feed unit systems for ruminants daniel sauvant (inra …old.eaap.org/feed_systems/files/sauvant...

64
Daniel Sauvant, EAAP, 2005 INTRODUCTION I - THE CLASSIC FEED ENERGY SYSTEMS II – SYSTEMS OF PREDICTION OF FLOWS OF NUTRIENTS III- FEED UNITS OF FILL AND DIET SAFETY CONCLUSIONS FEED UNIT SYSTEMS FOR RUMINANTS Daniel Sauvant (INRA-INAPG)

Upload: doankiet

Post on 10-Nov-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Daniel Sauvant, EAAP, 2005

INTRODUCTION

I - THE CLASSIC FEED ENERGY SYSTEMS

II – SYSTEMS OF PREDICTION OF FLOWS OF NUTRIENTS

III- FEED UNITS OF FILL AND DIET SAFETY

CONCLUSIONS

FEED UNIT SYSTEMS FOR RUMINANTS

Daniel Sauvant (INRA-INAPG)

Daniel Sauvant, EAAP, 2005

I - THE CLASSIC FEED ENERGY SYSTEMS

1. Calculations of the feed energy content 2. Calculations of the requirements3. Quantification of the digestive and metabolic

interactions

II – SYSTEMS OF PREDICTION OF FLOWS OF NUTRIENTS1. Proteins and amino-acids2. Starch3. Fatty acids4. Phosphorus

III- FEED UNITS OF FILL AND DIET SAFETY

CONCLUSION

FEED UNIT SYSTEMS FOR RUMINANTS

Daniel Sauvant, EAAP, 2005

I - THE CLASSIC FEED ENERGY SYSTEMS

1. Calculations of the feed energy content 2. Calculations of the requirements3. Quantification of the digestive and metabolic

interactions

II – SYSTEMS OF PREDICTION OF FLOWS OF NUTRIENTS1. Proteins and amino-acids2. Starch3. Fatty acids4. Phosphorus

III- FEED UNITS OF FILL AND DIET SAFETY

CONCLUSION

FEED UNIT SYSTEMS FOR RUMINANTS

Daniel Sauvant, EAAP, 2005

Species

FECALENERGY

GAZ E.

URINE E.EXTRAHEAT

CHO, P, F

Protéins

Cell wall

NETENERGY

Type of production

Species

METABOLISABLEENERGY

GROSSENERGY

DIGESTIBLEENERGY

CALCULATION OF THE ENERGY CONTENT

ED

Daniel Sauvant, EAAP, 2005

1. Principles are similar across systems2. Coefficients for Protein and Fat are close

from one proposal to another3. Various solutions for carbohydrates

• Starch, Sugar and residu (D)• Crude Fiber, Sugar and residu (NL)• Crude Fiber, residu (F)

4. Simplifications for forages or groups offeeds (F, NL…)

5. Utilization of specific corrections forsome feeds (D, F…)

PREDICTION OF THE FEED GROSS ENERGY CONTENT

Daniel Sauvant, EAAP, 2005

17.3--21.239.223.5F

18.917.316.0-39.823.6D

17.0--0.6320.936.624.1NL

ResiduStarchSol. SugC. FibreC. FatC ProteinCountry

PREDICTION OF THE FEEDGROSS ENERGY CONTENT :Coefficients of regression

Daniel Sauvant, EAAP, 2005

FROM G.E. TO METABOLISABLE ENERGY

1. Information on digestibility ?1.1. Measurements of the digestible nutrients (D, NL, USA)

Regressions to predict D.E. or/and M.E.

1.2. Measurements of the feed O.M. digestibility

1.2.1. Danish proposalDCHO = D.O.M. - (DCP + DCFat + Starch + Sugar)DCP = (0.93 CP – 3)/100DCF = (0.96 CFat – 1)/100Starch & sugars are 100 % digestible

D. E. = f(DCHO., DCP, DCFat, Starch, Sugar)

1.2.2. French proposal Key role of O.M. digestibility (%)E.D. = O.M.D. – 3.5 + 0.046 CP + 0.155 CFat(n = 216, rsd = 1.8 %)

D.E. = G.E. x (E.D./100)

