeamalongachannelincreasestheluminousenergyconcentrationand,accordingly,theefficiencyofnonlinearconversion.Thephasematchingconditionscanbemaintainedbyvaryingthegeometricalsizeofwaveguides.

Inthischapter,wearemainlyconcernedwithdevicesbasedonwaveguidelithiumniobateandtantalatestructuresandinvolvingelectro-opticeffect.

Asdistinctfromthediffusionmethod,liquid-phaseepitaxyforobtaininglightguidestructuresinlithiumniobate-tantalatesystemsisveryflexibleandsuggestsnewpossibilitiesforcreatingintegro-opticschemeswithintegrationofelementsbothinhorizontalandverticalplanes.Inaverticallyintegratedstructure,waveguidelayersareseparatedbylayersofasolidsolutionoflithiumniobate-tantalatewith

Page 626: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

alowerrefractiveindexwhichplaystheroleofanopticalinsulator.Nootherinsulatinglayersofothermaterials(SiO2,Al2O3)appliedinanumberofintegratedsystemsareneededheresinceseparatinglayersaregrowninaunifiedtechnologicalcycleofobtainingdevicestructures.

WeshallnowcarryoutacomparisonstudyofTi-diffusionandepitaxialtechniquesofintegro-opticdevicesonanexampleofelectro-opticswitchingelementsincrossing-channelwaveguidesorelectro-opticX-switchers(Betts

Page 627: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page293

etal1986).Single-modeswitchersareoftheutmostpracticalinterest.Inthiscase,forasufficientlysmallwidthofwaveguides,theoperationofsuchaswitcherisbasedoninterferenceofevenandoddmodesintheintersectionregionandonelectriccontroloftheirphaserelations(Neyer1984).Switchersofthistypehavearathersimpledesignandarefairlystableascomparedtoothertypesofswitchers(Bettsetal1986).Thecontrolstructureconsistsoftwometallicelectrodeswithagapof1÷3µmpositionedonthelightguidestructureandorientedalongthelongdiagonalofarhombforanefficienteven-modecontrol.Toreducethetotallossesthistypeofdevice,thereisabufferlayerbetweenmetallicstripsandthelightguidelayer.

Thetechnologicalprocessofmanufacturingsuchlightguidesusingthediffusionmethodincludesthefollowingoperations:

-depositionofacontrolledwidthoftitanium,

-photolithographyforobtainingapictureofchannellightguides,

-titaniumdiffusionforobtainingthelightguidestructure,

-depositionofaSiO2orAl2O3insulatinglayer,

-surfacemetallizationfortheformationofacontrolledstructure,

-placinginsidethedevice.

Itshouldbenotedthatthediffusionprocessallowstheformationofonlynonsymmetriclightguidestructures,whichsuggestsdifficultiesinafurthermatchingofsuchastructurewithfibrespossessingaxialsymmetry.Thecalculationsshow(Lazarev1986)thatevenuponaprecisiondiffusionofTiwiththepurposeofobtaininganoptimalprofileofachannellightguideformatchingwithaxial-symmetricfibresthereoccurmorethan10%oflossesduetomatching.Fibresarenowtypicallyface-adjustedtointegro-opticaldevices,whichrequires

Page 628: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

polishingofdevicefaces.ThepositionofTi-diffusivelightguidesdirectlyinthenear-surfaceregionimposesstrictrequirementsupontheprocessingofplatefacestoremoveoravoidpossiblechippingsintheregionofthelightguidingstructure.

Whenadeviceismadeusingepitaxialtechnique,thenaftertitaniumisdeposedandphotolithographyisperformed,theimmersedlightguidingstructuresareformedbythediffusion-filmmethod.Thisyieldssymmetriclightguidingstructuresallowingadecreaseoflossesinthecourseoffibreadjustment.Italsolowerstherequirementsonthesizeofchippingsduringfacepolishing,andaninsulatinglayerneednotbespeciallydepositedsinceitisformedinthetechnologicalprocessofobtainingimmersedlightguidingstructures.

6.1Principalcharacteristicsofwaveguidingelectro-opticmodulators

Modulatorsarecharacterizedbyacontrolvoltage,bythebandwidth,bythemaximalmodulationdepthandbyinsertionlosses(Tamir1979;MustelandParygin1970).WeshallconsiderthesecharacteristicsfollowingAlferness(1982).

6.1.1Controlvoltage

Animportantcharacteristicofmodulatoriscontrolvoltage(aminimalvoltageforwhichthemodulationdepthismaximal).Inspiteofthefactthatthe

Page 629: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page294

Fig.6.1Integro-opticphasemodulator.a)generalview;b)sideview(Alferness1982).

magnitudeofcontrolvoltagedependsonaspecificmodulatorscheme,thebasicconclusionsontheeffectoftheexternalfieldcanbemadeonthebasisofasimplephasemodulator(Fig.6.1).Ifelectrodesareplacedonbothsidesofawaveguide,thehorizontalcomponentoftheelectricfield isused,whileifanelectrodeliesonthewaveguidesurface,theverticalcomponentoftheelectricfield isused.Inthelattercase,todecreaselightlossundertheelectrodes,especiallyforpolarizationoftheperpendicularplaneofthecrystal(TM-modes),abufferlayerofSiO2orAl2O3shouldnecessarilybedepositeduponthewaveguidesurface(Ucharaetal1975).Inbothcases,crystalorientationissochosenthattheelectro-opticcoefficientr33hasthehighestvalue.Whenlightpropagatesbetweentheelectrodes,thecoefficientr33isusedforTE-modesonthey-cut,whereaswhenlightpropagatesundertheelectrodes,r33isusedforTM-modesonthez-cut.

Therefractiveindexvariationundertheactionofthefieldduetoelectro-opticeffectisgivenbytheexpression

Page 630: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

wheredistheinterelectrodegap,Gistheoverlapintegraloftheelectrodefieldandthemodefield: dA,whereEisanormalizedfieldofthemode,xisanappliedelectricfield,Visvoltage.

Theconditionfora100%modulationdepthcanbewrittenas

whereDb=(2p/l)dn*,Listheinteractionlengthbetweentheappliedfield

Page 631: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page295

andthelight,p=1anddependsonthetypeofmodulator.So,

ThetransmissionbandwidthcanbeshowntobeinverselyproportionaltoL(Alferness1982).So,tobroadenthebanditisnecessarytodecreasethequantityV×Lbyminimizingthegeometricparameterd/G.Tothisendoneshouldknowhowtheoverlapintegraldependsontheinterelectrodegap,onthemagnitudeofthemodefield,ontheelectricfieldcomponent( or )andonthepositionofthewaveguiderelativetotheelectrodes.Thedependenceoftheoverlapintegralontheseparameters(forhalf-infiniteelectrodes)wasconsideredbyMarcuse(1982).Themodefielddistributioninwidth(withdimension )isassumedtobedescribedbytheGaussianfunctionandindepth(withdimension )bytheHermitian-Gaussianfunction.Forawaveguidelyingbetweentheelectrodesinagapdequaltoorslightlygreaterthanthemodedimension,symmetricpositionrelativetotheseelectrodesisoptimal.Iftheverticalcomponentoftheelectrodefieldisused,thenoptimalisthecaseofcoincidentinneredgeoftheelectrodewiththemodefieldedge(withdimension (Fig.6.1)).Figure6.2illustratesthedependenceoftheproductofthefield-inducedchangeoftheeffectiverefractiveindexbythemodewidth ,onthenormalizedgapsize forthecasewhenboththeverticalandhorizontalfieldcomponentsareused(Marcuse1982).Thesedependencesshowthatanincreaseofdn*requiresadecreaseofthewaveguidemodeandofagapbetweentheelectrodes, .Forthecaseoftheuseofthis requirementislesscriticalthaninthecaseof (Alferness1982).

Aphotorefractiveeffectmayresultinasignificantincreaseofthecontrolvoltage(ataconstantvoltage)duetocompensationoftheappliedfieldbyphotoelectrons.Therearetworeasonsforthis:first,thephotoconductivityintheexternalfieldand,second,the

Page 632: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

photogalvaniceffect(Schmidtetal1980;YamadaandMinakata1981).

6.1.2Bandwidth

Thewidthofthemodulatorfrequencybandisdeterminedbyelectrodecapacitanceprovidedthattheelectrodelengthismuchsmallerthanthewavelengthoftheradiofrequencysignal.Itcanbeshownthatthecapacitanceofthesystemofelectrodesperunitlengthisequalto(Alferness1982)

wherers=(d+1)/2G, ,Gistheelectrodewidth,for(LiNbO3)isthedielectricconstantandKisthe

ellipticintegral.

TheratioC/Ldecreasesandthebandwidthincreases(Df=(pRC)-1,Ris

Page 633: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page296

Fig.6.2Theproductofthefield-inducedeffectiverefractiveindexbythewidthofthemode andtheoverlapintegralFasfunctionsofnormalisedvalueofthegapforfields

(a)and (b)(Alferness1982).

Fig.6.3CapacityofanelectrodesystemperunitlengthC/Land

productofthebandwidthbytheelectrodelengthDfRC.Lversusthevalueoftheinterelectrodegap-electrodewidthsratiod/G(Alferness1982).

theloadresistance)withincreasingratiod/G(Fig.6.3).Sincetheproductofthecriticalfrequency,whichisdeterminedbythesignalpassagetime,bytheelectrodelength cm(cishespeedoflight),itisinexpedienttoused/G>0.8.

Itisknownfromtheforegoingthattolowerthecontrolvoltage,thegapbetweentheelectrodesshouldbesmall.Thus,toobtainawideband,itisnecessarytoreducetheelectrodewidth(since ).A

Page 634: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

reductionoftheelectrodewidthis,however,limitedbytwofactors.First,itshouldnotbemademuchlessthanthewaveguidewidthlesttheoverlapoftheelectricandopticalfieldsshouldbesmall.Second,whentheelectrodewidthissmall,theresistanceincreasesandthebandwidthdecreasesaccordingly.

Sincethecontrolvoltageandthebandwidthareinverselyproportionaltothedevicelength,thecontrolvoltage-to-thebandwidthratiocanbethoughofasafigureofmerit:

Page 635: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page297

TheratioV/Dfdecreaseswithdecreasinggap(downto )becauseC/Lincreasesslower(Fig.6.3)thandecreasesthecontrolvoltage(Fig.6.2).Butastheinequality decreases,anincreaseofC/Lwillnotbecompensatedbytheloweringofthecontrolvoltage.So,V/Dfhasaminimumford/w<0.5and .InsofarasC/Ldependslogarithmicallyond/G,theelectrodecanbewidenedwithoutanoticeableincreaseofV/Df.

Thesmallestattainablegapisrestrictedbythesmallestattainablemodedimension(Alferness1982): andfrom therefollows

[email protected],Dn=0.01,l=0.63µm:dmin=1µm.Thus,

(since ford/G=0.5),wheretheoverlapintegralG=0.3or0.2formodulatorsthatemploy or ,respectively.Assumingp=1,R=50Ohmandneglectingtheelectroderesistance,onecanobtaintheminimalvalueV/Df:0.5V/GHzand1.5V/GHzforl=0.63µmand1.32µm,respectively(Alferness1982).

6.1.3Modulationdepthandinsertionlosses

SupposethatwithoutanappliedvoltagetheintensityoflightcomingoutofthemodulatorisequaltoI0.Thenthemodulationdepthisdeterminedas(Barnoski1974):

whereIistheintensityoflightatacorrespondingvoltage.Whenacontrol(halfwave)voltageisapplied,themodulationdepthiscalledamaximalmodulationdepth.Theactionofthemajorityofmodulatorsisbasedonthephasechange( )whichistransformedintothechangeofintensity.Forinterferentionalmodulators,thedependence

Page 636: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ofthemodulationdepthonthephaseshifthastheform(Barnoski1974):

whileforwaveguidingdevicesemployingphasechangeintheconnectionoftwowaveguidesortwowaveguidemode

Page 637: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page298

whereListheinteractionlengthandkisthecouplingconstant.

Thetheoreticallyadmissiblemodulationdepthis100%,whileinexperimentitisnormallyalittleless(about96%)duetolightscatteringonwaveguidedefectsandontheelectrodestructure,andalsoduetoconversionoflightpolarization.Thefirstreasonresultsfromthetechnologicaldifficultiesofmanufacturingawaveguidemodulator(micronsize,highclassofsurfacepolishing,etc.).Thesecondisduetothephotorefractiveeffectandtheassociatedlightpolarizationconversion.Thedependenceofthemodulationdepthofawaveguidemodulatoronthepolarizationoflightis,inturn,aconsequenceoftwofacts.First,theelectro-opticcoefficientsarenotthesameforTE-andTM-waves:inthecaseofz(y)-cutoflithiumniobate,whenthefieldisdirectedalongthezaxisforaTE(TM)-waveDb~r13V,andforaTM(TE)-waveDb~r33Vandr33/r13=3;second,theincrementoftherefractiveindex,Dn,isnotthesameforTE-andTM-waves(Dne>Dno),andthereforethemagnitudeofthemodefieldandthecouplingcoefficientdepend,inthecaseofmatchedwaveguides,onthepolarizationoflight(Leonberger1983).

Adecreaseinthemodulationdepthduetoconversionofpolarizationoflightonthepassivepartofthemodulator(unaffectedbytheelectricfield)canbestoppedbyplacingatthemodulatorexitananalyserallowingonlyonepolarizationoflight(eitheraTM-oraTE-wave).Butthiswillstimulatetheinsertionloss.

Theinsertionlossisdeterminedasfollows(Barnoski1974):

whereIinistheintensityoflightenteringthemodulator.Insertionlossesalsoincludetheinputandoutputlossesandthosedueto

Page 638: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

propagationalongthemodulatingstructure.

Itshouldbeemphasizedthattheinsertionlosseswillalsobeincreasedbyaphotoinducedradiationoutputfromthewaveguides.

6.2Photoinducedpolarizationconversion

Ifvoltageisappliedtoelectrodesplacedonbothsidesofawaveguide(forthey-cutoflithiumniobate),thenalongwiththephasemodulationtheamplitudemodulationofradiationmayoccur.RadiationintensityvariationmustbearesultofphasemismatchbetweenTE-andTM-wavesand,therefore,ofachangeinthedegreeofpolarizationconversion.Theestimationbyformula(6.1)yieldsacontrolvoltageofabout7VforL=10mm,d=10µm,l=0.63µmandG=0.3.SuchamplitudemodulationwasexperimentallydiscoveredbyZolotovetal(1983).

Thewaveguidesweremanufacturedbytitaniumthermodiffusionintolithiumniobatecrystals(they-cut)fromstrips,15µmwideand300Åthick,depositedalongthexaxis.Thediffusionwascarriedoutfor6hinairatatemperature

Page 639: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page299

of960°C.Thentheelectrodestructure(twoparallelaluminiumstrips15µmwideand14mmlongwerephotolithographicallydepositedonbothsidesofthewaveguideonthecrystalsurface.Thedistancebetweentheelectrodeswas10µm(Fig.6.1).

Atthewavelengthoflaserradiation,0.63pro,an wasexcitedwhosepolarizationcorrespondedtothatofanordinarywave.Withanincreaseofthepoweroflightintroducedtothewaveguide,thepowerwasloweredandan appearedwhichcorrespondedtoanextraordinarywave.ThedegreeofpolarizationconversiondependedonthepoweroflightintroducedtothewaveguideP,andforP@25µWtheconversionwaspracticallycomplete( ).

Thenthepotentialdifferencewasappliedtotheelectrodes,andthepowerofthe wasmeasuredasafunctionofvoltageV.Thevoltageatwhichtheconversionstopped(thecontrolvoltage)andthe onlywasobservedattheoutputincreasedwithincreasingpoweroflightfedintothewaveguide.Thisisevidentlyassociatedwithanincreaseinthemodulationdepthoftherefractiveindexintheholographicgratingand,therefore,withanincreaseofthecouplingconstantbetweenthe and .Whenthelightpowerwasabout5µW,thedegreeofconversion(Pe/Po~60%)wasabout60%andthecontrolvoltagewasequalto~2.5V.Butaftersometime(~30s)thepolarizationreturnedtoitsinitialstatewhichwaslikelyduetothenewlyinducedholographicgratingrestoringphasematchingbetweenthe and modesandduetoacompensationoftheappliedfieldbyphotoelectrons.Ifthepotentialdifferenceofoppositepolaritywasappliedtotheelectrodes,thenwithanincreaseofthevoltagethepowerofthe firstgrew(themaximumwasobservedforV@-3V)andthenstartedfalling.Thisislikelytosuggestthatwhenradiationpolarizationconversionisincomplete,theholographicgratingdoesnotyieldaperfectmatchingbetweenmodesoftheordinaryandextraordinarypolarizationintheabsenceofvoltage

Page 640: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

betweentheelectrodes.Whenthepoweroflightwasabout25µW,thedegreeofconversionmadeup95%andthecontrolvoltageincreasedupto7V.Themodulationcurvewasobservedonanoscillographscreentotheinputofwhichasignalwassentfromthephotomultiplierthatregisteredthepoweroflightcomingfromthewaveguide,andasawtoothvoltagewiththeamplitudeof8Vwasappliedtotheelectrodesduring1µs.Thepowerofthe fell( µw)asshowninFig.6.4a,whilethepowerofthe

Fig.6.4Extraordinary(a)andordinary(b)wave

polarizationpowervsvoltage(Kazansky1985).

Page 641: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page300

-modegrewasshowninFig.6.4b.Whileattheinitialinstantoftimethepowerofthe felltotheminimumatavoltageof7V,afterafewsecondsthemodulationcurvebecamemoregentle(thecontrolvoltageincreased)anditsmaximumwasdisplacedtowardsthehighervoltage.Suchabehaviourofthedependenceofthepoweronthevoltagecanbeexplainedbytheinfluenceofthefieldofspacechangesinducedbytheeffectoftheconstantcomponentofthesawtoothvoltageuponthepolarizationconversionmechanism.Itshouldbenotedthatthemodulationbandwasdeterminednotbytheslowphotorefractionprocesscausedbythechangedriftbutratherby

theelectrodecapacitancewhichinthegivencasemadeup7picofarads,whichcorrespondstothebandwidthof900MHz

calculatedforalodeof50Ohm.

Thepoweroflightcomingfromthewaveguideafterananalysertransmittingradiationpolarizedatanangleof45°tothedirectionofpolarizationofthe and wasmeasuredasafunctionofthevoltage.Herechangedthecharacterofpolarizationoflightundertheactionofvoltagewhichaffectedthephasedifferencebetweenthe

andthe transformedfromthe bymeansofthephotorefractiveeffect(Fig.6.5).

Fig.6.5Thepoweroflightpolarisedatananglep/4tothewaveguideplaneversusvoltage(Kazansky1985).

Itisnoteworthythatontheonehandthediscoveredamplitude

Page 642: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

radiationmodulationisundesirablefortheoperationofaphasemodulator,butontheotherhand,theelectro-opticcontroloveraphotoinducedradiationpolarizationconversionconfirmsthemechanismofthisneweffectbasedonphasematchingoftheordinaryandextraordinarypolarizationmodesusingabulkphasegrating;theelectro-opticcontrolcanalsobeusedforlightmodulation.

Thephasemodulatorbelongstosometypesofamplitudeintegro-opticmodulatorsusingcoupledwaveguides(Papuchonetal1975;KogelnikandSchmidt1976)andinterferentionalmodulators(Papuchon1977).

6.3WaveguidemodulatorsonthebasisofTi:LiNbO3

6.3.1Electro-opticmodulatoroncoupledchannelwaveguideswithavariableDb

Themainshortcomingofthemodulatoroncoupledwaveguidesisalowcontrastof90%(Bozhevil'nyetal1981).Toreachahighcontrast,thecouplinglengthbetweenthewaveguidesshouldbeequaltoanintegral(odd)number

Page 643: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page301

ofpumpinglengths(Papuchonetal1975),whichisdifficultfromapracticalpointofview.Toeliminatethisdefect,suchelectrodesweresuggestedthatcreateincoupledwaveguidesthedifferenceofpropagationconstantsDb=b2-b1whichreversessignanintegralnumberoftimesequaltothenumberofpumpinglengths.Usingthismethodinatwo-sectiondevicegaveanon-offratioof27dBforacontrolvoltageof30V(SchmidtandKogelnik1976).

Thesolutionofthesystemofequations(Kazinsky1985)

forcoupledwaveguideswithavariablesignofDbinthematrixformis(KogelnikandSchmidt1976)

where isthematrixforthemodulatorregionwith

; ;

sin

B1=ksin[x(k2+d2)1/2]/(k2+d2)1/2,wherek=2p/listhecouplingconstant,

Page 644: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.6.6Modulatoronthebasisofcoupledwaveguides

withavariableDb.1,2)waveguide(Zolotoveta11982).

Page 645: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page302

Fig.6.7Statediagramofamodulatoronthe

basisofcoupledwaveguides(KogelnikandSchmidt1976).

x=L/2,listhepumpinglength,R0andS0arethewaveamplitudesatthewaveguideinput.IfS0=0,thentheconditionforthecrosstalk,thatis,forlightpumpingfromwaveguide1towaveguide2(Fig.6.6)canbeobtainedprovidedthatA2=0:

Forthestraightforwardstate(B2=0)onecanaccordinglywrite

Figure6.7showsastatediagramforasystemofcoupledchannelwaveguideswithavariablesignofDb.Inthisdiagram,thepointslyingonthecurvecorrespondtothestateinwhichthelightiscompletelypumpedoverfromwaveguideItowaveguide2(Fig.6.6),whilethepoints onthecurvecorrespondtothestatewhenthepumpingisstopped.

Theelectro-opticmodulatoronthebasisofcoupledchannelwaveguideswasmanufacturedonaz-cutlithiumniobateplate(Fig.6.6)(Zolotovetal1982).Thesystemofwaveguideswascreated

Page 646: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

bywayofsputtering300Å.oftitaniumontotheplatesurfacewithasubsequentetchingoftitaniumthroughaphotoresistivemaskandbydiffusioninairatatemperatureof960°during6h.Thebandwidthofthetitaniummadeup3.5µm,whichprovidedobtainingsingle-modewaveguidesattheradiationwavelengthof0.63.Thedistancebetweenwaveguideswas4.5µm.Todecreasepropagationlossesundertheelectrodes,thewaveguidesurfacewassputteredwithaSiO2film2000Åthick.Theelectrodestructureonthewaveguides(Fig.6.6)wasfabricatedbyetchingthe2000ÅthickAllayersputteredontothecrystalsurfacethroughaphotoresistivemask.Thelength,widthandthedistancebetweentheelectrodeswererespectively8mm,20µmand4.5µm.

Toestablishthepumpinglength,theHe-Nelaserradiationwas,usinga

Page 647: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page303

Fig.6.8Modulationcharacteristicofmodulatoron

thebasisofcoupledwaveguides(Kazansky1985).

×20microlens,introducedinturnineachofthefivesystemsofcoupledwaveguides,andtheintensityoflightatthewaveguideoutputwasregisteredbyaphotomultiplier.Themaximumintensityoflightinthecaseofthe modewasobservedatacouplinglengthof7mm.Lightpumpingbetweenthewaveguideswasalsoobservedasamodetrackunderamicroscope.Thepumpinglengththusdeterminedwas3.5mm.Theexperimentonlightmodulationwascarriedoutoncoupledwaveguideswithacouplinglengthof7.5µm.Forzerovoltage,theradiationaftertwopumpingswaspropagatedinwaveguide1(Fig.6.6).Whenacorrespondingvoltagewasappliedtotheelectrodes,thephasemismatchontheregion0<x<L/2ofcoupledwaveguideswasresponsibleforadivisionofthelightintensityintotwoequalpartsbetweenthewaveguides.IntheregionL/2<x<Lofcoupledwaveguidestheelectro-opticallyinducedphasedifferencehasareversesignascomparedtothephasedifferenceontheregion0<x<L/2.Thisaffectsthevariationintheenergypumpdirectionanddecreasesthelightintensityinwaveguide1.

Toobtainthemodulationcharacteristicofelectrodes,asawtoothvoltagewithanamplitudeof20Vwasappliedtotheelectrodes.Theoutputradiationwasappliedtoaphotomultiplierwhosesignalwasobservedontheoscillographscreen(Fig.6.8).Themaximalmodulationdepthwas14dBandwasreachedatavoltageof~9V.

Page 648: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thetotallightlosseswere8dB.Thecapacitanceoftheelectrodesystemmadeup4.4picofarad.

Whenaconstantcontrolvoltageisapplied,thelightpoweratthemodulatoroutputwasfirstdecreased,butafter10sitincreaseduptotheinitialvalue;therelaxationtimewasindependentofthelightintensity.SucharelaxationislikelytobeduetotheconductivityofthebufferlayerofSiO2resultedfromanincompleteoxidationofSiO2(Tangonanetal1978).

Thebasisoftheeffectiverefractiveindexmethodmodefielddistributionallowedcalculationofthemodefielddistributioninawaveguideandpumpinglengthsweredetermined.Forthe thepumpinglengthwas3.6µmandforthe itwas60mm.

Thelargepumpinglengthofthemode ascomparedtothepumpinglengthofthe isexplainedbythefactthattheincrementoftherefractiveindexDnand,therefore,modelocalizationwithanextraordinarypolarizationof largerthatthemodeswithanordinarypolarizationof (Alfernessetal1979).Thus,theexperimentalvalueofthepumpinglengthinthecaseof isincloseagreementwiththetheoreticalvalue,while

Page 649: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page304

Fig.6.9Interferometertypemodulatorwith

aninducedchannelwaveguide(Zolotovetal1982).

inthecaseof thetheoreticalcalculationisindicativeofthepracticallackofcouplingbetweenthewaveguides,whichwasobservedinexperiment.

TheoverlapintegralofthemodefieldwiththefieldofelectrodeswasevaluatedfromthestatediagramsofthesystemofcoupledchannelwaveguideswithDbelectrodes(Fig.6.7)

Whenthelightintensityincreasesupto5µW,thepoweroflightatthemodulatoroutputwasdecreased,andnophotoinducedpolarizationconversionwasobserved,whichislikelyduetolargelossesoflightofextraordinarypolarization(oftheTM-mode)undertheelectrodes(6dB/cm)becauseofimperfectionofthebufferlayerofSiO2.Adecreaseoflightintensityisevidentlyconnectedwiththephotoinducedvariationoftherefractiveindexofthewaveguides,whichleadstophasemismatchbetweenmodesofcoupledwaveguides.

6.3.2Interferometricandperfectinnerreflectionmodulators

Zolotovetal(1982)consideredthemechanismoftheactionofatechnologicallysimpleinterferometertypemodulator(Fig.6.9).When

Page 650: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

voltageisappliedwithapolaritycorrespondingtoanincreaseoftherefractiveindexinacrystal,intheregionundertheelectrodesthereformsachannelwaveguide(Channin1971).Themodeofthiswaveguidehasasmalltransversedimensioncointhewaveguideplaneand,therefore,alargerdiffractiondivergence~l/w.InthefartherregionthismodemustinterferewiththemodeofaplanarTi-diffusedwaveguide(whichbelongstothecontinuumofradiationmodesofthechannelwaveguide)havingasubstantiallylargertransversedimensionWandasmallerdivergence~l/W(i.e.asmallangulardimensioninthefarregion).Thephasedifferenceofthese

twowaves ,wheredn*isthedifferenceofeffectiverefractiveindices)dependsonthemagnitudeoftheappliedvoltage.Inthecasewhenwavesareinthecounterphase

Page 651: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page305

( ),inthecentreoftheinterferencepatternaminimummustbeobserved,whereasattheboundariesofthispicturenocompletemutualwaveextinctionwilloccursincetheirangulardimensionsdifferstronglyfromoneanother.Bytheestimates(6.1)thecontrolvmakesup(forl=0.63µm,d=6µm,L=5mm):

Toobtainthemaximalmodulationdepth,weshallfindtherelationbetweenthewidthoftheGaussianbeamWincidentonthemodulatorandthewidthcoofthemodefieldoftheinducedchannelwaveguide.Thenormalizedfieldoftheincidentbeamhastheform

Accordingly,thenormalizedfieldofthemodeofthechannelwaveguideweapproximatebytheGaussianfunction

whereh=2/[w/W)+(W/w)]istheefficiencyoflightinputintothechannelwaveguide.

