factorizations of a coxeter element in finite reflection groupsvripoll/factocox_fpsac.pdf ·...

87
Factorizations of a Coxeter element in finite reflection groups Vivien RIPOLL LaCIM Université du Québec à Montréal FPSAC 2011 Reykjavik, 16th June 2011 Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Upload: others

Post on 14-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Factorizations of a Coxeter elementin finite reflection groups

Vivien RIPOLL

LaCIMUniversité du Québec à Montréal

FPSAC 2011Reykjavik, 16th June 2011

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 2: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Some integer sequences

nn−2

number of labelled trees on n verticesin Sn, number of factorizations of an n-cycle in (n − 1)transpositionsnumber of maximal strict chains of noncrossing partitions of ann-gon

nn−3 (n − 2)(n − 3)

2+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +(anywhere) another element that is a product of two transpositions(refined according to the conjugacy class of this element)number of “submaximal” strict chains of noncrossing partitions

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 3: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Some integer sequences

nn−2

number of labelled trees on n vertices

in Sn, number of factorizations of an n-cycle in (n − 1)transpositionsnumber of maximal strict chains of noncrossing partitions of ann-gon

nn−3 (n − 2)(n − 3)

2+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +(anywhere) another element that is a product of two transpositions(refined according to the conjugacy class of this element)number of “submaximal” strict chains of noncrossing partitions

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 4: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Some integer sequences

nn−2

number of labelled trees on n verticesin Sn, number of factorizations of an n-cycle in (n − 1)transpositions

number of maximal strict chains of noncrossing partitions of ann-gon

nn−3 (n − 2)(n − 3)

2+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +(anywhere) another element that is a product of two transpositions(refined according to the conjugacy class of this element)number of “submaximal” strict chains of noncrossing partitions

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 5: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Some integer sequences

nn−2

number of labelled trees on n verticesin Sn, number of factorizations of an n-cycle in (n − 1)transpositionsnumber of maximal strict chains of noncrossing partitions of ann-gon

nn−3 (n − 2)(n − 3)

2+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +(anywhere) another element that is a product of two transpositions(refined according to the conjugacy class of this element)number of “submaximal” strict chains of noncrossing partitions

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 6: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Some integer sequences

nn−2

number of labelled trees on n verticesin Sn, number of factorizations of an n-cycle in (n − 1)transpositionsnumber of maximal strict chains of noncrossing partitions of ann-gon

nn−3 (n − 2)(n − 3)

2+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +(anywhere) another element that is a product of two transpositions(refined according to the conjugacy class of this element)number of “submaximal” strict chains of noncrossing partitions

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 7: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Some integer sequences

nn−2

number of labelled trees on n verticesin Sn, number of factorizations of an n-cycle in (n − 1)transpositionsnumber of maximal strict chains of noncrossing partitions of ann-gon

nn−3 (n − 2)(n − 3)

2+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +(anywhere) another element that is a product of two transpositions(refined according to the conjugacy class of this element)number of “submaximal” strict chains of noncrossing partitions

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 8: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Some integer sequences

nn−2

number of labelled trees on n verticesin Sn, number of factorizations of an n-cycle in (n − 1)transpositionsnumber of maximal strict chains of noncrossing partitions of ann-gon

nn−3 (n − 2)(n − 3)

2+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +(anywhere) another element that is a product of two transpositions(refined according to the conjugacy class of this element)

number of “submaximal” strict chains of noncrossing partitions

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 9: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Some integer sequences

nn−2

number of labelled trees on n verticesin Sn, number of factorizations of an n-cycle in (n − 1)transpositionsnumber of maximal strict chains of noncrossing partitions of ann-gon

nn−3 (n − 2)(n − 3)

2+ nn−3 (n − 2)

number of factorizations of an n-cycle in (n − 3) transpositions +(anywhere) another element that is a product of two transpositions(refined according to the conjugacy class of this element)number of “submaximal” strict chains of noncrossing partitions

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 10: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}. reflection length (or absolute length) `R. (NOT the usuallength `S !)Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 11: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}.

reflection length (or absolute length) `R. (NOT the usuallength `S !)Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 12: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}. reflection length (or absolute length) `R. (NOT the usuallength `S !)

Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 13: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}. reflection length (or absolute length) `R. (NOT the usuallength `S !)Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 14: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}. reflection length (or absolute length) `R. (NOT the usuallength `S !)Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 15: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}. reflection length (or absolute length) `R. (NOT the usuallength `S !)Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 16: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}. reflection length (or absolute length) `R. (NOT the usuallength `S !)Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.

