fallas planares

21
Procedimientos de análisis de estabilidad El estudio de la estabilidad de un talud considera la determinación de un factor de seguridad al deslizamiento. Para esto es necesario conocer los parámetros tanto geométricos del talud, como geotécnicos del material que compone el talud. Una vez determinada la cinemática de falla del talud, el siguiente paso es realizar un análisis de estabilidad utilizando el método del equilibrio límite para comparar las fuerzas resistentes, con las fuerzas que actúan a favor del movimiento. Conocido el rango o diferencia entre estos dos grupos de fuerzas se podrá establecer el factor de seguridad para la estabilidad del talud. Deslizamiento plano o falla plana DESLIZAMIENTOS DE PLANOS Para que ocurra un deslizamiento plano deben cumplirse las condiciones siguientes: · Debe aparecer una estructura (plano débil). · El rumbo de la estructura debe formar un ángulo no mayor que unos 20º con el rumbo del talud (e.g. ver Goodman (1989)). · La estructura debe aflorar en el talud (es decir, debe ser menos empinada que éste). · La inclinación de la estructura debe ser mayor que su ángulo de fricción (en caso contrario se tendría un factor de seguridad al deslizamiento mayor que 1.0).

Upload: dafner-gonzales-lopez

Post on 01-Jul-2015

678 views

Category:

Education


0 download

TRANSCRIPT

Page 1: Fallas planares

Procedimientos de análisis de estabilidad

El estudio de la estabilidad de un talud considera la determinación de un factor de seguridad al deslizamiento. Para esto es necesario conocer los parámetros tanto geométricos del talud, como geotécnicos del material que compone el talud. Una vez determinada la cinemática de falla del talud, el siguiente paso es realizar un análisis de estabilidad utilizando el método del equilibrio límite para comparar las fuerzas resistentes, con las fuerzas que actúan a favor del movimiento. Conocido el rango o diferencia entre estos dos grupos de fuerzas se podrá establecer el factor de seguridad para la estabilidad del talud.

Deslizamiento plano o falla plana

DESLIZAMIENTOS DE PLANOSPara que ocurra un deslizamiento plano deben cumplirse las condiciones siguientes:

· Debe aparecer una estructura (plano débil).

· El rumbo de la estructura debe formar un ángulo no mayor que unos 20º con el rumbo del talud (e.g. ver Goodman (1989)).

· La estructura debe aflorar en el talud (es decir, debe ser menos empinada que éste).

· La inclinación de la estructura debe ser mayor que su ángulo de fricción (en caso contrario se tendría un factor de seguridad al deslizamiento mayor que 1.0).

La falla plana se produce a favor de la superficie preexistente, que puede ser una estratificación, una junta tectónica, una falla u otro tipo de discontinuidad. Este deslizamiento se puede producir a lo largo de una superficie plana. Hoek y Bray (1981) establecen las condiciones cinemáticas y mecánicas que deben cumplirse para que se produzca este tipo de falla (ver Figura 8). Primero, la superficie de falla corresponde a un plano continuo que debe tener un rumbo paralelo o casi paralelo a la superficie del talud, sin diferir en más de ± 20°. Segundo, la superficie de falla debe buzar hacia el exterior del talud, es decir, el buzamiento de la superficie de falla ψp, debe ser menor que el buzamiento de la superficie del talud ψf Tercero, el buzamiento de la superficie de falla debe ser mayor que el ángulo de fricción en este plano, en el caso de no haber

Page 2: Fallas planares

cohesión. Y cuarto, las superficies laterales que separan el plano deslizante deben tener una resistencia despreciable frente al conjunto talud y plano de falla.

En la Figura 8(b) la línea de color negro representa el plano de deslizamiento, la de color azul representa el plano de la cara del talud, mientras que las líneas rojas representan los límites en que se pueden trazar círculos máximos que representen el plano de deslizamiento para el talud, es decir, todos los planos que se generen entre estas líneas rojas podrían ser superficies potenciales de deslizamiento.