Daniel Sauvant, EAAP, 2005

1. In vivo measurement (reference)• Standardisation of the procedure ?• Indirect measurement for concentrates

and some by products

2. In vitro measurement • Standardisation of the procedure ?• Method of Menke, of Kone…?

3. From chemical analysis • Valuable within a type of feed

THE EVALUATION OF FEED O.M. DIGESTIBILITY

Daniel Sauvant, EAAP, 2005

403020100

100

90

80

70

60

50

40

30

CRUDE FIBRE (%DM)

OMD%

PREDICTION FROM C.F. OF O.M. DIGESTIBILITYOF CONCENTRATES & BY PRODUCTS

Tables INRA-AFZ,2002

SOYBEAN MEAL & HULL

BEET PULP

CITRUS

DEHY. ALFALFA

DEHY.GRASS

PRODUCTSMAIZE

PEANUT MEAL

SEEDSOYBEAN

OTHER MEALS

(except maize)CEREAL PRODUCTS

TAPIOCA+POTATO

+ GR.LEGUM.

Daniel Sauvant, EAAP, 2005

302520

80

70

60

Crude fibre (%DM)

O.M.D. %

COMPARISON OF PREDICTION OF OMD% OFDEHY. ALFALFA FROM CRUDE FIBRE CONTENT

C.V.B. 2001Demarquilly 1993

INRA-AFZ 2002

INRA 1988

Demarquilly1998

GERMAN TABLES 2000

Daniel Sauvant, EAAP, 2005

1009080706050403020

10

0

-10

O.M.D french tables

DIF

FER

EN

CE

Ger

.-Fr.

(%)

WHEAT STRAW

23%DEHY.ALFALFA

DEHY. ALFALFA 15% DEHY.GRASS

PULPDEHY.BEET

DEHY.CITRUS PULP

GRAPE PIPS DEHY.POTATO

TAPIOCA

SUNFLOWER MEAL

SOYBEAN MEAL

PALM KERNEL MEAL

LINSEED MEAL

MEALCOTON SEED

COPRA MEAL

RAPESEED MEAL

PEANUT MEAL

PEA

LUPINE

HORSE BEAN

RAPESEED

RICE BRAN

BREWERS GRAIN

MAIZE BRAN

CORN GLUTENMEAL

CORN GLUTENFEED

BRANWHEAT

WHEAT FEED FLOUR

SORGHUM

RICEBARLEY

MAIZE

WHEAT

OATS

COMPARISON OF O.M.DIGESTIBILITYBETWEEN GERMAN AND FRENCH TABLES

sd = 4.33%

Daniel Sauvant, EAAP, 2005

100908070605040

5

0

-5

-10

O.M.D. French tables (%)

Diff

eren

ce O

MD

dk -

OM

Dfr

WHEAT STRAW DEHY.ALFALFA 23%

DEHY. ALFALFA 15%

DEHY.GRASS

DEHY.BEET PULP

DEHY.CITRUS PULP

SOYBEAN HULL

DEHY.POTATO

TAPIOCA

SUNFLOWER MEAL

SOYBEAN MEALPALM KERNEL MEAL

LINSEED MEAL

COTON SEED MEAL

COPRA MEAL

RAPESEED MEAL

PEANUT MEAL

SOYBEAN SEED EXTR.

PEA

LUPINE

HORSE BEAN

RAPESEED

RICE BRAN

BREWERS GRAIN

MAIZE GERM MEAL

MAIZE BRAN

CORN GLUTENMEAL

CORN GLUTENFEED

WHEAT BRAN

WHEAT MIDDLINGS

WHEAT FEED FLOUR

SORGHUM

RICE

BARLEY

MAIZE

WHEAT

OATS

COMPARISON OF O.M. DIGESTIBILITY BETWEENDANISH AND FRENCH FEED TABLES

sd = 4.5 %

Daniel Sauvant, EAAP, 2005

FROM G.E. TO METABOLISABLE ENERGY

2. Prediction of metabolisable energy

2.2. Prediction from the contents in digestible nutrients

MENL = 15.90 DCP + 37.66 DCFat + 14.64 DRes + 15.10 Su + 15.90 DSTMED = 17.30 DCP + 34.00 DCFat + 15.40 DRes – 0.60 Su + 13.81 DC FibreMEUK = 15.20 DCP + 34.20 DCFat + 15.90 DNFE + 12.80 DC Fibre

2.2. Prediction from the digestible energy (F)

100 M.E./D.E. = 86.38 – 0.099 C.Fibre (% OM) – 0.196 C.P. (% OM)

2.3. No intermediary prediction of M.E. (DK, USA)

Daniel Sauvant, EAAP, 2005

PREDICTION OF M.E.: differences across energy systems(Vermorel & Coulon, 1998)

