Литература - iomt · Литература. 1. j. m. vaughan, the fabry-perot...

21
Литература 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2. R.S. Sirohi, Wave Optics And Its Applications, Orient Blackswan, (1993) 3. M. Born and E. Wolf, Principles of Optics , Cambridge University Press, (1999). 4. R. Bünnagel, H.-A. Oehring, and K. Steiner, "Fizeau interferometer for measuring the flatness of optical surfaces," Appl. Opt. 7, 331-335 (1968) 5. M. V. Mantravardi, “Newton, Fizeau and Haidinger interferometers,” in Optical Shop Testing, D. Malacara, ed. (Wiley-Interscience,), 1-49 (1992) 6. R. Józwicki, M. Kujawinska, and L. Salbut, “New contra old wavefront measurement concepts for interferometric optical testing,” Opt. Eng. 31, 422-433 (1992) 7. B. Dorrio, A. Doval, C. Lopez, R. Soto, J. Blanco-Garcia, J. Fernandez, M. Perez-Amor, “Fizeau phase- measuring interferometry using the moiré effect”, Appl. Opt. 34, 3639 – 3643 (1995) 8. B. Dorrio, C. Lopez, J. Alen, J. Bugarin, A. Fernandez, A. Doval, J. Blanco-Garcia, M. Perez-Amor, J. Fernandez, “Multiplicative moiré two-beam phase-stepping and Fourier-transform methods for the evaluation of multiple-beam Fizeau patterns: a comparison”, Appl. Opt. 37, 1945-1952 (1998) 9. D. Bhattacharyya, A.Ray, B.Dutta, P.Ghosh, “Direct measurement on transparent plates by using Fizeau interferometry”, Opt. Las. Techn. 34 (1), 93-96 (2002) 10. C. Huang, "Propagation errors in precision Fizeau interferometry," Appl. Opt. 32, 7016-7021 (1993) 11. D. Malacara, Ed., Optical Shop Testing, (Third Edition), John Wiley & Sons, Inc. (2007) 12. T. Tsuruta and Y. Itoh, "Holographic two-бeam interferometry using multiple-reflected light beams," Appl. Opt. 8, 2033-2035 (1969) 13. S. Chatterjee, “Simple technique for measurement of residual wedge angle of high optical quality transparent parallel plate”, Opt. Eng. 42, 3235 (2003) 14. S. Chatterjee, “Measurement of surface figure of plane optical surfaces using Fizeau interferometer with wedge phase-shifter”, Opt. & Las. Techn. 37 (1), 43-49 (2005) 15. P. de Groot, “Optical thickness measurement of substrates using a transmitted wavefront test at two wavelengths to average out multiple reflection errors”, in: Interferometry XI: Techniques and Analysis, K. Creath, J. Schmit, Eds, Proc. SPIE 4777, 0277-786X (2002) 16. Y. Kumar and S. Chatterjee , “Simultaneous measurement of refractive index and wedge angle of optical windows using Fizeau interferometry and a cyclic path optical configuration”, Appl.Opt. 48 (24), 4756- 4761 (2009) 17. S. El-Zaiat, H. El-Hennawi, “Applying multiple-beam Fizeau fringes for measuring the refractive indices of liquids”, Meas.Sci.Tech. 7 (8), 1119-1123 (1996) 18. K.-T. Wan, N. Aimard, S. Lathabai, R. Horn, B. Lawn, “Interfacial energy states of moisture-exposed cracks in mica”, J. Mater. Res. 5 (1), 172-182 (1990) 19. F. El-Diasty, “Fizeau interferometry-based measurement of the photoelastic coefficient and the cut-off wavelength in bent standard single-mode optical fiber” , Optics Commun., 225 (1-3), 15, 61-70 (2003) 20. L.-S. Lee and A. L. Schawlow, "Multiple-wedge wavemeter for pulsed lasers," Opt. Lett. 6, 610-612 (1981) 21. J. Gardner, "Wave-front curvature in a Fizeau wavemeter," Opt. Lett. 8, 91-93 (1983) 22. J. Gardner, "Compact Fizeau wavemeter," Appl. Opt. 24, 3570-3573 (1985) 23. M. Morris, T. Mcllrath, J. Snyder, "Fizeau wavemeter for pulsed laser wavelength measurement," Appl. Opt. 23, 3862-3868 (1984) 24. D. Gray, K. A. Smith, and F. B. Dunning, "Simple compact Fizeau wavemeter," Appl. Opt. 25, 1339- 1343 (1986) 282

Upload: others

Post on 14-Jul-2020

29 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

Литература 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications,

Taylor&Fransis Group, (1989) 2. R.S. Sirohi, Wave Optics And Its Applications, Orient Blackswan, (1993) 3. M. Born and E. Wolf, Principles of Optics , Cambridge University Press, (1999). 4. R. Bünnagel, H.-A. Oehring, and K. Steiner, "Fizeau interferometer for measuring the flatness of optical

surfaces," Appl. Opt. 7, 331-335 (1968) 5. M. V. Mantravardi, “Newton, Fizeau and Haidinger interferometers,” in Optical Shop Testing, D.

Malacara, ed. (Wiley-Interscience,), 1-49 (1992) 6. R. Józwicki, M. Kujawinska, and L. Salbut, “New contra old wavefront measurement concepts for

interferometric optical testing,” Opt. Eng. 31, 422-433 (1992) 7. B. Dorrio, A. Doval, C. Lopez, R. Soto, J. Blanco-Garcia, J. Fernandez, M. Perez-Amor, “Fizeau phase-

measuring interferometry using the moiré effect”, Appl. Opt. 34, 3639 – 3643 (1995) 8. B. Dorrio, C. Lopez, J. Alen, J. Bugarin, A. Fernandez, A. Doval, J. Blanco-Garcia, M. Perez-Amor, J.

Fernandez, “Multiplicative moiré two-beam phase-stepping and Fourier-transform methods for the evaluation of multiple-beam Fizeau patterns: a comparison”, Appl. Opt. 37, 1945-1952 (1998)

9. D. Bhattacharyya, A.Ray, B.Dutta, P.Ghosh, “Direct measurement on transparent plates by using Fizeau interferometry”, Opt. Las. Techn. 34 (1), 93-96 (2002)

10. C. Huang, "Propagation errors in precision Fizeau interferometry," Appl. Opt. 32, 7016-7021 (1993) 11. D. Malacara, Ed., Optical Shop Testing, (Third Edition), John Wiley & Sons, Inc. (2007) 12. T. Tsuruta and Y. Itoh, "Holographic two-бeam interferometry using multiple-reflected light beams,"

Appl. Opt. 8, 2033-2035 (1969) 13. S. Chatterjee, “Simple technique for measurement of residual wedge angle of high optical quality

transparent parallel plate”, Opt. Eng. 42, 3235 (2003) 14. S. Chatterjee, “Measurement of surface figure of plane optical surfaces using Fizeau interferometer with

wedge phase-shifter”, Opt. & Las. Techn. 37 (1), 43-49 (2005) 15. P. de Groot, “Optical thickness measurement of substrates using a transmitted wavefront test at two

wavelengths to average out multiple reflection errors”, in: Interferometry XI: Techniques and Analysis, K. Creath, J. Schmit, Eds, Proc. SPIE 4777, 0277-786X (2002)

16. Y. Kumar and S. Chatterjee , “Simultaneous measurement of refractive index and wedge angle of optical windows using Fizeau interferometry and a cyclic path optical configuration”, Appl.Opt. 48 (24), 4756-4761 (2009)

17. S. El-Zaiat, H. El-Hennawi, “Applying multiple-beam Fizeau fringes for measuring the refractive indices of liquids”, Meas.Sci.Tech. 7 (8), 1119-1123 (1996)

18. K.-T. Wan, N. Aimard, S. Lathabai, R. Horn, B. Lawn, “Interfacial energy states of moisture-exposed cracks in mica”, J. Mater. Res. 5 (1), 172-182 (1990)

19. F. El-Diasty, “Fizeau interferometry-based measurement of the photoelastic coefficient and the cut-off wavelength in bent standard single-mode optical fiber” , Optics Commun., 225 (1-3), 15, 61-70 (2003)

20. L.-S. Lee and A. L. Schawlow, "Multiple-wedge wavemeter for pulsed lasers," Opt. Lett. 6, 610-612 (1981)

21. J. Gardner, "Wave-front curvature in a Fizeau wavemeter," Opt. Lett. 8, 91-93 (1983) 22. J. Gardner, "Compact Fizeau wavemeter," Appl. Opt. 24, 3570-3573 (1985) 23. M. Morris, T. Mcllrath, J. Snyder, "Fizeau wavemeter for pulsed laser wavelength measurement," Appl.

Opt. 23, 3862-3868 (1984) 24. D. Gray, K. A. Smith, and F. B. Dunning, "Simple compact Fizeau wavemeter," Appl. Opt. 25, 1339-

1343 (1986)

282

Page 2: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

25. C. Reiser, P. Esherick, and R. Lopert, "Laser-linewidth measurement with a Fizeau wavemeter," Opt. Lett. 13, 981-983 (1988)

26. C. Reiser and R. B. Lopert, "Laser wavemeter with solid Fizeau wedge interferometer," Appl. Opt. 27, 3656-3660 (1988)

27. W. Kedzierski, R. Berends, J. Atkinson and L. Krause, “A Fizeau wavemeter with single-mode optical fibre coupling”, J. Phys. E: Sci. Instrum. 21, 796-798 (1988)

28. N. Jiang, W. Lempert, G. Switzer, T. Meyer, and J. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics”, Appl.Opt. 47 (1), 64-71 (2008)

29. O.Sаsaki, T. Okamura, T. Nakamura, “Sinusoidal phase modulating Fizeau interferometer”, Appl. Opt. 29 (4), 512–515 (1990)

30. T. Kajava, H. Lauranto, and R. Saloma, “Fizeau interferometer in spectral measurements”, J. Opt. Soc. Am. B10, 1980 – 1989 (1993)

31. T. Kajava, H. Lauranto, and A. Friberg, "Interference pattern of the Fizeau interferometer," J. Opt. Soc. Am. A 11, 2045-2054 (1994)

32. H.Lauranto, A. Friberg, T. Kajava, “Influence of the finite aperture and observation of higher longitudinal-order fringes in Fizeau interferometry”, Opt. Eng. 34(09), 2623-2630, (1995)

33. M. Siddique, S. Yang, Z. Li, P. Li, “Fizeau interferometery for THz-waves' frequency and intensity measurement”, J. Beijing Institute of Technology, 16(3), 0437 (2007)