`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 17: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}. reflection length (or absolute length) `R. (NOT the usuallength `S !)Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 18: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Block factorizations of a Coxeter element

W finite real reflection group (i.e. , finite subgroup of some GL(V ),generated by reflections)

Define R := {all reflections of W}. reflection length (or absolute length) `R. (NOT the usuallength `S !)Fix c : a Coxeter element in W (particular conjugacy class ofelements of length n = rk(W )).

Definition (Block factorizations of c)(w1, . . . ,wp) ∈ (W − {1})p is a block factorization of c if

w1 . . .wp = c.`R(w1) + · · ·+ `R(wp) = `R(c) = n.

FACTp(c) := {block factorizations of c in p factors}.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 19: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Maximal and submaximal factorizations of c

The number of reduced decompositions of c is known to be:| FACTn(c)| = n! hn / |W | where h is the order of c.

[Deligne, Bessis-Corran] (case-by-case proof).What about FACTn−1(c) ?

Theorem (R.)Let Λ be a conjugacy class of elements of length 2 of W. Callsubmaximal factorizations of c of type Λ the block factorizationscontaining n − 2 reflections and one element (of length 2) in theconjugacy class Λ. Then, their number is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ ,

where DΛ is a homogeneous polynomial constructed from thegeometry of the discriminant hypersurface of W.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 20: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Maximal and submaximal factorizations of c

The number of reduced decompositions of c is known to be:| FACTn(c)| = n! hn / |W | where h is the order of c.[Deligne, Bessis-Corran] (case-by-case proof).

What about FACTn−1(c) ?

Theorem (R.)Let Λ be a conjugacy class of elements of length 2 of W. Callsubmaximal factorizations of c of type Λ the block factorizationscontaining n − 2 reflections and one element (of length 2) in theconjugacy class Λ. Then, their number is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ ,

where DΛ is a homogeneous polynomial constructed from thegeometry of the discriminant hypersurface of W.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 21: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Maximal and submaximal factorizations of c

The number of reduced decompositions of c is known to be:| FACTn(c)| = n! hn / |W | where h is the order of c.[Deligne, Bessis-Corran] (case-by-case proof).What about FACTn−1(c) ?

Theorem (R.)Let Λ be a conjugacy class of elements of length 2 of W. Callsubmaximal factorizations of c of type Λ the block factorizationscontaining n − 2 reflections and one element (of length 2) in theconjugacy class Λ. Then, their number is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ ,

where DΛ is a homogeneous polynomial constructed from thegeometry of the discriminant hypersurface of W.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 22: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Maximal and submaximal factorizations of c

The number of reduced decompositions of c is known to be:| FACTn(c)| = n! hn / |W | where h is the order of c.[Deligne, Bessis-Corran] (case-by-case proof).What about FACTn−1(c) ?

Theorem (R.)Let Λ be a conjugacy class of elements of length 2 of W. Callsubmaximal factorizations of c of type Λ the block factorizationscontaining n − 2 reflections and one element (of length 2) in theconjugacy class Λ. Then, their number is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ ,

where DΛ is a homogeneous polynomial constructed from thegeometry of the discriminant hypersurface of W.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 23: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The noncrossing partition lattice of type W

Absolute order 4R on W

u 4R v if and only if `R(u) + `R(u−1v) = `R(v)

Noncrossing partition lattice of type W

NC(W , c) := {w ∈W | w 4R c}

w ∈ NC(W , c) iff w is a “block factor” of c.Block factorizations of c ←→ strict chains in NC(w , c).the structure doesn’t depend on the choice of the Coxeter element(conjugacy) we write NC(W ).if W = Sn, NC(W ) ' lattice of noncrossing partitions of ann-gon.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 24: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The noncrossing partition lattice of type W

Absolute order 4R on W

u 4R v if and only if `R(u) + `R(u−1v) = `R(v)

Noncrossing partition lattice of type W

NC(W , c) := {w ∈W | w 4R c}

w ∈ NC(W , c) iff w is a “block factor” of c.Block factorizations of c ←→ strict chains in NC(w , c).the structure doesn’t depend on the choice of the Coxeter element(conjugacy) we write NC(W ).if W = Sn, NC(W ) ' lattice of noncrossing partitions of ann-gon.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 25: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The noncrossing partition lattice of type W

Absolute order 4R on W

u 4R v if and only if `R(u) + `R(u−1v) = `R(v)

Noncrossing partition lattice of type W

NC(W , c) := {w ∈W | w 4R c}

w ∈ NC(W , c) iff w is a “block factor” of c.