FR=0%

NL=-2.7%

D,UK=-0.8%

USA=5.7%

Similar composition & digestibility

Daniel Sauvant, EAAP, 2005

1. Approaches from NL, F, Sw, UKN.E. = k. M.E. (km, kf and kl) growth & lactationk = f (EM/EB) F, NL, Swk = f (EM/DM) UK

2. Germain approach (Rostock)N.E. + [f(digestible nutrients)] * FF = f(E.D. %)

3. Danish approach SFU = f(D.E.) – a. C Fibre

PREDICTION OF FEED NET ENERGY CONTENTS

Daniel Sauvant, EAAP, 2005

EFFICIENCY M.E. >>> N.E.

20

30

40

50

60

70

80

30 40 50 60 70 80

k = Net E.Metabolisable E.

Kmaintenance

Kmilk

kmf1.5

kfat

Métabolisable E. Gross E. %q =

kfat

NLF

Daniel Sauvant, EAAP, 2005

53.255.063.558.841.6M.E. N.E. (D)(1)

86.2--66.0103.065.9G.E. M.E. (NL)

81.594.491.9 -85.473.3G.E. ME (D)

ResiduSugarStarchC. FibreC. FatC Protein

THE PARTIAL ENERGY EFFICIENCIES OF NUTRIENTS

(1) Values if E.D. > 70 %, to be multiplied by F if E.D. < 70 %

Daniel Sauvant, EAAP, 2005

8070605040302010

1,0

0,5

0,0Digestibility of energy (%)

Factor

FACTOR OF CORRECTION OF M.E. TO N.E.IN THE ENERGY SYSTEM OF ROSTOCK

Daniel Sauvant, EAAP, 2005

1050

0,5

0,0

-0,5

-1,0

N.E.L.inra (MJ/kg DM)

NE

Ldut

ch-N

ELf

renc

hDIFFERENCE BETWEEN THE DUTCH N.E.L. SYSTEM

AND THE FRENCH N.E.L. SYSTEM

D = - 0.31, SD = 0.41

Feed having the same composition

Daniel Sauvant, EAAP, 2005

1050

1

0

-1

-2

-3

N.E.L.inra (MJ/kgDM)

N.E

.R.ro

stoc

k-N

.E.L

.inra

DIFFERENCE BETWEEN N.E.R. SYSTEMAND INRA N.E. SYSTEM FOR LACTATION

Feed have the same composition & digestibility

D = - 0.81, SD = 0.83

Daniel Sauvant, EAAP, 2005

1050

2

1

0

-1

-2

-3N.E.L.inra (MJ/kgDM)

N.E.dk-N.E.L.inra

DIFFERENCE BETWEEN DANISH N.E. SYSTEMAND FRENCH N.E. SYSTEM FOR LACTATION

Feed have the same composition & digestibility

D = -0.19, SD = 0.92

Daniel Sauvant, EAAP, 2005

1050

1

0

-1

N.E.L.inra (MJ/kgDM)

N.E.G.-N.E.L.inra

DIFFERENCE BETWEEN INRA N.E. SYSTEMSFOR GROWTH AND FOR FOR LACTATION

D = 0.20, SD = 0.47

Daniel Sauvant, EAAP, 2005

GRAPHICAL PRESENTATION OF THE DISTORSION BETWEEN 35 FEEDS AND 9

FEED ENERGY SYSTEMS (Sauvant, 1976)

F.U.Brersen

N.E.Fattening

UFV

UFL

STARCHEQUIVALENT

N.E.MAINTENANCE

TDN

METABOLISABLEENERGY

NEF(Nehring)

LOW

FIBRE

HIGH

FIBRE

HIGH MOISTURE

Daniel Sauvant, EAAP, 2005

VARIATIONS IN THE ENERGY REQUIREMENTS OFDAIRY COWS ACCORDING TO THE ENERGY SYSTEM

(Vermorel & Coulon, 1998)

Milk Yield (kg/d)

FR

NL

UK

USA

D

Milk FU/d

Daniel Sauvant, EAAP, 2005

VARIATIONS IN THE LEVEL OF DMI TO MEET THE ENERGYREQUIREMENTS OF DAIRY COWS

ACCORDING TO THE ENERGY SYSTEM(Vermorel & Coulon, 1998)