ForthelightpropagatingoutsidethechannelwaveguideErad=Einc-Echan.Theintensityoflightinthefarregion isrelatedtothe

fieldinthenearregionas

where ,(herey1isthecoordinateinthedirectionperpendiculartothelightpropagationdirectionatadistancexfromthemodulator.Thentheinterferencepatterninthefarregioninthecaseofinphasewaveinterferencehastheform

Page 652: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

andinthecaseofcounterphasesubtraction,accordingly(Fig.6.11)

Page 653: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page306

Fig.6.10Modulationcharacteristicofaninterference

typemodulator(Kazansky1985).

Fig.6.11Interferencepatternsinthefarregion.Inphasewaveinterference(/+)andcounterphasesubtraction

(/-)(Kazansky1985).

Fromthisweimplytheconditionwheninthecentreoftheinterferencepatternthelightintensitywillbeequaltozero

Toperformanexperimentonasubstrateoflithiumniobate(y-cut),aplanarwaveguidewasmanufacturedbywayoftitaniumdiffusion(theTilayerthickness300Å).Theelectrodestructurewasdepositedphotolithographicallyonthecrystalsurface,asshowninFig.6.9.Thiselectrodestructureconsistedoftwoparallelaluminiumstrips5mmlongand4µmwide.Thedistancebetweentheelectrodeswas6µm.

Page 654: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

He-Nelaserradiationwasintroducedintothewaveguidebymeansofarutileprism.Beamfocusingbyalensewithafocusdistanceof20cmmadeitpossibletoobtainthedimensionoftheGaussianbeamWatthewaveguideinputequalto60µm.Asthepotentialdifferenceontheelectrodeschangesfrom0to5V,thefieldpatterninthefarregionchangesaccordingtothemodelconsideredabove,andthemaximalmodulationdepthobtainedforV=5Vwas95%(Fig.6.10).Figure6.11presentsthemodulationcurveofsuchamodulatorobservedonthescreenofanoscillograph(theappliedvoltagevariedfrom0to20V).Themodulationcurvehasmaximaandminimatypicalofinterferentialphenomena.Itshouldbenotedthatalowvalueofthecontrol

Page 655: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page307

Fig.6.12Totalinnerreflectionmodulator(Kazansky1985).

voltage,alargemodulationdepthandthepossibilityofrealizingawide(~1GHz)modulationbandmakethistypeofmodulatorsfairlypromisingforpracticaluse.

Tsaietal(1978)andSheem(1978)consideredthemechanismofoperationofthetotalinternalreflectionmodulator,shownschematicallyinFig.6.12.

Whenvoltageofanappropriatepolarityisappliedtotheelectrodes,intheregionbelowtheelectrodestheelectro-opticeffectresultsintheformationofalayerinwhichtheeffectiverefractiveindexofthewaveguidemodeisdecreasedbythevaluedeterminedbytherelation(6.3).MakingallowanceforthisrelationonecancalculatethereflectionfactorofthewaveguideH-modeincidentontheperturbedlayeratanangleq1(BornandWolf1979)

where

Page 656: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Undertheconditionn'*<n*sinq1thereoccursatotalinternallightreflection.So,varyingthevoltageappliedtotheelectrodesonecanchangethedn*valueand,therefore,thelightreflectioncoefficient.

Radiationwithawavelengthof0.63µmwasintroducedintothewaveguideusingarutileprismandwasdirectedtotheelectrodesatanangleof89.5°.Thedependenceofthepowerofthereflectedlight,Prefonthevoltageappliedtotheelectrodeswithintherangefrom0to20VisillustratedinFig.6.13.Forthepotentialdifferenceof15Vthereflectioncoefficientwas95%±3%.Thisvalueagreescloselywiththe94%calculatedbyformulae(6.3)and(6.21).Thecapacitanceoftheelectrodestructuremadeup2pF,whichadmits

Page 657: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page308

Fig.6.13Modulationcharacteristicoftheinnerreflection

modulator(Kazansky1985).

inprinciplethebandwidthof>1GHzfortheloadresistanceof50Ohm.

Whenlightofpower1mWwasintroducedintothemodulators,inthewaveguidesthereoccurredastronglightscatteringinthem-line(Tangonanetal1977)causedbyinducedopticalinhomogeneities,whichissimilartothescatteringwithoutpolarizationreversalinbulkcrystals(MagnussesandGaylord1974;Voronovetal1980).Suchascatteringwasresponsibleforadecreaseofthemodulationdepth(to~50%).Butnophotoinducedradiationpolarizationconversionwasobserved,whichisalsoassociatedwithaphotorefractivebeamscatteringinaplanarwaveguideand,therefore,withadecreaseofoflightintensityinthiswaveguide.

6.4Practioalexamplesofwaveguideelectro-opticmodulators

6.4.1Opticalwaveguideswitchmodulator

Fastwaveguideopticalswitchmodulatorsareimportantcomponentsforfuturewidebandlightwavecommunicationsystems.High-speedswitchingmaybeespeciallyusefulfortimedivisionmultiplexing.Severalhigh-speedswitches(CrossandSchmidt1979;Mikamietal1978)andmodulators(NeyerandSohler1979;AuracherandKiel1980;Leonberg1980)usingTi-diffusedlithiumniobatewaveguides.Mostofthesedeviceshavedemonstratedmodulationbandwidthof

Page 658: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

about1GHz(approximately500psswitchingtime)andrequirerelativelylongdevicelengthof3to10mm.Highsinusoidalmodulationrateshavebeenachievedusingatravelingwavegeometry,againwithlongdevicelength(Izutsuetal1977).Auniquelydesignedandfabricatedopticaldirectional

Fig.6.14Schematicdrawingofopticalwaveguidedirectionalcouplerswitchmodulator(Alfernessetal1981).

Page 659: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page309

couplerswitchwithademonstratedswitchingtimeof110pswasdescribedbyAlfernessetal(1981).High-speedswitchingwasachievedbyusingveryshort(750µm)electrodeswithasmall(1µm)interelectrodegap(Fig.6.14).Thesmallcapacitanceresultingfromtheshortdevicelengthyieldshigh-speedswitching.Atthesametime,thesmallinterelectrodegapallowsalowswitchingvoltageinspiteoftheshortdevicelength.

AschematicofthewaveguidedirectionalcouplerswitchisshowninFig.6.14.Thedirectionalcouplerwasdesignedsothat ,wherekisthecouplingcoefficientandnistheoddintegersothatintheabsenceofanappliedfieldmostofthelightincidentinonewaveguidecrossesovertotheother.Formodulatorapplications,thisconditionneednotbestrictlysatisfied.Applicationofanappropriatevoltagesufficientlymismatchesthetwowaveguidessothatthelightstaysintheincidentwaveguide.

Theopticalswitchingtimecanbeminimizedbyfixingthecontrolvoltage(power)atsomeacceptablelowlevel.ForthelumpedelectrodesconsideredheretheswitchingtimeisgivenbytheRCtimeconstant,whereCiselectrodecapacitanceandR=50isaparallelresistancetomatchtoanexternaldrivingcircuit.Theelectrodecapacitanceisgivenapproximatelyby(KaminowandStulz1975)

whereLandWaretheelectrodelengthandwidth,respectively,anddistheinterelectrodegap.NotethatthecapacitanceincreaseslinearlywithLbutitincreasesonlylogarithmicallywithdecreasinggap.

Clearlyforhigh-speedswitching,shortdevicelengthisdesirable.However,thedevicelengthmustbesufficientlylargetoyieldanacceptablylowswitchingvoltage.Therequiredelectro-opticallyinducedphasemismatchtoswitchthelightbacktotheincident

Page 660: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

waveguide(assumingonecouplinglength)is

wherethepush-pulleffectforelectrodesplacedontopofthewaveguides(Fig.6.14)hasbeeninduced.Visthemaximumadmissiblecontrolvoltage,nistherefractiveindex,lthewavelengthandathegeometricaloverlapbetweentheopticalandappliedelectricfields.Therequiredlengthistherefore

Fromequations(6.22)and(6.24)theRCswitchingtimeis

Page 661: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page310

Fig.6.15Calculatedrequiredelectrodelengthandresultingmodulationbandwidthversusinterelectrodegap.AdrivevoltageV=5V,electrodewidthW=30µm,

opticalwavelengthl=0.6328µm,andoverlapparametera=0.5areassumed(Alfernessetal1981).

Theresultsofequations(6.24)and(6.25)areshowninFig.6.15,wheretherequiredLandtheresultingmodulationbandwidthDf=1/ptareplottedversustheinterelectrodegap.ItisassumedthatV=5V,r=r33(lithiumniobate)=30×10-12m/V,l=0.6328µm,W=30µm,anda=0.5andthatineachcaseLcorrespondstoonecouplinglength.Clearlyforfixedswitchingvoltagethemodulationbandwidthismaximizedbyusingasmallinterelectrodegapd.Asmalldisdesirablebecausealthoughitresultsinalargercapacitance/length,theresultinglargerelectricfield(forafixedappliedvoltage)allowsashorterdevicelength.Becausetheelectrodecapacitancedependslinearlyuponlengthandonlylogarithmicallyupond,thesmallgapmakespossibleanetenhancementoftheswitchingspeed.Ofcourse,theresultingshortlengthisalsodesirableforincreasedpackingdensityindcswitchingnetworksandresultsinloweropticalandelectricalloss.

Specialfabricationcareisrequiredtoachievethedesiredone-micronelectrodegapalignedoverthewaveguides.Thislimitationwas

Page 662: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

overcomeusingthenoveltwo-stepalignmentprocedureoutlinedinFig.6.16.First,theelectronbeamwrittenelectrodemaskwith1µmgapwasintentionallymisalignedlaterallybyabout1µm.Thepatternwasexposed,developedandchrome/aluminiumelectrodespatternedbyliftoff.Theresultisthatwhileoneelectrodeisproperlyalignedoveronewaveguide,becauseoflinebroadening,theotherisnot.Thesameelectrodepatternisthenalignedoverthewaveguidesasecondtime,howeverwithanintentional1µmshiftintheoppositedirection.Afterasecondevaporationandliftoff,thedesired1µminterelectrodegapalignedovertheinterwaveguidegapisachieved.Inaddition,toprovidethedesired1µmgap,thedoublemetalthicknessobtainedbythistechniqueisbeneficialtoreducetheelectroderesistance.

Thedevicewasevaluatedatl=0.6µmusingtheTMpolarizationwhichseesther33coefficient.Usingdcconditionswithasix-voltbias,anadditional6-Vmodulationresultsinanabout-7dBmodulationinthelightoutputfromthecrossoverwaveguide.Theswitchingspeedofthisdevicewhendrivenbyashortelectricaldrivepulsewasmeasuredwithanovelopticalsamplingtechniquereportedindetailelsewhere(Alfernessetal1980).Asequenceof

Page 663: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page311

Fig.6.16Fabricationstepsforachieving1µmelectrodegap

alignedoverthe1µminterwaveguidegap(Alfernessetal1981).

shortelectricaldrivepulsesfromanelectricalcombgeneratordrivesthemodulator.Thesepulsesareinsynchronismwiththepicosecondopticalpulsesfromasynchronouslypumpedmode-lockeddyelaser.Theopticalpulsesarecoupledintothedevice.Themodulatorresponseismappedoutviasamplingbyusinganelectricalphaseshiftertosweeptheopticalpulsetraintemporallyacrosstheelectricalpulsetrainandmeasuringthemodulatoroutputversustimeshift.

6.4.2Thin-filmelectro-opticlightmodulator

Kaminowetal(1973)demonstratedtheutilityofthinfilmsbybuildingandtestinganefficientwide-bandLiNbO3phasemodulatorwhosecharacteristicscanbesatisfactorilyaccountedforbythebulk

Page 664: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

electro-opticcoefficientofLiNbO3.

Thepowerperunitbandwidth,P/Df,requiredtodriveabulkmodulatorrodoflengthLandsquarecrosssectiond2wasproportional(KaminowandTurner1966)tod2/L.Theminimumvalueofthisfactorisdeterminedbydiffractionofthelaserbeampassingthroughthemodulatorcrystal.Withthebeamfocusedsothatthewaistoccursatthecentreoftherod,theminimumvalueford2/Lis4l/np,wherelistheopticalwavelengthandnistherefractiveindex.Forthisminimumcondition,thepowerdensityattheedgesofthe

Page 665: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page312

apertureislessthan1/e2timesthepowerdensityatthecentreoftheaperture.Inordertoalleviatethealignmentproblem,modulatorsareusuallydesignedwithasafetyfactorS(KaminowandTurner1966)suchthat

withS>3.

Inaplanarwaveguide,thereisnobeamspreadingnormaltotheplane,butdiffractionintheplanestilllimitselectrodespacingaccordingto(6.26).However,sincealignmentissimplerandreflectionsfromcrystalsurfacesarenotaproblem,onemayemploytheminimumvalue intheplanarstructure.

Kaminowetal(1973)haveusedthesimplemodulatorstructureillustratedinFig.6.17:aLiNbO3planarwaveguidewithaluminiumelectrodesevaporatedonthesurface,andinputandoutputrutileprismcouplers.Theout-diffusedcrystalhasdimensionsof15×2×5mmalongthea,b,andccrystalaxes,respectively.Theextraordinaryindexprofileisgivenby

wherexisthedepthbelowthesurface,A=4×10-3,andB=530µm.Theguide,whichcansupportabout198modes,isexcitedinTEmodesviatheinputcouplerbya0.633µmlaserpolarizedalongthecrystalcaxis.

Theelectrodeswereformedphotolithographicallywithdimensionschosensothat

wherebistheelectrodespacingand .Theextraordinaryindex,ne,measuredonasampleatl=0.633µm,is2.214.

Page 666: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

AsindicatedinFig.6.18,thewidthoftheelectrodes,a,ischosensothat .ThecapacitanceCforacoplanarcondenserwitha=bonauniaxialcrystallikeLiNbO3havingdielectricconstantsea=43andec=28along

Fig.6.17Thin-filmLiNbO3electro-opticphasemodulator(Kaminovetal1973).

Page 667: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page313

Fig.6.18CoplanarelectrodeonLiNbO3guiding

layer(Kaminovetal1973).

theaandcaxes,respectively,isgivenapproximatelyby(ProkhorovandKuz'minov1990)

Themodulatingfieldcomponentsjustbelowthesurfaceofthecrystalare

whereVisthevoltagebetweenelectrodes.TheEycomponentdecreaseswithdepthatleastasfastas(Engan1969)exp(x/x0),where

Formosteffectiveuseofthemodulatingfield,thepenetrationdepthoftheopticalbeamshouldbecomparablewithx0.TheelectrodedimensionswereL=6.2mm,a=44µm,andb=57µm,yieldingS=1.22,x0=45µm,andC=2.0pF.Themeasuredcapacitanceat50MHzwasabout3pF.

IfaloadresistanceRisplacedinparallelwithCandthecombinationisdrivenbyamatchedvoltagegeneratorwithimpedanceR,thebasebandwidthisgivenby(KaminowandTurner1966)

ForR=50WandthecalculatedC=2pF,themaximumbandwidthis

Page 668: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Df=3.2GHz.Transit-timelimitationsareabove3.2GHzforL=6.2mm.

Forthecrystalcaxisorientedalongy,thephasemodulationindexis

wherer33istheelectro-opticcoefficientand istheeffectivemodulatingfield.Thefactoruisanumberlessthanunitythattakesaccountofthefact

Page 669: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page314

Fig.6.19Apparatusforheterodynemeasurementofthephase

modulationindex(Kaminovetal1973).

thatEyvariesacrossthebeam.Withr33=31×l0-12m/V,thecalculationyieldsh/V=0.18u/V.

Themodulationindexcanbemeasuredbyusingtheheterodynesystem(Kaminow1965)illustratedinFig.6.19.ThestabilizedHe-Nelaseroscillateinonlyonelongitudinalmodebecauseoftheirrestrictedlength.Thelocal-oscillatorlasercanbesweptovera500-MHzrangewithoutappreciablevariationinamplitudebyvaryingthemirrorspacing.Thespectrumofthemodulatedcarrierlasermixeswiththelocaloscillatorinaphotodiode;thephotocurrentispassedthrougha70-MHz-i.f.amplifierandisdetectedanddisplayedonanoscilloscope.TheratioofsidebandtocarrieramplitudesisJ1(h)/J0(h),whereJnisthenthorderBesselfunction.Theamplituderatioismeasuredwiththeaidofcalibratedopticalattenuatorsplacedinfrontofthelocaloscillator,andhiscalculatedfromtheresult.Theuseofinputandoutputprisms,ratherthanfocusingthebeamintoandoutoftheedgesofthelayer,ensuresthatonlyguidedlightisdetected.

Intheexperiment,aGeneralRadiooscillatorfeedsaminiature50Wcoaxialcableleadingtoapanelconnectoradjacenttothemodulatorcrystal.Thingoldwiresfromtheconnectorconnectthevoltagetotheelectrodesonthecrystal.Thecapacitanceoftheconnector,leads,andelectrodesmeasuredattheconnectorisabout4pF.Inordertoobtain

Page 670: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

acorrectreadingofVathighfrequency,itisnecessarytoplacethevoltmeterprobeindirectcontactwiththeelectrodes.

Themeasurementsyieldh/V=0.13V-1,constanttowithin10%overtheavailablemeasuringrangeoftheapparatus,50-500MHz.Voltagewasalsovariedfrom0.7to7Vwithoutalteringh/V.Themeasuredandcalculatedvaluesofh/Vagreeiftheeffectivefieldfactoruissetequalto0.7,whichisreasonablyclosetounity.Thus,Kaminowetal(1973)confirmthatthebeampassescleanlybetweentheelectrodesinthex=0planeanddoesnotpenetratemuchdeeperthanx0,justifytheassumptionthattheelectro-opticcoefficientsintheguidinglayerandbulkcrystalarepracticallythesame,anddemonstrateexperimentallyabasebandwidthatleastasgreatas500MHz.

Theobservedvalueofumayseemsurprisinglyclosetounityinviewofthefactthatthepenetrationofthemodulatingfieldisapproximatelyx0=45µmwhilethethicknessoftheguidinglayerisapproximately

Page 671: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page315

B=530µm.Thelikelyexplanationisthat,byadjustingtheinputangletotheprismcouplerformaximummodulation,onlytheshallowlow-ordermodesareselectivelyexcited.Theexperimentalerrorinthemeasurementofh/Visprobablylessthan15%.Thepeakvoltagerequiredtoobtainh=1radis7.7V.ThecorrespondingpowerP=V2/2Rconsumedinthe550Wloadis590mW,and,forDf=3.2GHz,P/Df=0.19mW/MHz.IfoneusesthecapacitancemeasuredattheconnectorratherthanthecalculatedC,DfwillbehalvedandP/Dfdoubled.

InordertoimproveP/Df,theopticalbeamandmodulatingfieldsmustbeconfinedtosmallercrosssectionsovertheirinteractionlength.Opticalconfinementinthey=0planecanbeimprovedbyreducingtheout-diffusiontimeand/ortemperatureinordertoreducethelayerthickness(KaminowandCarruthers1973).Otherschemesarebeingconsideredthatwillguidetheopticalbeaminthex=0planeinordertoeliminatediffractioneffects;thenb2/Lmaybereducedindefinitely.Inordertousethemodulatingfieldmosteffectively,themodulatingfielddistributionshouldbetailoredtojustoverlaptheopticalbeam;forthecloselyconfinedopticalbeam,thiscanbeachievedbyreducingtheelectrodespacing.

6.4.3Braggdiffractionmodulator

Intheirwork,HammerandPhillips(1974)reportedtheproductionoflow-lossLiNbxTa1-xO3opticalwaveguidesandtheiruseasthebasisofelectro-opticmodulatorswithover80%modulationatvoltagesbelow5V.

AsimpletechniqueofdiffusingmetallicniobiumintotheLiTaO3substratesproducesahigh-indexsurfacelayerofLiNbxTa1-xO3whichactsasanopticalwaveguide.Theeffectivethicknessandindexcanbecontrolledtoreadilyproducesingle-modewaveguides.Lossesofabout1dB/cmat6328Ahavebeenmeasuredonasingle-mode

Page 672: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

guideofthistype.

Usingaperiodicelectrodestructure,Braggdiffractionmodulation(Hammeretal1973)isobtainedwhichswitchesover80%oftheguidedlightatvoltagesof3.5,4.5,and6.5Vforlaserlinesat4976,5592,and6323A,respectively.Theseresultsholdforbothoperationatdcandwithpulserisetimesoflessthan3nsec.Frequencyresponseinthemicrowaverangewithpowerrequirementsbelow0.2mW/MHzisexpected.

Thelowpowerandvoltagerequirementsoftheseopticalwaveguidemodulatorsarecompatiblewithintegratedcircuittechnology.This,plustheexcellentandcontrollablewaveguideproperties,makesthesedevicesextremelyattractiveforuseinavarietyofopticalcommunicationandintegratedopticapplications.

LaserlightiscoupledintothefilmwithSrTiO3prismcouplers.Theeffectiveindexfortheguidedlightmaybecalculatedfromthecouplingangle(Tienetal1969).ThevaluesfoundfallintherangeexpectedforopticalwaveguideswithindicesbetweenthoseofLiNbO3andthoseofLiTaO3.

Forexample,inasingle-modex-zplanesampletheeffectiveindexfortheTE0modepropagatingat51°tothezaxisismeasuredtobe2.188atl=6328Å.Thisfallsintherangebetween2.179and2.237whicharetheindicesinthisdirectionforpureLiTaO3andLiNbO3,respectively.Propagationat51°ischosentooptimizetheelectro-opticcoefficientandretainrelatively

Page 673: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page316

strongguidingasdescribedbelow.Foraguideofthistypetohaveonlyonemodethethicknessatwhichthegradedindexdifferencebetweenfilmandsubstratefallsto10%ofitsmaximumvalueis0.7-1.6mm(Marcuse1973).

Thelossisdeterminedbymeasuringtheintensityoflightscatteredoutofthewaveguideasafunctionofdistanceusingafibreopticprobe.At6328ÅthelossinthesolitaryTE0modeislessthan1dB/cm.Atthe5592-and4845-ÅHe-Nelaserlinesthelossesare4.3and6.7dB/cm.ThisrepresentsamorerapidincreaseinlossthanthedependenceexpectedforRayleighscattering(l0isthefree-space

wavelength).Itispossiblethatimpurityionabsorption,particularlyFe2+,isresponsible.

HammerandPhillips(1974)notedthatforthex-zsubstratesandtransverseelectricfieldsusedinthemodulator,propagationofaTEmodeinthecdirectiongivesrisetothelargestindexdifferencebetweenlithiumniobateandlithiumtantalate(Dn0=0.113)butanelectro-opticcoefficientisequaltozero.PropagationalongthexdirectionreversesthesituationwithDne=0.021andr33=3×10-12m/V.PropagationintheplaneatanarbitraryanglefwithrespecttothezaxisgivesanindexdifferentialDn'suchthat andaneffectiveelectro-opticcoefficientr'whichisalinearcombinationofr13,r33,andr51.maybechosentomaximizer'.TheresultingvaluesforLiNbO3canbeshowntobef=±51°,r'=±34.4×10-12m/V,andDn'=0.058.Thus,theoperatinganglecanbechosentomaximizetheelectro-opticcoefficientwithoutminimizingtheindexdifferentialrequiredforwaveguiding.

ThewaveguidemodulatorisproducedbyapplyingavoltagetoaninterdigitalelectrodepatterndepositedonthewaveguidesurfaceasshowninFig.6.20a.

Applicationofavoltagetotheelectrodesresultsinanelectro-

Page 674: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

opticallyinducedBraggdiffractiongrating.LightenteringthegratingatanangleqBisdiffractedthroughanangle2qBinthewaveguideplanewheresinqB=l0/4Sng.ngistheeffectiverefractiveindexfortheguidedmodebeingconsidered.ThefractionoftheenteringlightdiffractedisI/I0=sin2(Df/2)andtofirstorderinr' ,whereEistheaverageinplanefieldcomponentcausedbythevoltageV0.Thus,I/I0hastheformsin2(BV0).

ThepercentagediffractionasafunctionofvoltageforthreelaserwavelengthsisshowninFig.6.20b.Thesquares,crosses,andcirclesarethedatapointsfor4976,5592and6328Ålaserlines,respectively.Thesolidcurvesareplotsofsin2(BV0)normalizedtothedataI/I0=75%.Thefunctionalagreementisgood.Novariationwasobservedinthesepercentagesfromdcuptopulseswithrisetimesbelow3nsec.Theobservedvariationofvoltagewithwavelength,however,isgreaterthanthefirst-ordertheorypredictsifdispersionintheelectro-opticcoefficientsisignored.ThisdispersionforLiNbxTa1-xO3isunderstudy.Themeasuredcapacitanceofthissampleis20pFwhichgivesindicatedcapacitivepowerrequirementsbelow0.2mW/MHz.Thetotallossintroducedbytheelectrodesisunderstudybutappearstobelessthan1dB.

TheLiNbxTa1-xO3opticalwaveguidesdescribedinthisreportarerelativelysimpletomake,haveexcellentandcontrollablewaveguideproperties,andcanbeorientedtomakeoptimaluseofthestrongelectro-opticeffectofbothLiNbO3andLiTaO3.Thehighefficiencyandlowvoltageandpowerrequirementsofthegratingmodulatorformedonthistypeofguiderepresentatleast

Page 675: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page317

Fig.6.20(a)SchematicofgratingmodulatorinLiTaxNb1-xO3waveguide.Guidedlightisdiffractedthroughanangle2qBwhena

voltageisappliedtotheinterdigitalelectrodes.Sis7.6mmandLis0.3cm.(b)Thecurveshowsthepercentageoflightdiffractedasafunctionofvoltage.Opensquares4976

Å(He-Selaser),crosses5598Å(He-Selaser),andsolidcircles6328Å(He-Nelaser).Thesolid

curvesareplotsofsin2(BV0)normalisedtothedataat75%(HammerandPhillips,1974).

anorder-of-magnitudeimprovementinperformanceoverbulkdevicesandearlierwaveguidegratingmodulators.Similarimprovementsmaybeexpectedforotherformsofelectro-opticandpossiblyacousto-opticwaveguidemodulatorsandswitchesiftheLiNbxTa1-xO3guideisemployed.

6.4.4Ridgewaveguidemodulator

Kaminowetal(1974)reportedanexperimentalLiNbO3ridgewaveguidemodulatorrequiringamodulatingpowerofonly0.02

Page 676: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

mW/MHz/rad.

ALiNbO3crystalhavingdimensions25mm×6mm×3mmalongthecrystallographicX,Y,andZaxes,respectively,wasout-diffusedtoproduceaplanarguidewithextraordinaryindexprofilebasedontheintegralerrorfunctioncomplement

where .Inordertoapproachsingle-modeoperation;theresultantcoefficientswerea=2×10-4,b=33mm.Iftheprofile(equation(6.34))isapproximatedbyanexponentialfunction

thencalculations(Conwell1973)indicatethattheplanarguidewillsupportjusttwomodes.FortheTE0andTE1modes,respectively,

Page 677: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page318

wherebandkarethepropagationconstantsintheguideandinfreespace,respectively.

Aridgewasproducedbyion-beametchingthe6×25mmsurfaceofthecrystaleverywhereexceptforanarrowcentralstripalongthe25mmdimension.Aquartzfibreofsquarecrosssectionadheredtothecrystalsurfacewithphotoresistorservingasthemask.Aniongunfiredargonionsat30°fromthenormalontothecrystalsurface.With100mAionbeamcurrent,theetchingrateforthisconfigurationwasapproximately1mm/hforboththeLiNbO3crystalandquartzfibre.Afterionetchingandwiththefibremaskstillinplace,thesamplewascoatedwithCr(250Å)andAl(3000Å)electrodesbyevaporation.Inordertoensurecoatingthesidewallsoftheridge,thesamplewastiltedfirsttoonesideandthentheotherduringevaporation.Afterexaminationofthecompletedridge,thebestregionwasselectedandtheremainderofthecrystalwasgroundoffandtheendspolished.

Ascanningelectronmicrographofthesampleshowsthatthewallsoftheridgearesmoothandrectangular.Althoughthecross-sectiondimensionsmayvaryby±1mmalongthelengthoftheridge,theaverageheighthis7.5mmandaveragewidthwis19mm.ThelengthLoftheridgeis11.5mm.