Page 3: Fallas planares

El caso más general de análisis propuesto por Hoek y Bray (1981) utiliza las fuerzas actuantes sobre la superficie de falla considerada, además de incluir el caso en que exista una grieta de tracción en la corona o cara del talud (Figura 9).

El cálculo del factor de seguridad FS viene dado por la siguiente fórmula,

Donde 

c' es la cohesión a 10 largo del plano de deslizamiento en kPa, 

A es el área de la superficie de deslizamiento por unidad de ancho en m2

H y z representan la altura del talud y profundidad de la grieta de tracción respectivamente

W es el peso del bloque que desliza. En el caso que la grieta de tracción se encuentre en la corona del talud el peso del bloque queda definido como sigue,

Page 4: Fallas planares

En el caso en que la grieta de tracción se encuentre en la cara del talud el peso del bloque W queda dado por:

donde ψρ es el ángulo que forma el plano de deslizamiento con la horizontal, 

V es la fuerza que ejerce el agua en la grieta de tracción del talud y se determina según,

donde γw es el peso unitario del agua y zw es la altura del agua en la grieta de tracción.

La fuerza U ejercida por la presión del agua a lo largo de la superficie de deslizamiento, o empuje del agua, queda definido por,

A continuación se presenta un ejemplo de análisis con el objetivo de mostrar el procedimiento de cálculo. Por lo tanto el ejemplo no representa un caso en particular sino que cubre rangos posibles de factores de seguridad para falla plana de un talud con grieta de tracción en la corona. No obstante lo anterior se consideran los ángulos de fricción y cohesión máximos y residuales determinados de los ensayos de corte directo. Además se adopta un valor de peso unitario saturado determinado para la arenisca parda γsat = 19.64 kN/m3, altura del talud H = 20 m, profundidad de la grieta de retracción z = 5 m, altura de agua en la grieta de retracción zw = 2.5 m, buzamiento del talud ψf = 75° y un buzamiento del plano de falla ψ de 30° y 35°. Con estos datos y las expresiones de (1) a (6) es posible determinar el área, peso del bloque deslizante y también las fuerzas del agua en la grieta y sobre la superficie de falla.

En la Figura 10 se puede observar como FS aumenta con la cohesión de la arenisca y con el ángulo de fricción interna. La condición con valores de cohesión y fricción máximos conducen a factores de seguridad mayores a 1, excepto para el caso de cohesión menor a 12 kPa y plano de falla de 35°. Se destaca con círculos los valores correspondientes a la cohesión determinados en el laboratorio. Este ejemplo presenta una condición de saturación de la arenisca, la cual se podría dar en condiciones de lluvias intensas y prolongadas, situación posible durante el otoño e invierno Penquista. Es por ello que FS resulta menor a 1 para valores residuales y planos de falla mayores a 30°.

Page 5: Fallas planares

Deslizamiento de cuña

Hoek y Bray (1981) definen la rotura por cuña a aquella que se produce cuando dos planos de discontinuidad se interceptan y definen un bloque tetraédrico. En las Figuras 11(a) y 12 se puede observar la geometría de la falla por cuña de un talud y en la Figura 11(b) la proyección estereográfica. Según la proyección estereográfica el deslizamiento ocurrirá en la línea de intersección de los planos de debilidad del macizo rocoso. Dentro de las condiciones para el análisis cinemático de la falla en cuña se debe considerar que el rumbo de la línea de intersección de los planos debe ser cercano al rumbo de la cara del talud. El buzamiento de la línea de intersección debe ser menor al buzamiento de la superficie de talud ψt < ψf. Y el buzamiento de la línea del talud debe ser mayor que el ángulo de fricción promedio entre las dos superficies ψf> φ'ρ.

Page 6: Fallas planares

 

Page 7: Fallas planares

El cálculo del deslizamiento de cuña es más complejo que el de falla plana, ya que el análisis involucra más parámetros.