FRNL

UK

USA

D

D.SAUVANT , Alimentation animale 26Daniel Sauvant, EAAP, 2005

QUANTIFICATIONOF DIGESTIVE& METABOLIC

INTERACTIONS

Daniel Sauvant, EAAP, 2005

FR

NL

UK

USA

D

CORRECTION FOR INTERACTION: variations across major energy systems

Daniel Sauvant, EAAP, 2005

QUANTIFICATION OF DIGESTIVE INTERACTIONS (Sauvant, 2003)

• Building 3 data Bases– Influence of DMI (% W) level on OMD % (63 exp., 146

treat.)– Influence of dietary NDF on OMD % (203 exp., 510 treat.)– Influence of dietary CP on OMD % (72 exp., 181 treat)

• Pooling the 3 basesOMD % = 91.7 – 0.78 NDF – 8.32 DMI + 0.07 NDF * DMI+ 1.27 CP – 0.03 NDF2 + 0.79 MSI2 – 0.029 CP2

(nexp. = 199, n = 515, rsd = 2.6)

• Choice of a basic value : NDF = 40 %, CP = 15 %, DMI = 1 %

• Calculation of the difference for other triplets [NDF, CP, DMI]

Daniel Sauvant, EAAP, 2005

0 1 2 3 4 5

70

75

80

DMI (% LW)

OMD %

INFLUENCE OF LEVEL OF DRY MATTER INTAKE

ON DIETARY O.M. DIGESTIBILITY BY CATTLE

D.Sauvant, 2003

Y = 78.8 - 2.90 Xnexp = 49, n = 109, etr = 2.1

+ 1% DMI >> - 0.36 MJ/DM

Daniel Sauvant, EAAP, 2005

0123

4

20 30 40 50 60

60

70

80

NDF % DM

OMD %

COMBINED INFLUENCES OF DIETARY NDF AND LEVEL

OF DMI %LW ON THE O.M. DIGESTIBILITY IN CATTLE

DMI%LW

TABLES INRA-AFZ

D.Sauvant, 2003

Daniel Sauvant, EAAP, 2005

20

30

40

50

60

70

5 10 15 20

55

65

75

85

CP %DM

OMD %

COMBINED INFLUENCES OF DIETARY CP & NDF

NDF %DM

ON O.M.DIGESTIBILITY IN CATTLE

D.Sauvant, 2003

Daniel Sauvant, EAAP, 2005

15 25 35 45

0

1

2

3

4

5

6

7

RAW MILK YIELD (kg/d)

N.E.L(Mcal/d)

VARIATIONS IN THE CORRECTION OF DIET ENERGYCONTENT FOR FEEDING LEVEL AND DIGESTIVE INTERACTIONS

D.SAUVANT 2003

LOW NDF

MEDIUM NDF

LOW CONCENTRATE

N.R.C.I.N.R.A.A.R.C.

NETHERLANDS

GERMANY

Daniel Sauvant, EAAP, 2005

SPLITTING THE RESPONSES AMONG AND WITHIN THE EXPERIMENTS

OUTPUT

INPUT

AMONGEXPERIMENTSVARIATIONS(potential or

homeorhesis)

WITHINEXPERIMENTVARIATIONS

(responses or homeostatic orfill influences)

Daniel Sauvant, EAAP, 2005

6005004003002001000

250

150

50 Corrected M.E. INTAKE (kcal/kg Met.LW)

(kcal/kg MetLW)MILK ENERGY

RELATION BETWEEN INGESTED CALCULATEDM.E. ON ENERGY EXPORTED AS MILK

Litterature synthesis of experiments on NDF (D.SAUVANT & D.MERTENS, 1999)

(Van Es, 1975)Requirement

Responses

Experiments with actually measured OMD%

Daniel Sauvant, EAAP, 2005

50-5

20

15

10

(MFU / d)CORRECTED ENERGY BALANCE

ENERGY OUTPUT (MFU / d)

EXPORTATION OF ENERGY AND ENERGY

BALANCE IN DAIRY COW

Litterature synthesis (D.Sauvant 2003)