Block factorizations of c ←→ strict chains in NC(w , c).the structure doesn’t depend on the choice of the Coxeter element(conjugacy) we write NC(W ).if W = Sn, NC(W ) ' lattice of noncrossing partitions of ann-gon.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 26: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The noncrossing partition lattice of type W

Absolute order 4R on W

u 4R v if and only if `R(u) + `R(u−1v) = `R(v)

Noncrossing partition lattice of type W

NC(W , c) := {w ∈W | w 4R c}

w ∈ NC(W , c) iff w is a “block factor” of c.Block factorizations of c ←→ strict chains in NC(w , c).

the structure doesn’t depend on the choice of the Coxeter element(conjugacy) we write NC(W ).if W = Sn, NC(W ) ' lattice of noncrossing partitions of ann-gon.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 27: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The noncrossing partition lattice of type W

Absolute order 4R on W

u 4R v if and only if `R(u) + `R(u−1v) = `R(v)

Noncrossing partition lattice of type W

NC(W , c) := {w ∈W | w 4R c}

w ∈ NC(W , c) iff w is a “block factor” of c.Block factorizations of c ←→ strict chains in NC(w , c).the structure doesn’t depend on the choice of the Coxeter element(conjugacy) we write NC(W ).

if W = Sn, NC(W ) ' lattice of noncrossing partitions of ann-gon.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 28: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The noncrossing partition lattice of type W

Absolute order 4R on W

u 4R v if and only if `R(u) + `R(u−1v) = `R(v)

Noncrossing partition lattice of type W

NC(W , c) := {w ∈W | w 4R c}

w ∈ NC(W , c) iff w is a “block factor” of c.Block factorizations of c ←→ strict chains in NC(w , c).the structure doesn’t depend on the choice of the Coxeter element(conjugacy) we write NC(W ).if W = Sn, NC(W ) ' lattice of noncrossing partitions of ann-gon.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 29: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Coxeter-Catalan combinatorics

Proposition (Chapoton)Suppose W irreducible of rank n, and let c be a Coxeter element.The number of multichains w1 4R w2 4R . . . 4R wp 4R c is equal tothe “Fuß-Catalan number of type W”

Cat(p)(W ) =n∏

i=1

di + phdi

where d1, . . . ,dn = h are the invariant degrees of W.

p = 1 : we get |NC(W )| =n∏

i=1

di + hdi

=: Cat(W ).

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case, using theclassification of reflection groups.

how to understand this formula uniformly ?

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 30: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Coxeter-Catalan combinatorics

Proposition (Chapoton)Suppose W irreducible of rank n, and let c be a Coxeter element.The number of multichains w1 4R w2 4R . . . 4R wp 4R c is equal tothe “Fuß-Catalan number of type W”

Cat(p)(W ) =n∏

i=1

di + phdi

where d1, . . . ,dn = h are the invariant degrees of W.

p = 1 : we get |NC(W )| =n∏

i=1

di + hdi

=: Cat(W ).

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case, using theclassification of reflection groups.

how to understand this formula uniformly ?

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 31: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Coxeter-Catalan combinatorics

Proposition (Chapoton)Suppose W irreducible of rank n, and let c be a Coxeter element.The number of multichains w1 4R w2 4R . . . 4R wp 4R c is equal tothe “Fuß-Catalan number of type W”

Cat(p)(W ) =n∏

i=1

di + phdi

where d1, . . . ,dn = h are the invariant degrees of W.

p = 1 : we get |NC(W )| =n∏

i=1

di + hdi

=: Cat(W ).

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case, using theclassification of reflection groups.

how to understand this formula uniformly ?

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 32: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Coxeter-Catalan combinatorics

Proposition (Chapoton)Suppose W irreducible of rank n, and let c be a Coxeter element.The number of multichains w1 4R w2 4R . . . 4R wp 4R c is equal tothe “Fuß-Catalan number of type W”

Cat(p)(W ) =n∏

i=1

di + phdi

where d1, . . . ,dn = h are the invariant degrees of W.

p = 1 : we get |NC(W )| =n∏

i=1

di + hdi

=: Cat(W ).