34. J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination”, Opt. Commun. 282 (16), 3308-3324 (2009)

35. J. McKay, "Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar," Appl. Opt. 41, 1760-1767 (2002)

36. A. Belmonte and A. Lázaro, "Measurement uncertainty analysis in incoherent Doppler lidars by a new scattering approach," Opt. Express 14, 7699-7708 (2006)

37. A. Chiayu, J. Wyant, “Effect of retroreflection on a Fizeau phase-shifting interferometer”, Appl. Opt., 32 (19), 3470-3478 (1993)

38. P. Fairman, B. Ward, B. Oreb, D. Farrant, Y. Gilliand, C. Freund, A. Leistner, J. Seckold, C. Walsh, “300-mm-aperture phase-shifting Fizeau interferometer”, Opt. Eng. 38, 1371 (1999)

39. Y. Ishii, J. Chen, R. Onodera, T. Nakamura, „Phase-shifting Fizeau interference microscope with a wavelength-shifted laser diode“, Opt.Eng. 42, 60-67 (2003)

40. N. Barakat, A. A. Hamza, and A. S. Goneid, "Multiple-beam interference fringes applied to GRIN optical waveguides to determine fiber characteristics," Appl. Opt. 24, 4383-4386 (1985)

41. I. Fouda , M. El-Nicklawy, A. Hassan, A. Kelany, “Analysis of Fizeau fringes crossing fibres with trilobal shaped cross-section having skin-core structure”, Polymer International 38 (3), 233 – 235 (2003)

42. A. Hamed, “Modeling of the fringe shift in multiple beam interference for glass fibers”, PRAMANA Journal of physics, Indian Academy of Sciences, 70 (4), 643-648 (2008)

43. Y. Meyer and M. Nenchev, "Single-mode dye laser with a double-action Fizeau interferometer," Opt. Lett. 6, 119-121 (1981)

44. M. Nenchev, “Cavity configuration in a dye laser for dispersion on the two output beams,” Opt. Commun. 50, 36–40 (1980)

45. M. Nenchev and Y. Meyer, "Continuous-scanning system for single-mode wedge dye lasers," Opt. Lett. 7, 199-200 (1982)

46. M. Nenchev, M. Martin, and Y. Meyer, "Alternate wavelength DIAL dye laser using a reflecting interference wedge," Appl. Opt. 24, 1957-1959 (1985)

47. M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, cw Ti3+:Al2O3 laser”, IEEE J. Quantum Electron. 31, 1260-1263 (1995).

48. A..Zhmud, “Differential method of diode laser wavelength stabilization”, Jpn. J. Appl. Phys. 40, 5947-5948 (2001)

283

Page 3: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

49. M. Deneva, D. Slavov, E. Stoykova, M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti:Al2O3 lasers using two-step pulse pumping”, Optics Commun. 139, 287 – 298 (1997)

50. Y. Meyer, “Fringe shape with an interferential wedge”, J. Opt. Soc. Am. 71, 1255 – 1261 (1981) 51. J. Brossel, "Multiple-beam localized fringes. Part I. Intensity distribution and localization," Proc. Phys.

Soc. London 59, 224–234 (1947) 52. K. Kinosita, “Numerical evaluation of the intensity curve of a multiple-beam Fizeau fringe”, J. Phys. Soc.

Jpn. 8 , 219-225 (1953) 53. T. Hall, “Fizeau interferometer profiles at finite acceptance angles”, J. Phys. E: Sci. Instrum. 2, 837-840

(1969) 54. P. Langenbeck, "Fizeau Interferometer—Fringe Sharpening," Appl. Opt. 9, 2053-2058 (1970) 55. А. Pomeranskii, F.Yu., A. Tomashevskii and A.Toropov, “Measurement of laser wavelengths by using a

Fizeau interferometer”, Measurement Techniques 24 (5), 373-375 (1981) 56. Y. Meyer and M. Nenchev, “Tuning of dye lasers with a reflecting Fizeau wedge”, Opt. Commun. 35 (1),

115-119 (1980) 57. M. Nenchev and Y. Meyer, Proc. SPIE 473, 181 (1984) 58. W. Demtroder, Laser Spectroscopy: basic concepts and instrumentation, Springer (2003) 59. J. Goodman, Introduction to Fourier Optics , Roberts and Company Publishers (2004) 60. G. Smith. An Introduction to Classical Electromagnetic Radiation , Cambridge University Press (1997) 61. E. Nichelatti, G. Salvetti, “Spatial and spectral response of a Fabry-Perot interferometer illuminated by a

Gaussian beam”, Appl. Opt. 34, 4703-4712 (1995) 62. L. Nair and K. Dasgupta, “Amplified spontaneous emission in narrow-band pulsed dye laser oscillators:

theory and experiment,” IEEE J. Quantum Electron. QE-21, 1782–1790 (1985) 63. R. C. Bapna and K. Dasgupta, “Threshold reduction of a pulsed narrow-band β-Ba2BO4 optical

parametric oscillator in a grazing–incidence configuration by injection of amplified spontaneous emission,” Opt.Las.Tech. 33, 125–127 (2001)

64. C. Ni and A. Kung, “Amplified spontaneous emission reduction by use of stimulated Brillouin scattering: 2-ns pulses from a Ti:Al2O3 amplifier chain,” Appl. Opt. 37, 530–535 (1998)

65. M. Schitz, U. Heitmann, and A. Hese, “Development of a dual-wavelength dye-laser system for the UV and its application to simultaneous multi-element detector,” Appl. Phys. B 61, 339–343 (1995)

66. I. Mc.Intyre and M. Dunn, “Dual wavelength dye laser incorporating distributed feedback,” Opt. Commun. 55, 28–32 (1985)

67. Z. Lei, Q. Liejian, Z. Guiyan, and L. Fucheng, “High repetition tunable picosecond dye laser pumped by a copper bromide laser,” IEEE J. Quantum Electron. 27, 283–287 (1991)

68. C. Nagasawa, M. Hirono and M.Fujiwara, “A Reliable efficient forced oscillator dye laser to measure the upper atmospheric sodium layer”, Jpn. J. Appl. Phys. 19 , 143-147 (1980)

69. M. R. Olcay, J. A. Pasqual, J. A. Lisboa, and R. E. Francke, "Tuning of a narrow linewidth pulsed dye laser with a Fabry-Perot and diffraction grating over a large wavelength range," Appl. Opt. 24, 3146-3150 (1985)

70. D. Meadows, W. Johnson, J. Allen, “Generation of surface contours by moiré patterns”, Appl. Opt. 9, 942–947 (1970)

71. H-J. Tiziani, “Optical techniques for shape measurements”, In: W.Juptner, W. Osten (eds), Fringe’93. Akademie, Berlin, 165–174 (1993)

72. F. Chen, G. Brown, and M. Song, “Overview of Three-Dimensional Shape Measurement Using Optical Methods”, Opt. Eng., 39, 10 – 22 (2000)

73. H.Xie, Liu Z, Fang D et al., “A study on the digital nano-moiré method and its phase shifting technique”. Meas. Sci. Technol. 15, 1716–1721 (2004)

74. V. Sainov, G. Stoilov, D. Tonchev et al. , ”Shape and normal displacement measurement of real objects in a wide dynamic range” In: Optical Metrology. Akad. Verlag, 52–60 (1996)

284

Page 4: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

75. J. Harizanova, “Holographic and digital methods for recording and processing of information for cultural heritage protection”, Ph.D. thesis, CLOSPI-BAS (2006)

76. Li J, L. Hassebrook, C. Guan, “Optimized two-frequency phase-measuring profilometry light-sensor temporal-noise sensitivity”, J. Opt. Soc. Am. A 20, 106–115 (2003)

77. J. Pages, J. Salvi, R. Garcia et al., ”Overview of Coded Light Projection Techniques for Automatic 3D Profiling”. In: Proc IEEE, Intl. Conf. on Robotics & Automation, 133–138 (2003)

78. T. Xian, X. Su, “Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry”, Appl. Opt. 40, 1201–1208 (2001)

79. I. Gurov, P. Hlubina, V. Chugunov, “Evaluation of spectral modulated interferograms using a Fourier transform and the iterative phase-locked loop method”, Meas. Sci. Technol. 14, 122–130 (2003)

80. C. Quan, W. Chen, C.J. Tay, “Phase-retrieval techniques in fringe-projection profilometry”, Opt.Las.Eng. 48, 235–243 (2010)

81. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” , Opt.Las.Eng., 48(2), 133-140, (2010)

82. Z.Wang, D. Nguyen, J. Barnes, “Some practical considerations in fringe projection profilometry”, Opt.Las.Eng., 48 (2), 218-225, (2010)

83. S. Zhang and S.-T. Yau, “High-resolution, real-time 3D absolute coordinate measurement based on a phase-stepping method”, Opt. Expr. 14, 2644-2654 (2006)

84. V. Sainov, J. Harizanova, G. Stoilov et al., ” Relative and Absolute Coordinates Measurement by Phase-Stepping Laser Interferometry”. In: Optics and Lasers in Biomedicine and Culture, Springer, 50–53 (2000)

85. B. Dorrıo and J. Fernandez, “Phase-evaluation methods in whole-field optical measurement techniques”, Meas. Sci. Technol. 10, R33–R55 (1999).

