feedback basics - penn engineering · 2008. 11. 19. · feedback block diagram point of view a β-+...

37
ESE319 Introduction to Microelectronics 1 2008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability Frequency compensation

Upload: others

Post on 18-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • ESE319 Introduction to Microelectronics

    12008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Feedback Basics● Stability● Feedback concept● Feedback in emitter follower● One-pole feedback and root locus● Frequency dependent feedback and root locus● Gain and phase margins● Conditions for closed loop stability● Frequency compensation

  • ESE319 Introduction to Microelectronics

    22008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

  • ESE319 Introduction to Microelectronics

    32008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    F

    F

    F

    F

    F

    F

    Operational Amplifier From Another View

  • ESE319 Introduction to Microelectronics

    42008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Feedback Block Diagram Point of View

    A

    β

    -+vi vo

    vo=A

    1AFvi

    Fundamental feedback equation

    Fundamental block diagram We can split the idealop amp and resistivedivider into 2 separateblocks because theydo not interact with, or“load,” each other.

    1. The op amp output isan ideal voltage source.

    2. The op amp input draws no current.

    F

    vf

  • ESE319 Introduction to Microelectronics

    52008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Comments on the Feedback Equation

    G=vovi= A1A F

    The quantity ' loop-gain and G = closed-loop gain.

    AF≫1(and the system is stable – a topic to be discussed later!) the closed-loop gain approximates &and is independent of “A” !

    AF

    1/F

    The quantity A = open-loop gain and = feedback gain.

    If the loop gain is much greater than one, i.e.

    F

    A=vovi

    A

    β

    -+vi vo

    F

    vf

    F=v fvo

    G=vovi≈1F

    |v f=0

  • ESE319 Introduction to Microelectronics

    62008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Feedback in the Emitter FollowerEmitter current equation:

    ie=1

    RsT1

    r eREvi

    Create an “artificial” feedbackequation, multiply by :

    ie=

    T1Rs

    1T1Rs

    r eRE vi=

    A1AF

    vi

    T1/Rs

    Note: , i.e. the BJT “beta”. T=

    ib

    ie

    T ib

  • ESE319 Introduction to Microelectronics

    72008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Emitter Follower Emitter Current

    ie=

    T1Rs

    1T1Rs

    r eRE vi=

    A1AF

    vi

    The forward gain term, A:

    A=T1Rs

    The feedback term, :

    F=r eRE

    If the “loop gain” is large,

    ie≈1 Fvi=

    1r eRE

    vi

    F

    AF≫1

    ib ib

    ie

    T

    Dependence on is eliminated.T

  • ESE319 Introduction to Microelectronics

    82008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Loop Gain Sensitivities For:Forward gain:dGdA

    =1

    1A F 2

    dGG

    =1

    1A F 2

    1AFA

    dA

    11AF

    dAA

    0

    Feedback gain:dGd F

    =−A2

    1A F 2

    dGG

    =−A2

    1AF 2

    1AFA

    d F

    −A F1A F

    d F F

    −d F F

    High loop gain makes system insensitive to A, but sensitive to !

    G= A1AF

    F

    ==AF∞

    AF∞

  • ESE319 Introduction to Microelectronics

    92008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Feedback - One-pole A(s)

    Consider the case where:

    As=a K0sa

    A

    β

    -+vi vov

    f

    F

    G=vovi=

    A1AF

    G s ,F =

    a K0sa

    1a F K01sa

    =a K0

    sa 1F K0

    open-loop pole

    closed-loop pole

    Where and K0 are positive real quantities.F

    X-a

    j

    s= j

    F=0

    ∞F

    Root Locus Plot for G s ,F

    stable for all ΓF!

  • ESE319 Introduction to Microelectronics

    102008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Feedback - One-pole A(s) cont.As=

    a K0sa

    G s=a K 0

    sa 1F K0=N sD s

    GBWOL=GBWCL=a K0

    a

    Gain - dB

    - 20 dB/dec

    20 log10K0

    1F K0

    a 1F K00

    - 20 dB/dec

    20 log10K0

    frequency (ω)

    open-loop (OL) closed-loop (CL)

  • ESE319 Introduction to Microelectronics

    112008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    One-pole Feedback - Root LocusG s=

    a K 0sa 1F K0

    = N sD s

    As=a K0sa

    D s=sa 1F K0=saa F K0=0Pole of G(s):

    saa F K0=0⇒a F K0sa

    =−1=1∗e j± 2k

    a F K0∣sa∣

    =1 −sa =± 2kand

    x

    si

    |si+a |

    -a

    s ia

    -ax

    12

    s1a =0≠± 2 k1

    s2a =2

    ∞F K0≥ 0 Not allowed

    s1s2

    j

    js= j

  • ESE319 Introduction to Microelectronics

    122008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent FeedbackConsider the case where the open-loop gain is:

    As=K sa sb sc

    For convenient Bode plotting we can rewrite A(s) as:

    As=K abc

    sa1

    sb1sc1

    =K0 sa1

    sb1sc1

    abc

    K0=Kabc

    where

    dc gain

  • ESE319 Introduction to Microelectronics

    132008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent FeedbackA sketch of the Bode plot would look something like:

    Sketching the frequency response is “easy,” if the polynomialis factored into its roots!