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case, using theclassification of reflection groups.

how to understand this formula uniformly ?

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 33: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Coxeter-Catalan combinatorics

Proposition (Chapoton)Suppose W irreducible of rank n, and let c be a Coxeter element.The number of multichains w1 4R w2 4R . . . 4R wp 4R c is equal tothe “Fuß-Catalan number of type W”

Cat(p)(W ) =n∏

i=1

di + phdi

where d1, . . . ,dn = h are the invariant degrees of W.

p = 1 : we get |NC(W )| =n∏

i=1

di + hdi

=: Cat(W ).

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case, using theclassification of reflection groups.

how to understand this formula uniformly ?

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 34: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Coxeter-Catalan combinatorics

Proposition (Chapoton)Suppose W irreducible of rank n, and let c be a Coxeter element.The number of multichains w1 4R w2 4R . . . 4R wp 4R c is equal tothe “Fuß-Catalan number of type W”

Cat(p)(W ) =n∏

i=1

di + phdi

where d1, . . . ,dn = h are the invariant degrees of W.

p = 1 : we get |NC(W )| =n∏

i=1

di + hdi

=: Cat(W ).

Proof: [Athanasiadis, Reiner, Bessis...] case-by-case, using theclassification of reflection groups.

how to understand this formula uniformly ?

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 35: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Interest of the theorem

Formulas for block factorizations! formulas for multichains.

proof of | FACTΛn−1(c)| = (n−1)! hn−1

|W | deg DΛ is (almost) case-free :

I use of a bijection between some classes of factorizations and fibersof a ramified covering : the Lyashko-Looijenga covering LL.

I computation of cardinalities of fibers via degrees of algebraicmorphisms, restrictions of LL.

we can compute (in a case-free way)∑

Λ deg DΛ.

we get an instance of Chapoton’s formula, with a more enlighteningproof:

CorollaryThe number of block factorisations of a Coxeter element c in n − 1factors is:

| FACTn−1(c)| =(n − 1)! hn−1

|W |

((n − 1)(n − 2)

2h +

n−1∑i=1

di

).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 36: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Interest of the theorem

Formulas for block factorizations! formulas for multichains.proof of | FACTΛ

n−1(c)| = (n−1)! hn−1

|W | deg DΛ is (almost) case-free :

I use of a bijection between some classes of factorizations and fibersof a ramified covering : the Lyashko-Looijenga covering LL.

I computation of cardinalities of fibers via degrees of algebraicmorphisms, restrictions of LL.

we can compute (in a case-free way)∑

Λ deg DΛ.

we get an instance of Chapoton’s formula, with a more enlighteningproof:

CorollaryThe number of block factorisations of a Coxeter element c in n − 1factors is:

| FACTn−1(c)| =(n − 1)! hn−1

|W |

((n − 1)(n − 2)

2h +

n−1∑i=1

di

).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 37: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Interest of the theorem

Formulas for block factorizations! formulas for multichains.proof of | FACTΛ

n−1(c)| = (n−1)! hn−1

|W | deg DΛ is (almost) case-free :I use of a bijection between some classes of factorizations and fibers

of a ramified covering : the Lyashko-Looijenga covering LL.

I computation of cardinalities of fibers via degrees of algebraicmorphisms, restrictions of LL.

we can compute (in a case-free way)∑

Λ deg DΛ.

we get an instance of Chapoton’s formula, with a more enlighteningproof:

CorollaryThe number of block factorisations of a Coxeter element c in n − 1factors is:

| FACTn−1(c)| =(n − 1)! hn−1

|W |

((n − 1)(n − 2)

2h +

n−1∑i=1

di

).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 38: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Interest of the theorem

Formulas for block factorizations! formulas for multichains.proof of | FACTΛ

n−1(c)| = (n−1)! hn−1

|W | deg DΛ is (almost) case-free :I use of a bijection between some classes of factorizations and fibers

of a ramified covering : the Lyashko-Looijenga covering LL.I computation of cardinalities of fibers via degrees of algebraic

morphisms, restrictions of LL.

we can compute (in a case-free way)∑

Λ deg DΛ.

we get an instance of Chapoton’s formula, with a more enlighteningproof:

CorollaryThe number of block factorisations of a Coxeter element c in n − 1factors is:

| FACTn−1(c)| =(n − 1)! hn−1

|W |

((n − 1)(n − 2)