86. C. Quan, C. Tay, L. Chen, “Fringe-density estimation by continuous wavelet transform”, Appl. Opt. 44, 2359–2365 (2005)

87. M. Heredia-Ortiz and E. A. Patterson, “On the industrial applications of moiré and fringe projection techniques, Strain, 39 (3), 95 – 100 (2003)

88. X. Meng, L. Cai, X. Xu, X. Yang, X. Shen, G. Dong, Y. Wang, “Two-step phase-shifting interferometry and its application in image encryption”, Opt. Lett. 31, 1414-1416, (2006)

89. X. Meng, X. Peng, L. Cai, A. Li, J. Guo, Y. Wang, “Wavefront reconstruction and three-dimensional shape measurement by two-step DC-term-suppressed intensities”, Opt. Lett. 34, 8, 1210-1212 (2009)

90. B. Pan, Q. Kemao, L. Huang, and A. Asundi, "Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry," Opt. Lett. 34, 416-418 (2009)

91. M. Servin, J. L. Marroquin, and F. J. Cuevas, “Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique”, Appl.Opt. 36, 4540-4548 (1997)

92. T. Kreis, ‘‘Computer-aided evaluation of holographic interferograms,’’ in Holographic Interferometry: Principles and Methods, P. K. Rastogi, ed. , Springer, Heidelberg, Germany, 151–212 (1994)

93. K. Creath, ”Phase-measurement interferometry techniques”, Prog. Opt. 26, 349–393 (1988) 94. А. Patil, R. Langoju, P. Rastogi, “An integral approach to phase shifting interferometry using a super-

resolution, frequency estimation method”, Opt Express 12, 4681–4697 (2004) 95. А. Patil, P. Rastogi, ”Approaches in generalized phase shifting interferometry”, Opt. Las. Eng. 43, 475–

490 (2005) 96. A. Patil, P. Rastogi, B. Raphael, “Phase-shifting interferometry by a covariance-based method”, Appl Opt

44, 5778–5785 (2005) 97. X. Meng, L. Z. Cai, Y. Wang, X. Yang, X. Xu, G. Dong, X. Shen, X. Cheng, “Wavefront reconstruction

by two-step generalized phase-shifting interferometry”, Opt. Commun. 281, 23, 5701-5705 (2008) 98. C. Morgan, “Least-squares estimation in phase-measurement interferometry”, Opt. Lett. 7, 368–370

(1982) 99. L. Cai, Q. Liu, X. Yang, “Generalized phase-shifting interferometry with arbitrary unknown phase

steps for diffraction objects”, Opt. Lett. 29,183–185 (2004)

285

Page 5: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

100. K. Creath, “Phase-shifting holographic interferometry” in Holographic Interferometry: Principles and Methods, P. K. Rastogi, ed., Springer, Heidelberg, Germany, 109-150 (1994)

101. C. Rathjen, “Statistical properties of phase-shift algorithms”, J. Opt. Soc. Am. A 12, 1997–2008 (1995) 102. K. Hibino, “Susceptibility of systematic error-compensating algorithms to random noise in phase-

shifting interferometry”, Appl Opt 36, 2084–2093 (1997) 103. R. Langoju, A. Patil, and P. Rastogi, “Phase-shifting interferometry in the presence of non-linear phase

steps, harmonics and noise,” Opt. Lett. 31, 1058–1060 (2006) 104. J. Schwider, “Advanced evaluation techniques in interferometry”, Prog. Opt. 28, 271–359 (1990) 105. M. Servin, J. C. Estrada, and J. A. Quiroga, "Spectral analysis of phase-shifting algorithms," Opt.

Express 17, 16423-16428 (2009) 106. M. Servin, J. C. Estrada, J. A. Quiroga, J. F. Mosino, and M. Cywiak, "Noise in phase shifting

interferometry," Opt. Express 17, 8789-8794 (2009) 107. J. Van Wingerden, H. Frankena, C. Smorenburg, “Linear approximation for measurement errors in

phase shifting interferometry”, Appl. Opt. 30, 2718–2729 (1991) 108. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35,

51–60 (1996) 109. W. Su, C.-K. Lee, C.-W. Lee, “Noise-reduction for fringe analysis using the empirical mode

decomposition with the generalized analysis model”, Opt. Las. Eng., 48 (2), 212-217 (2010) 110. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for

computer-based tomography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982) 111. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D

object shapes,” Appl. Opt. 22, 3977–3982 (1983) 112. T. Kreis, Handbook of Holographic Interferometry. Wiley-VCH GmbH, Weinheim (2004) 113. S. Vanlanduit, J. Vanherzeele, P. Guillaume, B. Cauberghe, P. Verboven, “Fourier fringe processing by

use of an interpolated Fourier-transform technique,” Appl. Opt. 43 (27), 5206-5213 (2004) 114. J. Vanherzeele, P. Guillaume, S. Vanlanduit, “Fourier fringe processing using a regressive Fourier-

transform technique,” Opt. Las. Eng. 43 (6), 645-658 (2005) 115. L. C. Chen, C. H. Cho and X. L. Nguyen, “One-shot three-dimensional surface profilometry using

DMD-based two-frequency moiré and Fourier transform technique”, Intl.J.Smart Sensing&Intelligent Systems, 2, 345-380 (2009)

116. J. Lin, X. Su, “Two dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,” Opt. Eng. 11, 3297-302, (1995)

117. X. Su, W. Chen, “Fourier transform profilometry: a review”, Opt. Las. Eng. 35, 263–284 (2001) 118. F. Berryman, P. Pynsent, J. Cubillo, “The effect of windowing in Fourier transform profilometry

applied to noisy images,” Opt. Las. Eng. 41, 815-825 (2004) 119. K. Larkin, D.Bone, M. Oldfield, “Natural demodulation of twodimensional fringe patterns. I. General

background of the spiral phase quadrature transform”, J. Opt. Soc. Am. A 18, 1862–1870 (2001) 120. K. Larkin, D.Bone, M. Oldfield, “Natural demodulation of twodimensional fringe patterns. II.

Stationary phase analysis of the spiral phase quadrature transform”, J. Opt. Soc. Am. A 18, 1871–1881 (2001)

121. M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Siski, S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47-51 (2002)

122. C. Sciammarella, T. Kim, “Determination of strains from fringe patterns using space-frequency representations”, Opt. Eng. 42, 3182–3193 (2003)

123. A. Dursun, S. Ozder, F. Ecevit, “Continuous wavelet transform analysis of projected fringe patterns”. Meas. Sci. Technol. 15: 1768–1772 (2004)

124. J. Zhou, “Wavelet-aided spatial carrier fringe pattern analysis for 3-D shape measurement”, Opt. Eng. 44, 113602 (2005)

286

Page 6: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

125. L. Watkins, S. Tan and T. Barnes, “Determination of interferometer phase distributions by use of wavelets,” Opt Lett. 24 (13), 905-907 (1999)

126. L. Watkins, “Phase recovery from fringe patterns using the continuous-wavelet transform,” Opt. Las. Eng. 45, 2, 298–303 (2007)

127. K. Qian, “Windowed Fourier transform method for demodulation of carrier fringes”, Opt. Eng. 43, 1472–1473 (2004)

128. J. Marroquin, M. Rivera, S. Botello et al., “Regularization methods for processing fringe-pattern images”, Appl. Opt. 38, 788–794 (1999)

129. M. Servin, J. Marroquin, F. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms”, J. Opt. Soc. Am. A 18, 689–695 (2001)

130. M. Gdeisat, D. Burton, M. Lalor, “Real-time fringe pattern demodulation with a second-order digital phase-locked loop”, Appl. Opt. 39, 5326–5336 (2000)

131. J. Marroquin, M. Servin, R. Rodriguez-Vera, “Adaptive quadrature filters for multiple phase-stepping images”, Opt. Las. Eng. 23, 238–240 (1998)

132. M. Servin, J. Quiroga, J. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation J. Opt. Soc. Am. A 20, 925–934 (2003)

133. C. Quan, C. J. Tay, F. Yang, and X. He, “Phase extraction from a single fringe pattern based on guidance of an extreme map”, Appl.Opt. 44, 4814-4821 (2005)

134. M. Liebling, T. Blu, M. Unser, “Complex-wave retrieval from a single off-axis hologram”, J. Opt. Soc. Am. A 21, 367–377 (2004)

135. M. Servin and F. Cuevas, ‘‘A novel technique for spatial phase-stepping interferometry,’’ J. Mod. Opt. 42, 1853–1862 (1995)

136. M. de Angelis, S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, G. Pierattini, “Profile measurement of a one-dimensional phase boundary sample using a single shot phase-step method”, Opt. Las. Eng. 43, 1305–1314 (2005)

137. A.Tulsi , S. Dubey, C. Shakher, A. Roy, D. Mehta, “Sinusoidal fringe projection system based on compact and non-mechanical scanning low-coherence Michelson interferometer for three-dimensional shape measurement”, Opt. Commun. 282, 7, 1237-1242 (2009)

138. P. Huang, C. Zhang, F-P Chiang, “High-speed 3-D shape measurement based on digital fringe projection”, Opt. Eng. 42, 163–168 (2003)

139. D. Mehta, S. Dubey, M. Hossain et al., ”Simple multi-frequency and phase-shifting fringe-projection system based on two-wavelength lateral shearing interferometry for three-dimensional profilometry”, Appl. Opt. 44, 7515–7521 (2005)

140. X. Peng, J. Tian, P. Zhang, L.Wei, W. Qiu, E. Li, and D. Zhang, “Three-dimensional vision with dual acousto-optic deflection encoding,” Opt. Lett. 30, 1965–1967 (2005)

141. S. Zhang “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques”, Opt.Las.Eng. 48(2), 149-158 (2010)

142. C Quan, X. He, C. Wang et al., “Shape measurement of small objects using LCD fringe projection with phase-shifting”, Opt. Commun. 189, 21–29 (2001)

143. C. Quan, C. Tay, X. Kang et al., “Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting”, Appl. Opt. 42, 2329–2335 (2003)

144. X. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992)

145. G. Schirripa-Spagnolo, D. Ambrosini, “Surface contouring by diffractive optical element-based fringe projection”, Meas. Sci. Technol. 12, N6–N8 (2001)

146. G. Schirripa-Spagnolo et al , “Displacement measurement using the Talbot effect with a Ronchi grating”, J. Opt. A: Pure Appl. Opt. 4 , S376-S380 (2002)

147. R. Sitnik, M. Kujavinska, “Opto-numerical methods for data acquisition for computer graphics and animation systems”, Proc. SPIE 3958, 36–45 (2000)

287

Page 7: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

148. R. Sitnik, M. Kujavinska, J. Wonznicki, “Digital fringe projection system for large-volume 360 deg shape measurement”, Opt. Eng. 41, 443–449 (2002)

149. H. Saldner, J. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector”, Opt. Eng. 36, 610–615 (1997)

150. L-C. Chen, C-C. Huang, ”Miniaturized 3D surface profilometer using digital fringe projection”, Meas. Sci. Technol. 16, 1061–1068 (2005)

151. H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43, 2906–2914 (2004)

152. J. Harizanova and A. Kolev, “Comparative study of fringe generation in two-spacing phase-shifting profilometry,” Proc.SPIE 6252, 21–25 (2005)

153. L-C. Chen, C-C. Liao, “Calibration of 3D surface profilometry using digital fringe projection”, Meas. Sci. Technol. 16, 1554–1566 (2005)

154. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, “Phase shifting for nonsinusoidal waveforms with phase-shift errors”, J. Opt. Soc. Am. A 12, 761–768 (1995)

155. H. Liu, G. Lu, and S. Wu, S. Yin and F. Yu, “Speckle-induced phase error in laser-based phase-shifting projected fringe profilometry”, J. Opt. Soc. Am. A 16, 1484-1495 (1999)

156. Y. Hu, J. Xi, E. Li, J. Chicharo, and Z. Yang, “Three-dimensional profilometry based on shift estimation of projected fringe patterns,” Appl. Opt. 45, 678–687 (2006)

157. A. Styk and K. Patorski, "Identification of nonlinear recording error in phase shifting interferometry," Opt. Las. Eng. 45 (2), 265-273 (2007)

158. B. Oreb and R. Dorsch, “Profilometry by phase-shifted Talbot images”, Appl.Opt. 33, 7955-7962 (1994)

159. D. Joyeux and Y. Cohen-Sabban, “High magnification selfimaging,”Appl. Opt. 21, 625–627 (1982) 160. K. G. Harding and S. L. Cartwright, “Phase grating use in moire interferometry,” Appl. Opt. 23, 1517–

1520 (1984) 161. P. Chavel and T. C. Strand, “Range measurement using Talbot diffraction imaging of gratings,” Appl.