El caso de falla en cuña más simple de analizar, es el caso en que se asume que sólo existe fricción para los dos planos de cuña y que el ángulo de fricción es el mismo para ambos planos (Figura 12d). En este caso el factor de seguridad queda expresado como:

donde RA y RB son las reacciones normales a los planos que forman la cuña, φ es el ángulo de fricción y ψt es la inclinación de la cuña con respecto a la horizontal. Para obtener RA y RB se deben calcular las fuerzas actuantes en la dirección paralela y perpendicular a la línea de intersección de los planos que forman la cuña.

De esta manera el factor de seguridad queda expresado como:

Page 8: Fallas planares

Notar que la expresión (11) no incluye el efecto de la cohesión, para ello habría que agregarla en el numerador de (7) como una fuerza C + (RA + RB) tanφ. Además no se incluye la fuerza hidrostática dentro del cálculo de estabilidad de una cuña, la cual habría que sustraerla de RA y RB. Por lo tanto el posible deslizamiento dependerá sólo de los ángulos de inclinación de la intersección de la falla ψt, el ángulo de fricción φ, el ángulo de apertura de la cuña ξ y el ángulo que forma la directriz de la línea de intersección de la cuña con la horizontal β .

La Figura 13 presenta los resultados de FS a partir del uso de la expresión (11) dejando fijo el ángulo de apertura de la cuña ξ = 60° y el ángulo entre la directriz de la cuña y la horizontal β = 60°. El factor de seguridad FS disminuye claramente con el ángulo de inclinación de la cuña de falla, siendo un valor de 40° el límite para la ocurrencia de deslizamiento al superarse la resistencia residual. La incorporación de la cohesión aumentaría el FS, pero para ello se debe calcular el peso de la cuña y la fuerza debida a la cohesión. Sin embargo, este análisis permite analizar el efecto de la geometría de la cuña.

En la Figura 14 se presenta la variación del FS, pero en función del ángulo de apertura de la cuña de falla ξ. La inclinación de la línea de intersección de la cuña de falla ψt y el ángulo β permanecen fijos e iguales a 50° y 60° respectivamente. Deslizamiento ocurre para el caso residual cuando la apertura de cuña es mayor a 40°. La situación más desfavorable es que el plegamiento genere un bloque de roca en forma de cuña muy abierta, es decir, con ángulos de apertura de cuña ξ mayores a 90°, ello induce a inestabilidad como se observa en la Figura 14. Esto en el caso sin cohesión y sin presencia de agua.

Page 9: Fallas planares

El caso general para el cálculo del factor de seguridad para una falla en cuña donde sí se puede considerar la cohesión y la presencia del agua, se puede calcular a partir de la siguiente expresión,

donde Ca y Cb son las cohesiones correspondientes al plano de falla a y b respectivamente, φα y φb son los ángulos de fricción para cada plano, γr y γW son el peso unitario de la roca y agua, respectivamente, H es la altura de la cuña de falla, las variables X, Y, A y B dependen de la geometría del talud y la cuña de falla, las que incorporan implícitamente el peso de la cuña de falla.

Los subíndices indican las líneas que forman el ángulo indicado y na y nb se refiere a las normales de cada plano. La representación de estos parámetros se presenta en la Figura 15.

Page 10: Fallas planares

Los valores para los ángulos relacionados a la geometría del talud, se obtienen a partir de la proyección estereográfica de la cuña de deslizamiento, cabe recalcar que el peso de la cuña de deslizamiento no aparece explícitamente en el cálculo del factor de seguridad, ya que en su lugar se incluyen los términos geométricos de la cuña de deslizamiento. En la proyección estereográfica los ángulos deben ser medidos como se muestra en laFigura 15.

Se utilizará la proyección estereográfica de la Figura 15 para realizar el cálculo del factor de seguridad de la cuña. La geometría de la cuña a analizar considerará alturas de cuña desde 5 a 20 m, con rangos de 5 m. Cabe mencionar que los valores de rumbo y buzamiento indicados en la Tabla 3 son hipotéticos y no corresponden a mediciones del sector Lo Galindo.