Aheterodynemeasuringsetwasusedtodeterminethephasemodulator.A0.633-mmlaserbeamwasinjectedintotheendoftheridgewitha×20microscopeobjective;a×40objectivewasusedtoimagetheoutputendontoascreenandlatertocollimatethebeaminthemeasuringset.Thebeamappearstobesingle-mode,slightlyellipticalincrosssection,andisalmostcompletelyconfinedwithintheridgeitself,ratherthanpenetratingintotheplanarwaveguideregionbelowtheridge.

Page 678: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Ifoneassumestheexponentialindexprofile(6.35)fortheoriginalplanarguideandthenremoves7.5mmtoformtheridge,theplanarguideoutsidetheridgewillhaveanexponentialprofilewithcoefficientsap=aexp(-2h/b)=1.3×10-4andbp=b.ThenusingthecurvesofFig.5.15(Carruthersetal1974)oneobtainsforTE0andTE1modes,respectively,

Thentheeffectiveindexapproximationcanbeused(Ramaswamy1974)todeterminetheconfinementwithintheplane.Theeffectiveindexchangeforthesymmetricalguidewithintheplaneis(fromequations(6.36)and(6.37))

Page 679: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page319

Fig.6.21SchematicdiagramoftheLiNbO3ridgewaveguide

modulator(Kaminovetal1979).

forTE0andTE1modes,respectively.Ineithercase,computationshowsthatonlythefundamentalmodeisguidedintheplane.TheplanarTE1modeisprobablynotstronglyexcitednorisittightlyconfinedintheridgeguide.Otherapproachestotheanalysisofridgeguide(orequivalentlyribguide)modesgivesimilarresults.

TheridgewaveguidemodulatorisshownschematicallyinFig.6.21.Theelectrodesareattachedbythinwirestoaminiaturecoaxialconnector.Avoltmeterand50Wloadareplacedinparallelwiththecrystalattheconnectorandthemodulationindexhismeasuredatfrequenciesbetween50and200MHz.TheseriesinductanceoftheleadsandstraycapacitanceoftheconnectorinterferewiththemeasurementofpeakmodulatingvoltageVathighfrequency.However,theseunwantedimpedancescanbeeliminatedorreducedinapracticaldevice.

Thecapacitancemeasuredattheconnectoris19pF,whilethecapacitanceCofthemodulatorcrystalalone,obtainedbysubtractingthecapacitancemeasuredwhentheleadsaredisconnectedatthecrystal,is10pF.Thecalculatedcapacitanceoftheridgecapacitorinparallelwiththeassociatedplanarcapacitorisonly5pF,sothata

Page 680: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

furtherreductionofCandanincreasedbandwidthmustbepossible.

Themeasuredvalueofh/Vis0.85V-1.Thevaluecalculatedassumingthebeamtobecompletelyconfinedwithinaridgeofwidthw=19mmis0.98V-1.Thisexcellentagreementisfurtherevidencethatthebeamiswellguidedwithintheridge.Foraplanarmodulator,h/Vwas0.13V-1.ThatdevicewasdiffractionlimitedsothatthesafetyfactorSwasunity.Fortheridgeguide,ifw=dinequation(6.26),thenS=0.28.SincemodulatingpowerPperunitbandwidthperunitmodulationindexisproportionaltoS2,theridgeguidemodulatorrepresentsapotentialthirteenfoldimprovementinefficiencyoverthediffraction-limitedplanarmodulatorandanadditionalorder-of-magnitudeimprovementoverbulkmodulatorsforwhichthesafetyfactorisusuallygreaterthan3.

Page 681: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page320

ThemodulatorbandwidthisDf=(pRC)-1and,withR=50WandmeasuredC=10pF,Df=640MHz.Thenusingthemeasuredh/VandP=V2/2R,Kaminowetal(1974)obtainedP/Df=20mW/MHzforh=1rad.

Theopticalattenuationduetoabsorptionbythemetalwallsontheridgeguidemaybeestimatedfromcalculationsforaplanarsymmetricalmetal-cladguideoperatingintheTM2mode(Kaminowetal1974).Thecalculatedlosseswere4and3dB/cmforCrandAlelectrodes,respectively.Agelectrodeswouldintroducealossofonly0.2dB/cm.Themajorsourceoftransmissionlossinthedeviseatpresent,however,isimperfectinputcouplingintothedominantmetal-cladridgeguidemode.Theridgewaveguidephasemodulatoriswellsuitedtoincorporationinabalancedbridgearrangementinanintegratedopticalcircuitforuseasswitchoramplitudemodulator.

6.4.5Ti-diffuseddiffractionmodulator

Tangonanetal(1978)describedthedesignandfabricationofthin-filmBraggdiffractionmodulatorsinTi-diffusedLiTaO3waveguides.Themodulatorperformancewasadequatefornear-termsystemsapplicationswithademonstrateddiffractionefficiencyof98%atthevisibleandnearIRwavelengths,ahighextinctionratio(<250:1),andadesignbandwidthof GHz.LiTaO3wasswitchedasthewaveguidematerialbecauseofthemuchhigherimagethresholdofwaveguidesformedbyTi-diffusedinLiTaO3thaninLiNbO3(Tangonanetal1977).

Beamdiffraction,asamechanismforintensitymodulationbyelectro-opticmeansinthethinfilms,isachievedbyproducinganelectricallycontrolledphasegratinginthepathofthepropagatingbeam.Thediffractionprocessresultsfromaperiodicperturbationoftherefractiveindextransversetothebeampropagationdirection.Ausefulmethodforelectro-opticallygeneratingthedesiredphasegratingis

Page 682: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

showninFig.6.22.Themechanismforinteractionreliesonthefringingelectricfieldsextendingbelowthesurfacebetweeninterdigitalstripelectrodesformedonthecrystalsurface.Thelocalfringingfieldstrengthshouldbereasonablyuniformacrosstheguidedbeamandapproximatelysinusoidalintheplaneoftheguidinglayer,transversetothebeam.Thismaybemostreadilyachievedbyapplyinganisolatinglower-indexlayerabovetheguidinglayer.Thisservestheaddedfunctionofminimizinginteractionoftheopticalbeamevanescenttailwiththelossymetallicsurfaces.Bragg

Fig.6.22Phasegratingformationbythe

electro-opticeffect(Tangonaneta11978).

Page 683: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page321

diffractioninvolvesintroducingtheinputbeamataspecificangleqB,theBraggangle,withrespecttotheelectrodearray(HammerandPhillips1974;Nodaetal1974).DiffractionoccursreflectivelyinasingleoutputattwicetheinputanglewhentheBraggconditionissatisfied.

Thephasechangef,inradians,inducedbytheelectricalsignalfieldoverapathlengthLis

whereDnistherefractive-indexincrementcausedbytheelectro-opticeffect,l0andisthefree-spacewavelength.ThestrongestinteractioninLiTaO3andLiNbO3occurswhentheappliedelectricfieldandopticalelectricpolarizationarebothparallel(ornearlyparallel(HammerandPhillips1974))tothecrystallinecaxis(theopticaxis).Forthiscondition,therefractive-indexincrementis

wheren3istheextraordinaryrefractiveindex,r33istheappropriateelectro-opticcoefficient,andE3istheappliedelectricfield(Chen1970).Thus,thecrystalmustbecutwithitscaxisintheplaneofthewaveguideessentiallytransversetothebeampropagationdirection,andthepropagatingopticalmodemusthaveTEpolarization.Thispolarizationhastheleastlosscharacteristicsinproximitytothemetalelectrodesurfaces.Hence,thisminimizestheinsertionlossofthemodulatorcausedbyabsorption.

Combiningequations(6.39)and(6.40)yields

Assumethatthecaxis-orientedelectricfieldintheregionoftheguidedlayerisapproximatelysinusoidalinthetransversedirection(areasonableassumptionforaregionaboutadistancesbelowthe

Page 684: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

surface).ForBraggdiffraction,thezero-andthefirst-orderpowersareproportional,respectively,tocos2(f/2)andsin2(f/2).Formodulation,correspondingto100%depletionofthezero-orderbeamintheidealizedcase,themaximumrequiredvalueoffisp.

Todesignasuitablediffractionmodulator,onehastodeterminetheallowabledimensionsoftheelectrodearray,basedonbandwidthrequirementsanddriverpowerlimitations.Thiscanbedoneinafairlystraightforwardmanner,andboththepowerandthecapacitancecanbeeasilyexpressedintermsoftheratiooftheelectrodespacingtoelectrodelength,s/L.

Withoptimizedvideopeaking,thepowerrequiredtodriveacapacitanceCoverabandwidthBwithpeakdrivervoltageVmis

Page 685: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page322

where istheshuntresistanceneededtodissipatethepowerandprovideanRC-limitedbandwidthB.ThecapacitanceofaninterdigatedelectrodearrayhavingNfingerpairsonanx-ory-cutuniaxialcrystalsuchasLiTaO3is(JoshiandWhite1969)

whereKisacorrectionfactor(BarrosandWilson1972)determinedfromtheratioofelectrodewidthtospacingw/s.ForLiTaO3intheclampedcondition(whichisexpectedtoobtainovermostoftheoperatingband),thecapacitanceis

Thenumberofelectrodepairsisreadilydeterminedfromthetotalwidthoftheelectrodearray.Foraninputlaserbeamhavinga1/e2diameterDequaltoabout1mm,itturnedouttobesufficienttoassumeanelectrodearraywidthof1.5D,whichyields

whereSistheperiodicity(expressedincentimeters).

TheappliedelectricfieldE3intheactiveregionofthebeamisestimatedtobeapproximately(JoshiandWhite1969;BarrosandWilson1972)

whenthedistancebelowthesurfaceiscomparabletos.Thisistheassumeddesignconditionthatleadstoareasonablyuniformfieldstrengthacrosstheopticalbeam.ItisconvenienttoexpressVmintermsofthecommonlyusedelectro-opticparameterE3L,thefield-lengthproduct

where

Page 686: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Table6.1liststherelevantelectro-opticanddielectriccharacteristicsofLiTaO3andLiNbO3at0.53mmand1.06mm.ThesedataareusefulinthedesignofadoubledNd:YAGcommunicationlink.Thechangesine1ande2forLiNbO3ingoingfromtheunclampedtoclampedconditionarequitelarge,

Page 687: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page323

Table6.1Propertiesofelectro-opticmaterials(Tangonaneta11978)

Quantity LiTaO3 LiNbO3

0.53mm 1.06mm 0.53mm 1.06mm

n3 2.21 2.14 2.23 2.16

~31 ~29 32.2 ~32

30.3 ~29 30.8 ~30

33.5 ~28.4 35.7 ~32

32.7 ~28.4 34.1 30

51 78

41 43

45 32

43 28

(T)=unclamped

(S)=clamped

Table6.2Resultsofdesigncalculations(Tangonan,Persechini,Lotspeich,Barnoski,1978)

Parameter 0.53mm,3Wdrive 1.06mm,24Wdrive

B=0.7GHz B=1.4GHz

K=1,s=w

E3×L,V 1606 3732

L,mm 2.5 5

s,mm 4.6 6.9

S,mm 18.4 27.5

Page 688: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

N 81 54

C,pF 77 104

Rs,W 6 2.2

Q 11 20

afactwhichadverselyaffectsthefrequencyresponsecharacteristics.Similarly,thechangeinr33issubstantiallygreaterthanthatofLiTaO3,thusproducingastrongereffectontheelectro-opticfrequencyresponse.

Forw/s=1,amaximuminteractionlengthof2.5mmwaschosen0.53mmtokeepwithinreasonablelimitsofopticalloss.Itwasfoundthatthewaveguidelossat5145ÅforTi-diffusedLiTaO3guideswas3-5dB/cm.Forthe1.06-mmcase,whereopticallossesaresubstantiallylower( dB/cm),alengthof5mmwasarbitrarilychosenasareasonableupperlimit.

Table6.2givestheresultsderivedfromtheprecedingequationsforthetwowavelengthsofinterest.TheTableincludesaparameterQdefinedby

Page 689: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page324

Fig.6.23SerieselectrodemodificationforBraggdiffractiongrating(Tangonanetal1978).

Fig.6.24(right)Splitelectrodepatternofmodulator

(Tangonaneta11978).

whichdescribesthesamenatureofthediffraction.BraggdiffractionoccursmostefficientlywhenQ>10.

ExaminationofthevaluesofshuntresistanceRsforthetwocasesshownclearlyindicatestheneedforimpedancematchingfroma50Wdriversource.Somedevelopmentsinthedesignofwidebandrfimpedancetransformershaveledtoverywidebanddevicescapableofoperatingfrombelow1MHztowellabove500MHzwithinsertionlossesof0.5dBandless,providedtheimpedanceratiosdonotexceedabout3or4to1.Forlargerstep-downratios,theinsertionlossesaresubstantiallyhigher.Asanalternative,adifferentelectrodedesignmaybeusedtoprovidematchingtoa50Wdriver.Forthecaseof0.53mmdesign,themodificationfollowsaschemeproposedbyNodaetal(1974)inwhichtheelectrodearrayisdividedintoseveralsections,say3,eachoflengthL/3,arrangedinseriesbothelectricallyandoptically.Thisdevicereducesthecapacitancebyafactorof9,whichincreasesshuntresistanceinthesameproportion.This

Page 690: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

modificationisshowninFig.6.23.Forthecaseofthe0.53mmmodulatordesign,thisclearlyyieldsashuntresistanceof0.54Wandacapacitanceof8.6pF.Thepenaltypaidbythisapproachisthatthedrivervoltageisincreasedbyafactorof3.

Opticalwaveguideswereformediny-cutLiTaO3wafersbyTiin-diffusionfollowingtheprocessingtechniquedescribedinchapter1.InterdigitalelectrodesemployingthedesignparametersinTable6.2for0.53mmoperationwerefabricatedonthewaferswiththefielddirectionsalignedwiththecaxis.Diffractionefficiency,measurementsweremadeat6328Å(He-Ne),5145Å(Ar),andat10.640Å(Nd:YAG).Diffractionmeasurementsindicatethatthesearethemostefficientelectro-opticBraggmodulatorstodate:98%efficiencywithextinctionratiosashighas300:1.

Forthemodulatorstructuresfabricated,theelectrodepatternswereformedbyphotoetching1500ÅAlfilmsthathadbeenevaporateddirectlyonthe

Page 691: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page325

waveguidesampleoronabufferfilmofSiO2(1500Å).Thisthicknessofthebufferlayerhasbeenfoundtobeeffectiveinprovidingthenecessaryisolationtopreventdirectinteractionsoftheopticalfieldwiththemetalgrating.Figure6.24isaphotographofaportionofasplitelectrodedesignusedtoreducetheeffectivecapacitancebyafactorof9.Thewidth-to-spacingratioachievedwascloseto0.5forallthesamplesstudied.

Thediffractionefficiencyofmodulatorswithandwithoutelectrodebufferlayerswasstudiedtodeterminethedegreeofenergytransferfromthem=0undiffractedbeamtothedifferentgratingorders.Electricalleakagecanhinderdeviceevaluation,andsevereleakagecurrentswereobservedinseveralsamples.TheleakagecurrentsoriginatefromincompleteoxidationoftheSiO2.Theappliedvoltagewassimplyturnedonandkepton.Itisclearfromthetracethattheeffectivefieldoverthewaveguidestructuregoestozeroinashorttime.TheseresultswereobtainedformodulatorswithasputteredSiO2bufferlayer.ThesesamesampleswerestrippedoftheAlelectrodepatternandplacedinanoveninanoxygenatmosphereat500°Cforafewhours.Thesampleswerethenreprocessedandnewmodulatorpatternsfabricatedonthem.Thesesampleswerefoundtoexhibitgooddcproperties:noleakagewasobserved,andmodulationtestscouldbecarriedout.

Diffractionefficiencymeasurementsweremadeat5145Å.Thismodulatorhadnobufferlayeronitandwasusedtodeterminetheeffectsofthemetalgrating.ThemetalgratinginducedadeflectedspotattwiceqBofintensityequalto15-25%oftheundeflected(m=0)spot.Themeasuredvoltageformaximumdiffractionwas17.5V,whichisquiteclosetothecalculatedvalueof17.0Vfor5145Åoperation.ThecalculatedvaluefordoublesNd:YAGoperation(0.53mm)is17.7V.Thediffractionefficiencymeasuredinthisexperimentwas95.3%.

Page 692: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theresultsofmeasurementsmadeat1.06mmareplottedinFig.6.25.Themeasureddiffractionefficiencywas98%withanextinctionratioof300:1,or24.7dB.

Fig.6.25Resultsofdiffractionmeasurementsat

1.06mmshowing98%maximumfirstorderdiffractionanda300:1extinctionratio

(Tangonaneta11978).

Page 693: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page326

Table6.3Characteristicsofelectro-opticinterferencetypemodulator

Controlvoltage 2V

Operatingfrequencybands 50Hz-500MHz

Operatingwavelength 0.85mm

Opticalinsertionloss,notmorethan 12dB

Controlinputcapacity 10pF

6.4.6InterferometricMach-Zehndermodulator

Anopticalinterferometer-typemodulatorwasrealizedinpracticeusingtheepitaxialthin-filmtechnique.

ThemodulatorwasmanufacturedbytheMach-ZehnderinterferometerschemeonanY-LiTaO3substrate.Single-modechannellightguideswiththedistributionprofileDnclosetoacylindricalonewereformedbythefilmdiffusionmethod.Thesizeofthemodespotatawavelengthof0.85mmmadeup~9mm.Analuminiumelectrodestructurewithdimensionsl(length)20mm,d(width)5mmwasformedonthefilmsurface.

TheLi(Nb,Ta)O3filmthicknesswash=13mm,L=20mm,theinterelectrongapwidthd=3mm,l=0.85mm,n=2.18,r=20×10-12m/V.UndersuchconditionstheoverlapintegralG=0.8.ThecalculationsshowthatthevalueofthecontrolvoltagewillbeequaltoV=1V,whileexperimentalvalueswere2V.Theexperimentalmodulationdepthm(equation(6.8))wasequalto82%whenweworkedwithlinearlypolarizedradiationattheinput.

A100%modulationdepthwhichistheoreticallyadmittedistypicallysomewhatlessinexperimentduetolightscatteringonwaveguidedefectsandontheelectrodestructure.Inourexperimentsmwasequal

Page 694: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

to82%whenweworkedwithlinearlypolarizedradiationattheinput.

Theinsertionlossesincludeinputandoutputradiationlossestopropagationaboutthemodulatingstructure.Themeasuredvalueofawas12dB.Forlinearlypolarizedradiationthisvaluefallsdownto9dB.Thelossesoflightscatteredfromchannellightguidesonthestructurewere6dB,andthelosseson'Y'brancheswereequalto2dB.

Themodulatorsweremanufacturedintegro-opticallyonalithiumtantalatesubstratesmeasuring20×30×2mm3onwhichtwoMach-Zehnderinterferometerswereplaced.Themodulatorsaredistinguishedinthattheirlightguidestructureisformedinanepitaxialfilmofasolidsolutionoflithiumniobate-tantalateandrepresentschannellightguidesobtainedbythecombinedfilmdiffusionmethod.Suchlightguides,ascomparedwithlithiumniobate,arehighlyresistanttoopticaldamages.Thecontrolstructureofthemodulatoriswellprotectedfromtheinfluenceoftheatmosphere.

Themodulatorsaremountedintoametallicframemeasuring75×15×35mm3.Thecontrolvoltageisappliedthroughjoints.Thereexiststwoversionsofadjustmentwithexternalopticalchains.

Themodulatorcanbefabricatedintwomodifications.First,asemicon-

Page 695: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page327

Fig.6.26Thinfilmintegro-opticmodulator(generalview).

ductorlasermatedwithamodulatormayserveasalightsource.Thelightistransmittedthroughasingle-modefibreadjustedimmediatelytothemodulatorend.Inthesecondversionthelightisputinandoutofthemodulatorthroughasingle-modefibrejoinedtothesubstrateends.

TheprincipalparametersofthemodulatorarepresentedinTable6.3.

Figure6.26givesapictureofthemodulator(Dubrovennazetal1988).

Significantinterestliesinproducingopticalwaveguidedevicesinmaterialwithahigherelectro-opticcoefficientwhichcouldbeusedformakingcompactlow-voltageelectro-opticmodulatorsandswitches(EknoyanandSwenson1991).AsuitablechoiceforthisisSr0.6Ba0.4Nb2O6(SBN:60),becauseitsr33electro-opticcoefficient(420×10-12m/V)ismorethananorderofmagnitudelargerthanthatforLiNbO3andLiTaO3(ProkhorovandKuz'minov1990(a)).OtherrelevantparametersofSBN:60areitsrelevantdielectricconstantvaluese11=470ande12=880,andrefractiveindiceswhichat0.83mmwavelength(ProkhorovandKuz'minov1990(b))arene=2.2435andn0=2.2375.Theinterestinthismaterialisparticularlyattractiveduetomajoradvancesinitsgrowthtechniques,whichnowmakesitpossibletoproducecrystalsinlargesizes(2-3cmindiameter)ofexcellentquality(Neurgaonkar1989).

Page 696: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

OpticalwaveguideshavebeenproducedinSBN:60byZndiffusionfromvapourphase.Usingelectronmicroprobewavelength-dispersivespectroscopy,theZndistributionwasdeterminedandavalueof7.3mmforthediffusiondepthwasobtained.Thebestwaveguideswererealizedbydiffusionat1000°Cfor30minfollowedbyannealingat600°Cfor~100h.

TheopticalwaveguideswereproducedbyZndiffusionfromthevapourphaseinto1mmthickZ-cutSBNsubstrates,inaprocesssimilartoonedescribedearlierwithLiTaO3crystals.TungstenbronzeSBN:60istetragonalatroomtemperatureandexhibitstheCuriepointTcat78°C.ThecrystalsweregrownbytheCzochralskitechniqueandthesurfaceswerepreparedaccordingtocurrentneeds.WaveguidingwasobservedforbothTEandTMpolarizationsbyend-firecouplingat0.83mmwavelength.Electro-opticmodulationatawavelengthof0.83mmonaMach-Zehnderinterferometerwasdemonstratedforthefirsttimeinthismaterial.Withelectricfieldappliedtobotharmsoftheinterferometer,avoltage-lengthproductof0.48Vcmwasobtained.LowervaluesofVpcanbeexpectedbyfurtheroptimizingthepolingprocedureorusingmaterialofhigherelectro-opticcoefficientlikeSBN:75.Electro-optic

Page 697: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page328

Fig.6.27(a)Geometryusedforwritingaholographicgrating

intoaTi-diffusedLiNbO3waveguidewith0.5145mmlight;(b)beamsplittingofaguidedwave(l=0.6328mm)bya

holographicgrating;(c)modulationofaguidedbeambytheapplicationofanelectricfieldacrossaholographicgrating

(1.59mmgapelectrodes)(Goruketal1981).

modulatorsandswitchesinSBNareattractiveastheymightpavethewaytocompactlow-voltagedevices.

6.4.7Electro-opticphotorefractivemodulator

Goruketal(1981)describedanovelmodulatorbasedonacombinationofthephotorefractiveandelectro-opticeffects.Itisessentiallyanintegratedopticsversionoftheelectro-opticswitchfirstdemonstratedinbulkLiNbO3byKenanetal(1974).LightincidentontoaphotorefractivegratingatandneartheappropriateBraggangleisfirstsplitintotwobeamswhoserelativeintensityvarieswiththeexposuretimeusedinwritingthegrating.Theelectro-opticeffectisthenusedtomodulatetemporallythesebeamsviaaninputelectricalsignal.Theresultingmodulatorisausefullowcostlaboratorytoolwhichdoesnotrequireelaboratefabrication.Furthermore,byusingstandardholographictechniques,variousopticalelementssuchaslensesandcouplersmaybewrittenintothewaveguideandswitched

Page 698: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

onandoffbythismethod.

ThephotorefractivemethodofwritinggratinghologramsinplanaropticalwaveguideshasbeenreportedbyChenetal(1968)andWoodetal(1981).Goruketal(1981)madeuseofthelargephotorefractiveeffectknowntooccurinLiNbO3whenlightinthebluegreenregionofthespectrumisincident.Twoguidedwaves(writingbeamsatl=0.5145mmfromanAr+laser)withwavevectorsb1andb2interferetoproduceagratingwithperiodicity .ForthecaseillustratedinFig.6.27a,bg=2b0sinq0,where ,q0istheanglebetweenb(orb2)andthexaxis,andbgliesalongthezaxis.Theeffectivewaveguiderefractiveindexisgivenby

Page 699: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page329

andthemodulationdepthDndependsonthenumerousfactorssuchasthewritingbeamintensitiesandduration,waveguide,andmodeparameters.

ConsidernowasetofelectrodesdepositedontothewaveguidesurfaceasindicatedinFig.6.27c.WhenavoltageVisappliedtotheelectrodeswhichareseparatedbyadistanced,aneffectiveindex(Marcuse1975)changeDN,

issuperimposedontothephotorefractivegratingviatheelectro-opticeffect.(Thereisanadditionaleffectduetothematerialpiezoelectricity,butthisisbelievedtobeasecondarymechanismhere.)Theparameterr33istheappropriateelectro-opticcoefficientforthegeometryshowninFig.6.27(c).Hence,thetotalrefractiveindex

AsimilarphenomenonhasbeenanalysedpreviouslyviaacoupledmodeapproachbyKenanetal(1974).(Intheircaseasurfacecorrugationinsteadofaholographicgratingwasusedtoobtaintheinitialdivisionoftheincidentguidedwaveintotwobeams.)TheyshowedthatthediffractedlightintensityIdisgivenintermsoftheincidentguidedwavelightintensityIiby

HereLgisthelengthofthegratingwithperiodicityL,anddisthephasemismatchtermduetoboththeelectro-opticeffectand(or)misalignmentDqoftheincidentbeamfromtheBraggangleqB,i.e.

Page 700: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Theparameterkeisgivenby

wherekisthecouplingcoefficientwhichappearsinthecoupledwaveequations(Kenanetal1974).Maximumdiffractionoccurswhend=0,whichisusuallyobtainedbyensuringthattheguidedwaveisincidentattheBraggangle.Itisalsousefultonotethatamisalignmentinthedirectionoftheincidentlightcanbecompensatedforbyapplyinganappropriatevoltage.Furthermore,

Page 701: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page330

thevoltageDVwhichmustbeappliedtogofromthemthtothem+lminimumisgivenapproximately(keL<p/2)by

Thewaveguidesstudiedwerey-cutandx-propagatingTiin-diffusedLiNbO3waveguidescharacterizedapproximatelybyexponentialrefractive-indexprofiles(equation(6.35)).GratingswerewrittenintothewaveguideasindicatedinFig.6.27bycouplingtwocwlaserbeamsfromanargon-ionlaser(l=0.5145mm)intoTE0waveguidemodesviafutileprisms.Twoseparategratingswerestudied;theanglesbetweenthewritingbeamswhichweresymmetricaboutthexaxiswere3°(1.59mmspacingbetweenelectrodes)and4°(0.3mmspacing).Typicallytheincidentpowersineachbeamwere1mW,andthegratingwerewrittenin1sexposures.Theseparameterswereadjustedtoproduceapproximatelya50:50splittingratiowhenHe-NeguidedwavelightwasincidentattheappropriateBraggangle.Thefirstsetofelectrodesconsistedoftwostripsseparatedby1.6mmpaintedonwithsilverpaint.Thesecondhadasetofevaporated1500Åthickaluminiumelectrodeswitha0.3mmspacing.

Themodulatorcharacteristicswerestudiedwith0.1mWofHeNelaserlight.LightwascoupledintoandoutoftheTE0modeviarutileprisms.Thegratingswerestudiedwithinafewmonthsoftheirfabrication,anditwasverifiedsixmonthslaterthatthegratingswerestillpresent.Modulationwasobtainedbyapplyingavoltagevaryingwithtimeacrosstheelectrodes,andthedeflectedandundeflectedbeamintensitiesweremeasuredwithacalibratedphotodiode.

SomeofthepertinentoperatingcharacteristicsofthemodulatorareshowninFigs.6.27cand6.28.Whentheincidentanddeflectedbeamswerekeptawayfromtheelectrodeedges,thequalityofbothbeamswasgood,asindicated

Page 702: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.6.28Modulatorefficiency(100%=completeextinction)versusappliedvoltageacrossthe1.59mmelectrodegap.Solidline

correspondstotheory(seethetext)(Goruketal1981).