    As=K0 sa1

    sb1 s

    c1

    abca b c

    20 log10

    |A(s)| - dB

    + 20 dB/dec

    - 20 dB/dec

    open-loop (OL)

    20 log10K0

  • ESE319 Introduction to Microelectronics

    142008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent FeedbackIf the frequency-dependent quantity, A(s), is embedded in a feedback loop, the poles are not so easily factored:

    As=K0sa

    sbsc

    G s= As1 F As

    G s=K0

    sa sbsc

    1F K0sa

    sbsc

    =K0sa

    sbsc F K0 sa

    open-loop (OL)

    closed-loop (CL)

    1. zeros of G(s) = zeros of A(s) and are independent of feedback2. poles of G(s) ≠ poles of A(s) are a function of the feedback F

    F

    frequency dependent feedback

  • ESE319 Introduction to Microelectronics

    152008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent Feedback – Root Locus

    Rationalizing this expression leads to:G s=K 0

    sa sbscF K0sa

    =N sD s

    The numerator is factored, but the denominator is not. Wehave a new quadratic D(s) for G(s). It could be factoredusing the quadratic formula, but we will do it another way!Factoring a polynomial is equivalent to finding its roots, i.e.the values of “s” that make the polynomial equal zero.

    D s= sbsc F K0 sa =0

    G s=K0

    sa sbsc

    1F K0sa

    sbsc

  • ESE319 Introduction to Microelectronics

    162008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent Feedback – Root LocussbscF K0 sa =0

    Since the poles of G(s) will not equal any of the poles of A(s), we can divide by (s + b) (s + c) and obtain:

    1F K0sa

    sbsc=0

    The “loop-gain” terms, and K0, are positive real numbers, sofor a root, say s = -r

    1 to exist, the value of the frequency-dependent

    terms must be real and negative when evaluated at s = -r1!

    F K0 sa

    sbsc=−1

    F

  • ESE319 Introduction to Microelectronics

    172008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent Feedback – Root Locus

    F K0 sa

    sbsc=−1=1∗e j±2k

    Working with the complex numbers in polar form:

    F K0∣sa∣

    ∣sb∣∣sc∣=1

    ⇒∣sa∣

    ∣sb∣∣sc∣=

    1F K0

    sia −sib−sic=± 2k

    we add the angles for zeros to the point “s

    i” in the complex plane and subtract

    the angles for poles.

    and

    where k = 0, 1, ...

  • ESE319 Introduction to Microelectronics

    182008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent Feedback – Root Locus

    A sketch of the operations looks like:

    .

    -a-b-c

    si

    |si+c |

    s ic s ibs ia

    x x o

    |si+b |

    |si+a |

    ∣s ia∣∣sib∣∣s ic∣

    =1

    F K0

    s ia −sib− sic=± 2k

    Move point si until the phase angle relation is satisfied.

    The only values of si that satisfy the phase angle relationship

    lie on the negative - axis.

    Root Locus Protocol

    j

    s= j

  • ESE319 Introduction to Microelectronics

    192008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent Feedback - Root LocusOnly D(s) root locations where the angles with respect to open-loop pole/zero locations of A(s) are odd multiples of ±180o are candidates.

    1. All roots of D(s) must lie along the “green” loci.

    tot= sa − sb−sc=± 2kD s = sb sc F K0sa =0

    ∞F ≥0 -a-b-cx x o

    13 2

    4

    j

    0≤ F∞ s1s3s4

    s2

    G(s) stable for all ΓF!

    3. If s2 = -a there is a zero/pole cancellation2. Bandwidth of G(s) > bandwidth of A(s)

  • ESE319 Introduction to Microelectronics

    202008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency-Dependent Feedback – Root LocusNow, to find the gain required for a given root or pole of G(s), measure the distances from each critical point and form the ratio:

    F K0r=∣sb∣∣sc∣

    ∣sa∣ s=−sr

    The only allowed poles {e.g. “sr”} of G(s) are on the “green” loci.