El ángulo de inclinación del talud ψt es 10° (respecto a la vertical), la inclinación de la línea de intersección de los planos a y b se obtuvo mediante el programa computacional StereoNett (2008) utilizado para realizar la proyección estereográfica y es ψs = 34° al igual que el ángulo entre la normal del plano a y la intersección del plano b con la cara del talud θ2na = 45.2°, el ángulo entre la normal del plano b y la intersección del plano a con la cara del talud θ1nb = 59.5°. La Tabla 4 entrega los valores de los demás ángulos obtenidos con StereoNett (2008).

Page 11: Fallas planares

La Figura 16 muestra resultados del factor de seguridad en función de la cohesión, altura de la cuña y ángulo de fricción interna en los planos a y b de una cuña saturada. Resulta evidente el gran aumento del factor de seguridad con la cohesión y la disminución de la altura de la cuña. Se ha asumido la misma cohesión en ambos planos a y b, no así el ángulo de fricción que ha sido de 20° y 25° en los planos a y b para luego cambiar a 25° en el plano a y 20° en el plano b. Este último caso resulta ser el más desfavorable sumado a una cuña de 20 m de altura y cohesiones menores a la residual de 33 kPa (ver puntos azules en la Figura 16).

Conclusiones

Se ha presentado una metodología de análisis de taludes en areniscas meteorizadas de la formación Quiriquina. Se puede concluir que es fundamental contar con antecedentes geológicos que permitan caracterizar los posibles planos de deslizamiento y el grado de meteorización del macizo rocoso. Además es necesario determinar los valores de las propiedades geomecánicas del material por donde se espera que ocurra un deslizamiento. En este estudio se realizaron ensayos de corte directo en muestras saturadas. Además de la resistencia máxima se han considerado condiciones de resistencia residual. La saturación simula periodos de lluvia intensa y prolongada habituales en otoño e invierno alrededor de Concepción. La resistencia residual representa una condición para la cual ocurren los deslizamientos.

Page 12: Fallas planares

INTRODUCCIÓN

El Hombre siempre se ha visto obligado a enfrentarse tenazmente a todas las dificultades y problemas, para ello ha tenido la necesidad de buscar y crearles respuestas y soluciones. La solución es una consecuencia de esa búsqueda de creación.

El ser humano a lo largo de estos siglos se ha ocupado en realizar diversos cambios en su medio ambiente, tales como la estabilización, cortes y rellenos, para facilitar el desenvolvimiento en el mismo.

Los rellenos se ven afectados por la acción gravitacional, lo que hace que se desplace su centro de gravedad en su misma dirección. Esto depende de los tipos de suelos existentes en el terreno, las condiciones hidrológicas, profundidad de excavación o altura de relleno, inclinación, peso de la estructura y muchos otros factores, que tomando en cuenta estos, podrían ser necesarias la colocación de algún tipo de sostenimiento.

Los muros de gravedad han existido siempre y para construirlos se han tomado en cuenta importantes variables, como la conveniencia de su utilización, las condiciones originales del terreno, la ubicación del mismo, costo esfuerzo y tiempo.

Se han utilizado materiales tradicionales como el concreto armado; pero la evolución social necesita aprovechar mejor del tiempo con la celeridad de la construcción y dadas las circunstancias económicas contemporáneas, hay necesidad de aprovechar mejor los recursos mediante la optimización de su uso y la búsqueda de nuevas tecnologías.

El ahorro de estos dos elementos: tiempo y dinero, ha llevado a la búsqueda de nuevos materiales de construcción que satisfagan las mencionadas expectativas. Precisamente, para alcanzar estos objetivos, se considera conveniente la utilización de geosintéticos como muros de gravedad (aparte de otros existentes y que también cumplen con nuestros elementos), aptos para cumplir la función que de ellos se espera para alcanzar la prolongada duración, para ser realizados en el menor tiempo posible y con una inversión monetaria más reducida.