Page 703: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page331

inFig.6.27c.ForlightincidentattheBraggangle,theoutputsignalistheharmonicofthefundamental.AwayfromtheBraggangle,theoutputcanbechosentobeeitherinphaseoroutofphasewiththemodulationsignal.

Detailedmeasurementsofthemodulatorresponsefunction(modulatorefficiencyarereproducedinFig.6.28.(100%efficiencycorrespondsinthiscasetoacompleteextinctionofthediffractedbeam.)AsisevidentfromFig.6.28,theagreementbetweenexperimentandtheoryisexcellent.Thebestextinctionratioobtainedwas20dB,andtheappliedvoltagecorrespondedtoanappliedelectricfieldof0.22×106V/m.

Thebeamqualitydisplayedanomalousbehaviourwhenevertheincidentand(or)deflectedbeamswerepropagatedneartheelectrodeedges.Goruketal(1981)hypothesizedthatthefieldsattheelectrodeedgesaresufficientlyhightocausethewaveguidetoapproachthecutoffcondition,andhencethebeamqualityismuchmoresusceptibletolaserdamage.

Basedontheseobservations,itwasimportanttokeeptheguidedwavebeamsawayfromtheelectrodestomaintainreasonablebeamquality.

6.4.8KNbO3inducedwaveguidecut-offmodulator

Potassiumniobate(KNbO3,pointgroupsymmetrymm2atroomtemperature)isaveryinterestingelectro-opticalmaterialforbothbulkandwaveguideapplications,becauseofitslargeelectro-opticandnonlinearopticcoefficients,goodphotorefractiveproperties,andhighdamagethreshold(60MW/cm2pulsedatl=0.86mm)(ProkhorovandKuz'minov1990).ThesepropertiesmakeKNbO3attractiveforthin-filmwaveguides,suchaselectro-opticmodulators,whichwouldbenefitfromhighfiguresofmeritnr33=680pm/Vandnr42=4350pm/V(n3=2.1683isaprincipalrefractiveindex,n4=2.254isan

Page 704: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

averagerefractiveindexinthebcplane,andr42=380pro/V)comparedtonr33=341pm/VforLiNbO3,oranefficientfrequencydoublerforAlxGa1-xAssemiconductorlasers,allowingcollinearphase-matchedtypeIinteractionaroundroomtemperaturewithinthiswavelengthrange.Tuckeretal(1974)observedopticalwaveguidinginnaturallyformedplanarsheetdomainsinKNbO3.Moreusefulwaveguideswouldrequeststructureswithcontrollableparametersinpreferredorientationsofsingledomaincrystals.Baumertetal(1985)reportedonthefirstwaveguidesinKNbO3inducedbytheelectro-opticeffect.KNbO3needslow-temperatureprocessing(Curietemperaturearound+220°C)andcarefulhandling,otherwiseferroelectricdomainsmayappear.Uptonow,ithasnotyetbeenpossibletoprepareopticalwaveguidesbyin-diffusionofTiionsfromthecrystalsurface.

Inordertousetheelectro-opticalcoefficientr33inKNbO3,acrystalplatewascutnormaltothebaxis,andtwoelectrodeswithawidthof(s-h)=100mm,separatedbyagapofwidth2h=10mm,weredepositedonthepolishedbface(seeFig.6.30).Theedgesoftheelectrodeswereparalleltotheaaxis.Thehorizontal(paralleltothecaxis)componentEx(x,y)oftheappliedelectricfieldyieldsanincreaseoftherefractiveindexncofthecrystalinthegapregiongivenby

Page 705: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page332

withA=3.262×10-4mm/Vforl=0.63mm.TherefractiveindexchangeDnb,duetotheverticalelectricfieldEy(x,y),hasbeenneglectedbecauseofthesmallelectro-opticcoefficientr23=1.3pm/V(ProkhorovandKuz'minov1990).Therefore,withthistypeofwaveguideonlyTEmodespropagatingalongtheaaxisareguided.InordertoevaluatetheworkingvoltageandthelightfielddistributionofthepropagatingmodesBaumertetal(1985)havecalculatedtherefractiveindexdistributionnc+Dnc(x,y)asafunctionoftheappliedvoltage.TheelectricfieldcomponentsEx(x,y)andEy(X,y)insidethecrystal,belowtheelectrodegap,wereobtainedbysolvingtheLaplacepotentialequationusingtheconformalmappingtechnique(VandenbulckeandLagasse1976;Wei1977)andaregivenby

wherez=x+iy,k=h/s,K(k)isthecompleteellipticintegralofthefirstkind,and

Uisappliedvoltage, and arethefreedielectricconstants(at25°C)ofKNbO3alongthec-andb-axes,respectively.

ApreferentiallysingledomainKNbO3crystalwasgrownbyatopseededhigh-temperaturemeltpullingtechnique(FluckigerandArend1978).Chipswithasizeof4×3.4×0.7mmwerecutfromthecrystalandorientedbyx-rayandpreferentialetchingmethods(Wiesendanger1973).AftersurfacepolishingtheremainingdomainswereremovedinastrongpolarizingdcfieldneartheCurietemperature.Oppositeendsofthesinglecrystalswerepolishedinordertoallowforend-fire

Page 706: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

couplingoflaserlight.Thisprocess,however,hascausedstress-inducedmicrodomainsalongtheedgesofthefacetthatcouldnotentirelyberemovedbypoling.Forelectrodepreparation,athinchrome/goldfilmwasdepositedbyelectronbeamevaporationontheb-cutsurface.Apositiveelectricfieldwasappliedandthesurfacewasbakedverycarefullytopreventcreationofnewdomains(heating/coolingcyclewithdT/dt<2°C/min).Theelectrodestructurewaspatternedandthemetalfilmetched.Theelectrodeshadalengthof3mm(Fig.6.29).Thesamplesweremountedonaceramicsubstrateandcontactedusingcopperwireandsilverpaste.

LightofaTE-polarizedHe-Nelaserbeamwascoupledintotheelectro-opticallyinducedwaveguide.Fortheend-firein-andout-coupling,two20×

Page 707: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page333

Fig.6.29Designoftheelectro-opticallyinduced

waveguide(Baumerteta11985).

Fig.6.30Near-fieldlightdistribution(l=0.633mm)

(Baumerteta11985).

Fig.6.31Calculatedintensitydistributionforan

appliedvoltageof35V(l=0.633mm)(Baumert

Page 708: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

etal1985).

microscopelenseswereused.Withnoelectricfieldapplied,onlysomelightspotscausedbydiffractionatstress-induceddomainsatthecrystalendfaceswereobserved.Increasingtheappliedvoltageupto30V,anon-offratioof12dBcouldbemeasured,clearlydemonstratingafield-inducedincreaseoftherefractiveindexncbetweenthetwoelectrodes.Baumertetal(1985)measured

Page 709: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page334

thewavelengthdependenceofthenear-fieldlightdistribution.Thefollowinglaserlightsourceswereused:InGaAsP/InPdiode(1.3mm),Nd:YAG(1.064mmand0.532mm),argonpumpeddye(0.86mm),andHe-Ne(0.633mm).Figure6.30showsthenear-fieldlightdistributionsat0.633mmforanappliedvoltageof0and35V.Foravoltageof35Vtheintensitydistributionofthefundamentalmodeoftheelectroopticinducedwaveguidewascalculated(Fig.6.31).Goodagreementbetweencalculated(Fig.6.31,10mm)andmeasured(Fig.6.30,3.8±0.5mm)widthoftheintensityprofileswasfounddespitethemicrodomainsattheedges.

6.5Waveguideelectroopticpolarizationtransformer

Polarizationtransformationisanessentialfunctionforopticalsignalprocessing.Itisespeciallyimportantforsingle-modefibresystemsbecause,althoughshortlengthsofspeciallyfabricatedpolarizationpreservingbirefringentfibreshavebeenreported(Ramaswamyetal1978a;Stolenetal1978),typicalsingle-modefibresdonotmaintainlinearpolarization(Ramaswamyetal1978b;Kapronetal1972).Formanycommunicationapplication,thepolarizationindependentswitch(Alferness(1979)andon/offmodulator(Burns1978)canbeeffectivelyusedinspiteofanincidentsignalofunknownandtemporallychangingpolarization.However,forinterferometricsignalprocessingapplicationssuchas,forexample,heterodynedetectionorfibresensors,areceivedsignaloffixedpolarizationidenticaltothatofsomereferencesignalisrequired.Inthesecases,activepolarizationstabilization(Ulrich1979)maybenecessary.Polarizationtransformationsuitableforsuchstabilizationhasbeenachievedbybulkmechanicalelementswhichsqueeze(Johnson1979)ortwist(UlrichandJohnson1979)thefibretoinducelinearbirefringenceoropticalactivity,respectively.Thesedevicesarebulkyandmayresultinfibrefatigue.However,becauseitreliessolelyuponchangingthe

Page 710: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

birefringence,twoelectroopticalcrystalswithproperrelativeorientationarerequired.Furthermore,becauseitisabulkdevice,alargecontrolvoltage(~425V)isrequired.ThewaveguideelectroopticpolarizationtransformerdescribedbyAlfernessandBuhl(1981)iscompact,nonmechanical,capableoffastresponse,hashighfidelityandneedsonlylowcontrolvoltage.

Thepolarizationstateofanopticalwavecanbedefinedbytwoparameters,qandf.IntermsoftheseparameterstherelativeTEandTMfieldcomponentsofanopticalguidedwaveare

Thus,qdefinesthemagnitudeoftherelativeTEandTMamplitudesandqtherelativephasebetweenthesecomponents.Forq=0,thelightislinearlypolarizedatanangleq;q=0representspureTEpolarizationandq=½ppureTM.Rightcircularpolarizationisgiven,forexample,byq=0.25pandf=0.5p.

Page 711: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page335

Fig.6.32Schematicdrawingofpolarizationtransformer

(AlfernessandBuhl1981).

Thedemonstratedpolarizationtransformer,whichunderelectroopticalcontrolprovidesanydesired transformation,isshownschematicallyinFig.6.32.Itiscomprisedofasingle-modewaveguidewiththreeelectroderegions.Theoutertwoelectrodepairs(Fig.6.32)providetheE/Ochangeofthebirefringence.ForthecrystalorientationshowntheelectricallyinducedphaseshiftbetweentheTEandTMmodesis

whereVistheappliedvoltage,d1theinterelectrodegap,Ltheelectrodelength,ltheopticalwavelength,no,etheordinaryandextraordinaryrefractiveindicesandrthee/ocoefficients.Thecentreelectrodeprovides modeconversionbyutilizinganoffdiagonalelementofthee/otensortocoupletheotherwiseorthogonalTEandTMmodes(Alferness1980).Theeffectofthemodeconverterupontheamplitudecomponentsinequation(6.60)isgivenbythematrix

Page 712: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.6.33Calculatedoutputpolarizationangleq0vs

themodeconvertercouplingstrengthkLforvariousinputpolarizationanglesq1.TheincidentrelativeTE/TMphaseisassumedtobezero(AlfernessandBuhl1981).

Page 713: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page336

wherethecouplingcoefficientis

whered2istheinterfingerseparationandatheoverlapparameter(Alferness1980).Periodicelectrodesarerequiredbecauseofthematerialbirefringenceoflithiumniobate.

AlfernessandBuhl(1981)outlinedsomekeyfeaturesofthedeviceoperationbeforepresentingexperimentalresults.First,themodeconverterwasessentialbecausetherelativeTE/TMamplitudescannotbealteredbysimplechangingthebirefringence.However,themodeconverteralonewas,infact,alsoinsufficienttoproducegeneralTE/TMamplitudechanges,thatisthearbitrarychange .ThisfactisdemonstratedinFig.6.33,wherethecalculatedoutputpolarizationangleq0isplottedversustheelectricallyinducedmodeconvertercouplingstrength(proportionaltoV2)forseveralinputpolarizationanglesq1.Theresultswerecalculatedusingthetransformationmatrixofequation(6.62)withtheassumptionthattherelativeTE/TMphaseuponincidencetothemodeconverter iszero.Ofcourse,foreitherpureTEorTMinput(qi=0or½p,respectively)withpropervoltage,anarbitraryangleq0canbeachieved.However,astheangleqiincreasesfrom0ordecreasesfromp,theresultsofFig.6.33showthattherangeofachievableq0becomesgreatlylimited.Indeed,for ,regardlessofthevoltage(V2)appliedtothemodeconverter,theangleq0remainsequalto¼p.

Thekeytoovercomingthislimitationistheuseofthee/ophaseshifterbeforethemodeconvertertoadjusttherelativeTE/TMphaseofthesignalincidentuponthemodeconverterto±p.Inthesecases,apropervalueofthemodeconvertervoltagecanbeshowntoexist,sothatany changeispossible.Indeed,onlyforthesespecialrelative

Page 714: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

phasevaluescansucharbitrarytransfomationsbeachieved.Fortunately,forthesecasesthemodeconverteractsasalinearrotatorwithrespecttothepolarizationangle.For p,forexample,

wherekaV2isthesubjectoftheequation(6.62).Thus,controloverqisachievedbythecombinationofthefirstphaseshifterandthemodeconverter.

Thedesiredoverallrelativephasetransformationisthenachievedwiththefinalphaseshifter.ItshouldbenotedthatiftherelativeTE/TMinputphasetothemodeconverteris-0.5p,thentheoutputphasefromthemodeconverterisalso-0.5p.Furthermore,thebirefringentsubstratesthereisarelativephaseshift ,whereLTisthetotalcrystallength,andNTEandNTMaretheeffectiveindicesoftheTEandTMmodes,respectively.Thus,

Page 715: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page337

Fig.6.34Measuredresultsofthedeviceasalinearpolarizationrotator,therequiredmodeconvertervoltagetoachieveanoutputTEfieldvsinputpolarizationangle

V1=-4.1VandV3=0(AlfernessandBuhl1981).

toachievethedesiredvalueoff0thevoltageofthesecondphaseshiftermustbeadjustedtoobtainaphaseshiftDf2,sothat,

whereDf2isthechangeinducedbythefirstphaseshifter.ThevalueofDf2doesnotaffectq0.

Thedevicewastestedinseveralmodesofoperation.First,thenecessityofthefirstphaseshifterwasverified;forV1=0arbitrary

transformationscouldnotbeachievedregardlessofthemodeconvertervoltage.Next,thedevicewasoperatedasalinearrotatorwiththegoaloftransforminganarbitraryinputlinearpolarizationtoanoutputwave,thatis,pureTE.TofindthepropervalueofV1toachievea½pTE/TMphaseshiftatthemodeconverter,theangleqiwassetto¼pandV1adjustedtomaximizetheoutputTEcomponent.Oncedetermined,thisvalueofV1wasfixed.TherequiredmodeconvertervoltagetoachieveapureTEoutputpolarizationversustheinputpolarizationanglewasthenmeasured.Theresultsareshownin

Page 716: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.6.34.Aspredicted(equation(6.63)),alinearrotationisobservedand,indeed,anyvalueofq1canbetransformed.Therotationrateis15°/V.Theorthogonalpolarizationcomponent(TM)wastypicallygreaterthan23dBdownfromthedesiredone.Withcareinvoltageadjustmentvaluesof-27dBcouldbeachieved.

Becausethelargebirefringenceoflithiumniobatenecessitatesperiodicelectrodesforthemodeconverter,thedemonstrateddeviceiseffectiveonlyoveralimitedspectralbandwidthof~10Å(AlfernessandBuhl1980).However,thedevicecanbebroadbandedeitherbyshorteningthemodeconverterelectrodelengthorbylinearlyvaryingtheelectrodeperiod.Effectivespectralbandwidthsofseveralhundredangströmsshouldbereadilyachievable.Alternately,thedevicecanbefabricatedusingalessbirefringentsubstratelikelithiumtantalateoranonbirefringentone.Althoughthreecontrolvoltagesarerequiredforthemostgeneralpolarizationtransformation,formanyapplicationsonlyoutputlightthatispureTEorTMisrequired.Inthiscase,onlythefirstphaseshifterandthemodeconverterarerequired.

Page 717: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page338

6.6Lightbeamscanninganddeflectioninelectro-opticwaveguides

Tienetal(1974)reportedamethodoflightbeamscanninganddeflectioninwhichtheangleofdeflectionvarieswiththeappliedfield.Inoneoftheexperimentstheauthorswereabletoscanalightbeamcontinuouslyupto4°intheplaneofthefilm.Theexperimentswerecarriedoutinanelectro-opticwaveguideofasingle-crystalLiNbO3filmgrownepitaxiallyinLiTaO3.

Thetheoryandexperimentforthelightbeamdeflectionandtheconditionsthatoptimizethedeflectionefficiencyarediscussedbelow.

Ageneralequationofalightpathinamediumofvariableindexofrefractionisconsidered.Theequation(BornandWolf1959;Tienetal1965)is

Heredsisanelementofthelightpathandristhepositionvectorofds.Letthefilmlieintheyxplane.Therefractiveindexofthefilmvariesinxandyasitisexcitedbytheelectro-opticeffect.Theoriginofthecoordinatesarechosentolieonthexaxis(Fig.6.35(a)),andthelightpathisconsideredwhichdeviatedfromthexdirectionbyanangleqnotmorethan10°.Thentan andqissmall.Thus,

wherexandyaretheunitvectorsalongthexandydirections,respectively.Equation(6.66)nowbecomes

Page 718: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.6.35(a)Lightbeaminamediumofvariablerefractiveindexn(x,y).(b)Diagramshowingtheprocessofoptimisingthedeflectionofalightbeam.

(c)Experimentalarrangementusedtodeflectalightbeamthroughrefractions.(d)Experimentalarrangementusedtodeflectalightbeamthroughincompletereflection(DqT)and

refractions(DqR)(Tienetal1974).

Page 719: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page339

Aftersimplification,wehave

Sincedy/dx(=tan )issmall,equation(6.68)becomes

Here,inthefirstintegral,dxisreplacedby(dx/dy)dywhichis(1/tanq)dy.Equation(6.69)isageneralequationfordeflectingalightbeamandDqisthedeflectionangleoccurringafterthelightbeamhastracedapathfrom(x1,y1)to(x2,y2).Theanglesq1andq2aretheentranceandexitanglesofthelightbeamat(x1,y1)and(x2,y2),respectively.Thequantitiesn,tanq, ,and areevaluatedalongthelightpath.Equation(6.69)hasseveralintersectingfeatures:First,thefirstintegralinvolves( )whereasthesecondintegralinvolves( ).Next,thefirstintegralcontainsafactorof(1/tanq)andthesecondintegralcontainsafactoroftanq.Sincetanqissmall,thefirstintegralin(6.69)isusuallymuchlargerthanthesecondone.Todemonstratetheprocessleadingtotheoptimizationof ,letusconsiderinFig.6.35balightbeamwhichisdeflectedbypassingthrougharectangularregionofrefractiveindex(n+Dn)surroundedbyauniformmediumoftherefractiveindexn.Tobespecific,thecasewheredx,dy,tanq,DnandDqareallpositive.ForoptimizingDqintheportionofthelightpathwheretherefractiveindexisincreasing,theconditionsare , ispositive,andtanqshouldbesmall.Byplacing ,theentireamountofDnhastobecontributedby

alone.Consequently, canhavethelargestpossiblevalueforagivenDnandsoisthefirstintegralin(6.69).Moreover,because

,thesecondintegralin(6.69)iszero.Otherwise,thisintegralwouldbenegativeandwouldreducethevalueofDq.Usingasimilar

Page 720: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

argument,Tienetal(1974)foundthatfortheportionofthelightpathwheretherefractiveindexisdecreasing,theconditionsare and

isnegative.AsillustratedinFig.6.35b,alltheaboveconditionsaresatisfied,ifalightbeamwhichentersintotheregionof(n+Dn)throughthebottomleavesitattherightwithouttouchingthetopsideoftherectangle.Thesamelightpath(Fig.6.35b)optimizedanegativeDq,ifDnisnegative.

Toproduceaproperdistributionofelectricfieldonthefilm,Tienetal(1974)usedthecircuitshowninFig.6.35d.Itconsistsoftwomainelectrodes,AandB,andfourparallelfingerseach5mmwide.Thespacingsbetweenthefingersare20mmandthetotalspacingbetweenAandBis120mm.TheelectrodesandthefingersareL=2.7mmlongalong .Byapplying

Page 721: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page340

Fig.6.36ThedotsarethemeasurementofDqvstheintensity

oftheappliedfieldusingtheexperimentalarrangementshowninFig.6.35(c).Solidlineindicatedtheresult

calculatedfromequation(6.71)usingr33=28.5×10-12m/V(Tienetal1974).

propervoltagestotheelectrodesandthefingers,avarietyofelectricfielddistributionscanbeproducedbetweenAandB.ThecircuitisfabricatedonaglasssubstratebytheusualphotolithographictechniqueandisthenattachedontopoftheepitaxialLiNbO3film.AcoatofEUKITTisappliedbetweenthefilmandthecircuitinordertoavoidelectricbreakdowninair.Thefilmhasthecaxisparalleltoandtherefractiveindicesofthefilmaren0=2.290andne=2.220.Intheexperiments,al=0.6328mmHe-Nelaserbeamwascoupledintothefilmbyarutileprismcoupler.Thelightbeaminthefilmwas60mmwideandpropagatednearlyparallelto intheTE(m=0)waveguidemode(Tien1971).Tosimplifythecomputation,themodeindexwastakentobeequaltoneofthefilm.

ThefirstexperimentisillustratedinFig.6.35c.ByapplyingavoltageacrossAandB,auniformelectricfieldEyisexcitedbetweentheelectrodes.TheelectricfielddistributionisillustratedinthisFig.bydashedlines.Duetotheelectro-opticcoefficientr33ofLiNbO3,therefractiveindex(extraordinary)ofthefilminthespacebetweenAandBisincreasedbyanamountDnsuchas

Page 722: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ThiswasareproductionofthesituationshowninFig.6.35b-aregionof(Dn+ne)surroundedbyamediumofne.Here,DnispositiveornegativedependinguponthesignofEy.WhenEyvariesfrom7.0to-6.7V/mm,thelightbeamscansfirstover rad(whenDnisnegative)andthenover rad(whenDnispositive),asshowninfigures6.35cand6.36.Tocalculatethesedeflections,itcanbeshownfromequations(6.68)and(6.69)that

Page 723: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page341

whereq1andq2areexpressedinradians.FromtheexperimentalvaluesofDqandusing(6.70)and(6.71)Tienetal(1974)obtainedr33=28.5x10-12m/Vfortheirfilm,whichwassubstantiallylargerthanthatreportedbyFukunishietal(1974)fortheirLiNbO3films.Infact,thevalueofr33obtainedbyTienetal(1974)wasonlyabout10%lessthanthatofbulkLiNbO3.Usingtheexperimentalvaluer33ofthefilm,themeasuredvaluesofDqarecomparedinFig.6.36withthosecomputedfromequations(6.70)and(6.71);theagreementisexcellent.

Tienetal(1974)discussedaphenomenonofrefraction.Thelightwavewasrefractedasitenteredintotheregionof(ne+Dn)andwasrefractedagainasitlefttheregion.Foroptimizing theauthorsarrangedthelightpathsothatthesetworefractionsadded.Itisevidentfrom(6.71)thatthismodeofoperationappliesonlyfor

.Otherwise,thelightbeamwouldbetotallyreflected.

ThesecondexperimentisillustratedinFig.6.35d.ConsideragainthegapbetweentheelectrodesAandB.Byapplyingpropervoltagestothefingersandtheelectrodesanindexdistributionwasexcited,suchthatDn(=Dn)-wasnegativeinthetoppartofthegapandDn(=Dn)+waspositiveinthelowerpart.Theoverallvariationoftherefractiveindexinthegapwas .Alightbeamwithanentranceangleq1facesanegativegradientoftherefractiveindexwhichcausesthelightpathtobend.IfthenegativeDnislargeenough,thelightbeamtracesacirculararcinsidethegapandfinallyemergesattherightwithanexitangleq2=q1.Thisiswhatonewouldexpectforatotalintegralreflection.However,whenAnislessnegative,thearctracedbythelightbeambecomeslarger.Soon,onefindsthatthegapisnotlongenoughforthelightbeamtocompletethisarc.This

Page 724: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fig.6.37Schematicdiagramofthepolarization-independentopticalfilter(WMC,polarizationconvertervoltage;VTbirefringencetuningvoltage;Vc,polarizationsplittertuningvoltage)(Waranskyetal1988).

Page 725: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page342

incompletetotalreflectionmakesq2againvarywithDnwhichofcoursedependsontheintensityoftheappliedelectricfield.Itcanbeshownfurtherthat,forvaluesof(2Dn/n)muchlessthan ,thelightbeaminsidethegapisdeflectedthroughtheincompletetotalreflection(illustratedinFig.6.35(d)by ).Inthismodeofoperationthedeflectionislinearwith fromq2=0toq2=-q1andthenstaysatq2=-q1forafurtherincreaseof .Ontheotherhand,intherangebetween and0(orpositive),thelightbeamisdeflectedbyrefractionsasdiscussedearlierinthefirstexperiment(illustratedinFig.6.35dby ).Theseparatinglinebetweenthesetwomodesofoperation, ,issimplytheconditionofthecriticalangle.

6.7Electro-opticallytunablewavelengthfilter

Wavelengthdivisionmultiplexing(WDM)isaveryattractiveschemetoincreasetheinformationbandwidthoffibreopticcommunicationsystemsandnetworks.WavelengthdemultiplexingandchannelselectioninsuchWDMsystemsrequiretunablenarrow-bandopticalfiltersthatarecompatiblewithsingle-modefibres.Furthermore,applicationswithfibresthatdonotpreservepolarizationrequireopticalfiltersthatoperateindependentlyoftheinputpolarization.Variousschemesoftunableopticalfiltershavebeendemonstratedwithsingle-modewaveguides,suchaswavelengthselectiveintegratedopticaldirectionalcouplers(AlfernessandSchmidt1978)andinterferometers(RottmanandVoges1987)orfibreopticBraggreflectors(Whalenetal1986)andFabry-Perotresonators(StoneandStulz1987).Waranskyetal(1988)proposedanddemonstratedthefirstpolarization-independentelectro-opticallytunablewavelengthfilterwithsingle-modewaveguides.TheLiNbO3wavelengthfilterhasabandwidthofonly12Åandatuningrangeofatleast110Å.Ithadtwooutputportsservingasabandpassandanotchfilter,anditcanbeusedforwavelengthdemultiplexingaswellasfor

Page 726: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

multiplexing.

Thepolarization-independentfilteremploystwoidenticalwavelength-de-pendent polarizationconvertersandtwoidenticalTE/TMpolarizationsplittersintheinputandoutputofthepolarizationconverters.Theinputpolarizationsplitterdemultiplexesthequasi-TEandquasi-TMpolarizedcomponentsofinputlightandrouteseachcomponentseparatelythroughoneofthetwoparallelpolarizationconverters,wherethetwopolarizationcomponentsexperiencethesamewavelength-dependent polarizationconversionbeforetheyarerecombinedattheoutputpolarizationsplitter.Figure6.37showsaschematicdiagramofthefiltreimplementedwithsingle-modestripwaveguidesonx-cuty-propagatingLiNbO3.Thetwoelectro-optic polarizationconvertersarewavelengthtunableandconsistofacascadeofshortsectionsofpolarizationconverterelectrodesalternatingwithshortsectionsofbirefringencetuningelectrodes(AlfernessandBuhl1985).ThetwopolarizationsplittersareidenticalwaveguidedirectionalcouplerswithDb-reversaltuningelectrodesandaredesignedtocoupleTM-polarizedlightcompletelyintothecrossoverwaveguidewhileleavingTE-polarizedlightintheinput(straight-through)waveguide(AlfernessandBuhl1984).