2h +

n−1∑i=1

di

).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 39: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Interest of the theorem

Formulas for block factorizations! formulas for multichains.proof of | FACTΛ

n−1(c)| = (n−1)! hn−1

|W | deg DΛ is (almost) case-free :I use of a bijection between some classes of factorizations and fibers

of a ramified covering : the Lyashko-Looijenga covering LL.I computation of cardinalities of fibers via degrees of algebraic

morphisms, restrictions of LL.

we can compute (in a case-free way)∑

Λ deg DΛ.

we get an instance of Chapoton’s formula, with a more enlighteningproof:

CorollaryThe number of block factorisations of a Coxeter element c in n − 1factors is:

| FACTn−1(c)| =(n − 1)! hn−1

|W |

((n − 1)(n − 2)

2h +

n−1∑i=1

di

).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 40: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Interest of the theorem

Formulas for block factorizations! formulas for multichains.proof of | FACTΛ

n−1(c)| = (n−1)! hn−1

|W | deg DΛ is (almost) case-free :I use of a bijection between some classes of factorizations and fibers

of a ramified covering : the Lyashko-Looijenga covering LL.I computation of cardinalities of fibers via degrees of algebraic

morphisms, restrictions of LL.

we can compute (in a case-free way)∑

Λ deg DΛ.

we get an instance of Chapoton’s formula, with a more enlighteningproof:

CorollaryThe number of block factorisations of a Coxeter element c in n − 1factors is:

| FACTn−1(c)| =(n − 1)! hn−1

|W |

((n − 1)(n − 2)

2h +

n−1∑i=1

di

).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 41: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).

A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A}

∼−→ PSG(W ) (parabolic subgps of W )L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter elementcodim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 42: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A}

∼−→ PSG(W ) (parabolic subgps of W )L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter elementcodim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 43: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A} ∼−→ PSG(W ) (parabolic subgps of W )

L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter elementcodim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 44: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A} ∼−→ PSG(W ) (parabolic subgps of W )

L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter elementcodim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 45: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A} ∼−→ PSG(W ) (parabolic subgps of W )

L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].

Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter elementcodim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 46: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A} ∼−→ PSG(W ) (parabolic subgps of W )

L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter elementcodim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 47: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A} ∼−→ PSG(W ) (parabolic subgps of W )

L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W )

3 c0 parabolic Coxeter elementcodim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 48: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A} ∼−→ PSG(W ) (parabolic subgps of W )

L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter element

codim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 49: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Intersection lattice and parabolic subgroups

Complexify V and W ⊆ GL(V ).A := {reflecting hyperplanes of W} (Coxeter arrangement).

Stratification of V with the “flats” (intersection lattice):

L :={⋂

H∈B H | B ⊆ A} ∼−→ PSG(W ) (parabolic subgps of W )

L 7→ WL (pointwise stabilizer of L)

A parabolic subgroup is a reflection group [Steinberg].Its Coxeter elements are called parabolic Coxeter elements.

L0 ∈ L ↔ W0 ∈ PSG(W ) 3 c0 parabolic Coxeter elementcodim(L0) = rk(W0) = `R(c0)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 50: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theoremThere exist invariant polynomials f1, . . . , fn, homogeneous andalgebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn (called invariant degrees)do not depend on the choices of the fundamental invariants.

isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 51: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theoremThere exist invariant polynomials f1, . . . , fn, homogeneous andalgebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn (called invariant degrees)do not depend on the choices of the fundamental invariants.

isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 52: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theoremThere exist invariant polynomials f1, . . . , fn, homogeneous andalgebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn (called invariant degrees)do not depend on the choices of the fundamental invariants.

isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 53: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

The quotient-space V/W

W acts on the polynomial algebra C[V ].

Chevalley-Shephard-Todd’s theoremThere exist invariant polynomials f1, . . . , fn, homogeneous andalgebraically independent, s.t. C[V ]W = C[f1, . . . , fn].

The degrees d1 ≤ · · · ≤ dn = h of f1, . . . , fn (called invariant degrees)do not depend on the choices of the fundamental invariants.

isomorphism: V/W ∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v)).