Opt. 23, 862–871 (1984) 162. L. Liu, “Talbot and Lau effects on incident beams of arbitrary wavefront, and their use,” Appl. Opt. 28,

4668–4678 (1989) 163. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl.

Opt. 29, 4337–4340 (1990) 164. M. T. Flores-Arias, M. V. Perez, C. Gomez-Reino, C. Bao, and C. R. Fernandez-Pousa, “Talbot effect

interpreted by number theory,” J. Opt. Soc. Am. A 18, 2707–2716 (2001) 165. S. Teng, L. Liu, J. Zu, Z. Luan, and D. Liu, “Uniform theory of the Talbot effect with partially coherent

light illumination,”J. Opt. Soc. Am. A 20, 1747–1754 (2003) 166. P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt. 31, 80–89 (1992) 167. S. Teng, X. Chen, T. Zhou, and C. Cheng, “Quasi-Talbot effect of a grating in the deep Fresnel

diffraction region,” J. Opt. Soc.Am. A 24, 1656–1665 (2007) 168. S. Teng, L. Liu, J. Zu, Z. Luan, and D. Liu, “Uniform theory of the Talbot effect with partially coherent

light illumination,” J. Opt. Soc. Am. A 20, 1747–1754 (2003) 169. S. Teng, X. Chen, T. Zhou, and C. Cheng, “Quasi-Talbot effect of a grating in the deep Fresnel

diffraction region,” J. Opt. Soc.Am. A 24, 1656–1665 (2007) 170. M. Testorf and J. Jahns, “Planar-integrated Talbot array illuminators,” Appl. Opt. 37, 5399–5407 (1998) 171. S. K. Dubey, D. S. Mehta, A. Roy, and C. Shakher, “Wavelength scanning Talbot effect: Wavelength-

scanning Talbot effect and its application for arbitrary threedimensional step-height measurement,” Opt. Commun. 279, 13–19 (2007)

172. K. Patorski and S. Kozak, "Self-imaging with nonparabolic approximation of spherical wave fronts," J. Opt. Soc. Am. A 5, 1322-1327 (1988)

173. K. Gasvik, Optical Metrology. John Wiley & Sons, Ltd. (2002)

288

Page 8: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

174. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping, J. Wiley&Sons, (1998) 175. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications , Roberts & Company

(Englewood, Colorado), (2007) 176. X. Su, Q. Zhang, “Dynamic 3-D shape measurement method: A review”, Opt. Las. Eng 48(2), 191-204

(2010) 177. C. Quan, C. J. Tay, H. M. Shang and P. J. Bryanston-Cross, “Contour measurement by fibre optic

fringe projection and Fourier transform analysis”, Opt.Commun. 118, 5-6, 479-483 (1995)

178. X. Zhou, H. Zhao, Z. Shi, “A novel high-speed 3D profilometry for complex surface measuring”, Intl. J. Mat. Product Techn. 33, 1-2, 124 – 136 (2008)

179. S. Wu, Y. Zhang, S. Zhang, X. Ye, “Integrated phase unwrapping algorithm for the measurement of 3D shapes by Fourier transform profilometry”, Zhejiang Univ Sci A 10(7), 1018-1028 (2009)

180. L. Huang, Q. Kemao, B. Pan, A. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry”, Opt. Las. Eng. 48(2), 141-148 (2010)

181. J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry”, Appl. Opt. 43, 4993-4998 (2004)

182. K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations”, Opt. Las. Eng. 45 304–317 (2007)

183. J. Marroquin, M. Servin, R. Rodriguez-Vera, “Adaptive quadrature filters and the recovery of phase from fringe pattern images”, J. Opt. Soc. Am. A 14, 1742–1753 (1997)

184. J. Marroquin, R. Rodriguez-Vera, M. Servin, “Local phase from local orientation by solution of a sequence of linear systems”, J. Opt. Soc. Am. A 15, 1536–1544 (1998)

185. M. Servin, M. Cywiak, and A. Davila, "Extreme shearing interferometry: Theoretical limits with practical consequences," Opt. Express 15, 17805-17818 (2007)

186. J. Villa, I. De la Rosa, G. Miramontes et al., “Phase recovery from a single fringe pattern using an orientational vector-field-regularized estimator”, J. Opt. Soc. Am. A 22, 2766–2773 (2005)

187 J. Estrada, M. Servín, J. Quiroga, and J. Marroquín, "Path independent demodulation method for single image interferograms with closed fringes within the function space C2," Opt. Express 14, 9687-9698 (2006)

188 J. C. Estrada, M. Servin, and J. L. Marroquín, "Local adaptable quadrature filters to demodulate single fringe patterns with closed fringes," Opt. Express 15, 2288-2298 (2007)

189. P. Chan, P. Bryanston-Cross, and S. Parker, ‘‘Fringe-pattern analysis using a spatial phase-stepping method with automatic phase unwrapping,’’ Meas. Sci. Technol. 6, 1250–1259 (1995)

190. C. Tay, C. Quan, F. Yang, X. He, “A new method for phase extraction from a single fringe pattern”, Optics Commun. 239 251–258 (2004)

191. O. Skydan, M. Lalor, and D. Burton, “Technique for phase measurement and surface reconstruction by use of colored structured light”, Appl.Opt. 41, 6104-6117 (2002)

192. O. Skydan, M. Lalor, D. Burton, “Using coloured structured light in 3-D surface measurement”, Opt. Las. Eng. 43, 801–814 (2005)

193. L. Fu, Z. Li, L. Yang, Q. Yang, and A. He, “New phase measurement profilometry by grating projection”, Opt. Eng. 45, 073601 (2006)

194. S. Yoneyama, Y. Morimoto, M. Fujigaki and M. Yabe, “Phase-measuring profilometry of moving object without phase-shifting device”, Opt. Las. Eng. 40, 3, 153-161 (2003)

195. S. Yoneyama, Y. Morimoto, M. Fujigaki, Y. Ikeda. “Three dimensional surface profile measurement of moving object by a spatial-offset phase stepping method”, Opt. Eng. 42, 137–142 (2003)

196. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, O. Matoba, ”Parallel two-step phase-sihting dogital holography”, Appl.Opt.44, 6861-6868 (2005)

289

Page 9: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

197. P. Huang and S. Zhang, “Fast three-step phase-shifting algorithm”, Appl.Opt. 45, 5086-5092 (2006) 198. S. Zhang, P. Huang, “High-resolution, real-time three-dimensional shape measurement”, Opt. Eng. 45

(12), 123601 (2006) 199. S. Zhang, Dale Royer, and Shing-Tung Yau, "GPU-assisted high-resolution, real-time 3-D shape

measurement," Opt. Express 14, 9120-9129 (2006) 200. P. Jia, J. Kofman, and C. English , “Error compensation in two-step triangular-pattern phase-shifting

profilometry”, Opt. Las. Eng. 46, (4), 311-320 (2008) 201. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J.

Opt. Soc. Am. A 3, 847–855 (1986). 202. J.A.Quiroga, J.A. Gomez-Pedrero, A. Garcia-Botella, “Algorithm for fronge pattern normalization”,

Opt.Commun. 197, 43-51 (2001)

203. J. A. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224, 221–227 (2003)

204. N. Ochoa and A. Silva-Moreno, “Normalization and noise reduction algorithm for fringe patterns,” Opt. Commun. 270, 161–168 (2007)

205. N. Ochoa, “Normalization and smoothing algorithm for electronic speckle-pattern interferometry fringes”, Opt. Eng. 47 (4), 045601 (2008)

206. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics”, J. Opt. Soc. Am. A 25, 231-237 (2008)

207. S. Thurman and J. Fienup, “Phase-error correction in digital holography”, J. Opt. Soc. Am. A, 25, 983-994 (2008)

208. G. Kaufmann, G. Galizzi, and P. Ruiz, “Evaluation of a preconditioned conjugate-gradient algorithm for weighted least-squares unwrapping of digital speckle-pattern interferometry phase maps”, Appl. Opt. 37, 14, 3076-3084 (1998)

209. E. Terrillon, P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model”, Proc. SPIE 6341, 634138-1-6 (2006)

210. J.-C. Terrillon, “Image preprocessing for rotation-invariant pattern recognition in the presence of signal-dependent noise”, Appl.Opt. 31, 1879-1893 (1996)

211. O. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994)

212. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854-856 (2004)

213. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio and G. Pierattini, R. Meucci, “Whole optical wavefields reconstruction by Digital Holography”, Opt. Express 9, 294-302 (2001)

214. L. Ma, H. Wang, Y. Li and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A: Pure Appl. Opt. 6, 396-400 (2004)

215. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).

216. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977-3984 (2005).