Thefilteroperatesasfollows.Arbitrarilypolarizedlightentersthefilter

Page 727: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page343

intheinputwaveguide(No.1inFig.6.37)ofthefirstpolarizationsplitter,whereallTM-polarizedlightiscompletelycoupledintothecrossoverwaveguide(No.2inFig.6.37),whileallTE-polarizedlightstaysinthestraight-throughwaveguide(No.1).Thetwoseparatedpolarizationcomponentspassthroughidenticalnarrow-bandpolarizationconverters.Iftheirwavelengthisatthecentrewavelengthofthepolarizationconverters,thentheTE-polarizedlightofwaveguideNo.1iscompletelyconvertedintoTM-polarizedlight,andlikewise,theTM-polarizedlightinwaveguideNo.2iscompletelyconvertedintoTE-polarizedlight.TheoutputpolarizationsplittercouplesthenowTM-polarizedlightofwaveguideNo.1completelyintothecrossoverwaveguide(No.2)whileleavingthenowTE-polarizedlightinwaveguideNo.2.ThusthetwopolarizationcomponentsarerecombinedandexitthefilterinwaveguideNo.2(thecrossoverwaveguide).

Onthecontrary,ofthewavelengthoftheinputlightisoutsidethebandwidthofthepolarizationconverters,thenthetwopolarizationcomponentspassthepolarizationconverterswithoutchangeinpolarization,andtheoutputpolarizationsplittercouplestheTM-polarizedcomponentofwaveguideNo.2completelybackintoinputwaveguide(No.1),whereitisrecombinedwiththeTE-polarizedinputlight.Inthiscase,bothpolarizationcomponentsexitthefilterinwaveguideNo.1(theinputwaveguide).

ThuslightatawavelengthwithinthebandwidthofthepolarizationconvertersexitsthefilterinwaveguideNo.2,whereaslightatotherwavelengthsexitsthefilterinwaveguideNo.1.ThedevicethereforeactsasabandpassfilterwhentheoutputistakenfromwaveguideNo.2andasanotchfilterwhentheoutputistakenfromwaveguideNo.1.Notethatbothoutputportscanbeusedsimultaneously,thusallowingapplicationsasawavelengthtapinabus-typenetworkorasawavelengthmultiplexer.

Page 728: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Thedetailsoftheelectro-optic polarizationconvertersandtheTE/TMpolarizationsplittersusedinthefilterweredescribedbyHeismannandAlferness(1988),Habara(1987),HeismannandBuhl(1987).InthewaveguideorientationofFig.6.37,theTE-andTM-polarizedmodeshavedifferentpropagationconstantsbecauseofthelargebirefringenceofLiNbO3,thusrequiringperiodiccouplingforefficient polarizationconversion.Periodiccouplingofthetwomodesisachievedelectro-opticallybyinducingaperiodicgratingofindexperturbationsinthewaveguideviaaspatiallyalternatingelectricfieldExandther51electro-opticcoefficient( m/V).Mostefficient polarizationconversionisobtainedatafree-spacewavelength ,whereListhespatialperiodoftheappliedelectricfieldEx,andDnphisthedifferenceoftheeffectiveindicesofthetwopolarizationmodes( ).Theopticalbandwidthoftheefficient conversionisdeterminedbytheoverallinteractionlengthL(HeismannandAlferness1988):

Page 729: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page344

where isthegroupindexdifferenceofthetwomodesatl0.

Tuningofthecentrewavelengthl0isaccomplishedelectro-opticallybychangingthebirefringenceDnphinthewaveguideviaaspatiallyuniformelectricfieldEz,andther33andr13electro-opticcoefficients( m/Vand m/V).Herethefieldsforpolarizationconversion,Ex,andforbirefringencetuning,Ez,areappliedalternatelyoveralargenumberofshortsections.Inthisdevice,45sectionsofuniformbirefringencetuningelectrodesareperiodicallyinterleavedbetween46sectionsofperiodicpolarizationconverterelectrodes,whereallbirefringencetuningelectrodesaredrivenbyacommonvoltageVTandallpolarizationconverterelectrodesbyacommonvoltageVMC.Thetuningrateofthecentrewavelengthl0isgivenby(HeismannandAlferness1988)

where istheshiftofthecentrewavelength,GisthenormalizedoverlapintegraloftheappliedelectricfieldEzwiththeopticalfields,Gisthegapofthebirefringencetuningelectrodes,and and arethelengthsofasinglepolarizationconverterandbirefringencetuningsection,respectively.

Operationofsuchtunable polarizationconverterasawavelengthfilterrequireslinearTE-(orTM-)polarizedinputlightandalinearTM-pass(TE-pass)polarizationfilterintheoutputbeam.Notethatthewavelengthdependenceofelectro-opticconversionisindependentofthedirection,i.e. conversionhasthesamecentrewavelength,bandwidth,andtuningrateasconversion.This symmetryofthewavelengthresponseisessentialfortheoperationofthepolarizationindependentfilter.HereidenticalwavelengthresponsesforTE-andTM-polarizedinputlight

Page 730: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

areobtainedbyusingidenticalpolarizationconvertersinthetwobranchesofthefilter.Inthepresentdevice,thetwopolarizationconverterssharethesameinterdigitalfingerelectrodes,asshowninFig.6.37,toobtainthesamecentrewavelengthsforTE-andTM-polarizedinputlight.Thebirefringencetuningelectrodesofbothconvertersaredesignedtohaveexactlythesamelengthstoobtainidenticaltuningrates.Thetuningelectrodesarearrangedinsuchawaythatnocrossconnectionsareneededwithintheelectrodestructure.However,thiselectrodelayoutrequirestwotuningvoltages,VTand2VT.toobtainaneffectivetuningvoltageofVTforbothpolarizationconverters.

Thepolarizationsplittersareconventionalwaveguidedirectionalcouplersdesignedtohavecouplingcoefficientsof forTM-polarizedlightand forTE-polarizedlight,whereLcisthecouplinglength.Polarizationsplittingwithlowcrosstalkisachievedbydetuningthecouplersviatwo-sectionDb-reversalelectrodesutilizingther33(forTE)andr13(forTM)electro-opticcoefficientssothatTM-polarizedlightiscompletelycoupledintothecrossoverwaveguide,whileTE-polarizedlightstaysintheinputwaveguide(Habara1987).

Page 731: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page345

Fig.6.38Normalizedfiltertransmissionoftheuntuned(VT=0V,solidandthindashedlines)andtunedbandpassfilter(VT=+100and-100V,bolddashedlines)measuredforTE-andTM-polarizedinputlight(Waranskyetal1988).

Thefiltreisrealizedinx-cutandy-cutpropagatingLiNbO3usingstandardfabricationtechniques.The polarizationconvertersaredesignedforoperationaround mm.ThebasicperiodoftheinterdigitalfingerelectrodesisL=21mm( ),andthetotalinteractionlengthis19mm.Thepolarizationsplitter/directionalcouplershaveacentre-to-centrewaveguideseparationof17.5mmandatotalcouplinglengthof8mm.Polarizationsplittingwithcrosstalkoflessthan-18dBisachievedbyapplyingvoltagesof-37and+40VtothetwosectionsoftheDb-reversalelectrodes.Theoveralllengthofthefiltreis52mm.

PolarizedlightfromatunablecolorcentrelaserisusedtotestthefilterresponseseparatelyforTE-andTM-polarizedinputlight.Fig.6.38showsthetransmissionofthebandpassfiltre(outputportNo.2)versuswavelengthforTEaswellasforTMinputlight.Forbothinputpolarizationsthecentrewavelengthoftheuntunedfiltre(VT=0)is1.5254mmandtheopticalbandwidthis12Å,asexpectedforthe19mmlongpolarizationconverters( ).Thevoltageforcomplete conversionisVMC=+37grV.AlsoshowninFig.6.38isthefiltretransmissionwhentuningvoltagesofVr=-100and+100

Page 732: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Vareappliedtothebirefringencetuningelectrodes.Herethecentrewavelengthisshiftedby55Åtoshorterandlongerwavelength,respectively,whereidenticalresultsareobtainedforbothinputpolarizations.Thusthefiltrecanbetunedoverarangeofatleast110Å.

6.8Flip-chipcouplingbetweenfibresandchannelwaveguides

Efficientcouplingbetweensingle-modefibresandTi-diffusedLiNbO3channelwaveguidesisessentialfortheinclusionofLiNbO3waveguidedevicesinsingle-modefibresystems.Suchcouplingisdifficulttoachievebecauseofcriticalpositioningandpreparationtolerances.Micromanipulatorscanbeusedforthefibre/channelalignmentforend-firecoupling(Nodaetal1978;KeilandAuracher1979;FukumaandNoda1980).Hsuetal(1978)demonstratedfibre/channelend-firecouplingusingtheflip-chipapproachwhereV-groovesarepreferentiallyetchedinaSiwafer.TheLiNbO3end-faceswerecleaved.Infibre/fibrecoupling,improvedaltitudinalalignmenthasbeendemonstratedwithtaperedfibrespositionedingroovesatrightanglestotheinputandoutput

Page 733: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page346

Fig.6.39SchematicofSiV-groove/flip-chip

couplingstructure(Bulmeretal1980).

fibregrooves(SheemandGiallorenzi1978).Bulmeretal(1980)usedtaperedfibresintransversegroovesinSiV-groove/flip-chipcouplingmethodandhaveconsistentlymeasuredcouplingefficienciesof>70%,correspondingtoan~3dBtotalthroughputloss(Bulmeretal1980)forTE-andTM-modepolarizations.ThecouplingstructureisindicatedschematicallyinFig.6.39.Itiscompactandcanbemaderigid.

Thereareseveralverystringentrequirementsforefficientcoupling:(i)accuratehorizontal,vertical,andangularpositioning;(ii)planar,defect-freewaveguideandsurfaces,normaltothepropagationdirection;and(iii)forcompletecoupling,matchingofthewaveguidefielddistributions.Bulmeretal(1980)aimedtoachievetranslationalalignmentof<1mmandangularalignmentof<10.OnlyLiNbO3waveguideorientationswereusedinordertoavoidanisotropicleaky-mode(Sheemetal1978)anddoublerefractioneffects(KaminowandStulz1978)whichoccurwhenwavesarepropagatingalonganonaxialdirection,andsoachievepolarization-independentpropagationlossesandcouplingefficiencies.AsLiNbO3hasonlyonecleavageplane,alonganonaxialdirection,itisnecessarytopreparethecubicandfacesoftheLiNbO3substratesbypolishing.TheLiNbO3substrateedgesshouldhaveminimalrounding.

Page 734: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Accuratepositioninginthehorizontalplaneisachievedbyaligningmatchingregistrationlines(groovesandchannels)whichareregisteredalongthecouplingfibreV-groovesintheSiwaferandalongthechannelwaveguidesintheLiNbO3.Theregistrationlinesareseveralmicronswideandareregisteredwithanaccuracybetterthan0.5mm.Accurateverticalpositioningisprovidedbytaperedalignmentfibres,withdiameterstaperedby0.5-1mm/mm,placedunderthecouplingfibresindeepV-grooves,atrightanglestothecouplingfibregrooves.Thehightoftheinputoroutputfibreiscontinuouslyadjustedbypushingorpullingthetaperedfibreinitstransversegroovesothatthecouplingismaximized.Withoutsuchfinealtitudinalalignment,ahighcouplingefficiencycouldbeachievedonlywithcouplinggroovespreciselytothedepthappropriateforafibreofknowno.d.(opticaldamage)andperfectconcentricity.

Bulmeretal(1980)usedhigh-resistivity<100>Siwafers,withan1mmthickmaskinglayerofSiO2,andalignedthephotolithographicgroovemask

Page 735: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page347

tothewaferaxestobetterthan1°.Themaskhastworegistrationgroovesalongeithersideofeachcouplinggroove.Inthealignmentoftheflipped-overLiNbO3ontopoftheSiwafer,acorrespondingTi-diffusedlineintheLiNbO3,toeithersideofeachchannelwaveguideorwaveguidedevice,isarrangedtoliebetweenthesetworegistrationgrooves.InthecentralregionwhereLiNbO3substrateistobelaid,onlyhalfwaythroughtheSiO2masklayerwasetchedsothattheregistrationlinesarenotoveretchedduringtheSiV-grooveetchingprocess.ThecouplingandalignmentcouplinggrooveswerethenetchedintheSiusinganethyl-enediamine-pyrocatechol-watermixture(FinneandKlein1967).IftheregistrationgroovesareetchedintheSi,theydeteriorategreatlyowingtoundercuttingandthefinitepreferentialetchratio,whichmakesexactalignmentverydifficult.ThecompletepatternontheSiwaferconsistedofsixcouplinggrooveswithdeepertransversealignmentgroovestoeithersideofsubstrateregion.Couplinginturntoeachofsixdifferentchannelwaveguidesisthereforepossiblewithasingleunit.

TheLiNbO3endsurfaceswerepreparedbyanopticalcontactpolishingmethod.TheTi-diffusedLiNbO3substratewasopticallycontactedtoadummyLiNbO3substrate,theinputandoutputedgeswerepolished,andthesubstrateswerethenseparatedbymildthermalshock.Toallowopticalcontact,TiwasdiffusedovertheentireLiNbO3substrateexceptclosetothechannelwaveguidepattern.Asthereisnogapbetweenthesubstrates,chip-freeedgeswithnoroundingareobtained.Veryflatfibreends,withlittleornolip,normaltothefibreaxis,wereobtainedusingtheconventionalcleavingtechnique.Ifthewaveguidefielddistributionsareperfectlymatched,100%couplingispossible(neglectingreflectionlosseswhichcanbeminimizedwithantireflectioncoatings).However,perfectmatchingisnotpossiblebecausethechannelwaveguidefielddistributionhasanon-unityaspectratio,isasymmetricperpendicular

Page 736: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

tothesurface,andisnotexactlyGaussianeitherparallelorperpendiculartothesurface,whereasthefibrefieldisessentiallyGaussian(BurnsandHocker1977).ThechannelwaveguidefieldcanbeoptimizedsomewhatbyanappropriatechoiceofTidiffusionconditions(Fukudaetal1979).

Bulmeretal(1980)defined3and4mmwidestraightchannelwaveguidesand3mmwidechannelwaveguideMach-Zehnderinterferometersin170-220Å.Tionz-cut,x-propagatingLiNbO3substrates.ThediffusionwasperformedinO2for6hat1000°C,andinsomecasesinthepresenceofLiNbO3powdertoreduceLi2Oout-diffusion.Thechannelswereperpendicular,to1°,totheedgeswhichwerethenpolished.An4000ÅSiO2layerwassputteredoneachsubstrateandthenoxidizedfor9hat600°C.ItwasneededtoisolatetheopticalwaveguidesfromtheA1electrodeslaterdepositedalongtheinterferometer.Toobtainpolarization-independentbehaviour,authorsusedhorizontalandverticalfieldelectrodes.Theauthorsusedsingle-modefused-silicafibrewithNA0.1andcoreandcladdingdiametersof4.5and88mm,respectively.Theouterplasticjacketwasremovedinthecouplingregionandalongsectionsoftheinputandoutputfibreswherecladdingmodeswerestripped.Thefibrebeatlengthwas~20m.Measurementsweremadeat633nm,separatelyforeachopticalpolarization.Thepolarizationwasrotatedwithahalf-waveplateattheinputtothe0.5mlonginputfibreanditwascheckedatthefibre

Page 737: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page348

output.Thepolarizationwasmaintainedto~99%.

Bulmeretal(1980)entirelyneglectedanymodepropagationlossesincalculationsofflip-chipcouplingefficiencies.Usingtheflip-chiparrangementdescribedabove,theauthorsobtained76and72%couplingbetweenthesameinputfibresandthe3and4mmchannels,respectively,foreachopticalpolarization.Thus,theflip-chipcouplingefficiencieswereashighasthosemeasuredwiththemicropositioner.Thecouplingcouldbesmoothlyvariedbetweenmaximumandnearzerobymovingthetaperedalignmentfibre.Ifthecouplingfibregrooveswereetchedtoodeeply(byseveralmm),therewassomefrictionbetweenthetwofibres,resultinginappreciablehorizontalmotionofthecouplingfibre,whichaidscouplingiftheLiNbO3-Siwafertransversealignmentisimperfect.

With3and4mmwidechannelsoneachsubstratecementedtoaSiwafer,andwithfibre/channelseparationof<10mm,Bulmeretal(1980)havemeasuredTE-andTM-modecouplingefficienciesof70-88%,correctedforreflectionlosses.ProvidedthattheinitialSi/LiNbO3alignmentisaccurateto1mm,themeasurementswererepeatablewithin10%andthesamecouplingefficiencieswereobtainedforcouplingwithoneinputfibreorwithinputandoutputfibres.ThevaluesforsubstratesweredeterminedallowingforsmallFabry-Perotresonances(BornandWolf1970)usingtheexpression

HerePmax(mm)isthemaximum(minimum)outputpower,Pinistheinputpower,kisthefibre/channelcouplingefficiency,and arethereflectivitiesateitherendoftheFabry-Perotcavity;representsthefractionofpowerreflectedateitherendofthecavitywhichremainsguidedinthechannelwaveguide( indicatescompletelossonreflectionbecauseofnonperpendicularchannelend

Page 738: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

facets).Inthecasesunderconsideration, .Equation(6.74)wasderivedintheassumptionofzeromodeattenuationinthecavityandwithdisregardofanyeffectofthe7.5cmlasercoherencelength.Foroneofthesamples,fromcomparisonsoftheoutputswithindexmatchingoilandairbetweenthefibreandLiNbO3,theLiNbO3itselfappearedtobeactingasaresonantcavity.ThiswasverifiedbyheatingandcoolingtheLiNbO3tovarytheopticalpathlengthandobservingtheresultantoscillatoryvariationinoutputofupto7%duetothermalexpansionandrefractiveindexchange.

Inordertoestimatethemaximumcouplingefficiencyforperfectalignmentlimitedonlybythemodefieldmismatch(BurnsandHocker1977),modedistributionsweremeasuredbyscanningwitha100mmdiam.pinholeinthehorizontal(x)andvertical(y)directionsacrossthemagnifiednear-fieldimagesofthechannelwaveguideandfibreoutputs.Alltheprofileswereextremelysmooth,andshowednoindicationofimperfectionsinthechannelandsurfaces.Fromthe1/epointsoftheseintensityprofiles,theGaussianmodefieldhalfwidthwasdetermined(seeTable6.4).Forthechannel,thesewerewx,

Page 739: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page349

Table6.4Measuredchannelmodefieldhalf-widthswx,wyandcorrespondingtheoreticalmaximumcouplingefficiencieskmand fromnumericaloverlapofbeamprofiles(Bulmer,Sheem,Moeller1980)

Mode wx(mm) wy(mm) km(%) k'm(%)

2.9 2.2 88 92

3.6 3 91 93

2.9 2 86 89

3.2 2.3 89 92

wyoftherectangularGaussian(BurnsandHocker1977)(where,e.g.,whichapproximatesthewaveguidemodeelectricfield

(wxisparallelandwyperpendiculartothesurface).Forthefibre,assumingacircularGaussianfield,themoderadiuswasa=3.0mm.Thenforaperfectalignment,azeroseparationandnoreflectionlosses,thepowercouplingcoefficientwasestimatedas

wherethefactor0.93isacorrectionforthedeviationoftherealmodefieldsfromtheirGaussianapproximations.Table6.4presentsthekmvaluescorrespondingtothemeasuredmodewidths.Theyareafewpercenthigherthantheexperimentalcouplingefficiencies.Themaximumcouplingefficiencieswerealsoestimatedbyanumericaloverlapofthenormalizedmodeprofilesandareshownas inTable6.4.Thevaluesare2-4%higherthanthecorrespondingkmvalues.Sincetheoryintends itcanbeconcludedthatthecorrectionfactor0.93isslightlyconservativeforthiscase.

6.9KTiOPO4waveguidedevicesandapplications

KTPhasseveralpotentialadvantagesforopticalwaveguidedevice

Page 740: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

comparedwithothermaterialsinadditiontohavingamuchlargermodulatorfigureofmerit.ItshighopticaldamagethresholdsuggeststhatKTPwaveguidedevicescouldbeusedtocontrolorconverthigh-intensityopticalbeamswithinputwavelengthsextendingfromthevisibletotheIR.KTPwaveguidedevicesshouldbemuchlesssusceptibletopiezoelectricandpyroelectricinstabilitiesbecausetheseeffectshavenotbeenobservedinbulkdeviceapplications,andhencedevicethermalandmechanicalstabilityshouldbemuchbetter.

Severaldemonstrationelectro-opticandnonlinearopticdeviceshavebeenfabricatedbyusingKTPwiththewaveguidefabricationprocessdescribedinchapter2.Themeasured forseveralsingle-channelphasemodulatorsindicatesthatthewaveguidefabricationprocessdoesnotaltertheelectro-opticcoefficient.Usinga6mmwidechannelwaveguideanda0.2mmMgF2bufferlayer,andcouplingtotheelectro-opticcoefficientrc2,BierleinandVanherzeele

Page 741: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page350

(1989)observeda of6Vcmat6328Å,whichisclosetothetheoreticallypredictedvalueforKTP'sbulkelectro-opticanddielectricconstants(Bierleinetal1989).Thesedevicesaredcstableforbothhydrothermallyandflux-grownsubstrates.The waslowerthan6Vcmatlowfrequenciesandincreasedto6Vcmathighfrequency.Theoccurrenceofionic-conductioneffectssuggeststhatthedcconductivityoftheRb-richopticalwaveguideislowerthanthatofbulkKTP.LimiteddataonthedielectricpropertiesofbulkRbTiOPO4indicatesuchalowerconductivity,aresultthatisnottotallyunexpectedbecauseRbhasalargerionicradiuscomparedwithK,givingalowerionhoppingrate.

AMach-Zehndermodulatorwasalsofabricatedona1mmthick,z-cutKTPsubstratebyusing6mmwideRb-exchangedwaveguidesandtraveling-waveelectrodesthatshowabandwidthofnearly16GHz(Laubacheretal1988).Thismodulatorwasfabricatedwitha0.4mmSiO2bufferlayer,a1cmelectricfieldinteractionlength,anda25mmelectrodegapandhada of10Vata1.3mminputwavelengthand5Vat0.633mm.Thismodulatordidnotshowanyinstabilitiesduetoopticaldamageorphotorefraction,whicharecommonlyobservedinothermaterials,evenwithinputsofasgreatas1mW.

Thenonlinear-opticalpropertiesofKTPwaveguideshavealsobeenevaluatedbymeasuringtheSHGoutput,usingadiode-pumpedNd:YAGinputat1.064and1.31mm.Usinga6mmwideRb-exchangedchannelwaveguide,Bierlein(1989)measuredconversionefficienciestothegreeninthe4%W-1cm-2range.Thisconversionefficiencyisclosetothebestvaluesmeasured(4.8%)forTi:LiNbO3waveguides.At1.31mminputconversionefficienciesofapproximately1%W-1cm-2wereobtained.

ForfrequencydoublingexperimentsconductedbyRisk(1991)awaveguidewasfabricatedonthec-sideofaKTPsubstratewitha

Page 742: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

depthofd~2mmandfoundtobesinglemodeattheinfraredwavelengthusedforSHG.InbulkKTP,typeIInonlinearprocessesareused,sincethesehavehigheffectivenonlinearcoefficients.Theseprocesses,suchasfrequencydoublingof994nmlight(Risketal1989),orsum-frequencymixingof809and1064nmlight(Baumert1988),requirebothx-andz-polarizedfieldsattheIRwavelengthsforpropagationalongthey-axis.ThegeneratedSHfieldispolarizedalongx.ThephasematchingconditionforSHGisthus1/2

.Inthewaveguide,theanalogousinteractioncorrespondsto ,wherem,n,andparemodenumbers.Themostdesirableinteractionisform=n=p=0,whichinvolvesonlythelowest-ordermodes.Interactionsinvolvinglowest-ordermodesatthefundamental(m=n=0)andhigher-ordermodesatthesecond-harmonic( )permitgenerationofblue/greenwavelengthsshorterthanthoseobtainedusingthebulkmaterial.

Figure6.40showscalculatedvaluesfortherefractiveindicesinvolvedinthebulkinteractionandforeffectivemodeindicesintheguided-waveinteraction.ThebulkrefractiveindexvaluesarecalculatedfromSellmeierequations.TheeffectivemodeindiceshavebeencalculatedbytheWKBmethodusingtheparametersofthewaveguidemeasuredbyprismcouplingat633nm.Thedashedcurvesrepresent1/2[ ],correspondingtofundamental

Page 743: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page351

Fig.6.40Phase-matchingcharacteristicsforfrequency

doublinginaplanarKTPwaveguide.Lowerhorizontalscalereferstofundamentalwavelengths;upper

horizontalscalereferstocorrespondingsecond-harmonicwavelengths(Risk1991).

Table6.5Wavelengthsofphase-matchedinteractions(Risk1991)

Interaction Calculatedwavelength Measuredwavelength

1130nm N/A

966nm 969nm

913nm 923nm

905nm 906nm

wavelengthsonthelowerhorizontalscaleandnx(2w),correspondingtosecond-harmonicwavelengthsontheupperhorizontalscale.Attheintersectionofthesetwocurves,thebulkphase-matchingconditiongivenaboveissatisfied;thiscorrespondstoSHGwithafundamentalwavelengthof994nm(Risketal1989).ThesolidcurvesinFig.6.40showthedispersionoftheeffectiveindicesforwaveguidemodes.Theintersectionsofthecurverepresentingtheaverageofthe andmodeindiceswiththecurvesrepresentingthemodeindicesforthe

modesdefinewavelengthsforwhichguided-modeSHG

Page 744: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

interactionsarephasematched.Ascanbeseenfromthefigure,blue/greenlightcanbegeneratedatwavelengthsconsiderablyshorterthanthatobtainedbySHGinthebulkcrystal.

Lightfromatitanium-sapphirelaserinthe900-1000mmrangewasusedtosimultaneouslyexcitetheTE0andTM0modesofthewaveguide.Asthewavelengthofthelaserwastuned,SHGinteractionsinvolvingexcitationofhigher-orderTEmodesatthesecondharmonicwereobserved.ThemeasuredwavelengthsatwhichtheseinteractionsoccurredareshowninTable6.5,alongwiththecalculatedvaluesfromFig.6.40.Themeasuredandexpectedwavelengthsforthevariousinteractionsareingoodagreement.ExcitationoftheTE0modeatthesecondharmonicwasexpectedtooccurforafun-

Page 745: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page352

damentalwavelengthof1130nm,butcouldnotbeobservedsincethiswavelengthwasoutsidethetuningrangeofthetitanium:sapphirelaser.Forwavelengthsshorterthan905nm,excitationofradiationmodesatthesecondharmonic(Cherenkovdoubling)wasobserved.

6.9.1PhasematchinginperiodicallysegmentedKTiOPO4waveguides

Bierleinetal(1990)describedanewtechniqueusedforachievingphasematchinginKTiOPO4(KTP)waveguidesbutequallyapplicableforbothbulkandotherwaveguidesystems.Thisschemecannotonlygivephase-matchedsecond-harmonicconversionefficienciesbutcansignificantlyextendprocessinglatitudewhichisparticularlyimportantforpracticalnonlinearopticalchannelwaveguidedevices.

Intheconventionalphasematchinginvolvingthenonlinearinteractionofthreebeamsinacrystalwherethefrequenciesofthethreebeamsarerelatedas ,eitherthedirectionofpropagationorthetemperatureistunedsothatthepropagationconstants ofthesebeamsobeytherelation ,or

.Herethe arethebeampropagationconstants,n'stherefractiveindices,andl'sthecorrespondingwavelengths.Thecrystalorwaveguideisdividedintosegments,eachsegmentconsistingofsectionsoflength andpropagationconstantmismatch suchthatforeachsegment ,wherethesumisoverallsections.Thelengthofeachsectionislessthanitscorrespondingcoherencelength,thatis .Whentheseconditionsaremet,eventhoughthebeamsarenotphasematchedisthesectionsindividually,theyarephasematchedattheendofeachsegmentandthegeneratedoutputpowerwillincreaseasthesquareofthenumberofsegments.

Eachsegmentcouldinprincipleconsistofmanysections,mightdiffer

Page 746: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

instructurefromtheprevioussegment,orcouldevenbeasinglesectionwithcontinuouslyvaryingpropertiessuchthat .Toillustratethemethod,thesimplifiedcasewasconsidered,wherethesecond-harmonicgenerationinaperiodicwaveguidestructureconsistedoftwosectionspersegmentasshowninFig.6.41.Forthiscase,afairlysimplequantitativerelationforthegeneratedoutputpowercanbeobtained.Inthestructuresconsidered,thelengthofthesectionsdeviatedstronglyfromtheBraggconditionandtherefractiveindexdifferencesbetweenthesectionsweresmall.Therefore,thereflectioneffectsfromthesubsequentsectionsandthefundamentalbeamdepletioncouldbeignored.Withtheseapproximationsandextendingthisanalysis

Fig.6.41Segmentedwaveguidestructure(Bierlein1990).