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 54: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Example W = A3: discriminant (“swallowtail”)⋃H∈A

H ⊆ V

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 55: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Example W = A3: discriminant (“swallowtail”)⋃H∈A

H ⊆ V

/W

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 56: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Example W = A3: discriminant (“swallowtail”)

/W

⋃H∈A

H ⊆ V

hypersurface H (discriminant) ⊆ V/W ' C3

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 57: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Stratification of the discriminant hypersurface⋃H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

t us

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 58: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Stratification of the discriminant hypersurface⋃H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

A1 (s)

t us

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 59: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Stratification of the discriminant hypersurface⋃H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

A1 × A1 (su)

A1 (s)

t us

A2 (st)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 60: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Stratification of the discriminant hypersurface⋃H∈A

H ⊆ V

/W

H = {∆W = 0} ⊆W\V ' C3

A3

A1 × A1 (su)

A1 (s)

t us

A2 (st)

A3 (stu)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 61: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)If W is a real (or complex well-generated) reflection group, then thediscriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , viewed as a polynomial infn, has generically n roots...... except when (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

DefinitionThe bifurcation locus of ∆W (w.r.t. fn) is the hypersurface of Cn−1:

K := {DW = 0}

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 62: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)If W is a real (or complex well-generated) reflection group, then thediscriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , viewed as a polynomial infn, has generically n roots...

... except when (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

DefinitionThe bifurcation locus of ∆W (w.r.t. fn) is the hypersurface of Cn−1:

K := {DW = 0}

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 63: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)If W is a real (or complex well-generated) reflection group, then thediscriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , viewed as a polynomial infn, has generically n roots...... except when (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

DefinitionThe bifurcation locus of ∆W (w.r.t. fn) is the hypersurface of Cn−1:

K := {DW = 0}

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 64: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus

Theorem (Orlik-Solomon, Bessis)If W is a real (or complex well-generated) reflection group, then thediscriminant ∆W is monic of degree n in the variable fn.

So if we fix f1, . . . , fn−1, the polynomial ∆W , viewed as a polynomial infn, has generically n roots...... except when (f1, . . . , fn−1) is a zero of

DW := Disc(∆W (f1, . . . , fn) ; fn) ∈ C[f1, . . . , fn−1].

DefinitionThe bifurcation locus of ∆W (w.r.t. fn) is the hypersurface of Cn−1:

K := {DW = 0}

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 65: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 66: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

Y

fn

ϕ projection

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 67: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

y

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 68: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

y

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 69: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

y

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 70: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

y

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 71: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

y

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 72: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

ϕ

Y

fn

yy ′

y ′′

0

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 73: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

ϕ

Y

fn

K

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 74: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

K

Λ1

ϕ(Λ1)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 75: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Bifurcation locus K

H ⊆W\V ' C3

ϕ

Y

fn

K

Λ1

Λ2

ϕ(Λ2)

ϕ(Λ1)

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 76: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}↔ {conjugacy classes of elements of NC(W )}

PropositionThe ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

we can write DW =∏

Λ∈L̄2DrΛ

Λ , where rΛ ≥ 1 and the DΛ arepolynomials in f1, . . . , fn−1.

TheoremFor Λ ∈ L̄2, the number of submaximal factorizations of c of type Λ(i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ .

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 77: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}↔ {conjugacy classes of elements of NC(W )}

PropositionThe ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

we can write DW =∏

Λ∈L̄2DrΛ

Λ , where rΛ ≥ 1 and the DΛ arepolynomials in f1, . . . , fn−1.

TheoremFor Λ ∈ L̄2, the number of submaximal factorizations of c of type Λ(i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ .

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 78: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}↔ {conjugacy classes of elements of NC(W )}

PropositionThe ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

we can write DW =∏

Λ∈L̄2DrΛ

Λ , where rΛ ≥ 1 and the DΛ arepolynomials in f1, . . . , fn−1.

TheoremFor Λ ∈ L̄2, the number of submaximal factorizations of c of type Λ(i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ .

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 79: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}↔ {conjugacy classes of elements of NC(W )}

PropositionThe ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

we can write DW =∏

Λ∈L̄2DrΛ

Λ , where rΛ ≥ 1 and the DΛ arepolynomials in f1, . . . , fn−1.

TheoremFor Λ ∈ L̄2, the number of submaximal factorizations of c of type Λ(i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ .

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 80: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Submaximal factorizations of type Λ

L̄2 := {strata of L̄ of codimension 2}↔ {conjugacy classes of elements of NC(W )}

PropositionThe ϕ(Λ), for Λ ∈ L̄2, are the irreducible components of K.

we can write DW =∏

Λ∈L̄2DrΛ

Λ , where rΛ ≥ 1 and the DΛ arepolynomials in f1, . . . , fn−1.

