fermions c j n bosons a nucleons valence nucleonsn nucleon pairs l = 0 and 2 pairs s,d even-even...

43

Upload: jonathan-lawrence

Post on 16-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A
Page 2: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

fermions cj

N bosons

A nucleons

valence nucleons

N nucleon pairs

L = 0 and 2 pairss,d

even-even nuclei

2.2 The Interacting Boson Approximation

A. Arima, F. Iachello, T. Otsuka, I Talmi

Page 3: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Schrödinger equation in second quantisation

N s,d boson system

with

N=cte

Page 4: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

The hamiltonian is written in terms of the 36 generators of U(6):

])~

(,)~

[( '''"

†"'

† kll

kll bbbb

(2k 1)(2k' 1)( 1)k k' (kk '' k"")k ", "

[( 1)k k ' k "k k' k"

l"' l l'

l' l"(bl

† ˜ b l"' ) "k "

k k' k"

l" l' l

ll"' (bl "

† ˜ b l' ) "k " ]

.

kll bb )

~( '

Construction of a dynamical symmetry as an example U(5) limit:

[(d† ˜ d )k ,(d† ˜ d ) '

k ' ]

kk ddbb )~

()~

( †2

†2

(2k 1)(2k' 1)( 1)k k' (kk '' k"")k ", "

k k' k"

2 2 2

(d† ˜ d )"k" [( 1)k k ' k " 1]

Now, consider the 10 odd k generators only and then the angular momentum ones.

LnN

SUU

d

)3(0)5(0)5()6(

Page 5: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

U(5)

SU(3)

SO(6)196Pt

156Gd

110Cd

U(5): Vibrational nuclei

SO(6): -unstable nuclei

SU(3): Rotational nuclei (prolate)

Dynamical symmetries of a N s,d boson system

U(5) SO(5) SO(3) SO(2) {nd} () L M

U(6) SO(6) SO(5) SO(3) SO(2)[N] <> () L M SU(3) SO(3) SO(2)

() L M

Page 6: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Analytic solutions are associated with each dynamical symmetry:

U(5): H = 1C1[U(5)] + ’1C2[U(5)] + 4C2[O(5) ] +5C2[ SO(3)] E(nd,L) = 1nd+ ’1nd( nd+ 4) + 4(+3) +5L(L+1)

H = 1C1[U(5)] + ’1C2[U(5)] + 2C2[SU(3) ] +3C2[SO(6) ] +4C2[SO(5) ] + 5C2[ SO(3)]

Again using first and second order Casimir operators a six parameter hamiltonian results::

which needs to be solved numerically.

SU(3): H = 2C2[SU(3)] +5C2[ SO(3)] E(,L) = 2+5L(L+1)

SO(6): H = 3C2[SO(6)] + 4C2[O(5) ] +5C2[ SO(3)] E(,L) = 3(+4) + 4(+3) +5L(L+1)

Page 7: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

A dynamical symmetry leads to very strict selection rules that can be used to test it.

If an operator is a generator of a subalgebra G then due to the property:

[Gi,Gj]=kcijkGk.and

E = a f() =>Ek = a f() k withk {Gk}

it cannot connect states having a different quantum number with respect to G.

Example: 196Pt and its E2 properties.

)2(2 )~

(ˆ sddsT E is an SO(6) generator

E2 transitions between different SO(6) representations are forbidden.

Page 8: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Also quadrupole moments are equal to zero because of SO(5) (seniority) and the d-boson number changing E2 operator ||=1

Experimentally: Q(2+1) = +0.66(12) eb

B(E2)= 0?

H.G. Borner, J. Jolie, S.J. Robinson, R.F. Casten, J.A. Cizewski, Phys. Rev. C42(1990) R2271

195Pt(n,)196Pt + GRID method

Page 9: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Nuclear shapes associated with the four dynamical symmetries

The shapes can be studied using the coherent state formalism.

01

;,,

N

dsN

N

using the intrinsic state (Bohr) variables:

0)(2

sincos

1,;,, 220

N

dddsN

N

Then the energy functional:

,;,,,;,,

,;,,ˆ,;,,),;,,(

NN

NHNNE

can be evaluated for each value of and

Page 10: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

U(5) limit: irrelevant: spherical vibrator

SO(6) limit: flat: -unstable rotor

SU(3) limit: prolate rotor

SU(3) limit: oblate rotor

SU(3)

E U(5)

SO(6)

00 ;0 00 ;0

0;0 00 60;0 00

60°

Page 11: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Shape phases and critical point solutions.

QQN

naH d ˆ.ˆ)1(ˆˆ

Most nuclei are very well described by a very simple IBA hamiltonianof Ising form:

with two structural parameters and and a scaling factor a

)2()2( )~

()~

(ˆ ddsddsQ with

generatessphericalshape

generatesdeformedshape

Page 12: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

U(5)

The rich structure of this simplehamiltonian are illustrated by the extended Castentriangle

SU(3)

2/7

1 U(5) limit U(6) U(5) SO(5) SO(3) 0,0 SO(6) limit U(6) SO(6) SO(5) SO(3)

27,0 SU(3) limit U(6) SU(3) SO(3)

The simple hamiltonian has four dynamical symmetries

QQN

naH d ˆ.ˆ)1(ˆˆ

SO(6)

2/7SU(3)

27,0 SU(3) limit U(6) SU(3) SO(3)

Page 13: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

60000:)3cos( 003

Energy functional in coherent state formalism

Page 14: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Shape phase transitions in the atomic nucleus.