Page 747: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page353

toincludeferroelectricdomainreversals,thesecond-harmonicpowergeneratedfromthesegmentedstructure,P,normalizedtothepowergeneratedinaperfectlyphase-matcheduniformwaveguideofequallength,P0,isgivenby

whereGdescribestheeffectsoftheperiodicgratingandItheinternalSHGwithinasingleperiod.TheeffectsofoverlapbetweenfundamentalandharmonicguidedmodeswereassumedtobeidenticalforbothPandP0.

Thegratingfunction,G,inequation(6.76)isgivenby

whereNisthetotalnumberofperiodsinthewaveguideand

isthephasematchingbetweenthefundamentalandsecond-harmonicwaveguidemodesinasingleperiod.The and arethelengthsandcorrespondingpropagationconstantmismatchesofthetwosegments.ThefunctionGwillpeakifthesecondharmonicwavesfromsubsequentperiodsaddinphase,thatis,at ,whereM=0,±1,±2,etc.andthephase-matchingconditionbecomes

Theinternalfunction,I,inequation(6.76)describeshow,withinasingleperiod,thesecond-harmonicfieldsofneighbouringsegmentsinterfere.Atphasematching,Iisgivenby

where arethecoherencelengthsofthetwosections.The+signinequation(6.80)correspondstothecasewhereadjacent

Page 748: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

segmentshaveinvertedferroelectricdomains,the-signcorrespondstoapurerefractiveindexgrating.Withthelowindexstepsusableinpractice,itcanbereadilyshownfromequation(6.80)thatthelattersituationleadstomuchlowerconversionefficienciesascomparedtothedomaininvertedcase.

Balancedphasematching(BPM)occurrswhenM=0inequation(6.79)andislimitedtophase-matchedSHGinKTPforawavelengthlongeraboutthat1mm(Bierlein,etal.1990).With theblueregionofthevisible

Page 749: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page354

Fig.6.42Second-harmonicgenerationin5mmRb/Baflux

KTPsegmentedwaveguides.(a)Absoluteconversionefficiencyat850.5nmfora4mmperiod,4mmwaveguide.(b)Wavelengthscanfora5mmperiod,4mmwaveguide.Pwistheguidedfundamentalpower(Poeletal1990).

Fig.6.43Phase-matchingwavelengthvssegment

periodof4mm-widewaveguides.Solidlinesand()arefor interactions,dashedlines

and(x)arefor interactions.Misdefinedinequation(6.79)(Poeleta11990).

spectrumbecomesavailableforphase-matchedsecond-harmonicgeneration.Thewaveguidedepthcanbechosentominimizetheeffectsofdepthvariationsontherefractiveindexmismatchsuchthat

Page 750: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

optimumfabricationtolerancesforphasefunctionresult.Thispropertyofthesegmentedstructureconstitutesamajoradvantageoveruniformwaveguides,wherethisdegreeoffreedominfabricationisabsent.Intheexperiments,onesegmentwasbulkKTPandtheotherwasanion-exchangedwaveguide.Withthismask24differentwaveguidewidth/segmentperiodcombinationscanbefabricatedonasinglesubstrate.Inatypicalexamplesegmentedy-propagatingwaveguideswerefabricatedonthez-surfaceofaflux-grownKTPsubstrate.UsingatunableTi:A12O3laser,thephase-matchingwavelengthsandconversionefficienciesforthesewaveguidesaregiveninFig.6.42.Overallfundamentalbeamthroughputfromthelasertothewaveguideoutput(includinglenses,couplingandwaveguidelosses)

Page 751: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page355

Fig.6.44Phase-matchedwavelengthbandwidthsfor

segmentedKTPwaveguides.(a)M=0,typeII,5mmperiod,5mmwidth.(b)M=1,typeI ,4mmperiod,5mmwidth.(c)M=2,typeI ,4mm

period,4mmwidth(Poeleta11990).

isabout40%.Twowaveguidemodesareobservedtogivephase-matchedSHG.Fromthenear-andfar-fielddistributions,thesemodescorrespondtocouplingsbetweenthelowestorderguidedfundamentalmodeand,respectively,thelowestandfirst-orderguidedharmonicmodes,asindicatedinFig.6.42.

AtypicalefficiencyplotisalsoshowninFig.6.42which,atlowfundamentalpowers,indicatesanefficiencyof80±5%/Wcm2.Dependingonwaveguideprocessingconditions,significantlylowerphase-matchedtypeIefficienciescanalsooccurwithbothhydrothermalandflux-grownsubstrates.Forexample,loweringtheexchangetemperatureby20°Cdecreasestheconversionefficiencybynearlythreeordersofmagnitude.

Forawaveguidewidthof4mm,theSHGphase-matchingwavelengthsweremeasuredforfourdifferentsegmentperiodspresentonthesameKTPsubstrate.InFig.6.43,themeasurementsarecomparedwiththeoreticalpredictionsforvariousphase-matchingM

Page 752: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

valuesandnonlinearinteractions.TheinteractionsincludetypeIcouplingthroughthed33nonlinearopticalcoefficient( )andthroughthed32coefficient( ).EfficientSHGphase-matchedoutputisobservedfromdeeppurpleat0.38mmtoblue-greenat0.48mm.ForKTP,thiswavelengthrangeisnormallynotaddressablebyconventionalphase-matchingtechniques.Forperiodsof3,4,5and6mm,theobservedphase-matchingwavelengthsforthesevariouscombinationsareingoodagreementwiththosepredictedfromequation(6.79)usingbulkKTPrefractiveindices(BierleinandVanherzule1989).Thedifferencesbetweenthecalculatedandexperimentalwavelengthsarequitesmallconsideringthatinthecalculationbulkrefractiveindicesratherthaneffectivewaveguideindiceswereusedinequation(6.79).

Thewavelengthbandwidths,asmeasuredin5mmsegmentedwaveguides,aresummarizedinFig.6.44andcomparedtoatypicalresultusingBPM.From

Page 753: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page356

aTaylor'sexpansionofequation(6.77),usingequation(6.79)andtheSellmeierequationsforbulkKTP(Bierleinetal1989),wavelengthbandwidthsfullwidthathalfmaximumof0.67nmcmfortypeIIat1.06mmand0.06nmcmfortypeI, at0.80mmarepredicted.Thecloseagreementbetweenthepredictedandmeasuredbandwidthsindicatesthatnearlyperfectphasematchingoccursoverthefull5-mmsamplelength.Thisalsoaccountsforthehighabsoluteconversionefficiencyobserved(3%at100mWfundamentalpowerforM=1).Themeasuredtemperaturebandwidthisabout3°C.AlsoshowninFig.6.44isthetypeI phase-matchedpeak.ThispeakcorrespondstophasematchingforM=2,withanexpectedwavelengthbandwidthof0.05nmcm.

Preliminaryresultsfromlow-temperatureelectrostatictuningandfromsurfaceSHGexperimentsindicatethattheoriginoftheselargetypeIconversionefficienciesisferroelectricdomainreversalinducedbythewaveguideprocessingwhenBaispresentintheexchangebath.AssumingthatthedepthoftheferroelectricdomaincorrelateswiththeBaionconcentrationinthewaveguideand,sincetheeffectiveSHGmodeoverlapisexpectedtovarystronglywithdomaindepth(ArvidssonandJaskorzynskii1989),thismechanismwouldalsoexplainthelargechangesinconversionefficiencythatoccurwithchangesinion-exchangetemperature.Ion-exchangeexperimentswithdifferentsubstratematerials,differentsurfacepolarities,andavarietyofmoltensaltcompositionsareinprogresstoclarifythemechanismfordomainreversalinthesematerialsandtogainimprovedunderstandingofandcontroloverthefabricationprocess.

ConclusionsInasinglebook,evenofthisvolume,itisdifficulttoembraceallaspectsofferroelectricthin-filmwaveguides,fromalargenumberof

Page 754: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

methodsoffabricationtoevenalargernumberofpossibleapplicationsindevicesforlaserradiationcontrol.Asindicatedbythecontents,thebookexaminesmainlytheeffectofthephysico-chemicalfactorsontheopticalandwavepropertiesofthinfilmswhichareofprimaryimportanceforpracticalapplication.Wehavealsopresentedseveralmethodsofexaminingthethinfilmsandtheoreticalconclusionsregardingthevariationoftherefractiveindicesandthelawsoflightpropagationinthefilm.Onlyinthefinalchapterwehaveexamined,asexamples,severaldevicesforelectro-opticallightmodulation.,deviationsandtransformationstothesecondharmonics.Inthisperiodcharacterizedbytheappearanceofalargenumberofpublicationsinmanyscientificjournalstheauthorssometimesomitinitialstudiesinwhichthefundamentalresultsfortheexaminedproblemwereobtained.Wehavethereforetriedtostresstheroleofinitialpublicationsinwhichthephenomenonunderexaminationisoftenstudiedinconsiderabledetail.Wehopethebookwillbeusefulforexpertsworkingintheareaofproducingandapplyingthinlightguidefilmsforlaserradiationcontrol.

Page 755: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page357

ReferencesAbrahamsS.C.,HamiltonW.C.andSequeiraA.(1967),J.Phys.Chem.Solids,28,1963.

AbrahamsS.C.,ReddyJ.M.andBernsteinJ.L.(1966),J.Phys.Chem.Solids,27,977.

Abul-FadlA.andStefanakosE.K.(1977),J.CrystGrowth,39,341-344.

Abul-FadlA.,StefanakosE.K.andCollisW.J.(1981),J.Cryst.Growth,54,279-282.

AcousticCrystals,ed.byM.P.Shaskol'skaya(1982),Nauka,Moscow,632.

AdachiM.,HoriM.,ShiosakiT.andKawabataA.(1978),Jap.J.Appl.Phys.,17,2053.

AdachiM.,ShiosakiT.andKawabataA.(1977),Jap.J.Appl.Phys.,18,No.1,193.

AgostinelliJ.andBraunsteinG.H.(1993),Appl.Phys.Letters,63,123.

Al-ChalabiA.M.(1985),Appl.Phys.Letters,47,564.

AleksandrovL.N.andEntinI.A.(1971),Izv.VUZ,Fizika,No.9,34-39.

AleksandrovL.N.(1978),TransitionRegionsofEpitaxialSemiconductorFilms,Nauka,Novosibirsk,240.

AlfernessR.C.(1979),Appl.Phys.Lett.,35,748.

AlfernessR.C.(1980),ApplPhys.Lett.,36,513.

Page 756: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

AlfernessR.C.(1982),IEEETrans.onMTTv.MTT-30,No.8,1121.

AlfernessR.C.andBuhlL.L.(1980),Opt.Lett.,5,473.

AlfernessR.C.andBuhlL.L.(1981),Appl.Phys.Lett.,38,655.

AlfernessR.C.andBuhlL.L.(1984),Opt.Lett.,10,140.

AlfernessR.C.andBuhlL.L.(1985),Appl.Phys.Lett.,471137.

AlfernessR.C.andSchmidtR.V.(1978),Appl.Phys.Lett.,33,161.

AlfernessR.C.,EconomouN.andBuhlL.L.(1980),Appl.Phys.Lett.,37,597.

AlfernessR.C.,EconomouN.andBuhlL.L.(1981),ApplPhys.Lett.,38,216.

AlfernessR.C.,SchmidtR.V.andTurnerE.H.(1979),Appl.Opt.,184012-16.

AlferovZh.(1976),VestnikANSSSR,7,28-40.

AndreevV.M.,DolginovL.M.andTretyakovD.N.(1975),LiquidPhaseEpitaxyinTechnologyofSemiconductorDevices,Sov.Radio,Moscow,328.

AntsyginV.D.(1987),Candidatedissertation,Novosibirsk,178.

AntsyginV.D.andKostsovE.G.(1986),Ferroelectric-typethin-filmradiationdetectors,PreprintNo.311,Novosibirsk,29.

AntsyginV.D.,KostsovE.G.andSokolovA.A.(1986),AvtometriyaNo.2,30-40.

ArmeniseM.N.,CanaliC.,DeSarioM.,CarneraA.,MazzoldiP.andCelottiG.(1983),J.Appl.Phys.,54,No.1,62.

ArmeniseM.N.,CanaliC.,DeSarioM.,CarneraA.,MazzoldiP.andCelottiG.(1983),J.Appl.Phys.,54,No.11,6223.

Page 757: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ArutyunyanV.M.,GambaryanK.M.andGevorkyanV.A.(1986),ZhETF,56,No.11,2145-2151.

ArvidssonG.andLaurellF.(1986),ThinSolidFilms,136,28-34.

AtuginV.V.andZakharyanT.I.,(1984),ZhETF,54,No.5,977-979.

AtuginV.V.,ZilingK.K.andShipilovaD.(1984),KvantovayaElektronika,11,No.5,934-938.

AuracherF.andKeilR.(1980),Appl.Phys.Lett.,36,626.

AvakyanM.S.,KurginyanR.G.,MadoyanR.S.andKhachaturyanO.A.(1986),ElektronnayaPromyshlennost',No.10,55-57.

AvakyanM.S.,MadoyanR.S.,KhachaturyanO.A.andShchekinYu.G.,(1986),ElektronnayaPromyshlennost',issue1(149)27-29.

BallmanA.A.andTienK.,PatentU.S.3.998.687.

BallmanA.A.,BrownH.,TienP.K.andMartinR.J.(1973),J.Cryst.Growth,20,251.

BallmanA.A.,BrownH.,TienP.K.andRiva-SanseverinoS.(1975),J.Cryst.Growth,29,184.

BallmanA.A.,BrownH.,TienP.K.andRiva-SanseverinoS.(1975),J.Cryst.Growth,29,289-295.

BallmanA.A.,BrownH.,TienP.K.andRiva-SanseverinoS.(1975),J.Cryst.Growth,30,37.

BallmanW.(1983),Crys.Res.Technol.,18,No.9,1147.

BarchukA.N.andIvashschenkoA.I.(1982),ZhEFT,52,No.9,1978-1982.

BarchukA.N.,IvashchenkoA.I.andKopanskayaF.Ya.(1979),ZhETF,49,No.3,643-647.

BarnoskiM.(1974),IntroductiontoIntegratedOptics,PlenumPress,

Page 758: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

NewYork.

BarrosM.A.R.andWilsonM.G.F.(1972),Proc.Inst.Electr.Eng.,119,807.

BashkirovA.N.,ShandarovV.M.,ShandarovS.M.andShvartsmanT.I.(1985),Pis'mavZhETF,11,No.5,302-305.

Page 759: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page358

BaudrantA.,VialH.andDavalJ.(1975),J.Cryst.Growth,10,No.12,1373-1378.

BaudrantA.,VialH.andDavalJ.(1978),J.Cryst.Growth,43,197-203.

BauerE.(1966),Single-CrystalFilms[Russiantranslation],MirPublishers,Moscow.

BauerE.(1969),in:TechniquesofMetalResearch,vol.2,ed.BunshakR.F.,Wiley-Interscience,NewYork.

BaumertJ.C.,WaltherC.,Buchman,KaufmannH.,MelchiorH.andGunter(1985),Appl.Lett.,46,1018.

BeckerR.A.(1983),Appl.Phys.Lett.,43,No.2,131-133.

BeckerR.A.andWilliamsonR.C.(1985),Appl.Phys.Lett.,47,1024.

BeckerR.A(1982),in:ElectromagneticFieldsandInteraction,Dover,NewYork,1982,75.

BerkowizJ.,ChupkaW.A.,BlueG.D.andMargaveJ.L.(1959),J.Phys.Chem.,63,644.

BergmanJ.G.,AshkinA.,BallmanA.A.,DziedzicJ.M.,LevinsteinH.J.andSmithR.S.(1968),Appl.Phys.Lett.,12,92-94.

BierleinJ.D.(1989),in:Proc.oftheInternationalMeetingonAdvancedMaterials(Pittsburgh)12,81.

BierleinJ.D.,FerrettiA.andRoelofsM.(1989),Proc.Soc.Photo-Opt.Instrum.Eng.,944,160.

BierleinJ.D.,FerrettiA.,BrixnerL.H.andHsuW.Y.(1987),Appl.Phys.Lett.,50,1216.

BierleinJ.D.andArweilerC.B.(1986),Appl.Phys.Lett.,49,917.

Page 760: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

BierleinJ.D.andGierT.(1976),U.S.PatentNo.3.949.323.

BierleinJ.D.,LaubacherD.B.,BrownJ.B.andPoelC.J.(1990),Appl.Phys.Lett.,56,1725.

BierleinJ.D.andVanherzeeleH.(1989),J.Opt.Soc.Am.,B6,622.

BierleinJ.D.,VanherzeeleH.,andBallmanA.A.(1989)Appl.Phys.Lett.,54,783.

BiryulinYu.F.,VorobjevaV.V.andGolubevL.V.(1984)ZhETF54,issue1,1394-1399.

BocharovaN.G.(1986),Thestudyofphasenucleationonlithiumniobatecrystalsurface,Candidatedissertation,InstituteofCrystallography,Moscow.

BoikoT.M.,Gan'shinV.A.andKorkishkoYu.N.(1985),ZhETF,55,1441-1444.

BolkhovityanovYu.B.(1977),in:Semiconductingfilmsformicroelectronics,ed.AleksandrovL.A.,Nauka,Novosibirsk,170-197.

BolkhovityanovYu.B.andYudaevV.I.(1986),Initialstagesofnucleationunderhetero-LPEofA3B5compounds,IPF,Novosibirsk,114.

BolkhovityanovYu.B.andChikichevS.I.(1982),Resistanceofanequilibriummelt-crystalinterfacetohetero-LPEofA3B5compounds,IPFPreprint5-82,Novosibirsk.

BoltaksB.I.(1972),Diffusionandpointdefectsinsemiconductors,Nauka,Leningrad,384.

BorduiP.F.,JaccoJ.C.,LoiaconoG.M.,StolzenbergerR.A.andLollaJ.J.(1987),J.CrystGrowth,84,403.

BornM.andWolfE.(1970),PrinciplesofOptics,PergamonPress,

Page 761: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

NewYork.

BortzM.L.andFejerM.M.(1992),Opt.Letters,17,704.

BoydG.D.(1972),IEEEJ.QuantumElectronics,QE-8,788.

BoydG.D.,MillerR.C.,NassauK.,BondW.L.andSavageA.(1964),Appl.Phys.Letters,5,234.

Bozhevol'nyS.I.,ZolotovE.M.andShcherbakovE.A.(1981),Pis'mavJETP,7,656-659.

BremerT.,HeilandW.,HellermannB.,Hertel,KratzigE.andKolleweD.(1988),FerroelectricsLett.,9,11.

BrownH.(1974),Appl.Phys.Letters,24,503.

BryskiewiczT.(1985),J.Appl.Phys.,57,No.8,Pr.1,2783-2787.

BryskiewiczT.,LagowskiJ.andGatosH.C.(1980),J.Appl.Phys.,51,No.2,988-996.

BulmerC.H.,SheemS.K.,MoellerR.andBurnsW.K.(1980),Appl.Phys.Lett.,37,351.

BurfootJ.C.andTaylorG.W.(1979),PolarDielectricsandTheirApplication,TheMacmillanPressLtd.

BuritskiiK.S.,DianovE.M.,GrjaznovYu.M.,DobryakovaN.G.,ChernykhV.A.andShcherbakovE.A.(1991),Sov.LightwaveCommun.,1,107.

BurnsW.KandWarnerJ.(1974),J.Opt.Soc.Am.,64,441.

BurnsW.K.andHockerG.B.(1977)Appl.Opt.16,2048.

BurnsW.K.,BulmerC.H.andWestE.J.(1978),Appl.Phys.Lett.,33,70.

BurnsW.K.,GiallorenziT.G.,MoellerR.P.andWestE.J.(1978),Appl.Phys.Lett.,33,944.

Page 762: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

BuzhdanYa.M.,KuznetsovF.A.,BraslavskyB.I.andBelyaevaL.N.(1982),in:ElectricTransferanditsApplications,Nauka,Novosbirsk,80-88.

CanaliC.D.,DeBernardiC.andDeSarioM.(1986),J.LightwaveTechnol,LT-4,No.7,951-955.

Page 763: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page359

CanaliC.,CameraA.,DellaMeaG.,MazzoldiP.,AlshukriS.M.,NuttA.C.G.andDeLaRueR.M.(1986),J.Appl.Phys.,59,2643.

CaoX.,SrivastavaR.,RamaswamyR.andNatourJ.(1991),IEEEPhotonTech.Letters,3,25.

CarslawH.S.andJaegerJ.C.(1971),ConductionofHeatinSolids,OxfordUniversityPress,75.

CarruthersJ.R.,PetersonG.E.,GrassoH.andBridenbaughM.(1971),J.Appl.Phys.,42,No.5,1846.

CarslawH.C.(1945),IntroductiontotheMathematicalTheoryoftheConductionofHeatinSolids,DoverPublications,NewYork.

ChandlerJ.,LamaF.L.,TownsendP.D.andZhangL.(1988),Appl.Phys.Letters,53,89.

ChandlerJ.,ZhangL.andTownsendP.D.(1989),Appl.Phys.Letters,55,1710.

ChanniD.G.(1971),Appl.Phys.Lett.,19,128-130.

ChenB.U.andPastorA.C.(1977),Appl.Phys.Lett.,30,No.11,570-572.

ChenF.S.(1970),ProcIEEE,58,1440.

ChenF.S.,MacchiaJ.T.andFrazerD.B.(1968),Appl.Phys.Lett.,13,223.

ChenY.X.,ChangW.S.,LauS.S.,WielunskiL.andHolmanR.L.(1982),Appl.Phys.Lett.,40,10.

ChengL.K.,BierleinJ.D.andBallmanA.A.(1991),J.Cryst.Growth,110,697.

ChengL.K.,BierleinJ.D.,ForisC.M.andBallmanA.A.(1991),J.

Page 764: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Cryst.Growth,112,309-315.

ChernovA.A.andTrusovL.I.(1969),Crystallography,14,No.2,218-226.

ChernovA.A.,GivargizovE.I.andBagdasarovKh.S.(1980),in:ModernCrystallography,Nauka,Moscow,v.3,408.

ChernykhV.A.andShcherbakovE.A.(1991),Sov.LightwaveCommun.,1,107.

ChiangK.S.(1985),J.LightwaveTechnol.,3,385.

ChopraK.L.(1969),ThinFilmPhenomena,McGraw-Hill,NewYork.

ChowK.,McKnightH.G.andRothrockL.R.(1974),Math.Res.Bull.,9,No.8,1067.

ChynowethA.G.(1956),Phys.Rev.,102,No.3,705-714.

ClarkD.F.,NuttA.C.G.,WongK.K.,LaybournJ.D.andDeLaRueR.M.(1983),J.Appl.Phys.,54,No.11,6218.

ConwellE.M.(1973),Appl.Phys.Lett.,23,328.

ConwellE.M.(1973),IEEEJ.QuantumElectr.,QE-9,867.

CrankJ.F.(1970),MathematicsofDiffusion,OxfordUniversityPress,Oxford,31.

CrossS.andSchmidtR.V.(1979),IEEEQuantumElectron.,QE-15,1415.

CurtiesB.J.andBrunnerH.R.(1975),Math.Res.Bull.,10,515.

D'AmicoA.,PetroccoG.,LucchesiniA.andGianniniF.(1984),Mater.Lett.,3,No.1-2,33-36.

D'yakovV.A.,ShumovD.,RashkovichL.N.andAleksandrovskyA.L.(1985),Izv.ANSSSR,Ser.Fiz.,49,No.12,2418-2420.

Page 765: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

DanieleJ.J.(1975),Appl.Phys.Lett.,27,373-375.

DanieleJ.J.(1975),J.Electrochem.Soc.,124,1143-1144.

DaviesJ.E.,WhiteE.A.D.andWoodJ.D.C.(1974),J.CrystGrowth,27,227.

DeMatteiR.C.,HugginsR.A.andFeigelsonR.S.(1976),J.CrystGrowth,34,1-10.

DeMatteiR.C.andFeigelsonR.S.(1978),J.CrystGrowth,44,No.2,115-120.

DeGrootS.R.andMazur(1962),NonequilibriumThermodynamics,Amsterdam.

DeSarioM.,ArmeniseM.N.,CanaliC.,CarneraA.,MazzoldiP.andCelottiG.(1985),J.Appl.Phys.,57,No.5,1482.

DeMicheliM.,BotineauJ.,NeevenS.,SibillotP.,OstrowskyD.B.andPapuchonM.(1983),Opt.Lett.,8,114.

DeMicheilM.,BotineauJ.,SibillotP.,OstrowskyD.B.andPapuchonM.(1982),Opt.Commun.,42,110.

DeLaRueR.M.,LoniA.,LambertA.,DuffigJ.F.,Al-ShukriS.M.,KopylovYu.L.andWinfieldJ.M.(1987),in:Proc.4thEur.Conf.onIntergratedOptics,Glasgow.

DeminV.N.,BuzhdanYa.M.andKuznetsovF.A.(1978),ZhETF,48,1442-1445.

DeryuginL.N.,MarchukA.N.andSotinV.E.(1967),Izv.VUZ,Radioelektronika,10,No.2,134.

DhanasekaranR.andRamasamyP.(1986),ILNuovoCimento,7D,No.4,506-512.

DickB.,GierulskiA.,MarowskyG.andReiderG.A.(1985),Appl.Phys.Letters,38,107.

Page 766: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

DickeR.H.andWittkeJ.P.(1960),IntroductiontoQuantumMechanics,Addison-Wesley,Reading,Mass.

DiDomenicoM.andWempleS.H.(1968),Appl.Phys.Letters,12,352.

DigonnetM.,FejerM.andByerR.(1985),Opt.Letters,10,235.

DistierG.I.(1975),in:ProblemsofModernCrystallography,Nauka,Moscow,197-207.

Page 767: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page360

DolginovL.M.,EliseevG.andMilvidskyM.G.(1976),QuantumElectronics,3,No.7,1381-1393.

DorfmanV.F.(1974),Gas-PhaseMicrometallurgyofSemiconductors,Metallurgiya,Moscow,190.

DubrovskayaI.M.,LazarevM.V.,MadoyanR.S.,RyzhevninV.N.,KhachaturyanO.A.andShlykovV.V.(1988),Staticintegro-opticmodulator,Inform.Bull.(ArmenianResearchInstituteofScientificandTechnicalInformation),No.88-54,4.

DudnikE.,LevinzonD.I.,PetrikA.G.andSeminV.V.(1973),Izv.ANSSSR,Ser.Fiz.,37,No.11,2286-2287.

EgorovL.,ZatulovskyL.M.,ChaikinM.etal.(1971),Izv.ANSSSR,Ser.Fiz.,35,No.3,466-468.

EnganH.(1969),IEEETrans.ElectronDevices,ED-16,1064.

FayH.,AlfordW.J.andDessH.M.(1968),Appl.Phys.Lett.,12,No.3,89.

FeisstA.A.andRaüberA.(1983),J.Cryst.Growth,No.2,337-342.

FejerM.M.,DigonnetM.J.andByerR.L.(1986),Opt.Lett.,11,No.4,230-232.

FinakJ.,JerominekH.,OpilskiZ.andWotjalaK.(1982),Opt.Acta,12,No.1,11-17.

FinneR.M.andKleinD.L.(1967),J.Electrochem.Soc.,114,965.

FirtsakYu.Yu.LukshaO.V.andFennichA.(1984),in:GrowthofSemiconductorCrystalsandFilms,Part2,Nauka,Novosibirsk,69-84.

FluckD.,Gunter,IrmscherR.andBuchalCh.(1991),Appl.Phys.Letters,59,3213.

Page 768: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

FlückigerU.andArendH.(1978),J.Cryst.Growth,43,406.

FosterN.F.(1969),J.Appl.Phys.,40,No.1,420.

FosterN.F.(1971),J.Vac.Sci.andTechnol.,8,No.1,251-255.

DeFourquetJ.L.,RenouM.F.,dePapeR.,TheveneauH.,ManP.P.,LucasO.andPannetierJ.(1983),SolidStateIonics,9/10,1011.