217. G. Indebetouw and P. Klysubun, “Spatiotemporal digital microholography,” J. Opt. Soc. Am. A 18, 319-325 (2001)

218. B. Marquet, P. Rappaz, P Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwevelength axial accuracy”, Opt. Lett. 30, 468-470 (2005)

219. C. G. Rylander, D. Dave, T. Akkin, T. E. Milner, K. R. Diller and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy”. Opt. Lett. 29, 1509-1511 (2004)

220. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography”, Opt. Express 13, 8693-8698 (2005)

290

Page 10: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

221. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544 (2004)

222. F. Dubois, C. Schockaert, N. Callens and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis”, Opt. Express 13, 5895-5908 (2006)

223. P. Ferraro and G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257-1259 (2003)

224. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632 (2000)

225. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Monfort, P. Marquet and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006)

226. M. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000)

227. J. Gass, A. Dakoff, and M.K. Kim, “Phase imaging without 2π ambiguity by multiple-wavelength digital holography,” Opt. Lett. 28, 1141-3 (2003)

228. C. J. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5:21 (2006)

229. D. Carl, B. Kemper, G. Wernicke, G. von Bally, “Parameter optimized digital holographic microscope for high resolution living cell analysis”, Appl. Opt. 43, 6536-6544 (2004)

230. B. Kemper, D. Carl, J. Schnekenburger, I.Bredebusch, M. Schäfer, W. Domschke, G.von Bally, “Investigations on living pancreas tumor cells by digital holographic Microscopy”, J. Biomed. Opt. 11, 034005 (2006)

231. F. Charrière, A. Marian, F. Montfort, J. Kuehn, and T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006).

232. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt.Lett. 25, 610-612 (2000)

233. P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes” Opt. Express 13, 9935-9940 (2005)

234. L.Yu and M.Kim, “Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,” Opt. Lett. 30, 2092 (2005)

235. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006)

236. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography”, Opt. Lett. 22, 1268-1270 (1997) 237. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography,"

Opt.Lett. 23, 1221-3 (1998) 238. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography

and applications to microscopy,” Appl. Opt. 40, 6177-86 (2001) 239. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting

digital holography with a wavelength shift”, Appl.Opt. 45,7610-7616 (2006) 240. G. Popescu, L. P. Delflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari and M. S. Feld,

“Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503-5 (2004)

241. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165-1167 (2005)

242. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phaseshifting digital holography,” Appl. Phys. Lett. 85 1069–1071 (2004)

243. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phaseshifting digital holography,” Appl. Opt. 45 968–974 (2006)

291

Page 11: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

244. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45 2995–3002 (2006)

245. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phaseshifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006)

246. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography”, Appl.Opt. 47, D183-D189 (2008)

247. F. Yaras¸, H. Kang, and L. Onural, “Multi-SLM holographic display system with planar configuration”. Proc. IEEE 3D TV Conf.: The True Vision–Capture, Transmission and Display of 3D Video (2010)

248. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, "Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy," Opt. Express 13, 9361-9373 (2005)

249. B. Rappaz, F. Charriere, C. Depeursinge, P. J. Magistretti, and P. Marquet, "Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium," Opt. Lett. 33, 744-746 (2008)

250. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, "Quantitative phase tomography," Opt. Commun. 175, 329-336 (2000)

251. W. Gorski and W. Osten, "Tomographic imaging of photonic crystal fibers," Opt. Lett. 32, 1977-1979, (2007)

252. M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, "Holographic microscopy and diffractive microtomography of transparent samples," Meas. Sci. Technol. 19, (2008)

253. W. Choi, C. C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Field-based angle resolved light-scattering study of single live cells," Opt. Lett. 33, 1596-1598 (2008)

254. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. Dasari1, and M. Feld, “Optical diffraction tomography for high resolution live cell imaging”, Opt.Express 17 (1), 266-277 (2009)

255. T. Kozacki, M. Jyzwik, and R. Jyzwicki, “Determination of optical field generated by a microlens using digital holographic method”, Opto-Electronics Review 17(3), 211–216

256. http://www.suss-microoptics.com/ 257. H. Kang, “Quality improvements of the coherent holographic stereogram for natural 3D display and its

applications”, PhD Thesis, Nihon University, Japan (2008) 258. V. Nascov and P. Logofătu, "Fast computation algorithm for the Rayleigh-Sommerfeld diffraction

formula using a type of scaled convolution," Appl. Opt. 48, 4310-4319 (2009) 259. F.Yaras, H. Kang, L. Onural, ”Circular holographic video display system”, Opt. Express 19, 9147-9156

(2011) 260. J.-C. Li, P. Tankam, Z. Peng, and P. Picart, "Digital holographic reconstruction of large objects using a

convolution approach and adjustable magnification," Opt. Lett. 34, 572-574 (2009) 261. T.Kreis, “Frequency analysis of digital holography with reconstruction by convolution”, Opt. Eng. 41,

1829 (2002) 262. U. Schnars, W. Juptner, Digital Holography, Springer (2005) 263. Z. Zalevsky, D. Mendlovic, and R. Dorsch, "Gerchberg-Saxton algorithm applied in the fractional

Fourier or the Fresnel domain," Opt. Lett. 21, 842-844 (1996) 264. H.-E. Hwang, H. Chang, W.-N. Lie, “Fast double-phase retrieval in Fresnel domain using modified

Gerchberg-Saxton algorithm for lensless optical security systems”, Optics Express 17 (16), 13700-13710, (2009)

265. P. J. Caber, "An Interferometric Profiler for Rough Surfaces," Appl. Opt. 32 (19), 3438-3441, (1993) 266. J. Wyant, "Computerized interferometric measurement of surface microstructure," Proc. SPIE 2576,

122-130, (1995) 267. Y. Jiang, “Fourier Transform White-Light Interferometry for the Measurement of Fiber-Optic Extrinsic

Fabry–PÉrot Interferometric Sensors”, Photonics Technology Letters, IEEE, 20 (2), 75 – 77 (2008)

292

Page 12: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

268. R. Onodera, H. Wakaumi, Y. Ishii, “Measurement technique for surface profiling in low-coherence interferometry”, Optics Commun. 254, 52–57 (2005)

269. M.Pawłowski, Y. Sakano, Y. Miyamoto, M. Takeda, “Phase-crossing algorithm for white-light fringes analysis”, Optics Commun. 260 68-72 (2006)

270. D. Marom, D. Panasenko, P.-C. Sun, Y.Fainman, “Femtosecond-rate space-to-time conversion”, JOSA B 17 (10), 1759 – 1773 (2000)

271. N. Tsurumachi, T, Fuji, S. Kawato, T. Hattori, H. Nakatsuka, “Interferometric observation of femtosecond free induction decay”, Opt.Lett. 19 (22), 1867 – 1869 (1994).

272. C. Yang, H. Hua, W. Tan, K. Iwai, M. Miyagi, N. Chi, and Y. Shi, "Loss spectrum measurement for infrared hollow fiber based on the Fourier transform infrared spectrometer," Appl. Opt. 49, 2504-2509 (2010)

273. I. Noda, Y. Ozaki, Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy,Wiley, 310 pages, (2004)

274. C. Dorrer, N. Belabas, J.-P. Likforman, M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry”, JOSA B 17 (10), 1795-1802 (2000)

275. V. Laude, “Noise analysis of the measurement of group delay of Fourier white-light interferometric cross-correlation”, JOSA B 19 (5), 1001-1008 (2002)

276. L. Comolli, B. Saggin, “Evaluation of the sensitivity to mechanical vibrations of an IR Fourier spectrometer”, Rev. Sci. Instrum. 76, 123112-1-8 (2005)

277. P. de Groot, “Vibration in phase-shifting interferometry”, JOSA A 12 (2), 354-365 (1995) 278. H. Andersen, A. Friderichsen, S. Clausen, J. Bak, “Comparison of noise sources in dual- and single-

beam Fourier-transformnear-infrared spectrometry”, Appl. Optics 44 (29), 6167-6175 (2005) 279. R.-J. Recknagel, G. Notni, “Analysis of white light interferograms using wavelet methods”, Opt.

Commun. 148, 122-128 (1998) 280. G. Taurand, J. Genest, M. Cadotte, M. Gibeault, and E. Lanoue, “Parasitic diffuse reflection in a

Fourier transform spectrometer yielding subharmonic ghosts and line-shape distortion”, Appl. Opt. 46, 533-537 (2007)

281. L. Palchetti, D. Lastrucci, “Spectral noise due to sampling errors in Fourier-transform spectroscopy”, Appl.Opt. 40 (19), 3235-3243 (2001)

282. S. Turbide and T. Smithson, "Calibration algorithm for Fourier transform spectrometer with thermal instabilities," Appl. Opt. 49, 3411-3417 (2010)

283. P. Griffiths, J. de Haseth, Fourier transform infrared spectrometry, Wiley&Sons Inc., (2007) 284. Singh, P., H.C. Andola, M.S.M. Rawat, G.J.N. Pant and V.K. Purohit, “Fourier transform infrared (FT-

IR) spectroscopy in an-overview”. Res. J. Med. Plant, 5, 127-135 (2010) 285. S. Davis, M. Abrams, J. Brault, Fourier transform spectrometry, Academic Press (2001) 286. H. Park, D. H. Kwon, and Y. Rhee, “High-resolution spectroscopy of Sm I performed with an

extended-cavity diode laser”, J. Opt. Soc. Am. B 21, 1250-1254 (2004) 287. A. Olson, E. Carlson, S. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback

diode laser”, Amer. J. Phys., 74, 3, 218-223 (2006) 288. S. Cundiff, J. Ye, and J. Hall, “Optical frequency synthesis based on mode-locked lasers”, Rev. Sci.

Instrum., 72 (10), 3749- 3770 (2001) 289. H. Moon, “Frequency stabilization of a 1.3 μm laser diode using double resonance optical pumping in

the 5P3/2-6S1/2 transition of Rb atoms”, Appl. Opt. 47, 1097-1102 (2008) 290. H.-C. Chui, M.-S. Ko, Y.-W. Liu, T. Lin, J.-T. Shy, S.-Y. Shaw, R. Roussev and M. Fejer, “Frequency

stabilization of a frequency-doubled 197.2 THz distributed feedback diode laser on rubidium 5S1/2→7S1/2 two-photon transitions”, Opt.Las.Eng., 44, 479-485 (2006)

291. I. Olivares, A. Duarte, E. Saravia, and F. Duarte, “Lithium isotope separation with tunable diode lasers”, Appl.Opt. 41 (15), 2973-2977 (2002)

293

Page 13: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

292. Y. Zhao, “Signal-induced Fluorescence in Photomultipliers in Differential Absorption Lidar Systems”, Appl. Opt. 38, 4639-4648 (1999)

293. Y. Wang, C. Peng, H. Zhang, and H. Le, “Wavelength modulation imaging with tunable mid-infrared semiconductor laser: spectroscopic and geometrical effects”, Opt. Express 12, 5243-5257 (2004)

294. H. Patrick, C. Wieman, “Frequency stabilization of a diode laser using simultaneous optical feedback from a diffraction grating and a narrowband Fabry-Perot cavity”, Rev. Sci. Instrum. 62, 2593-2595 (1991)

295. D. Leo, J. Cambell, “Optically stabilized AlxGa1-x/GaAs laser using magnetically induced birefringence in Rb vapor”, Appl. Phys. Lett. 58 (10), 995-997 (1992)

296. R. Loe-Mie, A. Papoyan, A. Akulshin, A.Lezama, J.Rios Leite, O.Lopez O et al., “Nearly all-optical frequensy-stabilization of a laser diode on the 120 kHz intercombination line of Ba”, J.Optics Commun; 139, 55-59 (1997)