Los materiales geosintéticos han despertado gran interés en la construcción actual porque además de las ventajas de orden económico y de tiempo, ofrecen maleabilidad, variedad de usos y aplicaciones, calidad y resistencia a la degradación biológica y química.

Aquí se exponemos el análisis y diseño de 2 sistemas de contenciones y una explicación mas profunda de tierra reforzada utilizando geotextiles. En su desarrollo, este trabajo detalla las propiedades y funciones de los geosintéticos, como materiales básicos para la construcción de muros de gravedad, y como alternativa para la economía del material, esfuerzo, tiempo y recursos económicos en general, optimizando así rendimiento y resultados.

ESTABILIDAD DE TALUDES

INTRODUCCIÓN

“Un talud es toda superficie inclinada respecto a la horizontal que haya de adoptar una estructura de tierra, bien sea en forma natural o como resultado de una obra de ingeniería”.

Los taludes pueden ser naturales cuando se producen sin la intervención de la mano del hombre (laderas) y artificiales cuando son hechos por éste (cortes y terraplenes).

Page 13: Fallas planares

TIPOS DE FALLA

Los tipos de fallas más frecuentes en los taludes son los siguientes:

1.- Falla por deslizamiento superficial:

Este tipo de falla se produce por la acción de las fuerzas naturales que tienden a hacer que las partículas y porciones del suelo próximas a su frontera deslicen hacia abajo. Este fenómeno es más intenso cerca de la superficie inclinada del talud debido a la ausencia de presión normal confinante.

Otras causas que pueden producir éste tipo de falla son: aumento de las cargas actuantes en la cresta del talud, disminución de la resistencia del suelo al esfuerzo cortante o en el caso de laderas naturales, razones de conformación geológica que escapan de un análisis local detallado.

Este fenómeno se pone de manifiesto por una serie de efectos notables, tales como la inclinación de los árboles debido al arrastre de las capas superiores del terreno, la inclinación de postes, movimientos relativos y ruptura de muros, acumulación de suelos en las depresiones y falta de los mismos en las zonas altas, etc.

Se pueden mencionar dos tipos de deslizamientos: el estacional, que afecta sólo la corteza terrestre, el cual soporta los cambios climáticos en forma de expansiones y contracciones, y el masivo que afecta a las capas más profundas y que es atribuido al efecto gravitacional.

2.- Deslizamiento en laderas naturales sobre superficies de falla preexistentes. Se trata de un mecanismo de falla que envuelve una cantidad importante de material, por lo que ya no se trata de un deslizamiento superficial sino de uno más profundo, pudiendo llegar a producir una verdadera superficie de falla. Este es un tipo de movimiento lento por lo que puede llegar a ser inadvertido. La mayor parte de este tipo de movimientos están asociados a ciertas estratigrafías que son favorables a ellos (laderas formadas por depósito de material sobre otras estratificaciones firmes), al mismo tiempo que a flujos estacionales de agua en el interior de la ladera, produciendo superficies de falla prácticamente planas.3.- Falla por movimiento del cuerpo del talud (deslizamiento de tierra). Este es un tipo de movimiento que se caracteriza por su brusquedad, el cual afecta a masas considerables de suelo, generando una superficie de falla profunda. Se considera que la superficie de falla se forma cuando actúan esfuerzos cortantes superiores a la resistencia del material. En el interior de la masa de suelo existe un estado de esfuerzos que vence, en forma más o menos rápida, la resistencia al esfuerzo cortante del suelo produciéndose la falla del mismo con la formación del deslizamiento a lo largo del cual se produce la falla. Este tipo de movimientos es típico de los cortes y de los terraplenes. Existen dos tipos de falla: 1- rotacional 2- traslacional En la falla rotacional se define una superficie de falla curva (generalmente asumida circular) a lo largo de la cual ocurre el movimiento del talud. Cuando la superficie de falla pasa el pie del talud se origina la llamada falla de base. En el caso que pase justo por el pie del talud seria la falla al pie del talud y cuando la falla ocurre en el cuerpo del talud se produce la falla local.