FujiwaraT.,CaoX.,SrivastavaR.andRamaswamyR.V.(1992),Appl.Phys.Letters,61,743.

FujiwaraT.,MoriH.andFujiiY.(1989),Ferroelectrics,95,133.

FujiwaraT.,SatoS.andMoriH.(1989),Appl.Phys.Lett.,54,975.

FujiwaraT.,SatoS.,MoriH.andFujiiY.(1988),J.LightwaveTechnol.,LT-6,909.

FujiwaraT.,TerashimaA.,MoriH.(1989),Appl.Phys.Letters,55,2718.

FukudaT.andHiranoH.(1975),Mat.Res.Bull.,10,801.

FukudaT.andHiranoH.(1976),Appl.Phys.Lett.,28,No.10,575-577.

FukudaT.andHiranoH.(1980),J.CrystGrowth,50,No.1,291-298.

FukumaM.andNodaJ.(1980),Appl.Opt.,19,591.

FukumaM.,NodaJ.andIwasakiH.(1978),J.ApplPhys.,49,3693.

FukunishiS.,UchidaN.,MiyazawaSh.andNodaJ.(1974),Appl.Phys.Lett.,24,424.

FushimiS.andSughK.(1974),JapanJ.Appl.Phys.,13,No.11,1895.

GabrielyahA.I.andKhachaturyanO.A.(1984),Izv.ArmenAkad.Nauk,Fizika,19,No.3,158-162.

Page 769: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

GabrielyanA.I.,EritsyanG.G.andKhachaturyanO.A.(1990),Izv.Akad.NaukElektrokhimiya,26,No.3,345-348.

GabrielyanA.I.(1988),Cryst.Res.Technol.,23,No.5,621-627.

GabrielyanV.T.(1978),Investigationofgrowthconditionsandsomephysicalpropertiesofelectro-opticandacousticsinglecrystalsoflithiumniobate,lead,molybdateandleadgermanate.Candidatedissertation,Moscow.

GambaryanK.M.,GevorkyanV.A.andGolubevL.V.(1984),ZhETF,54,No.10,2011-2015.

Gan'shinV.A.,IvanovV.Sh.KorkishkoYu.N.andPetrovaV.Z.(1986),ZhETF,56,No.7,1354.

Gan'shinV.A.,KorkishkoYu.N.andPetrovaV.Z.(1985),ZhETF,55,No.11,2224-2227.

GaponovS.V.andSalashchenkoN.N.(1976),ElektronnayaPromyshlennost',issueI(49),11-20.

GarnL.E.andSharpE.J.(1982),J.Appl.Phys.,53,No.12,8974-8987.

GaryE.Betts.,WilliamsS.,andChangC.(1986),IEEEJ.Quant.Electron.,OF-22,No.7,1027-1038.

GearyJ.M.(1979),BellSyst.Tech.J.,58,No.2,467.

GevorkyanV.A.,GolubevL.V.,KaryaevV.N.,etal.(1979),ZhETF,49,No.10,2206-2210.

GevorkyanV.A.,GolubevL.V.,KhachaturyanA.E.andShmartsevYu.V.(1983),ZhETF,53,No.3,545-549.

GevorkyanV.A.,GolubevL.V.,PetrosyanS.G.,ShikA.Ya.andShmartsevYu.V.(1977),ZhETF,47,No.6,1306-1318.

Page 770: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

GierT.E.(1980),U.S.PatentNo.4.231.838.

GlassA.M,KaminowI.P.,BallmanA.A.andOlsonD.H.(1980),Appl.Opt.,19,275.

Page 771: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page361

GlassA.M.(1978),Opt.Eng.,17,470.

GlavasE.,ZhangL.,ChandlerP.J.andTownsendP.D.(1988),Instrum.Methods,B32,45.

GolubenkoG.A.,LyndinN.M.,SychugovV.A.andShipuloG.P.(1980),Kvant.Elektronika,7,No.3,577-582.

GolubevL.V.,KhachaturyanO.A.,ShikA.Ya.andShmartsevYu.V.(1974),Phys.Star.Sol.a,22,203-204.

GolubevL.V.,OychenkoV.M.andShmartsevYu.V.(1982),ZhETF,52,No.1,400-402.

GoncharenkoA.M.(1967),ZhETF,37,822.

GoncharenkoA.M.GusakN.A.andKarpenkoV.A.(1969),ZhETF,11,104.

GorskyF.K.(1969),in:TheMechanismandKineticsofCrystallization,NaukaiTekhnika,Minsk,328-332.

GorukW.S.,VellaJ.,NormandiR.andStegemanG.I.(1981),Appl.Opt.,20,4024.

GriffithsG.J.(1981),PhDThesis,Dept.ofElectricalEngineering,UniversityofQueensland,Australia.

HabaraK.(1987),ElectronLett.,23,614.

HammerJ.M.andPhillipsW.(1974),Appl.Phys.Letters,24,545.

HammerJ.M.,ChanningD.T.andDuffyM.T.(1973),Appl.Phys.Letters,23,176.

HauseH.A.(1984),WavesandFieldsinOptoelectronics,EnglewoodCliffs,NewYork.

HayataK.andKoshibaM.(1989),Electron.Letters,25,376.

Page 772: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

HayataK.,SugawaraT.andKoshibaM.(1990),IEEEJ.QuantumElectron.,26,No.1,123-132.

HayataK.,YanagawaK.andKoshibaM.(1990),Appl.Phys.Letters,56,206.

HaycockW.andTownsendP.D.(1986),Appl.Phys.Letters,48,698.

HeismannF.andAlfernessR.C.(1988),IEEEJ.QuantumElectron.,QE-24,83.

HeismannF.,BuhlL.L.andAlfernessR.C.(1987),Electron.Letters,23,572.

HoffmannD.andLangmannU.(1981),in:ProceedingsoftheFirstEuropeanConferenceonIntegratedOptics(London),IEE.

HolmanR.L.(1978),Mat.Sci.Res.,11,343.

HolmanR.L.andGressmanJ.(1982),Opt.Eng.,21,No.6,1025-1032.

HolmanR.L.,GressmanJ.andRevelliJ.F.(1978),Appl.Phys.Letters,32,No.5,283.

HolmesR.J.,KimY.S.,BrandleC.D.andSmythD.M.(1983),Ferroelectrics,51,41.

HolzbergF.,ReismanA.,BerryM.andBerkenblitM.(1956),J.Amer.Chem.Soc.,78,No.8,1538.

HsuH.andMiltonA.F.(1976),Electron.Lett.,12,404.

HsuH.,MiltonA.F.andBurnsW.K.(1978),Appl.Phys.Lett.,33,611.

HsuW.Y.,BraunsteinG.,GopalanV.,WillandS.andGuptaM.S.(1992),Appl.Phys.Letters,61,3083.

HsuW.Y.,WillandC.S.,GopalanV.andGuptaM.(1992),Appl.Phys.

Page 773: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Letters,61,2263.

HugginsR.A.andElwellD.,(1977),J.Cryst.Growth,37,No.2,159-162.

HungL.S.,AgostinelliJ.A.,MirJ.M.andZhengL.R.(1993),Appl.Phys.Letters,62,3071.

HunspergerR.G.(1984),IntegratedOpticsTheoryandTechnology,SpringerVerlag,Berlin-Heidelberg-NewYork-Tokyo.

HurleD.l.,MullinI.B.andPikoE.R.(1964),Phil.Mag.,No.9,423.

IkonnikovaT.M.andIvlevaO.M.(1974),Izv.ANSSSR,Neorgan.Mater.,No.3,397-401.

IngleS.G.andMishraM.V.(1977),J.Appl.Phys.,10,149.

IntergratedOptics,ed.byT.Tamir(1975),SpringerVerlag,Berlin-Heidelberg-NewYork.

IoffeA.F.(1956),J.Techn.Phys.,26,478-482.

IrmscherR.,FluckD.,BuchalCh.,StritzkerB.andGunter(1991),Mater.Res.Soc.SymProc.,v.201,399.

IshidaM,MatsunamiH.andTanakaT.(1977),J.Appl.Phys.,48,No.3,951-953.

ltoH.,TakyuC.andInadaJ.(1991),Electron.Letters,27,1221.

ItoH.,UesugiN.andInabaH.(1974),Appl.Phys.Lett.,25,385.

IvlevaL.I.andKuz'minovYu.S.(1985),LPEmethodsforsinglecrystalfilmsofoxideferroelectricmaterials,PreprintNo.185,InstituteofGeneralPhysicsoftheUSSRAcad.ofSci.,Moscow,44.

IwasakiH.,YamadaT.,NiizekiN.andToyodaH.(1968),Rev.ECL,16,385.

lyerS.,StefanakosE.K.,Abul-FadlA.andCoilisW.J.(1984),J.

Page 774: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Cryst.Growth,67,337-342.

lyerS.,StefanakosE.K.,Abul-FadlA.andCoilisW.J.(1984),J.Cryst.Growth,70,No.1-2,162-168.

IzutsuM.,NukaiY.andSuetaT.(1982),Opt.Letters,7,136.

Page 775: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page362

IzutsuM.,YamuneY.andSuetaT.(1977),IEEEJ.QuantumElectron.,QE-13,287.

JackelJ.L.(1980),Appl.Phys.Lett.,37,739.

JackelJ.L.(1982),J.Opt.Commum.,3,82.

JackelJ.L.andRiceC.E.(1981),Ferroelectrics,38,804.

JackelJ.L.andRiceC.E.(1982),Appl.Phys.Lett.,41,508.

JackelJ.L.andRiceC.E.(1984),SPIEGuidedWaveandOptoelectronicMaterials,460,43.

JackelJ.L.,OlsonD.H.andGlassA.M.(1981),J.Appl.Phys.,52,4855.

JackelJ.L.,RamaswamyL.andLymanS.(1981),Appl.Phys.Lett.,38,No.7,509-511.

JackelJ.L.,RiceC.E.andVeselkaJ.J.(1982),Appl.Phys.Lett.,41,No.7,607-608.

JackelJ.L.,RiceC.E.andVeselkaJ.J.(1983),Electron.Lett.,19,No.10,387.

JackelJ.L.(1985),Electron.Letters,21,509.

JarmanR.H.andGrubbS.G.(1988),Proc.SPIESoc.Photo-Opt.Instr.Eng.968,108.

JarzebskiZ.M.(1974),Mat.Res.Bull.,9,No.3,233.

JastrzebskiL.,GatosH.C.andWittA.F.(1976),J.Electrochem.Soc.,123,1121-1122.

JastrzebskiL.,ImamuraYandGatosH.G.(1978),J.Electrochem.Soc.,No.7,1140-1146.

Page 776: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

JastrzebskiL.,LagowskiJ.,GatosH.G.andWittA.F.(1978),J.Appl.Phys.,49,No.12,5909-5919.

JetschkeS.andHehlK.(1985),Phys.Stat.Sol.a,88,No.1,193.

JohnsonM.(1979),Appl.Opt.,18,1288.

JoshiS.G.andWhiteR.M.(1969),J.AccousticSoc.,4617.

KaminovI.P.(1965),Appl.Phys.Lett.,7,123;(1966)Appl.Phys.Lett.,8,54.

KaminowI.P.andCarruthersJ.R.(1973),Appl.Phys.Lett.,22,No.7,326.

KaminowI.P.andStulzL.W.(1978),Appl.Phys.Lett.,33,62.

KaminowI.P.andTurnerE.H.(1966),Proc.IEEE,54,1374.

KaminowI.P.,MammelW.L.andWeberH.(1974),Appl.Opt.,13,396.

KaminowI.P.,StulzL.W.andTurnerE.H.(1975),Appl.Phys.Lett.,27,555.

KaminowI.P.,RamaswamyV.,SchmidtR.V.andTurnerE.M.(1974),Appl.Phys.Lett.,24,No.12,622

KapronF.,BorrelliN.F.andKeckD.B.(1972),IEEEJ.QuantumElectron.,QE-8,222.

KarpovE.Yu,MilvidskyM.G.,NikishinS.A.andPortnoyL.(1986),ZhTF,56,No.2,533-360.

KazanskyP.G.(1985),Photo-inducedradiationpolarizationconversioninintegrated-opticelementsonthebasisoflithiumniobate.Thesis,InstituteofGeneralPhysicsoftheUSSRAcademyofScience,Moscow.

KenanR.,VeberC.M.andWoodV.E.(1974),Appl.Phys.Lett.,24,

Page 777: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

428.

KeysR.W.,LoniA.,DeLaRueM.,IronsideC.N.,MarshJ.H.,LaurelF.,BrownJ.B.,BierleinJ.D.(1992),Appl.Phys.Letters,60,1064.

KhachaturyanO.A,PetrosyanS.G.andKhachaturyanS.G.(1977),Uch.Zap.Erevan.Univ.No.2,(135)54-59.

KhachaturyanO.A.(1974),Growthofsemiconductingfilmsusingelectro-LPE,Candidatedissertation,154.

KhachaturyanO.A.(1988),in:GrowthofSemiconductorCrystalsandFilms,Nauka,Novosibirsk.

KhachaturyanO.A.andMadoyanR.S.(1978),ElektronnayaTeknika,Ser.6,issue4,41-42.

KhachaturyanO.A.andMadoyanR.S.(1980),VlInternationalConferenceonCrystalGrowth,vol.3,Moscow,332.

KhachaturyanO.A.andMadoyanR.S.(1984),Cryst.Res.Technol.,19,No.4,461-466.

KhachaturyanO.A.,MadoyanR.S.andAvakyanM.S.(1984),EpitaxialFilmsofLithiumNiobate,ArmNIINTI,Erevan,60.

KhachaturyanO.A.,AvakyanM.S.andArakelyanV.B.(1987),InfluenceofDirectElectricCurrentuponLPE,ArmNIINTI,Erevan60.

KhachaturyanO.A.,GabrielyanA.I.andKolesnikS.(1988),ZhETF,30,No.3,888-890.

KhachaturyanO.A.,MadoyanR.S.,AvakyanM.S.andShchekinYu.S.(1984),CapilaryLiquid-phaseEpitaxyofFerroelectrics,ArmNIINTI,Erevan,48.

KittelC.(1956),IntroductiontoSolidStatePhysics,WileyInc.,NewYork.

Page 778: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

KogelnikH.(1969),Bull.Syst.Tech.J.,48,2909.

KogelnikH.(1974),TheoryofDielectricWaveguidesinIntegratedOptics,ed.T.Tamir,TopicsAppl.Phys.7,SpringerVerlag,Berlin-Heidelberg-NewYork.

KogelnikH.andRamaswamyV.(1974),Appl.Opt.,13,1857.

KogelnikH.andSchmidtR.V.(1976),IEEEQuantumElectron.,QE-12,396-401.

KolobovH.A.andSamokhvalovM.M.(1975),DiffusionandOxidationofSemiconductors,

Page 779: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page363

Metallurgiya,Moscow,456.

KolosovskyE.A.,PetrovD.V.andTsarevA.V.(1981),Quant.Electr.,8,No.12,2557-2568.

KondoS.,MiyazawaS.,FushimiS.andSugiiK.(1975),Appl.Phys.Lett.,26,No.9,489-491.

KondoS.,SugiiS.,MiyazawaS.andUeharaS.(1979),J.Cryst.Growth,46,No.3,314-322.

KopylovYu.L.,KrachenkoV.B.,MirgorodskayaE.N.andBobylevA.V.(1983),Pis'maZhTF,9,No.10,601-604.

KorobovO.E.,MaslovV.N.andNechaevV.V.(1977),in:CrystalGrowth,12,ErevanStateUniversity,Erevan,332-337.

KosminaM.B.,VoronovA.andTkachenkoV.F.(1983),ReportsofVIIAll-UnionConference,partI,Donetsk,41.

KovacsL.,SzalayV.andCapellettiR.(1984),SolidStateCommun.,52,1029.

KrylovA.S.andIvanovG.A.(1980),Izv.Akad.Nauk.SSSR,FizikaMetalloviMetallovedenie,49,No.2,425-427.

KuhnL.,DakssM.L.,HeidrichF.andScottV.A.(1970),Appl.Phys.Lett.,17,265.

Kuz'minovYu.S.(1987),Electro-OpticandNonlinearOpticCrystalsofLithiumNiobate,Nauka,Moscow.

Kuz'minovYu.S.(1975)LithiumNiobateandTantalate.MaterialsforNonlinearOptics,Nauka,Moscow.

Kuz'minovYu.S.,LyndinN.M.,ProkhorovA.M.,Spikhal'skyA.A.,SychugovV.A.andShipuloP.G.(1975),KvantovayaElektronika,2,No.10,2309-2399.

Page 780: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

KuznetsovF.A.,DeminV.N.andBuzhdanYa.M.(1983),in:MaterialsforElectronTechnology,partI,Novosibirsk,45-62.

LapitskyA.V.(1952),ZhurnalObshcheiKhimii,22,36.

LaubacherD.B.,GuerraV.L.,ChouinardM.,LiouJ.Y.andWyatN.(1988),Proc.Soc.Photo-Opt.InstrumEng.,993,80.

LaurellF.,RoelofsM.G.andHsiungH.(1992),Appl.Phys.Letters,60,301.

LazarevM.V.(1986qAcousto-andElectro-OpticLightControlinDielectricWaveguides,Candidatedissertation.

LeeW.E.,SanderN.A.andHeuerA.H.(1986),J.Appl.Phys.,59,2629.

LemonsR.A.,GearyJ.M.,ColdenL.A.andMattesH.G.(1978),Appl.Phys.Lett.,33,No.5,373.

LeonbergerF.J.(1980),Opt.Lett.,5,312.

LeonbergerF.J.(1983),Ferroelectrics,50,161-164.

LernerP.,LegrasC.andDumasJ.(1968),J.Cryst.Growth,No.3/4,231.

LevanyukA.andOsipovV.V.(1975),Izv.Akad.NaukSSSR,Ser.Fiz.39No.4,686-689.

LevinzonD.I.(1969),in:SiliconandGermanium,issue1,Metallurgiya,Moscow,105-110.

LiM.J.,deMicheliM.P.,OstrowskyD.B.,LallirE.,BreteauJ.M.,PapuchonM.andPocholleJ.P.(1988),Electron.Lett.,24,No.15,914.

LichtensteigerM.,WittA.F.andGatosH.G.(1971),J.Electrochem.Soc.,118,No.6,1013-1015.

LidlardA.(1957),IonicConductivity,SpringerVerlag,Berlin.

Page 781: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

LimE.J.,FejerM.M.andByerR.L.(1989),Electron.Lett.,25,174.

LimE.J.,FejerM.M.,ByerR.L.andKozlovskyW.J.(1989),Electron.Lett.,25,731.

LinesM.E.andGlassA.M.(1977),PrinciplesandApplicationofFerroelectricsandRelatedMaterials,ClarendonPress,Oxford.

LitvinA.A.andMaronchukI.E.(1977),Kristallografiya,22,425-428.

LiuY.S.,DontzD.andBeltR.(1984),Opt.Letters,9,76.

LiuY.S.,XuB.,HanJ.,LiuX.andJiangM.(1986),ChinesePhys.Letters,13,502.

LoniA.,DeLaRueR.M.andWinfeldJ.M.(1987),J.Appl.Phys.,61,No.1,64.

LoniA.,DeLaRueR.M.,ZavadaJ.M.,WilsonR.G.andNovakS.W.(1991),Electron.Letters,17,1245.

LoniA.,HayG.,DeLaRueR.M.andWinfeldJ.M.(1989),J.LightwaveTechnology,7,No.6,91.

LoniA.,KeysR.W.andDeLaRueR.M.(1990),J.Appl.Phys.,67,3964.

LotschH.K.(1968),J.Opt.Soc.Am.,58,551.

LozovskyV.N.(1972),ZoneMeltingwithaTemperatureGradient,Metallurgiya,Moscow.

LuffB.J.TownsendD.(1991),Electron.Letters,26,188.

LukshaO.V.,FirtsakYu.Yu.andDovgosheyN.I.(1982),Izv.Akad.NaukSSSR,Neorgan.Mater.,18,No.2,231-234.

LundbergM.(1971),ActaChem.Scand.,25,No.9,3337.

Page 782: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics
Page 783: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page364

LyutovichA.S.,KharchenkoV.V.andAbdurakhmanovB.M.(1971),in:TheMechanismandKineticsofCrystallization,NaukaiTekhnika,Minsk,131.

MadoyanR.S.(1984),LPEofLithiumNiobate,Candidatedissertation,IFIAkad.Nauk.Arm.SSR,Ashtarak.

MadoyanR.S.andKhachaturyanO.A.(1985),EpitaxialSingleCrystalFilmsofLithiumNiobate-TantalateSolidSolutions,ArmNIINTI,Erevan.

MadoyanR.S.,GabrielyanA.I.andKhachaturyanO.A.(1983),in:Abstr.VIIIntern.Conf.onCrystalGrowth,Stuttgart,488.

MadoyanR.S.,SarkisyanG.N.andKhachaturyanO.A.(1985),Cryst.Res.andTechnol.,20,No.8,1031-1040.

MadoyanR.S.,SarkisyanG.N.andKhachaturyanO.A.(1982),UchenyeZapiskiEGU,ErevanStateUniversity,Erevan,No.2,68-73.

MadoyanR.S.,SarkisyanG.N.,PetrosyanYu.G.andKhachaturyanO.A.(1979),Izv.Akad.NaukSSSRZh.Neorgan.Khimii,24,No.2,3088-3091.

MagnussenR.andGaylordT.(1974),Appl.Opt.,13,1545-1548.

MakioS.,NitandaF.,ItoK.andSatoM.(1992),Appl.Phys.Letters,61,3077.

MalininA.Yu.andNevskiO.V.(1978),Cryst.Res.andTechnol.,13,No.8,921-927.

MarcatiliE.A.J.(1969),Bell.Syst.Tech.J.,48,2071.

MarcuseD.(1973),IEEEJ.QuantumElectron.,QE-9,1000.

MarcuseD.(1974),TheoryofDielectricOpticalWaveguides,AcademicPress,NewYork.

Page 784: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

MarcuseD.(1975),IEEEJ.QuantumElectron.,QE-11,759.

MarcuseD.(1982),IEEEJ.QuantumElectron.,QE-18,No.3,393-398.

MarcuseD.(1969),Bell.Syst.Tech.J.,48,3187;48,3233;(1970),49,273.

MargolinA.M.,ZakharchenkoI.N.,EremkinV.V.etal.(1983),Izv.VUZ,Fizika,25,No.6,102-103.

MaslovV.N.(1977),GrowthofProfileSemiconductorSingleCrystals,Metallurgiya,Moscow.

MaterialsforOptoelectronics(1976),TranslationfromtheEnglish,ed.E.I.GivargisovandS.N.Gorin,MirPublishers,Moscow.

McClureD.S.(1959),SolidStatePhys.,9,399.

MeekR.,TownsendD.andHollandL.(1986),ThinSolidFilms,141,No.2,251-259.

MegawH.D.(1954),ActaCryst.,7,187.

MegawH.D.(1973),CrystalStructures:AWorkingApproach,Saunders,Philadelphia.

MidwinterG.E.(1968),J.Appl.Phys.,39,3033.

MikamiO.,NodaJ.andFukumaM.(1978),TransIECEJn.,E-61,144.

MilvidskyM.G.(1986),SemiconductorMaterialsinModernElectronics,Nauka,Moscow.

MilvidskyM.G.,NikishinS.A.andSeysyanR.P.(1982),Kristallografiya,27,No.4,742-750.

MilvidskyM.G.,OrlovV.andTsepilevichV.G.(1980),Izv.Akad.NaukSSSR,Neorgan.Mater.,16,1159-1163.

Page 785: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

MinakataM.,KumagiK.andKawakamiS.(1986),Appl.Phys.Lett.,49,992.

MinakataM.,SaitoS.,ShibataM.andMiyazawaS.(1978),J.Appl.Phys.,49,4677.

MinakataM.,UeharaS.,KubotaK.andSaitoS.(1978),Rev.Electr.Commun.Lab.,26,1139.

MiyasawaS.,FushimiS.andKondoS.(1975),Appl.Phys.Lett.,26,8.

MiyazawaS.(1973),Appl.Phys.Lett.,23,No.4,198-200.

MiyazawaS.(1979),J.Appl.Phys.,50,4599.

MiyazawaS.(1980),J.Inst.ElectronandCommun.Eng.ofJapan,63,No.4,354-360.

MiyazawaS.andIwasakiH.(1971),J.Cryst.Growth,10,276.

MiyazawaS.,CuglielmiR.andCarencoA.(1977),Appl.Phys.Lett.,31,742.

MizuuchiK.andYamamotoK.(1992),Appl.Phys.Lett.,60,1283.

MizuuchiK.,YamamotoK.andTaniuchiT.(1991),Appl.Phys.Lett.,58,2732.

MoonR.T.(1974),J.Cryst.Growth,27,No.1,62-68.

MorrisA.,FerrettiA.,BierleinJ.D.andLoicanoG.M.(1991),J.Cryst.Growth,109,367.

MukhortovV.M.,TolstousovS.V.andBiryukovS.V.(1981),ZhETF,51,No.7,1524-1529.

MustelE.andParyginV.N.(1970),MethodsofLightModulationandScanning,Nauka,Moscow.

Page 786: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

NaitohH.,NunoshitaM.andNakayamaT.(1977),Appl.Opt.,16,2546.

NakayamaT.(1979),JapanJ.ofAppl.Phys.,18,No.5,897-902.

NakajimaK.,YamazaskiS.andUmebuI.(1984),JapanJ.ofAppl.Phys.,23,No.1,126-128.

NashF.R.,BoydGD.,SargentM.andBridenbaughP.M.(1970),J.Appl.Phys.,41,2564.

NassauK.andLinesM.E.(1970),J.Appl.Phys.,41,No.2,533.

NelsonD.F.andMcKennaJ.(1967),J.Appl.Phys.,38,4057.

Page 787: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page365

NelsonH.(1963),RCARev.,24,No.4,603.

NeurgaonkarR.R.andBelykhL.(1960),RussJ.Phys.Chem.,34,399.

NeurgaonkarR.R.andStaplesE.J.(1981),J.Cryst.Growth,54,572.

NeurgaonkarR.R.,KalisherM.N.,StaplesE.J.andLimT.S.(1979),Appl.Phys.Lett.,35,No.8,606.

NeurgaonkarR.R.(1980),AnnualTechnicalReport,ContractNo.F49620-77-C-0081July(1980).

NeurgaonkarR.R.,LimT.C.andStaplesE.J.(1978),Mater.Res.Bull.,13,635.

NeurgaonkarR.R.,LimT.C.,StaplesE.J.andCrossL.S.(1980),Ferroelectrics,27-28,63.

NeurgaonkarR.R.,OliverJ.R.andWuE.T.(1987),J.Cryst.Growth,84,407.

NeyerA.andSohlerW.(1979),Appl.Phys.Lett.,35,256.

NeyerA.(1984),IEEEJ.Quant.Electron.,QE-20,No.9,999-1002.

NikishinS.A.(1983),ZhETF,53,No.3,538-543.

NikishinS.A.(1984),ZhETF,54,No.5,938-942.

NikishinS.A.(1984),ZhETF,54,No.6,1128-1132.

NinomukaK.,IshikaniA.,MatsubaraJ.andHayashiI.(1978),J.CrystalGrowth,45,No.2,355-360.

NishiharaH.,HarunaM.T.andSuharaT.(1989),OpticalIntegratedCircuits,McGraw-Hill,NewYork,136.

NodaJ.,FukumaM.andItoY.(1980),J.Appl.Phys.,51,No.3,1379-

Page 788: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

1384.

NodaJ.,MikamiO.,MinakataM.andFukumaM.(1978),Appl.Opt.,17,2092

NodaJ.,SakuT.andUchidaN.(1974),Appl.Phys.Lett.,25,No.5,308.

NodaJ.,UchidaN.,andSakuT.(1974),Appl.Phys.Lett.,25,13.

NodaJ.,UchidaN.,SaitoS.,SakuT.andMinakataM.(1975),Appl.Phys.Lett.,27,19.

NovakS.W.,MatthewsP.,YoungW.andWilsonR.G.(1992),ProceedingsofSIMS,VIIInternationalConferenceonSIMS,England,1992.

NuttA.C.G.,GopalanV.andGuptaM.(1992),Appl.Phys.Lett.,60,2828.