297. R. Muller, A. Weis, “Laser frequency stabilization using selective reflection spectroscopy”, Appl. Phys.B 66, 323-326 (1998)

298. M. Kozuma, Kourogi M, Ohtsu M, Hori H., “Frequency stabilization, linewidth reduction, and fine detuning of a semiconductor laser by using velocity-selective optical pumping of atomic resonance line”, Appl. Phys. Lett. 61(16), 1895-1897 (1992)

299. S. Balushev, Friedman N., Khayakovich L., Carasso D., Johns B., Davidson N., “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock”, Appl. Optics 39 (27), 4970-4974 (2000)

300. M. Poulin, Latrasse C., Touahri D., Tetu M., “Frequency stability of an optical frequency stanadrad at 192.6 THz based on a two-photon transistion of rubidium atoms”, Optics Commun. 207, 233-242 (2002)

301. C. Shin, Ohtsu M., “Stable semiconductor laser with a 7-Hz linewidth by an optical-electrical double-feedback technique”, Opt. Lett. 15 (24), 1455-1457 (1990)

302. Y. Zhao, J. Zhao, T. Huang, L. Xiao and S. Jia, “Frequency stabilization of an external-cavity diode laser with a thin Cs vapour cell”, J. Phys. D: Appl. Phys. 37, 1316-1318 (2004)

303. W.Jitschin, “Locking the laser frequency to an atomic transition”, Appl. Phys.B 33,7-8 (1984) 304. R. Li, S.Jia, Bloch D., Ducloy M., “Frequency-stabilization of a diode laser with ultra-low power

through linear selective reflection”, Opt. Commun.146, 186-188, (1998) 305. H.Talvitie, Merimaa M., Ikonen E., “Frequency stabilization of a diode laser to Doppler-free spectrum

of molecular iodine at 633 nm”, Opt. Commun. 152, 182-188 (1998) 306. D. Slavov, Deneva M., Stoykova E., Nenchev M., Barbe R., Keller J.C., “Output control of a ring laser

using bi-directional injection: a new approach for unidirectional generation at a reference atomic absorption line”, Opt. Commun. 157, 343-351, (1998)

307. M. Deneva, Nenchev M., Barbe R., Keller J.C., “Unidirectional ring Ti:Al2O3 laser generation at the wavelength of an atomic absorption line by bi-directional passive self-injection locking”, Appl. Phys. Lett. 76 (10), 131-133 (2000)

308. J. Bernard, L.Marmet, Madej A., “A laser frequency lock referenced to a single trapped ion”, Opt. Commun.; 150, 170-174 (1998)

309. M.Crance, Juncar P., Pinard J., “A new method for measuring relative oscillator strengths using a cw dye laser”, J. Phys. B, Atom. Mol. Phys. 8, 246-249 (1975)

310. G. Bonsch, E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlem’s formulae”, Metrologia 35, 133-139, (1998)

311. K. Libbrecht, Libbrecht M., “Interferometric measurement of the resonant absorption and refractive index in rubidium gas”, Am. J. Phys. 74(12),1055–1061 (2006)

312. R. Li, S.Jia, D.Bloch, Ducloy M., “Frequency-stabilization of a diode laser with ultra-low power through linear selective reflection”, Opt. Commun. 146, 186–188 (1998)

313. K. Ramesh, Digital photoelasticity, Springer, Berlin (2000)

294

Page 14: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

314. A. Ajovalasit, Petru G., Scafidi M., “Phase shifting photoelasticity in white light”, Opt. Las. Eng. 45, 596–611 (2007)

315. Hecker F. W., Morce B., “Measurement of relative retardation in plane photoelasticity,” in Experimental Stress Analysis, H. Wieringa, ed., Martinus Nijhoff, Dordrecht, the Netherlands, 5–542 (1986)

316. Patterson E. A. and Zhang Z, “ Towards full-field automated photoelastic analysis of complex components,” Strain 27, 49–56 (1991)

317. Sarma V., Pillai S. A., Subramanian G., and Varadan T. K, “Computerized image processing for whole-field automated determination of isoclinics sochro ics,” Exp.Mech. 32, 24–39 (1992)

318. Asundi A., “Phase shifting in photoelasticity”, Exp.Tech. 17, 9–23 (1993) 319 Berezhna S., Berezhnyy I., Takashi M., “High-resolution birefringence imaging in three-dimensional

stressed models by Fourier polarimetry”, Appl.Opt. 40(2) 4940-4946 (2001) 320. Quiroga J. A., González-Cano A. “Phase measuring algorithm for extraction of isochromatics of photo

elastic fringe patterns”, Appl.Opt. 36(32), 8397-8402 (1997) 321. Kasprzak H. T., “Generalized algorithm for photoelastic measurements based on phase-stepping imaging polarimetry”, Appl.Opt. 38(34), 7018-7025 (1999) 322. Yoneyama S., Morimoto Y. and Kawamura M., “Two-dimensional stress separation using phase-

stepping interferometric photoelasticity”, Meas. Sci. Technol. 16, 1329–1334 (2005) 323. Lei Z., Yun H., Yun D., Kang Y., “Numerical analysis of phase-stepping interferometric photoelasticity

for plane stress separation”, Opt. Las. Eng. 45, 77–82 (2007) 324. Asundi A., Tong L., Boay C., “Phase-shifting method with a normal polariscope”, Appl.Opt. 38(28),

5931-5935 (1999) 325. Yoneyama S. , Kikuta H., “Phase-stepping photoelasticity by use of retarders with arbitrary retardation”,

Exp. Mech. 46, 289–296 (2006) 326. Patterson E. A. , Wang Z. F., “Simultaneous o stepped images for automated photoelasticity,” J.

Strain Anal. 33, 1–15 (1998) 327. Yoneyama S, Morimoto Y, Matsui R., “Photoelastic fringe pattern by real-time phase-shifting”,

Opt.Las. Eng. 39, 1–13 (2003). 328. Lei Z., Kang Y., Yunb D., “A numerical comparison of real-time phase-shifting algorithms”, Opt.Las.

Eng. 42, 395-401(2004) 329. Yoneyama S., Sakaue K., Kikuta H. Takashi M., “Instantaneous phase-stepping photoelasticity for the

study of crack growth behaviour in a quenched thin glass plate”, Meas. Sci. Technol. 17, 3309–3316 (2006)

330. Asundi A., Tong L., Boay C. G., “ Dynamic phase-shifting photoelasticity”, Appl.Opt. 40(22), 3654-3658 (2001)

331. Chen T.Y., Chen T.F., “Whole-field digital measurements of isochromatics and isoclinics in photoelastic coatings Opt.Las. Eng. 31, 325-338 (1999)

332. Baek T., “Measurement of stress distribution around a circular hole in a plate under bending moment using phase-shifting method with a reflective polariscope arrangement”, J. Solid Mech. Mat. Eng. 2 (4), 549-556 (2008)

333. Ramji, M., Ramesh, K., “Whole field evaluation of stress components in digital photoelasticity—Issues,implementation and application”, Optics and Lasers in Engineering 46, 257–271 (2008)

334. Quiroga, J., Gonzalez-Cano, A., “Stress separation from photoelastic data by a multigrid method”, Meas. Sci.Technol. 9, 1204–1210 (1998)

335. Tech Note TN-70202, http://www.vishaymg.com/ 336. Dulieu-Barton, J.M., Quinn, S., “Complete two-dimensional principal stress separation by the

photoelastic oblique incidence method”, Applied Mechanics and Materials 3 – 4, 229-234 (2008) 337. Solaguren-Beascoa Fernández, M., Alegre Calderón, J., Bravo Díez, P., Cuesta Segura,I., “Stress-

separation techniques in photoelasticity: a review”, The Journal of Strain Analysis for Engineering Design 45, 1-17 (2010)

295

Page 15: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

338. Tong L., Asundi A., Boay C. G., “Full-field automated photoelasticity using two-load-step method,” Opt. Eng.40(08), 1629-1635 (2000)

339. Lei, Z., Yun, H., Yun, D., Kang, Y., “ Numerical analysis of phase-stepping interferometric photoelasticity for plane stress separation”, Opt. Las. Eng. 45, 77–82 (2007)

340. Quiroga J. A., González-Cano A., “Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique”, Appl.Opt. 39(17), 2931-2940 (2000)

341. Nurse A. D., “Full-field automated photoelasticity by use of a three-wavelength approach to phase stepping,” Appl.Opt. 36, 5781–5786 (1997)

342. Ekman M. J. , Nurse A. D., “Completely automated determination of two-dimensional photoelastic parameters using of isoclinic and isochromatic parameters using three-load method,”Meas. Sci. Technol. 11, 532–537 (2000)

343. Tong L., Asundi A., Boay C. G., “Full-field automated photoelasticity using two-load-step method,” Opt. Eng.40(08), 1629-1635 (2000)

344. J.Weickert, Anisotropic Diffusion in Image Processing, ECMI Series, Teubner-Verlag, Stuttgart, Germany, 1998

345. T.Karu, The Science of Low Power Laser Therapy, London: Gordon and Breach Sci. Publ., (1998) 346. T.Karu “Primary and secondary mechanisms of action of visible-to-near IR radiation on cells”,

J.Photochem. Photobiol. B: Biology, 49(1), 1-17 (1999) 347. T.I. Karu, “Low power laser therapy” In: Biomedical Photonics Handbook. Ch. 48, Editor-in-

chief Tuan Vo-Dinh, Boca Raton: CRC Press., pp. 48-1 - 48-25, (2003) 348. D. Fitz-Ritson, “Lasers and their therapeutic applications in chiropractic”, J. Can. Chiropr. Assoc.