When studying the changes of the nuclear shape one might observeshape phase transitions of the groundstate configuration.

They are analogue to phase transitions in crystals

Page 15: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Thermodynamic potential: );,( TP

Externalparameters

Orderparameter

Energy functional: ),;,,( NE

L. Landau

Landau theory of continuous phase transitions (1937) describes theseshape phase transitions.

J.Jolie, P. Cejnar, R.F. Casten, S. Heinze, A. Linnemann, V. Werner, Phys. Rev. Lett. 89 (2002) 182502.P. Cejnar, S. Heinze, J.Jolie, Phys. Rev. C 68 (2003) 034326

PT

),( 11min TP ),( 21min TP

Page 16: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

T

c

c

c

min

Tc

P0,T,min

Tc

P0,T,

First order phase transition with P = P0= const

c

c

c

min

c

P0,T,min

Tc

P0,T,Second order phase transition

Page 17: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

...),(),(),();,( 4320 TPCTPBTPATP

);,( 0TP

);,( TP

should be continuous everywhere.

if discontinuous at 0 : first order phase transition.

2

2 );,(

TP if discontinuous at 0: second order phase transition.

with TPTPB ,;0),(

Page 18: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Extremum are at:

0]),(4),(3),(2[ 2 TPCTPBTPA0);,(

TP

C

ACBB

8

3293

0

2

Our case: TPTPCTPB ,0),(,0),(

0);,(

2

2

TP

0),(12),(6),(2 2 TPCTPBTPA

0),(0 TPAalways:

cATPATPB ),(,0),(0

cATPATPB ),(,0),(0

0),( TPC

and

),(4

),( 2

TPC

TPBAc

Page 19: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

...),(),(),();,( 4320 TPCTPBTPATP

0)),(),(),(( 22 TPCTPBTPA

Both minima become degenerated at:

),(),(4),( 2 TPCTPATPB

or at

),(2

),(

TPC

TPBc

c 0),( TPA

),(4),(

),(2

TPCTPB

TPA

To fullfill this equation and the one for 0 ),(32

),(9),(

2

TPC

TPBTPA

Page 20: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A
Page 21: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

00

0),( TPB 0),( TPB

B

-A

0

C

ACBB

8

3293 2

0

C

ACBB

8

3293 2

0

Solution:

First order phase transitions at: Second order at:

),(4

),(),(

2

TPC

TPBTPA

),(4),(

),(2

TPCTPB

TPA

0),(),( TPBTPA

0

),( TPA

Page 22: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

...4321)1(

1 64222

So we can absorb it by allowing negative values !

60000:)3cos( 003

and

06000 00 ßß

Energy functional in coherent state formalism

Page 23: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

One obtains then:

...),,(),,(

),,(),(),;,,(

43

20

NCNB

NANENE

when we fix N: ...),(),(),();,( 4320 TPCTPBTPATP

72

)1)(1(4),,( NNB

)}84)(1({),,( 2 NNNA

54

85

840),,(

2

2

0

N

NNA

prolate-oblate00),,( 0 NB

N

The first order phase transitions should occur when

spherical-deformed

The isolated second order transition at:

8584

0,0),,(),,( 00

NN

andNBNA

Page 24: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

spherical = 0

prolatedeformed > 0

oblatedeformed < 0

Triple point ofnuclear deformation

: first order transition

: isolated second order transition

00

00

00 I

III

II

P

T

J.Jolie, P. Cejnar, R.F. Casten, S. Heinze, A. Linnemann, V. Werner, Phys. Rev. Lett. 89 (2002)182502

Landau theory and nuclear shapes.

Thermodynamic potential:

External parameters

Order parameter

Energy functional:

(P,T;) E(N,)

Page 25: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

The shape phase transitions can be seen by the groundstate energies.

E

SU(3)

O(6)

SU(3)

U(5) (N=40)

Page 26: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

The quadrupole moment corresponds to the control parameter 0:

N=10 N=40

N=10 N=40

A sensitive signature is in particular the B(E2;22+-> 21

+)

Page 27: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

J. Jolie, P. Cejnar, R.F. Casten, S. Heinze, A. Linnemann, V. Werner, Phys.Rev.Lett. 89(2002)182502P. Cejnar and J. Jolie, Rep. on Progress in Part. and Nucl. Phys. 62 (2009) 210.

dynamical symmetry

First order phasetransition

Second order phasetransition (isolated)

sphericalprolatedeformed

oblatedeformed

Conclusion: the following shapes phase transitions are obtained:

J. Jolie, R.F. Casten, P. von Brentano, V. Werner, Phys.Rev.Lett. 87(2001)162501

Page 28: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Examples for the prolate-oblate and sherical-prolate phase transition

PbHgPtOsWHfYb

104 106 108 110 112 114 116 118 120 122 124 126

200Hg198Hg

196Pt194Pt

192Os190Os188Os

186W184W182W

180Hf

Samarium isotopes

Page 29: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

N=10N=20

Page 30: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

50

82

Normal states Intruder states

110Cd

2p-2hpair + Q+ ...