La falla traslacional ocurre a lo largo de planos débiles que suelen ser horizontales o muy poco inclinados respecto a la horizontal. La superficie de falla se desarrolla en forma paralela a los estratos débiles, los cuales son, generalmente, arcillas blandas, arenas finas o limos no plásticos sueltos.

Page 14: Fallas planares

Frecuentemente, la debilidad del estrato está ligada a elevadas presiones de poros por el agua contenida en las arcillas o a fenómenos de elevación de la presión del agua en los estratos de arena (acuíferos). Las fallas también están muy ligadas a las temporadas de lluvia por la recarga de agua de los suelos, ya que la absorben más rápidamente de lo que se escurre por lo que aumentan de peso.

4.- Flujos

Este tipo de falla consiste en movimientos más o menos rápidos de zonas localizadas de una ladera natural donde los desplazamientos asemejan el fluir de un liquido viscoso no existiendo una superficie de falla definida. Este tipo de falla puede ocurrir en cualquier formación no consolidada, presentándose en fragmentos de roca, depósitos de material, suelos granulares finos, arcillas, etc.

Los flujos se dividen en dos grupos: a)Flujo en materiales relativamente secos:

En este grupo quedan comprendidos los flujos de fragmentos de roca, asociados a fenómenos de presión del aire atrapado entre los fragmentos, semejante a los mecanismos de presión de poros del agua. Se ha dado el caso, que debido a temblores se ha producido una destrucción de la estructura del material produciendo una verdadera licuación, pero con el aire jugando el papel que generalmente desempeña el agua. b) Flujos en materiales húmedos: Son flujos que requieren una proporción apreciable de agua contenida en el suelo, normalmente llamado flujo de tierra. Si el contenido de agua en el material es muy elevado se denomina flujo de lodo. Los flujos de tierra se desarrollan típicamente en el pie de los deslizamientos de tipo rotacional en el cuerpo del talud. En otras ocasiones ocurren con cierta independencia de cualquier otro deslizamiento anterior. En los flujos de lodo, el deslizamiento ocurre en materiales finos con elevado contenido de agua. La falla produce una perturbación completa de la estructura deslizándose y arrastrando todo a su paso. Este tipo de falla sucedió en Vargas a finales de 1999, que después de un lapso de lluvia prolongado por días la tierra cedió en forma de lodo llevando todo a su paso.

5.- Fallas por erosión Estas son fallas superficiales provocadas por la acción del viento y del agua sobre el talud, siendo más evidente en aquellos que tienen una pendiente más pronunciada. La falla se manifiesta en irregularidades, socavaciones y canalizaciones en el plano del talud. Este tipo de falla se puede apreciar en el Paseo La Marina, frente al club Mamo en Catia la Mar y en el faldón aguas abajo de la presa de tierra La Becerra.

6.- Falla por licuación Estas fallas ocurren en arcillas extrasensitivas y arenas poco compactas, las cuales, al ser perturbadas, pasan rápidamente de una condición más o menos estable o una suspensión, con la pérdida casi-total de la resistencia al esfuerzo cortante. Las dos causas que puede atribuirse esa perdida de resistencia son: incremento de los esfuerzos cortantes actuantes y desarrollo de la presión de poros correspondiente, y por el desarrollo de presiones elevadas en el agua intersticial, quizás como consecuencia de un sismo, una explosión, etc. En Venezuela existen arenas con estas características al sur del Lago de Valencia, en Guigue.