    Where s = - sr is on the root-locus

    ∣sa∣∣sb∣∣sc∣

    = 1F K0

    ⇒ |∣−s rc∣

    -a-b-cx x o

    ∣−s rb∣ ∣−s ra∣

    l“s

    r”

    F K 0

    ∣−s rc∣

  • ESE319 Introduction to Microelectronics

    212008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Root Locus Two-pole A(s)

    As=K0bc

    sb sc

    G s=K0bc

    sbscF K 0bc=N sD s b c

    20 log10

    |A(s)| - dB

    - 20 dB/dec

    - 40 dB/dec

    -b-cX X

    ∞F ≥ 0

    20 log10K0

    jcomplex conjugate poles of G(s)

    G(s) stable for all ΓF!

    Note: no zero at s = -a

  • ESE319 Introduction to Microelectronics

    222008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Root Locus Three-pole A(s)

    As=K0bcd

    sb scsd G s=

    K 0bcdsbscsd F K 0bcd

    =N sD s

    -b-cX XX-d

    G(s) NOT stable for all ΓF!

    j

  • ESE319 Introduction to Microelectronics

    232008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    The Root Locus MethodThis graphical method for finding the roots of a polynomialis known as the root locus method. It was developed beforecomputers were available. It is still used because it givesvaluable insight into the behavior of feedback systems asthe loop gain is varied. Matlab (control systems toolbox) will plot root loci.

    In the frequency-dependent feedback example, we noted that increasing feedback increases the closed-loop bandwidth – i.e. the low and high frequency break points moved in opposite directions as ΓF increases. Higher ΓF , as a trade-off, reducesthe closed-loop mid-band gain.

  • ESE319 Introduction to Microelectronics

    242008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    GM

    oscillation or instability

    G j=Vo jV i j

    =A j

    1A jF

    F

    F

    F

    F

    F

    F

    loop-gain

    mutually consistent stability conditions

  • ESE319 Introduction to Microelectronics

    252008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    G j

    ∣G j∣

    F

    PM50o

  • ESE319 Introduction to Microelectronics

    262008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    ∣G j∣

    70oPM55o

  • ESE319 Introduction to Microelectronics

    272008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Alternative Stability Analysis1. Investigating stability for a variety of feedback gains Γ

    F by

    constructing Bode plots for the loop-gain A(jω)ΓF can be tedious

    and time consuming.

    2. A simpler approach involves constructing Bode plots for A(jω) and 1/Γ

    F separately.20 log∣A jF∣=20 log∣A j∣−20 log

    1F

    A jF≫1⇒G j=A j

    1A jF≈1F

    20 log∣A j∣=1=20 log1F

    ⇒∣A j1 F∣=1

    RECALL:

    when

    closed-loop gain

    20 logF=−20 log1F

  • ESE319 Introduction to Microelectronics

    282008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Alternative Stability Analysis - cont.

    stable iff20log 1/Γ

    F > 60 dB

    or20log Γ

    F < -60 dB

    orΓ

    F < 0.001

    .=20 log∣A jf ∣−20 log 1F

    -20 dB /dec

    -40 dB /dec

    -60 dB /dec

    20 log∣AF∣20log 1/ΓF = 85 dB

    20log 1/ΓF = 60 dB

    20log 1/ΓF = 50 dB

    dB

    100

    80

    60

    40

    20

    0000

    -90o

    -180o

    -270o

    -108o 72o PM

    stable

    zero PM & GM

    unstable

    f 180

    25 dB GM

    f 1

    f1

    f1

    PM < 0o

    ∣A jf ∣

    arg A jf 102 104 106 108

    108106104102

    A jf = 105

    1 jf /1051 jf /1061 jf /107

    20 log∣A jf F∣

    f (Hz)

    f (Hz)

  • ESE319 Introduction to Microelectronics

    292008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Alternative Stability Analysis - cont.

    “Rule of Thumb” – Closed -loop amplifier will be stable if the 20log1/ΓF line intersects the 20log|A(j f)| curve on the -20 dB/dec segment.

    Using “Rule of Thumb”:

    PM45o

    arg A jf 1−135o

    =>

    ∣A jf ∣

    arg A jf

  • ESE319 Introduction to Microelectronics

    302008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency Compensation

    frequency compensation – modifying the open-loop A(s) so that the closed-loop G(s) is stable for any desired value of |G(jf)|.

    desired implementation - minimum on-chip or external components.

    Ex: LM 741 op amp is frequency compensated to be stable with 60o PM for |G(jf)| = 1/ΓF = 1.