45,1-9 (2001) 349. P. Whittaker, “Laser acupuncture: past, present, and future”, Las. Med. Sci. 19, 69–80 (2004) 350. J.Bjordal, C. Couppé, R. Chow, J. Tunér and E. Ljunggren, “A systematic review of low level laser

therapy with location-specific doses for pain from chronic joint disorders”, Austral. J. Physiother. 49, 107-116 (2003)

351. A. Medrado, L. Pugliese, S. Reis, Z. Andrade, “Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts”, Las. Surg. Med. 32, 239 – 244 (2003)

352. W. Posten , D.Wrone , J.Dover , K. Arndt , S. Silapunt , M. Alam “Low-level laser therapy for wound healing: mechanism and efficacy”. Dermatol Surg. 31, 334-40 (2005)

353. N. Gutknecht, R. Franzen, J. Meister, L. Vanweersch, M. Mir, “Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment”, Las. Med. Sci. 20, 99–103 (2005)

354. J Tunér, L Hode, “Laser therapy: clinical practice and scientific background: a guide for research scientists, doctors”, Prima Books (2002)

355. T. Dougherty, “Photodynamic therapy”, Photochem. Photobiol., 58, 895-900, (1993) 356. McCaughan Jr, J.S. “Photodynamic therapy”, Drugs&Aging, 15, 49-68 (1999) 357. Patterson, M.S., B.C. Wilson, “Photodynamic therapy”. In: The Modern Technology of Radiation

Oncology. Dyh, J.V. (Ed.), Madison, Medical Physics Publishing, Madison, 941-980 (1999) 358. His, R.A., D.I. Rosental, E. Glatstein, “Photodynamic therapy in the treatment of cancer: current state

of the art”, Drugs, 57, 725-734, (1999) 359. A.C. Moor, “Signaling pathways in cell death and survival after photodynamic therapy”, J. Photochem.

Photobiol., B., 57, 1-13 (2000) 360. E. Skovsen , J.Snyder , P. Ogilby, “Two-Photon Singlet Oxygen Microscopy: The Challenges of

Working with Single Cells”, Lasers Surg Med. 13; 16615136 (2006) 361. J. Madsen, C.-H. Sun, B. Tromberg, H. Hirschberg, “Development of a novel indwelling balloon

applicator for optimizing light delivery in photodynamic therapy Lasers in surgery and medicine”, Lasers Surg. Med. 29, 406-412 (2001)

362. C. Sibata, V. Colussi, N. Oleinick, T. Kinsella, “Photodynamic therapy in oncology”, Expert Opin. Pharmacother., 2, 1-11, (2001)

296

Page 16: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

363. T Schunck and P Poulet, “Oxygen consumption through metabolism and photodynamic reactions in cells cultured on microbeads”, Phys. Med. Biol. 45, 103-119 (2000)

364. B. W. McIlroy, T. S. Mann, J. S. Dysart and B. C. Wilson, “The effects of oxygenation and photosensitizer substrate binding on the use of fluorescence photobleaching as a dose metric for photodynamic therapy”, Vibrational Spectroscopy, 28, 25-35 (2002)

365. M. Atif, M.R. Stringer, J.E. Cruse-Sawyer, P.E. Dyer and S.B. Brown, “The influence of intracellular mTHPC concentration upon photobleaching dynamics”, Photodiagnosis and Photodynamic Therapy, 2, 235-238 (2005)

366. S. Marchal, A. Fadloun, E. Maugain, M.-A. D’Hallewin, F. Guillemin and L.Bezdetnaya, “Necrotic and apoptotic features of cell death in response to Foscan® photosensitization of HT29 monolayer and multicell spheroids”, Biochemical Pharmacology, 69, 1167-1176 (2005)

367. E. Angell-Petersen, S. Spetalen, S.Madsen, C. Sun, Q. Peng, S. Carper, M. Sioud, H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model”, J. Neurosurg. 104(1),109-17 (2006)

368. J. W Snyder, E. Skovsen, J. Lambert, P. Ogilby, “Subcellular, time-resolved studies of singlet oxygen in single cells”, Diagn Cytopathol. 32, 82-7, 15637682 (2005)

369. B. Henderson, T. Busch , J. Snyder, “Fluence rate as a modulator of PDT mechanisms”, J Am Chem Soc. 128 , 4200-1 16568974 (2006)

370. J. P. Henning, R. L. Fournier, J. A. Hampton, “A Transient Mathematical Model of Oxygen Depletion during Photodynamic Therapy”, Radiation Research, 142, No. 2, 221-226 (1995)

371. J. W Snyder , E. Skovsen , J. Lambert , L. Poulsen , P. Ogilby, “Optical detection of singlet oxygen from single cells”, J Phys Chem B Condens Matter Mater Surf Interfaces Biophys. 109 (18),8570-3 (2005)

372. M. J. Niedre, A. J. Secord, M. S. Patterson and B. C. Wilson, “In Vitro Tests of the Validity of Singlet Oxygen Luminescence Measurements as a Dose Metric in Photodynamic Therapy”, Cancer Research 63, 7986-7994, (2003)

373. R.B. Veenhuizen and F. A. Stewart, “The importance of fluence rate in photodynamic therapy: is there a parallel with ionizing radiation dose-rate effects?”, Radiotherapy and Oncology, 37, 131-135 (1995)

374. J. Ferreira, L.T. Moriyama, C. Kurachi, C. Sibata, O. Castro, S. Zucoloto, V.S. Bagnato , “Experimental determination of threshold dose in photodynamic therapy in normal rat liver”, Las. Phys. Lett., 4, 469 – 475, (2007)

375. T. Xu , Y. Li and X. Wu, “Application of lower fluence rate for less microvasculature damage and greater cell-killing during photodynamic therapy”, Las. Med. Sci., 19, 257-262 (2005)

376. S. Coutier, S. Mitra, L. N. Bezdetnaya, R. M. Parache, I.Georgakoudi, T. H. Foster, and F. Guillemin, “Effects of Fluence Rate on Cell Survival and Photobleaching in Meta-Tetra-(hydroxyphenyl)chlorin–photosensitized Colo 26 Multicell Tumor Spheroids”, Photochem. Photobiol., 73, 297–303 (2001)

377. S. Kittisak and R. Anderson, ‘Lasers in Dermatology’, CRC Press (2003) 378. G. Hruza “Laser skin resurfacing”, Archives of Dermatology 132, 451-455 (1996) 379. Y. Kye, “Resurfacing of pitted facial scars with a pulsed Er:YAG laser” Las. Dermatol.Sur. 23, 880-

883, (1997) 380. E. Ross, Sajbean, F. P, Hsia, J, Barnette, D, Miller, C.H, McKinlay, J. R. “Non ablative skin

remodeling: Selective dermal heating with a mid-infrared laser and contact cooling combination.” Las. Surg. Med. 26,189-195 (2000)

381. R. Eze, S. Kumar, “Modeling of Fractional Photothermolysis in Dermatological Applications,” COMSOL Conference 2007, Boston (2007)

382. D. Manstein, G. Herron, R. Sink, H. Tanner, and R. Anderson, “Fractional Photothermolysis: A New Concept for Cutaneous Remodeling Using Microscopic Patterns of Thermal Injury”, Las. Surg. Med. 34, 426-438 (2004).

297

Page 17: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

383. M. Yang, A. Yaroslavsky, W. Farinelli, T. Flotte, F. Rius-Diaz, S. Tsao, and R. Rox Anderson, Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for port-wine stains, Excerpt from the Proc. COMSOL Conference 2007, Boston (2007)

384. O. Sabotinov, “Low-invasive laser systems for medical applications”, PhD thesis (2008) 385. A.Ishimaru, “Diffusion of light in turbid material”, Appl.Opt., vol.28, 2210-2215 (1989) 386. W.-F. Cheong, S. A. Prahl, A.J. Welch, “A review of the optical properties of biological tissues”, IEEE

J.of Quant. Electr., 26 (12) (1990) 387. W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser Irradiated

Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, pp. 275–301, (1995) 388. T. Durduran, R. Choe, J. Culver, L. Zubkov, M. Holboke, J. Giammarco, B. Chance and A. Yodh,

“Bulk optical properties of healthy female breast tissue”, Phys. Med. Biol. 47 2847-2861 (2002) 389. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U.Kramer, and M. S. Patterson, “Anisotropy of

light propagationin human skin,” Phys. Med. Biol. 45, 2873–2886 (2000) 390. A. Kienle and R. Hibst, “Light guiding in biological tissue due to scattering,” Phys. Rev. Lett. 97,

018104 (2006) 391. Optronic techniques in diagnostic and therapeutic medicine, edited by R.Pratesi, Plenum Press, New

York, (1991) 392. R. Nossal, J. Kiefer, “Photon migration in layered media”, Appl. Opt., vol.27, 3382-3390 (1988) 393. T. Spott and L. O. Svaasand, "Collimated Light Sources in the Diffusion Approximation," Appl. Opt.

39, 6453-6465 (2000) 394. S. Arridge, “Optical tomography in medical imaging”, Inverse Problems 15, R41-R93, (1999) 395. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. McAdams, and B. J. Tromberg, “Boundary

conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994) 396. F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion

equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. Med. Biol. 45, 1359–1373 (2000)

397. L. Marti-Lopez and J. Bouza-Dominguez, “Validity conditions for the radiative transfer equation,” J. Opt. Soc. Am. A 20, 2046–2056 (2003)

398. A. Garcia-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M.Duvic, and L. H. Wang, “Skin cancer detection using spectroscopic oblique-incidence reflectometry: classification and physiological origins,” Appl. Opt. 43, 2643–2650 (2004)

399. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev.E 50, 3634–3640 (1994)

400. T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbidmedia,” Phys. Med. Biol. 42, 2541–2549 (1997)

401. M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimentaland numerical evidence,” Opt. Lett. 22, 853–855 (1997)

402. T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, “Does the photon-diffusion coefficient depend on absorption?,” J. Opt.Soc. Am. A 14, 3358–3365 (1997)

403. D. J. Durian, “The diffusion coefficient depends on absorption,” Opt.Lett. 23, 1502–1504 (1998) 404. K. Rinzema, L. H. P. Murrer, and W. M. Star, “Direct experimental verification of light transport

theory in an optical phantom,” J. Opt. Soc. Am. A 15, 2078–2088 (1998) 405. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am.