K. Heyde, et al. Nucl. Phys. A466 (1987) 189.

inmix

mixn

HH

HHˆˆ

ˆˆThis can be described in the IBM by a N (normal) plus N+2 (intruder) systemwhich might mix. :

with

and)0(||)0(|| )

~~()( ddddssssHmix

2.2.4 Core excitations

Page 31: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Iz = + 1/2

Iz = - 1/2

Up(6)

Uh(6)

U(6)

Also new kinds of symmetries are possible: Intruder or I-spin

always fulfilled[H,Iz] =0

[H,I2] = 0

[H,I+] = [H,I-] = 0 intruder-analog state

good intruder Spin

K. Heyde, C. De Coster, J. Jolie, J.L. Wood, Phys. Rev. C 46 (1992), 541

Page 32: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

I=0

I=1/2

I=1

I=2

I=3/2

+1/2 +3/2-1/2-3/2 +1 +2-1-2 0

Iz

H. Lehmann, J. Jolie, C. De Coster, B. Decroix, K. Heyde, J.L. Wood, Nucl. Phys. A 621 (1997) 767

Intruder analog states

Page 33: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A
Page 34: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

The cadmium isotopes are unique in several respects.

-) protons nearly fill the Z=50 (Sn) shell;

-) neutrons are near mid-shell (N=66)

-) there are 8 stable isotopes of Cd.

This is clearly the mass region where we can learn about nuclear structure.

2.3 A case study: 112Cd

M. Délèze, S. Drissi, J. Jolie, J. Kern, J.P. Vorlet, Nucl. Phys, A554 (1993) 1

Pd (,2n) Cd reaction allowedthe establishment of multiphononstates up to nd=6.

Page 35: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

5.39ps

0.68ps0.73ps

But, above 1.2 MeV additional states exist and build asecond collective structure.

< 2.1ps

< 2.8ps

0.7ps

and

The additional states are intruder states presenting 2 particle- 2 hole excitations across Z=50. They lead to shape coexistence and can be described using the SO(6) limit.

E[N,nd,,L] = nd + (+3) +L(L+1)

intrL] = (+3) + (+3) +L(L+1)

Page 36: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

U(6)

U

U(5) O(6)

U

U

O(5)

O(3)

J. Jolie and H. Lehmann, Phys. Lett B342 (1995)

normal states

112Cd

Intruder states

)0(||)0(|| )~~

()( ddddssssHmix is a O(5) scalar.

Symmetries can play a dominant role in shape coexistence.

Wavefunctions with O(5) symmetry have fixed seniority of d-bosons.

Page 37: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

)0(

)0(

5

1

5

1

6

555

6

1

ddssddss

)0(||)0(|| )~~

()( ddddssssHmix

)0)(0(0]2[ T

0)0(2]2[0)0(0]2[

5

1

6

55

6

1

TT

Cannot connect intruder withnormal states

=N+2

max=N0)0(2]2[

5

1

6

5

TH effmix

Page 38: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Moreover one can rewrite:

)0(||)0(|| )~~

()( ddddssssHmix

Page 39: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Inelastic Neutron Scattering (INS) experiment at the Van de Graaff Accelerator of the University of Kentucky (Prof S.W. Yates, Lexington USA).

(n,n’ ) Elevel J and placements of E from excitation function varying En

from angular distributions

n = 1.25ps1.200.42

= 1.16ps0.490.27

= 0.67ps0.210.13

= 1.20ps0.830.35

= 0.42ps0.100.07

= 0.51ps0.170.10

Page 40: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

(n,n´) with 3.4 and 4 MeV neutrons for lifetimes and coincidences allowed theextension to higher low-spin states (P.E. Garrett et al. Phys. Rev. C75 (2007)054310

There it becomes difficult to describe the details.

Page 41: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Harmonic vibrator (collective model)

+ finite N effects (IBM in the U(5)-limit)

+ intruder states within a U(5)-O(6) model

+ neutron-proton degree of freedom and symmetry breaking

Absolute B(E2) values for the decay of three phonon states in 110Cd

Page 42: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Confirmation of the U(5)-O(6) picture.

F. Corminboeuf, T.B. Brown, L. Genilloud, C.D. Hannant, J. Jolie, J. Kern, N. Warr and S.W. Yates, Phys. Rev. C 63 (2001) 014305.

Page 43: fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A

Fribourg-Kentucky-Köln Data B(E2) Values in Six Valence Proton Configurations

Neutron Cd Intruder Ru Ba

Number B(E2;230A) B(E2;2101) B(E2;2101)

27182362

558175664

1415457086166

61167748668 2430

169870

It works well only in a given shell.

M. Kadi, N. Warr, P.E. Garrett, J. Jolie, S.W. Yates, Phys. Rev. C68 (2003) 031306(R).