EB<0

EB>0

Daniel Sauvant, EAAP, 2005

50-5

1800

1600

1400

1200

1000

800

600

ENERGY BALANCE (MFU/J)

g/D

MAMMARY SECRETIONS IN FUNCTION OF THE ENERGY BALANCE IN COWS

LACTOSE

PROTEINS

LIPIDS

D.Sauvant, 2003

Daniel Sauvant, EAAP, 2005

I - THE CLASSIC FEED ENERGY SYSTEMS

1. Calculations of the feed energy content 2. Calculations of the requirements3. Quantification of the digestive and metabolic

interactions

II – SYSTEMS OF PREDICTION OF FLOWS OF NUTRIENTS1. Proteins and amino-acids2. Starch3. Fatty acids4. Phosphorus

III- FEED UNITS OF FILL AND DIET SAFETY

CONCLUSION

FEED UNIT SYSTEMS FOR RUMINANTS

Daniel Sauvant, EAAP, 2005

PRINCIPLES OF THE PDI SYSTEM (INRA 1978 & 1988)

« Energy »= O.M.

« Energy »= O.M.

Crude proteinC.P.

Crude proteinC.P.

Degraded C.P. Undegraded C.P. Fermented O.M.

Microbial C.P. Microbial C.P.

Dégradation

Captation

Naa content

True digestibility

in S.I.

0,8

0,8

1

0,5à

0,9dr

0,8

0,8

Growthefficiency

0,9

1,11 (1 - DT)

PDIMEPDIAPDIMN

FOM

x 0,145

PDIN PDIE

N/E balance

Daniel Sauvant, EAAP, 2005

AASI = CP . (1 – EPD) .EPD : from sacco, solubility, specific equation(outflow rate ?)

UAA/UCP : 0.65 or 0.85 (DK), 1 (F)

dUSI: from in sacco or specific equations

E : digestible CHO, fermentable OM, ME…

MAA/MCP : constant (0.7, DK ; 08 F…)

DMAA : constant (0.85, DK ; 0.8 F…)

BASIC EQUATION TO PREDICT AMINO-ACIDS ABSORBED IN THE SMALL INTESTINE (AASI (g/kg DA))

( ) ( ) ( ) dMAA .MCP . E.EMC .dUSIUCP

UAA MAA+

Daniel Sauvant, EAAP, 2005

3002001000

300

200

100

0

PDIE (g/kg DM)

AAT (g/kg DM)

STRAWWHEAT

DEHY.ALFALFA 23%

DEHY. ALFALFA 15%

DEHY.GRASS

DEHY.BEET PULPDEHY.CITRUS PULPDEHY.POTATO

TAPIOCA

SUNFLOWER MEAL

MEALSOYBEAN

MEALPALM KERNEL

MEALLINSEED

MEALCOTON SEED

MEALCOPRA

MEALRAPESEED

MEALPEANUT

PEALUPINE

HORSE BEAN

RAPESEED

RICE BRANGRAINBREWERS

MEALMAIZE GERMMAIZE BRAN

GLUTENFEEDCORN

WHEAT BRAN

WHEAT MIDDLINGS

WHEAT FEED FLOUR

SORGHUM

RICE

BARLEYMAIZEWHEAT

OATS

COMPARISON OF ABSORBED Am.Ac. IN S.I.

BETWEEN FRENCH AND DANISH SYSTEMS

Y = X

Daniel Sauvant, EAAP, 2005

150100500-50

30

20

10

0

-10

PDI.Nlimit - PDI.Elimit (g/kg DM)

(PB

V %

DM

)P

rote

in B

alan

ce

STRAWWHEAT

DEHY.ALFALFA 23%DEHY. ALFALFA 15%

DEHY.GRASS

PULPDEHY.BEET

PULPDEHY.CITRUS HULL

SOYBEAN

DEHY.POTATO

TAPIOCA

MEALSUNFLOWER

MEALSOYBEAN

PALM KERNEL MEAL

MEALLINSEED

MEALCOTON SEED

COPRA MEAL

MEALRAPESEED

MEALPEANUT

EXTR.SOYBEAN SEED

PEA

LUPINE

BEANHORSE

RAPESEED

BRANRICE

GRAINBREWERS

MEALMAIZE GERM

MAIZE BRAN

GLUTENMEALCORN

GLUTENFEEDCORNBRAN

WHEAT

MIDDLINGSWHEAT

FLOURWHEAT FEED

SORGHUMRICE

BARLEY

MAIZE

WHEAT

OATS

COMPARISON OF FEED PROTEIN BALANCE IN THE RUMEN

BETWEEN FRENCH AND DANISH SYSTEMS

Daniel Sauvant, EAAP, 2005

12011010090

30

25

20 PDIE

REPONSES OF MILK YIELD, MILK PROTEINCONTENT AND DMI TO PDI CONCENTRATION

Milk (kg/j)