TheoremFor Λ ∈ L̄2, the number of submaximal factorizations of c of type Λ(i.e. , whose unique length 2 element lies in the conjugacy class Λ) is:

| FACTΛn−1(c)| =

(n − 1)! hn−1

|W |deg DΛ .

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 81: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

LL morphism and topological factorisations

LL

facto

{x1, . . . , xn} ∈ En

(w1, . . . ,wp) ∈ FACT(c)ϕ

Y

fn

y y ∈ Y

ϕ−1(y) ' C

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 82: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Conclusion

new manifestation of the mysterious connections between thegeometry of W and the combinatorics of NC(W ).

proof more satisfactory than the case-by-case one.we recover geometrically formulas for certain specificfactorisations, known in the real case with combinatorial proofs[Krattenthaler].Todo: study further the geometrical setting (Lyashko-Looijengamorphism and its ramification) to obtain a global understanding ofChapoton’s formula.

Takk! - Merci! - Thank you!

Reference: Lyashko-Looijenga morphisms and submaximalfactorisations of a Coxeter element, arXiv:1012.3825.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 83: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Conclusion

new manifestation of the mysterious connections between thegeometry of W and the combinatorics of NC(W ).proof more satisfactory than the case-by-case one.

we recover geometrically formulas for certain specificfactorisations, known in the real case with combinatorial proofs[Krattenthaler].Todo: study further the geometrical setting (Lyashko-Looijengamorphism and its ramification) to obtain a global understanding ofChapoton’s formula.

Takk! - Merci! - Thank you!

Reference: Lyashko-Looijenga morphisms and submaximalfactorisations of a Coxeter element, arXiv:1012.3825.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 84: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Conclusion

new manifestation of the mysterious connections between thegeometry of W and the combinatorics of NC(W ).proof more satisfactory than the case-by-case one.we recover geometrically formulas for certain specificfactorisations, known in the real case with combinatorial proofs[Krattenthaler].

Todo: study further the geometrical setting (Lyashko-Looijengamorphism and its ramification) to obtain a global understanding ofChapoton’s formula.

Takk! - Merci! - Thank you!

Reference: Lyashko-Looijenga morphisms and submaximalfactorisations of a Coxeter element, arXiv:1012.3825.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 85: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Conclusion

new manifestation of the mysterious connections between thegeometry of W and the combinatorics of NC(W ).proof more satisfactory than the case-by-case one.we recover geometrically formulas for certain specificfactorisations, known in the real case with combinatorial proofs[Krattenthaler].Todo: study further the geometrical setting (Lyashko-Looijengamorphism and its ramification) to obtain a global understanding ofChapoton’s formula.

Takk! - Merci! - Thank you!

Reference: Lyashko-Looijenga morphisms and submaximalfactorisations of a Coxeter element, arXiv:1012.3825.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 86: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Conclusion

new manifestation of the mysterious connections between thegeometry of W and the combinatorics of NC(W ).proof more satisfactory than the case-by-case one.we recover geometrically formulas for certain specificfactorisations, known in the real case with combinatorial proofs[Krattenthaler].Todo: study further the geometrical setting (Lyashko-Looijengamorphism and its ramification) to obtain a global understanding ofChapoton’s formula.

Takk! - Merci! - Thank you!

Reference: Lyashko-Looijenga morphisms and submaximalfactorisations of a Coxeter element, arXiv:1012.3825.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011

Page 87: Factorizations of a Coxeter element in finite reflection groupsvripoll/FactoCox_FPSAC.pdf · 2014-11-21 · in finite reflection groups Vivien RIPOLL LaCIM Université du Québec

Conclusion

new manifestation of the mysterious connections between thegeometry of W and the combinatorics of NC(W ).proof more satisfactory than the case-by-case one.we recover geometrically formulas for certain specificfactorisations, known in the real case with combinatorial proofs[Krattenthaler].Todo: study further the geometrical setting (Lyashko-Looijengamorphism and its ramification) to obtain a global understanding ofChapoton’s formula.

Takk! - Merci! - Thank you!

Reference: Lyashko-Looijenga morphisms and submaximalfactorisations of a Coxeter element, arXiv:1012.3825.

Vivien Ripoll (LaCIM — UQÀM) Factorizations of a Coxeter element FPSAC 2011