  • ESE319 Introduction to Microelectronics

    312008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Compensation – What if 1st pole is shifted lower?VCC

    dB

    100

    80

    60

    40

    20

    0000

    -90o

    -180o

    -270o

    ∣A jf ∣

    102 104 106 108

    108106104

    -20 dB /dec

    -40 dB /dec

    -60 dB /dec

    -60 dB /dec

    -40 dB /dec

    -20 dB /dec

    ∣Acomp jf ∣ 20log 1/ΓF1 = 85 dB

    20log 1/ΓF2

    = 45 dB

    Acomp jf ≈105

    1 jf /1031 jf /1061 jf /107

    f (Hz)

    C comp

  • ESE319 Introduction to Microelectronics

    322008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Frequency Compensation Using Miller EffectVCC Ccomp

    C1 C2R1 R2V gmVI i

    I i

    Vo

    Vo

    C1=CC 1gmR2R1=RB∥r

    RC

    R2=RC∥r o∥Rin2Rin2

    C2

    VoI i=

    sC comp−gmR1R21s [C1R1C2R2C compgmR1R2R1R2]s

    2[C1C 2C compC 1C2]R1R2

    .=sC comp−gmR1R2

    1 sp1c

    1 sp2c

    =

    sC comp−gmR1R2

    1s 1 p1c

    1 p2c

    s2

    p1cp2c

    where p2c≫p1c

    p1=1R1C1

    p2=1R2C2

    BJT Miller Capacitance

    with Comp = 0

    C comp

  • ESE319 Introduction to Microelectronics

    332008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Compensation Using Miller Effect - cont.VoI i=

    sC comp−gmR1R2

    1s 1 p1c

    1 p2c

    s2

    p1cp2c

    ≈sC comp−gmR1R2

    1s 1p1c

    s2 1p1c p2c

    p2c≫p1cIf

    VoI i=

    sC comp−gmR1R21s [C1R1C 2R2C compgmR1R2R1R2]s

    2[C1C2C compC1C 2]R1R2

    and

    p1c=1

    C1R1C2R2C compgmR1R2R1R2≈ 1C compgmR1R2

    p2c= p1c p2c p1c

    =C1R1C2R2C compgmR1R2R1R2

    [C1C2C compC1C 2]R1R2≈

    C comp gmC1C2C compC1C 2

    ≈gm

    C1C 2C comp≫C 2

    pole-splitting

    assumption

    Compensation Miller Capacitance

    If

  • ESE319 Introduction to Microelectronics

    342008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Compensation Using Miller Effect - cont.f p1c=

    p1c2

    ≈1

    2 [C compgmR1R2]f p2c=

    p2c2

    ≈gm

    2 [C1C2]

    A jf = 105

    1 jf /1051 jf /1061 jf /107= 10

    5

    1 jff p11 jff p2

    1 jff p3

    Using Miller effect compensation: fp1

    -> fp1c

    fp2c

    >> fp2

    Also fp3

    is unaffected by the compensation => fp3c

    = fp3

    Acomp jf =105

    1 jf /1021 jf / f p2c1 jf /107= 10

    5

    1 jff p1c1 jff p2c

    1 jff p3c

    (pole-splitting)

  • ESE319 Introduction to Microelectronics

    352008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Miller Compensation Example

    Design Objective: determine Ccomp s.t. fp1c = 102 Hz

    Given: A jf =105

    1 jf /1051 jf /1061 jf /107= 10

    5

    1 jff p11 jff p2

    1 jff p3

    f p2c=gm

    2C1C2≈60MHz

    Acomp jf =105

    1 jf /1021 jf / f p2c1 jf /107= 10

    5

    1 jff p1c1 jff p2c

    1 jff p3c

    where C1 = 100 pF, C

    2 = 5 pF, g

    m = 40 mS, R

    1 = 100/2π kΩ and R

    2 = 100/π kΩ

    f p1c=100 Hz≈1

    2 [C compgmR1R2]⇒C comp=78.5 pF

  • ESE319 Introduction to Microelectronics

    362008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    Compensation Using Miller Effect - cont.dB

    100

    80

    60

    40

    20

    000

    ∣A jf ∣

    102 104 106 108

    -20 dB /dec

    -40 dB /dec

    -60 dB /dec

    -60 dB /dec -40 dB /dec

    -20 dB /dec

    ∣Acomp jf ∣

    20log 1/ΓF2

    = 0 dBf (Hz)

    0

    -90o

    -180o

    -270o

    108106104

    1-pole roll-off !

    Acomp jf ≈105

    1 jf /1021 jf /6∗1071 jf /107

    PM45o for∣G jf ∣= 1F≥1

  • ESE319 Introduction to Microelectronics

    372008 Kenneth R. Laker (based on P. V. Lopresti 2006) updated 29Oct08 KRL

    SummaryFeedback has many desirable features, but it can createunexpected - undesired results if the full frequency-dependent nature (phase-shift with frequency) of the feedback circuit is not taken into account.

    We next will use feedback to convert a well-behaved stablecircuit into an oscillator. Sometimes, because of parasitics,feedback in amplifiers turns them into unexpected oscillators.

    The root-locus method was used to help us understand how feedback can create the conditions for oscillation and instability.