M.C.P. (g/kg)

D.M.I. (kg/j)

Kg/d or g/kg

Vérité & Delaby, 1998

81 85 89 93 97 101 105 10985 95 105 115 g/UFL

g/kg MSI

1050

-100

-200

REPONSES MOYENNES DE LAPRODUCTIONDE PROTEINES DULAIT ENFONCTIONDES

TENEURS ENLYSINE ET METHIONINEDESPDI

Source:H.RULQUINetcoll1993

ACIDE AMINE % DES PDIe

SEC

RET

I ON

PRO

TEI Q

UE

( g/j)

LYSINEMETHIONINE

BASE

D.SAUVANT , Alimentation animale 44Daniel Sauvant, EAAP, 2005

POSSIBLEFEED UNIT

SYSTEMS FOROTHER

NUTRIENTS ?

Daniel Sauvant, EAAP, 2005

• IN THE RUMEN ( V.F.A.)dST% = 43.9 + 0.68 ED% sacco – 8.27 DMI % LW(n = 179, R2 = 0.47, rsd = 11.9 %)

• IN THE SMALL INTESTINE (glucose)dSI% = 74.05 – 1.22 By Pass ST (% DMI)(n = 51, nexp = 18, R2 = 0.91, rsd = 10.8 %)

• IN THE HINDGUT ( V.F.A.)dHI = 50 %(n = 55, rsd = 18.2 %)

EMPIRICAL MODELLING OF STARCH DIGESTION IN CATTLE (Offner & Sauvant, 2004)

Daniel Sauvant, EAAP, 2005

7006005004003002001000

100

9080

7060

504030

2010

0

STARCH DIGESTED IN THE RUMEN (g/kgDM)

IN THE SI (g/kgDM)STARCH DIGESTED

DEHY.POTATO

TAPIOCAPEAHORSE BEAN

RICE BRAN

BREWERS GRAIN

MAIZE GERM MEAL

MAIZE BRAN

CORN GLUTENMEAL

CORN GLUTENFEED

WHEAT BRANWHEAT MIDDLINGS

WHEAT FEED FLOUR

SORGHUM

RICE

BARLEY

MAIZE

WHEATOATS

STARCH DIGESTED IN THE RUMENAND IN THE SMALL INTESTINE

Feed table INRA-AFZ

Daniel Sauvant, EAAP, 2005

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Duodenal FA,g/100 g DMI

FA intake g/100g DMI

Y=X

FAd = 0.77 (± 0.07) + 0.84 (± 0.02) * FAi (n=339, nexp = 99, rsd = 0.19)

Relationship between daily intake and duodenal flux of fatty acids in ruminants fed different lipid sources

Schmidely, Glasser, Doreau, and Sauvant, 2005

: CTL; vegetable oilsvegetable oils seedsseeds; ; :animal fat; fish oil

Daniel Sauvant, EAAP, 2005

CALCULATION OF THE FATTYACIDS ABSORBED IN THE S.I.

1. Passage FA/Crude Fat.2. Prediction of the duodenal flow of FA

(% DMI, D.Sauvant & P.Bas,2001)FAduo = 0.83 FAintake + 0.84n = 116, nexp = 38, r = 0.97, etr = 0.54 % MSI

3. Intestinal digestibility of FA = 75 %

Tables INRA-AFZ, 2002

Daniel Sauvant, EAAP, 2005

9080706050403020100

90

80

70

60

50

40

30

20

10

0Digested Crude Fat (1) g/kg DM

F.A. digested in S.I. (2) g/kg DM

DEHY.BEET PULP

DEHY.POTATO

TAPIOCA

MEALPALM KERNEL

MEALCOPRA

LUPINE

GRAINBREWERS

MIDDLINGSWHEAT

MAIZE

OATS

COMPARISON OF THE DIGESTIBLE CRUDE FATAND FATTY ACIDS DIGESTED IN THE S.I.