7.- Fallo por falta de capacidad de cargo en el terreno de cimentación Este tipo de fallo se produce cuando el terreno tiene una capacidad de carga inferior o los cargas impuestas. Este tipo de folios sucede a menudo en el área metropolitana, debido a que se construye sobre rellenos no compactados o con un bajo nivel de compactación. En el coso de Las fundaciones, se colocan fundaciones superficiales en un terreno de baja capacidad de soporte o pilotes

Page 15: Fallas planares

cuya profundidad no alcanzó el terreno firme. También ocurre el caso de construcciones muy pesadas paro el terreno en el que están situadas. Como éstos existen infinidad de cases adicionales, los cuales ocuparían una publicación completa.

CAUSAS DE LA INESTABILIDAD

Existen una serie de factores de los cuales depende la estabilidad de los taludes, tales son:a) Factores geomorfológicos:

a-1) Topografía de los alrededores y geometría del talud.

a-2) Distribución de las discontinuidades y estratificaciones.

b) Factores internos:

b-l) Propiedades mecánicas de los suelos constituyentes. b-2) Estados de esfuerzos actuantes.c) Factores climáticos y en especial el agua superficial y subterránea. En general,

Page 16: Fallas planares

las causas de los deslizamientos pueden ser externas o internas. Los externas, producen aumento de los esfuerzos cortantes actuantes sin modificar la resistencia al esfuerzo cortante del material. E1 aumento de la altura del talud o el hacerlo más escarpado, son causas de este tipo, como también lo son la colocación de cualquier tipo de sobrecarga en la cresta del talud o la ocurrencia de sismos. Las internas, son los que ocurren sin cambio de las condiciones exteriores del talud. Estos disminuyen la resistencia al esfuerzo cortante del suelo constitutivo, el aumento de presión de poros o la disipación de la cohesión son causes de este tipo.

1.- Causas que producen el aumento de esfuerzosa- Cargas externas, tales como construcciones y agua.

b- Aumento del peso de la tierra por aumento del contenido de humedad. c- Remoción por socavación de una parte de la masa de suelo.

d- Socavaciones producidas por perforaciones de túneles, derrumbes de cavernas o erosión por filtración.

e- Choques producidos por terremotos o voladuras.

f- Grietas de tracción.

g-Presión de agua en las grietas.

2.- Causas que producen disminución de la resistenciaa- Expansión de Las arcillas por absorción de agua.b- Presión de agua intersticial.c- Destrucción de la estructura por vibraciones o actividad sísmica.d- Fisuras capilares producidas por las alternativas de expansión y re-tracción o por tracción.e- Deformación y falla progresiva en suelos sensiblesf- Deshielo de suelos helados o de lentes de hielo.g- Deterioro del material cementante.h- Pérdida de la tensión capilar por secamiento.

MÉTODOS CORRECTIVOS PARA FALLAS EN LADERAS Y TALUDES Lo que persiguen los métodos correctivos es lo siguiente:

1- Evitar la zona de falla -Cambios en el alineamiento de la vía, sea el horizontal o el vertical: - Remoción total del material inestable - Construcción de estructuras que se apoyen en zonas estables (puentes o viaductos)

2- Reducir Las fuerzas motoras: - Remoción de material en la parte apropiada de la falla.

-Subdrenaje para disminuir el efecto de empujes hidrostáticos y el peso de las masas de tierra.

3- Aumentar las fuerzas resistentes: - Subdrenajes, para aumentar la resistencia al esfuerzo cortante del suelo. - Construcción de estructuras de retención - Uso de tratamientos electroquímicos para elevar la resistencia del suelo al deslizamiento donde existe un alto contenido de arcilla.

1.- Descargar la cresta

Este método consiste en la remoción de parte del material localizado en la cresta del talud, produciéndose una disminución de las fuerzas deslizantes. La remoción de material en la cabeza de la falla o en todo el cuerpo de la mismo, hasta llegar a la remoción total, es un método que sólo se puede aplicar en fallas ya manifestadas. La remoción de la cabeza busca

Page 17: Fallas planares

reducir las fuerzas motoras y balancear la falla, las remociones totales eliminan el problema de raíz. Son métodos mejores para prevenir que para corregir y se pueden usar prácticamente en toda clase de deslizamientos, pero no son eficientes en los casos de tipo rotacional. Su principal desventaja estriba en que el material que se excava se desperdicia, además, que al remover material y disminuir los fuerzas motoras también se pueden causar disminuciones en las fuerzas resistentes.