NyeJ.F.(1964),PhysicalPropertiesofCrystals,ClarendonPress,Oxford.

O'BrienR.J.,RosascoG.J.andWeberA.(1970),J.Opt.Soc.Am.,60,716.

OhmachiY.andNodaJ.(1975),Appl.Phys.Lett.,24,544.

OhnishiN.andlizukaT.(1975),Appl.Phys.,46,1063.

OkuyamaM.(1981),Ferroelectrics,33,235-241.

OkuyamaM.andHamakawaY.(1986),Avtometriya,No.2,17-29.

OstrowskyD.V.andVannesteC.(1978),ThinFilmsAdv.Res.Devel.,NewYork,10,248.

PalienkoA.N.,SechenovD.A.andChristyakovYu.D.(1971),Izv.ANSSSR,Neorgan.Mater.,7,No.7,1253-1254.

PanishM.B.andSumskiS.A.(1971),J.Cryst.Growth,11,No.1,

Page 789: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

101-103.

PapuchonM.andCombemaleY.(1975),Appl.Phys.Lett.,27,289.

PapuchonM.,RoyA.andOstrowskyD.B.(1977),Appl.PhysLett.,31,266-267.

PastukhovE.A.,MusikhinV.N.andVatolinN.P.(1984)ElectricPropertiesofNonstoichiometricOxideMelts,Nauch.TsentrAkad.Nau,Sverdlovsk.

PearsallT.,ChiangS.andSchmidtR.W.(1976)J.Appl.Phys.,47,4794.

PearsallT.,ChiangS..andSchmidtR.W.(1976),TopicalMeetingonIntegr.Optics,TechDigestTuC2-1,SaltLakeCity,Utah.

PetersonG.E.andCarnevaleA.(1972),J.Chem.Phys.,56,4848.

PetersonG.E.,BridenbaughM.andGreenP.(1967),J.Chem.Phys.,46,4009.

PetersonG.E.,CarruthersJ.R.andCarnevaleA.(1970),J.Chem.Phys.,56,2436.

PetersonG.E.,GlassA.M.andNegranT.J.(1970),Appl.Phys.Lett.,19,130.

PetrossoG.(1983),VuotoSciezaeTechnologia,B4,99-101.

PetrosyanS.G.,ShikA.Ya.andShmartsevYu.V.(1974),Fiz.TverdogoTela,16,No.2,392-397.

PeuzinJ.C.andMiyazawaS.(1986),Appl.Phys.Lett.,48,1104.

PfannW.G.(1966),ZoneMelting,NewYork.

PfannW.G.,BensonK.E.andWernickJ.H.(1957),Electronics,No.2,597.

PhillipsW.,AmodeiJ.J.andStaeblerD.L.(1972),RCARev.,33,94.

Page 790: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Photonics(1975),ed.M.BalkanskiandLallemand,Gauthier-Villars,Paris.

PoelC.J.,BierleinJ.D.,BrownJ.B.andColahS.(1990),Appl.Phys.Lett.,57,2074.

PostnikovV.S,levlevV.M.,ZolotyukhinI.V.andRodinG.S.(1973),Izv.ANSSSR,Neorg.Mater.,9,No.8,1455.

Page 791: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page366

ProkhorovA.M.andKuz'minovYu.S.(1990)FerroelectricCrystalsforLaserRadiationControl,AdamHilger,Bristol-NewYork.

ProkhorovA.M.andKuz'minovYu.S.(1990),PhysicsandChemistryofCrystallineLithiumNiobate,AdamHilger,Bristol-NewYork.

PunE.Y.B.,WongK.K.,AndonovieI.,LaybornP.J.R.andDeLaRueR.M.(1982),Electron.Lett.,18,740.

PunE.Y.,LollK.K.,ZhaoS.A.andChungP.S.(1991),Appl.Phys.Letters,59,662.

RamaswamyV.(1974),Bell.Syst.Tech.J.,53,697.

RamaswamyV.andStandleyR.D.(1975),Appl.Phys.Lett.,26,10.

(a)RamaswamyV.,KaminovI.P.,KaiserP.andFrenchW.G.(1978),Appl.Phys.Lett.,33,814.

(b)RamaswamyV.,StandleyR.D.,SzeD.andLawleyK.L.(1978),BellSyst.Tech.J.,57,635.

RamerO.G.(1982),IEEEJ.QuantumElectron.,QE-18386.

RanganathT.andWangS.(1977),Appl.Phys.Lett.,30,376.

RaschA.,RottschalkM.andKartheW.(1985),J.Opt.Commun.,6,No.1,14-117.

RäuberA.(1976),Mat.Res.Bull.,No.5,497-502.

RäuberA.(1978),ChemistryandPhysicsofLithiumNiobate:CurrentTopicsinMaterialScience,1,North-Holland,Amsterdam,481-601.

RedfieldD.andBurkeW.(1974),J.Appl.Phys.,45,4566.

RegenerR.,SohlerW.andSucheH.(1981),in:FirstEur.Conf.onIntegr.Opt.,lEE,Conf.publ.201,London.

Page 792: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ReiberL.,RoyA.M.,SejourueB.andWernerM.(1975),Appl.Phys.Lett.,27,289-291.

ReismanA.andHoltzbergF.(1955),J.Amer.Chem.Soc.,77,2117.

ReismanA.andHoltzbergF.(1958),J.Amer.Chem.Soc.,80,35.

ReismanA.andHoltzbergF.(1965),J.Amer.Chem.Soc.,80,6503.

ReismanA.andMineoJ.(1962),J.Phys.Chem.,66,1184.

RekasM.andWierzbickaM.(1983),PolonaisedesSciences,29,No.9-10,431-436.

RiceC.E.(1986),SolidStateChem.,64,188.

RiceC.E.andJackelJ.L.(1982),SolidStateChem.,41,No.3,308-314.

RiceC.E.andJackelJ.L.(1984),MatRes.Bull.,19,591.

RiskW.(1991),Appl.Phys.Lett.,58,19.

RottmanF.andVogesE.(1987),Electron.Lett.,23,1007.

RubininaN.N.(1976),StudyoftheMechanismsofIronInsertionintoFerroelectricCrystalsofLithiumMetaniobate,Candidatedissertation,Moscow.

SafarovV.I.andKhachaturyanO.A.(1976),Fiz.Tverd.Tela,18,No.9,1790-1791.

SamoylovichA.G.andKorenblitL.L.(1953),Usp.Fiz.Nauk,19,No.2,244-271.

SanfordN.A.andRobinsonW.C.(1989),J.Appl.Phys.,65,1429.

SanfordN.A.andConnorsJ.M.(1989),J.Appl.Phys.,65,1429.

SaridD.,CressmanP.J.andHolmanR.L.(1978),Appl.Phys.Lett.,31,514.

Page 793: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

SashitalS.R.,KrishnakumarS.andEsenerS.(1993),Appl.Phys.Letters,62,2917-20.

SavageR.(1966),J.Appl.Phys.,37,3071.

SchahM.L.(1975),Appl.Phys.Lett.,26,652.

SchittH.,KortheinR.andKleinG.(1984),Ferroelectrics,56,No.1,1145-1148.

SchmidtR.V.andKaminovI.P.(1974),Appl.Phys.Lett.,25,No.8,458.

SchmidtR.V.andKogelnikH.(1976),Appl.Phys.Lett.,28,503-305.

SchmidtR.V.,CrossP.S.andGlassA.M.(1980),J.Appl.Phys.,51,90-93.

SchwarzK.K.(1986),PhysicsofOpticalRecordinginDielectricsandSemiconductors,Zinaite,Riga,62-63.

SchwynS.,LehmannH.W.(1992),J.Appl.Phys.,72,1154.

ScottB.A.andBurnsG.(1972),J.Amer.Ceram.Soc.,55,No.5,225-229.

SearleT.M.andGlassA.M.(1968),J.Phys.Chem.Solids,29,648.

ShapiroZ.N.,FedulovS.A.,VenevtsevYu.N.andRigerman(1965),Izv.ANSSSR,ser.Fizika,39,No.6,1047-1050.

ShashkinV.V.(1983),Fiz.Tverd.Tela,25,No.12,3719-3721.

SheemS.K.(1978),Appl.Opt.,17,3679-3678.

SheemS.K.andGiallorenziT.G.(1978),Opt.Lett.,3,73.

SheemS.K.,BurnsW.K.andMiltonA.F.(1978),Opt.Lett.,3,76.

SheftalN.N.(1983),in:MaterialsforElectronicEngineering,partI,Nauka,Novosibirsk,83-103.

Page 794: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

ShewmonG.(1963),DiffusioninSolids,McGraw-Hill,NewYork.

Page 795: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page367

ShimaokaG.(1985),Appl.SurfaceSci.,22,No.2.

ShimuraF.(1977),J.Cryst.Growth,42,579-582.

ShinozakiK.,FukunagaT.,WatanabeK.andKamijohT.(1991),Appl.Phys.Lett.,59,510.

ShiosakiT.,AdachiM.andKawabataA.(1982),ThinSolidFilms,96,129-140.

ShubnikovA.V.(1956),CrystalsinScienceandEngineering,Izdatel'stvoAkad.NaukSSSR,Moscow.

ShumovD.(1986),InvestigationofTransportProcessesingrowingLithiumNiobateCrystalsfromtheMelt,Candidatedissertation,MoscowStateUniversity,Moscow.

SinghR.,WittA.F.andGatosH.C.(1968),J.ElectrochemSoc.,No.1,112-113.

SirotaN.N.(1971),in:CrystallizationandPhaseTranformations,NaukaiTekhnika,Minsk,333-351.

SmithgallD.H.,DablyF.W.andRunkR.B.(1977),IEEEJ.QuantumElectron.,QE-9,1023.

SmolenskyG.A.(ed)(1985),PhysicsofFerroelectricPhenomena,Nauka,Leningrad.

SmolenskyG.A.,BokovV.A.,IsupovV.A.,KraynikN.N.,PasynkovR.E.andShurM.S.(1971),FerroelectricsandAntiferroelectrics,Nauka,Leningrad.

SochilinaI.N.andKhachaturyanO.A.(1975),FTP,9,No.2,367-368.

Spikhal'skyA.A.(1984),Quant.Electron.,11,No.9,1812-1823.

StaeblerD.L.andPhillipsW.(1974),Appl.Opt.,13,788.

Page 796: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

StegemanG.I.andStolenR.H.(1989),J.OptSoc.Am.,136,652.

StepanovA.V.(1963),ProspectsofMetalWorking,Lenizdat,Leningrad

StoneJ.andStulzL.W.(1987),Electron.Lett.,23,787.

StrohkendlF.,BuchalCh.,FluckD.,GunterPandIrmscherR.(1991),Appl.Phys.Lett.,59,3354-7.

StrohkendlF.,GunterP.,BuchalCh.andIrmscherR.(1991),J.Appl.Phys.,69,84.

SucheH.,HampelB.,SeibertH.andSohlerW.(1985),Proc.SPIE,578,156-161.

SuchoskiG.,FindaklyK.andLeonbergerF.J.(1988),Opt.Lett.,13,1050.

SugiiK.,FukumaM.andIwasakiH.(1978),J.Mater.Sci.,13,523-533.

SugiiK.,FukumaM.andIwasakiH.(1980),J.Mater.Sci.,19,No.21,1997-2001.

SuharaT.,TazakiH.andNishiharaH.(1989),Electron.Lett.,25,1326.

SvaasandL.O.,EriksrudM.,NakkenG.andGrandeA.(1974),J.Cryst.Growth,22,No.3,230-232.

SwartzJ.C.,SurekT.andChabmersC.(1975),J.Electron.Mater.,4,255.

SychevV.V.(1970),ComplicatedThermodynamicSystems,Energiya,Moscow.

TakadaS.,OhnishiM.,HayakawaH.andMikoshibaN.(1974),Appl.Phys.Lett.,24,No.10,490-492.

Page 797: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

TakeiW.I.,FarmigoniN.P.andFrancombeN.M.(1969),Appl.Phys.Lett.,15,No.8,256-258.

TamadaH.,YamadaA.andSaitohM.(1991),J.Appl.Phys.,70,2536.

TamirT.(1979),IntegralOptics,2ndTopics,Appl.Phys.7,Springr-Verlag,Berlin-Heidelberg-NewYork.

TangonanG.L.,BarnoskiM.K.,LotspeichJ.F.andLeeA.(1977),Appl.Phys.Lett.,30,238.

TangonanG.L.,PersechiniD.L.,LotspeichJ.F.andBarnoskiM.K.(1978),Appl.Opt.,17,3259-3263.

TaniuchiT.andYamamotoK.(1987),ConferenceonLasersandElectro-Optics,Apr26-May1,Baltimore,Maryland.

TaylorH.F.andYarivA.(1974),Proc.IEEE,62,1044.

TaylorH.F.,MartinW.E.,HallD.B.andSmileyV.J.(1972),Appl.Phys.Lett.,21,95.

ThaniyavarnsS.,FindaklyT.,BooherD.andMoenJ.(1985),Appl.Phys.Lett.,46,933.

ThinFilmsInterdiffusionandReaction(1978),ed.J.M.Poate,K.N.TuandJ.W.Mayer,J.WileyandSons,NewYork.

ThonyS.S.,LehmannH.W.andGünterP.(1992),Appl.Phys.Lett.,61,373-376.

TienP.K.(1971),Appl.Opt.,10,No.11,2395-2415.

TienP.K.andUlrichR.(1970),J.OptSoc.Am.,60,1325.

TienP.K.,GordonJ.P.andWhinneryJ.R.(1965),ProcIEEE,53,129.

TienP.K.,MartinR.J.andSmolenskyG.(1972),Appl.Opt.,11,637.

TienP.K.,MartinR.J.,BanksS.L.,WempleS.H.andVarnerinL.J.

Page 798: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

(1972),Appl.Phys.Lett.,21,207.

TienP.K.,Riva-SanseverinoS.andBallmanA.A.(1974),Appl.Phys.Lett.,25,563.

TienP.K.,Riva-SanseverinoS.,MartinR.I.,BallmanA.A.andBrownH.(1974),Appl.Phys.Lett.,24,503.

Page 799: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page368

TienP.K.,UlrichR.andMartinR.J.(1969),Appl.Phys.Lett.,14,291.

TienP.K.,UlrichR.andMartinR.J.(1970),Appl.Phys.Lett.,17,447.

TillerW.A.(1963),J.Appl.Phys.,34,No.9,2757-2763.

TimofeevaV.A.(1978),CrystalGrowthfromSolutioninMelt,Nauka,Moscow.

Tomashpol'skyYu.Ya.(1982),Izv.Akad.NaukSSSR,Neorg.Mater.,18,No.10,1662-1666.

Tomashpol'skyYu.Ya.(1984)Film-TypeFerroelectrics,RadioiSvyaz',Moscow.

TownsendD.(1984),Vacuum,34,No.3-4,395-398.

TsaiC.S.,KimB.andEl-AkkariF.R.(1978),IEEEJ.QuantumElectron.,QE-14,513-517.

TuckerJ.R.,ChaseA.B.andKingS.R.(1974),Dig.Tech.Pap.MB12,1.

UeharaS.,TakamotoK.,MatsuoS.andYamauchiY.(1975),Appl.Phys.Lett.,26,296-298.

UematsuU.(1974),Jap.J.Appl.Physics,13,No.9,1362.

UesugiN.(1980),Appl.Phys.Lett.,36,178-190.

UesugiN.andKimuraT.(1976),Appl.Phys.Lett.,29,572.

UesugiN.,DaikokuK.andKimuraT.(1978),J.Appl.Phys.,49,4945.

UlrichR.(1979),Appl.Phys.Lett.,35,840.

UlrichR.andJohnsonM.(1979),Appl.Opt.,18,1857.

Page 800: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

VanDerZielJ.,MikuljakR.M.andChoA.Y.(1975),Appl.Phys.Lett.,27,71.

VandenbulckeP.andLagasseE.(1976),WaveElectron.,1,295.

VeberS.M.,HartmanN.F.andGlassA.M.(1977),Appl.Phys.Lett.,30,272.

VohraS.T.,MichelsonA.R.andAsherS.E.(1989),J.Appl.Phys.,66,5161.

VojdaniS.,DabiviA.E.andTavakoliM.(1975),J.ElectronSoc.,122,No.10,1400-1404.

VonDerLindeD.,GlassA.M.andRodgersK.F.(1974),Appl.Phys.Lett.,25,155.

VorobjevaV.V.,GolubevL.V.,NovikovS.V.andShmartsevYu.Yu.(1985),Pis'mavZhETF,11,No.4,224-226.

VoronovV.V.,DoroshI.,Kuz'minovYu.S.andlachenkoN.V.(1980),Kvant.Elektron.,7,2312-2317.

VoskresenskayaE.N.,GavrilovV.A.,KutvitskyV.A.andDemidochkinaS.I.(1985),in:Proc.VllthAll-UnionConf.GrowthandSynthesisofSemiconductorCrystalsandFilms,Novosibirsk,98-99.

WalkerR.G.(1981),Ph.D.thesis,UniversityofGlasgow.

WangHongandWangMing(1986),J.Cryst.Growth,79,No.1-3,527-529.

WargoM.J.andWittA.F.(1984),J.Cryst.Growth,66,289-298.

WaringJ.L.andRothR.S.(1965),J.Res.Nat.Bur.Std.,69A,2.

WarzanskyjW.,HeismannF.F.andAlfernessR.C.(1986),Appl.Phys.Lett.,53,13.

Page 801: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

WebjörnJ.,LaurellF.andArvidssonG.(1989),IEEEPhotonTechnol.Lett.,1,1579.

WebjörnJ.,LaurellF.andArvidssonG.(1989),IEEEPhoton.TechnolLett.,1,316.

WeiJ.S.(1977),IEEEJ.QuantumElectron.,QE-13,152.

WeisR.S.andGaylordT.K.(1985),J.Appl.Phys.,A37,193-203.

WellerM.T.andDickensG.(1985),J.SolidStateChem.,60,139.

WernerA.W.,OnoeM.andCoquinG.A.(1967),J.Acoust.Soc.Am.,42,1223.

WhalenM.S.,TennantD.M.,AlfernessR.C.,KorenU.andBosworthR.(1986),Electron.Lett.,22,1307.

WiesendangerE.(1973),CzechJ.Phys.,B23,91.

WilkinsonC.D.W.andWalkerR.G.(1979),ElectronLett.,14,599.

WolkensteinF.F.(1973),Physico-ChemistryofSemiconductorSurface,Nauka,Moscow.

WongK.K.(1975),G.E.C.J.Res.,3,No.4,243.

WongK.K.,Clark,D.F.,NuttA.C.,WinfieldJ.,LayboumP.J.R.andDeLaRueR.M.(1986),Proc.InstElectr.Eng.J.,113,No.133,1986.

WongK.K.,DeLaRueR.M.andWrightS.(1982),Opt.Lett.,7,546.

WoodE.(1951),ActaCrystallogr.,4,353.

WoodV.E.,HartmanN.F.,VeberC.M.andKenanR.(1975),J.Appl.Phys.,46,2114.

YakovlevV.A.(1985)OpticsofAnisotropicMedia,MFTI,Moscow,27.

Page 802: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

YamadaA.andTamadaH.(1992),Appl.Phys.Lett.,61,2848.

YamadaM.andKishimaK.(1991),Electron.Lett,,27,828.

YamadaM.,NodaN.,SaitohM.andWatanabeK.(1993),Appl.Phys.Lett.,62,435.

YamadaS.andMinakataM.(1981),Jap.J.Appl.Phys.,20,733-737.

YamamotoK.,YamamotoH.andTaniuchiT.(1991),Appl.Phys.Lett.,58,1227.

YanA.Y.(1983),Appl.Phys.Lett.,42,633.

YarivA.(1976),IntroductiontoOpticalElectronics,2nded.,Holt,RhinehartandWinston,NewYork.

Page 803: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page369

YarivA.(1985),OpticalElectronics,Holt-SaundersInternationalEditors,NewYork-Philadelphia,295.

YarivA.andYehP.(1984),OpticalWavesinCrystals,J.WileyandSons,NewYork,513

YatsenkoA.V.andSergeevN.(1985),UFZh,30,No.1,118-120.

ZakhlenyukN.A.andZhovnirG.I.(1985),ZhETF,55,No.7,1406-1413.

ZernikeF.andMidwinterJ.E.(1973),AppliedNonlinearOptics,J.WileyandSons,NewYork,261.

ZhangL.,ChandlerJ.P.andTownsendP.D.(1988),Appl.Phys.Lett.,53,544.

ZhangL.,ChandlerJ.P.andTownsendP.D.(1990),FerroelectricsLett.,11,89.

ZhovnirG.I.andMaronchukE.I.(1980),Avtometriya,No.6,22-32.

ZhovnirG.I.andZakhlenyukN.A.(1985),ZhETF,55,No.5,902-904.

ZilingK.K.,NadolinnyV.A.andShashkinV.V.(1980),Izv.Akad.NaukSSSR,Neorg.Mater.,16,701-706.

ZolotovE.M.,KazanskyP.G.andChernykhV.A.(1982),Pis'mavZhETF,8,1413-1417.

ZolotovE.M.,KazanskyP.G.andChernykhV.A.(1983),Pis'mavZhETF,9,360-363.

ZolotovE.M.,KiselevV.A.andSychugovV.A.(1974),Usp.Fiz.Nauk,112,No.2,231-273.

ZolotovE.M.,KiselevV.A.,ProkhorovA.M.andShcherbakovE.A.

Page 804: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

(1976),Quant.Electron.,3,1672.

ZolotovE.M.,PlekhatyjV.M.,ProkhorovA.M.,AmiletovS.A.andShcherbakovE.A.(1977),Pis'mavZhETF,3,241.

ZolotovE.M.,PlekhatyiV.M.,ProkhorovA.M.andChernykhV.A.(1979),ZhETF,76,1190.

ZolotovE.M.,ProkhorovA.M.andChernykhV.A.(1980),Kvant.Elektron.,7,No.4,843-848.

ZumsteyF.C.,BierleinJ.D.andGierT.E.(1976),J.Appl.Phys.,47,4980.

ZverevG.M,KolyaginS.A,LevchukE.A.andSkvortsovaL.A.(1977),Kvant.Elektron.,4,No.9,1882-1889.

ZytkiewiczZ.(1983),J.Cryst.Growth,61,665-674.

FurtherReading

1.HausH.A.(1988),WavesandFieldsinOptoelectronics,EnglewoodCliffs,Prentice-Hall,NewJersey.

2.HunspergerR.G.(1984),IntegratedOpticsTheoryandTechnology,SpringerVerlag,Berlin,Heidelberg,NewYork.

3.ProkhorovA.M.andKuz'minovYu.S.(1990),PhysicsandChemistryofCrystallineLithiumNiobate,AdamHilger,Bristol,NewYork.

4.ProkhorovA.M.andKuz'minovYu.S.(1990),FerroelectricCrystalsforLaserRadiationControl,AdamHilger,Bristol,NewYork.'

5.PropertiesofLithiumNiobate(1990),EMIS,England.

6.SmolenskyG.A.(ed)(1985),PhysicsofFerroelectricPhenomena,Nauka,Leningrad.

Page 805: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

7.YarivA.andYehP.(1984),OpticalWavesinCrystals,NewYork.

8.YarivA.(1985),OpticalElectronics,Holt-SoundersInternationalEditors,NewYork.

Page 806: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page371

Index

A

absorptionloss282

activationenergyforvaporization29

actualvaporizationflux30

angularmatching241

annealedproton-exchangedwaveguides56

autodiffusedlayers25

B

bandwidth295

Braggdiffractionmodulator315

Braggreflector247

bufferedmelts59

Bulkcrystallization131

C

capillaryliquidepitaxialtechnique78

channelwidth255

Cherenkovradiation245

cinnamicacid64

coherencelength248

Page 807: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

controlvoltage293

conversionefficiency245

copperdiffusion49

coupledchannelwaveguides302

criticalsupersaturation135

crystallizationfromagasphase6

Curietemperature16

Curie-Weissbehaviour16

Czochralskimethod132

D

degreeoffilmperfection1

dielectricimpermittivitytensor35

dielectricproperties285

diffusiondepth123

diffusionoftransitionmetals37

diffusion-induceddefects188

directelectron-beamwriting203

dislocationstructure191

domainconfiguration198

domaininversion203

domainstructure195

doublewaveguide23

Page 808: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

double-exchange'technique66

Dufoureffect139

E

effectivesegregationcoefficient110

electro-opticcoefficient259

electro-opticeffects258

electro-opticmodulators293

electro-opticphotorefractivemodulator328

electro-opticX-switchers292

electro-opticallytunablewavelengthfilter342

electrodiffusion49

electronpolarizability36

electrostrictioneffect36

energylossinwaveguides279

epitaxialferroelectricfilms118

epitaxialgrowth151

epitaxialgrowthofLiNbO397

equilibriumsegregationcoefficient142

evaporationcoefficient33

exchangetime66

extraordinaryrefractiveindex215

F

Page 809: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Fabry-Perotloss280

Fabry-Perotresonator260

Fermifunction229

Fermilevel135

ferroelectricfilms210

Fick'ssecondlaw27

filmgrowthrate141

flip-chipcoupling345

G

gas-transportepitaxy1

gas-transportepitaxy6

Gaussiannucleardamage24

Gaussianprofiles39

Glassconstant276

Glassmodel276

Gratingformation267

gratings266

H

holographicwriting267

homoepitaxialLiNbO3films178

hydrogenisotopicexchange58

I

Page 810: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

in-diffusioncoefficient65

indexchange274

insertionlosses293

interferometricMach-Zehndermodulator326

isothermalepitaxy105

J

Jouleeffect133

Page 811: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Page372

K

Kerreffect48

Kikuchilines207

KLNcrystal121

KNbO3,inducedwaveguidecut-offmodulator331

L

Langmuirrelation28

Langmuirvapourpressure29

lasersputteringmethod17

layercomposition173

layerprecipitationtime124

lightresistance2601

LiNbO3birefringence245

liquid-phaseelectroepitaxy136

liquid-phaseepitaxy74

liquid-phaseepitaxy(LPE)technique83

lithiumniobate165

Lorentz-Lorenzformula36

M

Mach-Zehnderinterferometer271

Marcatili'sapproximation246

Page 812: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

maximalmodulationdepth293

MFESstructurexvi

micro-channelslab125

microdomains199

micromorphologyoffilmsurface186

modenumber231

modulationindex260

monocrystallinity175

N

negativebirefringence215

nucleationrate146

O

one-dimensionalwaveguides22

opticalmodes224

opticalproperties213

opticalswitchingtime309

opticalwaveguideswitchmodulator308

ordinaryrefractiveindex215

out-diffusedlayers26

out-diffusioncoefficient65

out-diffusionindexprofiles26

out-diffusionkinetics27

Page 813: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

out-diffusionsuppression34

P

partitioncoefficient128

PDRwaveguide247

PEwaveguide65

Peltiercoefficient132

perovskite118

phasematching239

photoelasticcoefficient47

photoinducedpolarizationconversion298

photorefractiveeffect269

photorefractiveproperties264

photorefractivesensitivity270

planarion-exchangedKTiOPO4waveguides68

planarwaveguides20

Pockelscoefficient68

potassiumlithiumniobate121

prismcouplingtechnique65

propagationconstant230

propagationloss12

protondiffusion62

proton-lithiumexchange52

Page 814: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

proton-exchangedLiNbO3182

proton-exchangedLiNbO3waveguides51

pseudo-Kosselpattern11

pulsedlaserdeposition17

pumpingpower240

pumpingwavelength240

pyroelectricproperties287

Q

QPM-SHGdevice202

quasi-phasematching200

R

Raoultlaw3

refractiveindexgradient31

rfsputtering8

ridgewaveguidemodulator317

Rutherfordbackscatteringspectroscopy16

S

'sandwichmethod'5

schemeofthegrowthcell95

Schröderequation91

secondharmonicgeneration237

Seebeckcoefficient289

Page 815: Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics

Sellmeierrelation215

Snelllaw217

spikelikedomains201

stationarycrystallizationmodel97

Stepanovmethod132

striplinestructures123

stripwaveguides21

substratemodes222

sum-frequencygeneration253

supersaturation101

surfaceindex72

symmetricwaveguides124

T

polarizationconversion345