(1) digestibility from the tables of Rostock(2) from INRA-AFZ tables

Daniel Sauvant, EAAP, 2005

• Duodenal flow (d) from intakes of FA(i)18:0d = 5.34 + 0.75 18:0i + 0.53 18:1: + 0.62 18:2i + 0.25 18:3i(nep = 57, n = 205, rsd = 3.2)

• Absorbed into the small intestine in g/kg DMI18:0 obs = 1.38 + 0.71 18:od – 0.0034 18:02d(nexp = 20, n = 77, rsd = 1.5)

EMPIRICAL MODEL OF FATTY ACIDS DIGESTION IN RUMINANT :

Exemple of stearic acid (18:0, Glasser & al., 2005)

Daniel Sauvant, EAAP, 2005

Relationship between the proportion of trans-vaccenic acid in in duodenal content and its proportion in milk fat

from dairy cows fed different lipid sources

tr11-C18:1 duod, g/100g DMI

tr11-C18:1, % milk FA

: CTL, : canolacanola oiloil : palm palm oiloil; :tallow :yellow grease : fish oil

Schmidely and Sauvant,2005

Y = 1.4 + 10.9 X, nobs=19, nexp=7, rsd=0.26

Daniel Sauvant, EAAP, 2005

ESTIMATION OF THE POTENTIAL PRODUCTION OF VFA IN THE RUMEN

1. Calculation of the F.O.M. (% DM)F.O.M. = D.O.M. – Und C.P. – Crude Fat

2. Calculation of the corrected F.O.M. F.O.M.c = F.O.M. – Und. Starch

3. Calculation of F.O.M. transformed in VFA + GAZ (% DM)F.O.M.VFA + GAZ = F.O.M.c * 0.70

4. Calculation of the F.O.M. in VFA (% DM)F.O.M.VFA = 0.75 * F.O.M.VFA+GAZ

Daniel Sauvant, EAAP, 2005

1050

80

70

60

50

40

30

20

N.E.L.inra MJ/DM

F.O

.M. %

DM

STRAWWHEAT

DEHY.ALFALFA 23%

DEHY. ALFALFA 15%

DEHY.GRASS

DEHY.BEET PULP

DEHY.CITRUS PULP

HULLSOYBEAN

DEHY.POTATO

TAPIOCA

SUNFLOWER MEAL

SOYBEAN MEAL

PALM KERNEL MEAL

MEALLINSEED

COTON SEED MEALCOPRA MEAL

RAPESEED MEAL

PEANUT MEAL

SOYBEAN SEED EXTR.

PEALUPINE

HORSE BEAN

RAPESEED

RICE BRAN

BREWERS GRAIN

MAIZE GERM MEAL

BRANMAIZE

CORN GLUTENMEAL

CORN GLUTENFEED

WHEAT BRAN

WHEAT MIDDLINGS

WHEAT FEED FLOUR

SORGHUM

RICE

BARLEY

MAIZE

WHEAT

OATS

VARIATIONS OF THE N.E. AND F.O.M.CONTENTS OF FEED

Daniel Sauvant, EAAP, 2005

I - THE CLASSIC FEED ENERGY SYSTEMS

1. Calculations of the feed energy content 2. Calculations of the requirements3. Quantification of the digestive and metabolic

interactions

II – SYSTEMS OF PREDICTION OF FLOWS OF NUTRIENTS1. Proteins and amino-acids2. Starch3. Fatty acids4. Phosphorus

III- FEED UNITS OF FILL AND DIET SAFETY

CONCLUSION

FEED UNIT SYSTEMS FOR RUMINANTS

Daniel Sauvant, EAAP, 2005

1. Systems of « Fill Units »Aimed at prédiction of voluntary DMIFrench system of Fill : UEL (Cow), UEB (growth), UEM (sheep)Danish system of Fill : FFk (cows), FFu (young stock)

2. Systems based on chewing activityDanish systemBelgium system (De Boever & Brabender & al.)

3. Systems based on fibrosity itemsChemical fibre : CF, NDF, ADFDutch system (Structuurwaarde)Physical fibre : MPSize, %Particules > x mmEffective fibre : eNDF, peNDF (USA)

FEED UNITS OF « FILL » AND STRUCTURE

Daniel Sauvant, EAAP, 2005

403020100

4

3

2

1

0

Crude Fibre (%DM)