2.- Empleo de bermas laterales o frontales Una berma es una masa, generalmente, del mismo material del talud, que es colocada en el lado exterior del mismo a fin de aumentar su estabilidad. E1 efecto de ésta es producir un aumento de las fuerzas resistentes debido al incremento en la longitud del arco de fal1a y una disminución de las fuerzas deslizantes por la acción del peso de la berma.

3.- Empleo de materiales ligeros Consiste en colocar como material de terraplén suelos de peso específico bajo, que den, por lo tanto, fuerzas deslizantes pequeñas. Esta solución es aplicable únicamente en terraplenes y sobre suelos puramente cohesivos, tales como arcillas blandas o turbas. Lo que se busca es la reducción de las fuerzas motoras, empleando en el cuerpo del terraplén materiales de bajo peso volumétrico (entre 0.8 y 1.2 Ton/m3) tales como el tezontle que es una espuma basáltica volcánica, etc.

4.- Compactación de suelos compresibles En el caso de un talud, el método consiste en la remoción del material y su posterior colocación en capas compactadas, no procediendo a colocar la capa siguiente sin haberse logrado un alto grado de compactación de la anterior. En el caso de terraplenes, el método consiste en construir la estructura en partes, para lo cual se colocan capas del material compactado, no procediendo a colocar la capa siguiente sin haberse logrado una buena compactación. 5.- Empleo de materiales estabilizantes El fin que persigue este método es mejorar la resistencia del suelo mediante la aplicación de sustancias cementantes, tales como cementos, asfaltos y sales químicas, pero en la práctica estos procedimientos resultan caros, por lo que su uso es limitado. En general se trata de añadir cementación artificial a los granos del suelo. Los procesos de inyección química utilizan mezclas químicas en que predomina el silicato de sodio, a partir del cual puede formarse un gas silícico para rellenar grietas, intersticios y vacíos en el suelo. Otro método de endurecimiento de suelos consiste en inyectar lechada de cemento a superficies de fallas previamente formadas y relativamente superficiales, en materiales duros y fisurados. El efecto de relativamente superficiales, en materiales duros y fisurados. El efecto de la inyección es desplazar el agua de las fisuras y rellenarla con mortero de cemento. También se han utilizado como materiales para inyectar, emulsiones asfálticas con las que se logra mayor penetración que con la lechada de cemento, por su menor viscosidad. E1 uso de inyecciones asfálticas está limitado por la posibilidad de flujo interno del agua, pues éste puede remover fácilmente la película asfáltica.

6.- Empleo de muros de retención Consiste en la colocación de un muro de contención, con el fin de confinar la masa de suelo inestable. Para ello se debe verificar que la cimentación del muro queda por debajo del plano de falla, de modo que éste lo intercepte. Este debe ser dotado de un drenaje adecuado con el fin de canalizar las aguas hacia las salidas que se proyecten a través del muro. Las estructuras de retención se construyen, por lo general, al pie de los taludes de terraplenes que no podrían ligarse generalmente con el terreno de cimentación, sobre todo en laderas inclinadas. También se construyen al pie de cortes para dar visibilidad o para disminuir la altura de cortes en materiales cuya resistencia sea

Page 18: Fallas planares

predominante o puramente cohesiva. Las estructuras de retención tienen la ventaja de exigir poco espacio para su erección. Hay que evitar los muros altos y largos pares son muy costosos, además que requieren de un conjunto de obras auxiliares tales como subdrenaje, desagües, etc., que elevan considerablemente el costo total . Existen varios tipos de muros, entre los cuales se pueden mencionar los siguientes:

Pantallas Atirantadas

Muros de Tierra Armada