ValueStructure

SILAGEGRASS

HAYALFALFA

HAYPOOR GRAS

HAYGOOD GRASS

MED MAIZE SIL

BEETFODDER

STRAWWHEAT

DEHY.ALFALFA 23%DEHY. ALFALFA 15%

DEHY.GRASSDEHY.BEET PULP

PULPDEHY.CITRUS

HULLSOYBEAN

DEHY.POTATO

MEALSUNFLOWERSOYBEAN MEAL

PALM KERNEL MEAL

BREWERS GRAINMAIZE BRAN

CORN GLUTENFEED

WHEAT BRANRICE BARLEY

OATS

DUTCH SYSTEM OF FEED STRUCTUR

Daniel Sauvant, EAAP, 2005

8070605040302010

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

NDF % MS

UEL/MS

RELATION ENTRE LES UEL ET LA TENEUR

EN NDF DES FOURRAGES

Tables INRA

LEGUMINEUSESGRAMINEES

Daniel Sauvant, EAAP, 2005

20 30 40 50

5.5

6.0

6.5

NDF % DM

pH

INFLUENCE OF DIET NDF ONTHE pH OF THE RUMEN FLUID

Literature synthesis D.Sauvant & D.Mertens, 2001

« INTERACTION »

Limit ?

Daniel Sauvant, EAAP, 2005

876543210

7.0

6.5

6.0

5.5DIET M.P.S. (m m )

pH

INFLUENCE OF DIET M.P.S.ON pH OF THE RUMEN FLUID

L i te ra tu re syn th e si s D.Sa u va n t & D.Me rte n s, 2 0 0 1

« INTERACTION »

Limit ?

Daniel Sauvant, EAAP, 2005

10 20 30 40 50 60 70 80 90

5.7

5.8

5.9

6.0

6.1

4 h DM disappearance % (2)

pH (1)

OATS

WHEAT

MAIZE

BARLEY

SORGHUM

WHEATBRAN

GLUTENFEED

RAPES M.

COCONUT M.

SOYA M.

SOYA H.

CITRUS

BEET P.

CASSAVA

RELATIONSHIP BETWEEN ACIDOGENICITY

AND IN SACCO DISAPPEARANCE OF DRY MATTER

(1) Literature synthesis S.Giger Reverdin & D.Sauvant

(2) Synthesis from P.Chapoutot

Y = 6.18 - 0.0049 X

n = 14, R2 = 73.3, rsd = 0.06

Limit ?

Daniel Sauvant, EAAP, 2005

EB and DCAD are closely related: EB = DCAD + 150

Low values acidogenic

Electrolytic balance:EB (mEq/kg DM) = [Na+ + K+] – [Cl-] (Sauveur & Mongin 1978)

Caracterisation of the electrolyticbalance of feed and diets

Dietary Cation-anion Difference:

DCAD (mEq/kg DM) = [K+ + Na+] – [Cl- + S--] (Dishington, 1975)

Daniel Sauvant, EAAP, 2005

6005004003002001000

80

70

60

50

40

30

20

10

0

Electrolytic Balance (mEq/kg DM)

In s

acco

DM

deg

rada

tion

in

4 ho

urs

WHEAT STRAW

DEHY.ALFALFA 23%DEHY. ALFALFA 15%

DEHY.BEET PULP

DEHY.CITRUS PULP

GRAPE MARCSOYBEAN HULL

DEHY.POTATO

TAPIOCA

SUNFLOWER MEAL

SOYBEAN MEAL

PALM KERNEL MEAL

LINSEED MEAL

COTON SEED MEAL

COPRA MEAL

RAPESEED MEAL

PEANUT MEAL

SOYBEAN SEED EXTR.

PEA

LUPINE

HORSE BEAN

RICE BRAN

BREWERS GRAIN

CORN GLUTENMEAL

CORN GLUTENFEED

WHEAT BRAN

WHEAT MIDDLINGS

SORGHUM

BARLEY

MAIZE

WHEAT

OATS

VALUES OF IN SACCO RAPIDLY DEGRADABLE D.M.

AND ELECTROLYTIC BALANCE OF FEEDS

Tables INRA-AFZ

Daniel Sauvant, EAAP, 2005

INFLUENCE OF THE ELECTROLYTIC BALANCEON THE URINARY pH IN DAIRY COWS

Litterature meta-analysis (Apper-Bossard & al., 2005)

Daniel Sauvant, EAAP, 2005

CONCLUSIONS

1. Even for the classic systems distorsions are large across systems

2. A systematic and global work of systems comparison is needed

3. Feed unit systems must evolve dueto the multiple responses concept.

3. New systems, based on nutrients absorption and a minimum of modelling have to be developped together.

4. An increasing place to meta-analysis ofdata bases from the litterature