A 16, 1066–1071 (1999) 406. R. Graaff and K. Rinzema, “Practical improvements on photon diffusion theory: application to

isotropic scattering,” Phys.Med. Biol. 46, 3043–3050 (2001) 407. V. Venugopalan, J. S. You, and B. J. Tromberg, “Radiative transport in the diffusion approximation:

an extension for highly absorbing media and small source-detector separations,” Phys. Rev. E 58, 2395–2406 (1998)

298

Page 18: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

408. J. L. Hollmann and L. V. Wang, "Multiple-source optical diffusion approximation for a multilayer scattering medium," Appl. Opt. 46, 6004-6009 (2007)

409. Arridge S.R., H. Dehghani, M. Schweiger, E. Okada, The finite element model for propagation of light in scattering media: a direct method for domains with non-scattering regions, Med. Phys. 27 (1), 252 – 264 (2000)

410. S. R. Arridge, O. Dorn, J. P. Kaipio, V. Kolehmainen, M. Schweiger, T.Tarvainen, M. Vauhkonen, A. Zacharopoulos, ,"Reconstruction of Subdomain Boundaries of Piecewise Constant Coefficients of the Radiative Transport Equation from Optical Tomography Data", Inverse Problems , 22, 2175—2198 (2006)

411. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989)

412. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992)

413. T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometery,”Appl. Opt. 37, 1958–1972 (1998)

414. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996)

415. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. Van Den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998)

416. H.-W. Wang, S. Hahn and A.Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates”, Phys. Med. Biol. 47 857–873 (2002)

417. J. Sun, K. Fu, A. Wang, A. W. H. Lin, U. Utzinger, and R.Drezek, “Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements,” Appl. Opt. 45, 8152–8162 (2005)

418. J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006)

419. J. Xia and G. Yao, "Angular distribution of diffuse reflectance in biological tissue," Appl. Opt. 46, 6552-6560 (2007)

420. J. Ranasinghesagara and G. Yao, “Imaging 2D diffuse reflectance in skeleton muscle,” Opt. Express 15, 3998–4007 (2007)

421. S. J. Matcher, M. Cope, and D. T. Delpy, " In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997)

422. D. Grosenick, K.T. Moesta, H. Wabnitz, J. Mucke, C. Stroszcynski, R. Macdonald, P.M. Schlag, H.H. Rinneberg, " Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003)

423. A. Pifferi, P. Taroni, A. Toricelli, F. Messina, R. Cubeddu, “Four-wavelength, time-resolved optical mammography in the 680-980 nm range,” Opt. Lett. 28, 1138-1140 (2003)

424. S. T. Flock, B. C. Wilson, and M. S. Patterson, “Monte-Carlo modeling of light propagation in highly scattering tissues-II: comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989)

425. L. Wang, S. Jacques, L. Zheng, “MCML – Monte-Carlo modeling of light transport in multi-layered tissues” Computer methods and programs in biomedicine, 47, 131-146 (1995)

426. R. London, M. Glinsky, G. Zimmerman, D. Bailey, D. Eder, S. Jacques, “Laser-tissue interaction modeling with Latis”, Appl. Opt., 36, 9068-9074 (1997)

299

Page 19: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

427. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, ‘‘Monte Carlo procedure for investigating light propagation and imaging of highly scattering media,’’ Appl. Opt. 37, 7392–7400 (1998)

428. C. Hayakawa, J. Spanier, F. Bevilacqua, A. Dunn, J. You, B. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues”, Opt. Lett. 26, 17, 1335 (2001)

429. E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, and D. T. Delpy, Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue, Appl.Opt. 35, 3362-3371, (1996)

430. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media”, Opt. Express, 12, No.26 , 6530 – 6538 (2004)

431. J. C. Ramella-Roman, S.A. Prahl, S.L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I”, Opt. Express, 13, 4420 – 4430 (2005)

432. J. C. Ramella-Roman, S.A. Prahl, S.L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II”, Opt. Express, 13, 10392 – 10402 (2005)

433. L. Wang, R. E. Nordquist, and W.R. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple beam delivery: a Monte-Carlo study”, Appl. Opt., 36, No. 31, (1997)

434. Z. Song, Ke Dong, Xin H. Hu, and Jun Q. Lu, “Monte Carlo simulation of converging laser beams propagating in biological materials”, Appl. Optics, 38, No. 13, (1999)

435. S. L. Jacques, “Light distributions from point, line, and plane sources for photochemical reactions and fluorescence in turbid biological tissues,” Photochem. Photobiol. 67, 23–32 (1998)

436. S.-P. Lin, L.-H. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997)

437. Y. Phaneendra, K. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method”, J.Biomed. Optics 9(5), 1002–1012 (2004)

438. J. Barton, T. J. Pfefer, A. J. Welch, D. J. Smithies, J. S. Nelson, M. J.C. van Gemert, “Optical Monte Carlo modeling of a true port wine stain anatomy”, Opt. Express 2, 391-399 (1998)

439. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001)

440. M. Friebel, A. Roggan, G. Müller, M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions”, J. Biomed. Optics 11, 3, 034021 (2006)

441. D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head”, Opt. Express 10, 159 (2002)

442. Z.Qian, S. S. Victor, Y. Gu, C. A. Giller, H. Liu, “ “Look-Ahead Distance” of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study”, Opt. Express 11, 1844-1851 (2003)

443. Y. Yang, O. O. Soyemi, M. R. Landry and B. R. Soller, “Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments”, Opt. Express, 13, No.5 , 1570-1578 (2005)

444. C.-K. Lee, C.-W. Sun, P.-L. Lee, H.-C. Lee, C. C. Yang, C.-P. Jiang, Y.-P. Tong, T.-C. Yeh, and J.-C. Hsieh, “Study of photon migration with various source detector separations in near-infrared spectroscopic brain imaging based on three dimensional Monte Carlo modeling”, Opt. Express, 13, 8339 -8347 (2005)

445. L. Wang, R. E. Nordquist, and W.R. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple beam delivery: a Monte-Carlo study”, Appl. Opt., 36, No. 31, (1997)

446. Z. Song, Ke Dong, Xin H. Hu, and Jun Q. Lu, “Monte Carlo simulation of converging laser beams propagating in biological materials”, Appl. Optics, 38, No. 13, (1999)

300

Page 20: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

447. B. Colston, M. Everett, L. Da Silva, L. Otis, P. Stroeve, H. Nathel, Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography, Appl. Opt., 37, 3582-3585 (1998)

448. D. Fried, R. Glena, J. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-nfrared wavelengths”, Appl. Opt., .34, No.7, 1278-1285, (1995)

449. T.M. Smith, A.J. Olejniczak, D.J. Reid, R.J. Ferrell, J.J. Hublin Modern human molar enamel thickness and enamel—dentine junction shape, Archives of Oral Biology 51, 974—995 (2006)

450. M. Keijzer, J. Pickering, M. van Gemert, “Laser beam diameter for port wine stain treatment”, Las. Surg. Med., 11, 601 – 605 (1991)

451. D. Smithies, P. Butler, “Modeling the distribution of laser light in port-wine stains with the Monte Carlo method”, Phys. Med. Biol. 40, 701-731 (1995)

452. W. Verkruysse, J.W. Pickering, J.F. Beek, M. Keijzer, M. J.C. van Gemert, “Modeling the effect of wavelength on the pulsed dye laser treatment of port wine stains”, Applied Optics, vol.32, No.4, pp.393-398, (1993)

453. W. Verkruysse, G. Lucassen, M. van Gemert, Simulation of color of port wine stain skin and its dependence on skin variables, Las.Surg.Med. 20, 131-139 (1999)

454. R. Zhang, G. Aguilar, and J.Nelson, “Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels”, Phys. Med. Biol. 50, 4075–4086 (2005)

455. B. M. Pikkulaр D. W. Chang, J. S. Nelson, B. Anvari, “Comparison of 585 and 595 nm laser-induced vascular response of normal in vivo human skin” Las. Surg. Med. 36, 117-123 (2005)

456. G. Lucassen, L. Svaasand, W.Verkruysse and M. van Gemert, Laser energy threshold for thermal vascular injury in a port-wine stain skin model, Las.Med.Sci., 10, 231-234 (1995)

457. L.Wang, G. Liang, “Absorption distribution of an optical beam focused into a turbid medium”, Appl. Opt. 38 (22), 4951-4958, (1999)

458. D.Wiegleb, M. Edstro, A.-M. Ros, “The treatment of port-wine stains with the pulsed dye laser at 600 nm”, British J. of Dermatology 136, 360–363 (1997)

459. J. W. Tunnell, L. V. Wang, and B. Anvari, “Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study”, Appl.Opt., 42, 1367 – 1378, (2003)

460. Jacques S L 1998 Skin Optics http://omlc.ogi.edu/news/jan98/skinoptics.html 461. S.Prahl, Optical Absorption of Hemoglobin, Oregon Medical Laser Center,

http://omlc.ogi.edu/spectra/ (2005) 462. J.G. Moser, “2nd and 3rd generation photosensitizers”. Harwood, Amsterdam, (1998) 463. C.Allen, W. Sharman, J. Van Lier, “Current status of phthalocyanines in the photodynamic therapy

of cancer”, J. Porphyrins Phthalocyanines, 5, 161-169 (2001) 464. J. Sessler, R. Miller, “Texaphyrins – new drugs with diverse clinical applications in radiation and

photodynamic therapy”, Biochemical Pharmacology, vol. 59, 733-739 (2000) 465. R.-M. Ion, “Porphyrins for tumor destruction in photodynamic therapy”, Curr. Top. Bioph. 24, 21-

34 (2000) 466. P.Baas, A. Saarnak, H. Oppelaar, H. Neering, F. Stewart, “Photodynamic therapy with meta-

tetrahydroxyphenylchlorin for basal cell carcinoma: a phase I/II study”, Br. J. Dermatol. 145, 75-78 (2001)

467. F. Jiang, A. M. Robin, M. Katakowski, L. Tong, M. Espiritu, G. Singh, M. Chopp, “Photodynamic therapy with photofrin in combination with Buthionine Sulfoximine (BSO) of human glioma in the nude rat”, Las. Med. Sci. 18, 128–133 (2003)

468. K. Takahira, M. Sano, H. Arai, H. Hanai, “Apoptosis of gastric cancer cell line MKN45 by photodynamic treatment with Photofrin”, Las. Med. Sci. 19, 89–94 (2004)

301

Page 21: Литература - IOMT · Литература. 1. J. M. Vaughan, The Fabry-Perot interferometer: history, theory, practice, and applications, Taylor&Fransis Group, (1989) 2

302

469. M. Sano, T. Furuta, K. Takahira, M. Kajimura, H. Hanai, E. Kohno, T. Hirano, A. Hishida, “Cell-cycle-dependent efficacy of photodynamic therapy with ATX-S10(Na)”, Las. Med. Sci. 20, 1–5 (2005)

470. S. Ohmori, K. Masuda, M. Yoshida, T. Arai, S. Nakajima, “The study of the characteristic of photocytotoxicity under high peak power pulsed irradiation with ATX-S10Na(II) in vitro”, Las. Med. Sci. 20, 54–61 (2005)

471. Q. Peng, T. Warloe, K. Berg, “5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges”, Cancer, 79 (12), 2282-2308, (1997)

472. J. Johansson, R. Berg, K. Svanberg and S. Svanberg, “Laser-induced fluorescence studies of normal and malignant tumor tissue of rat following intravenous injection of δ-amino levulinic acid”, Lasers Surg. Med. 20, 272-279 (1997).

473. Jiang F., Robin AM, Katakowski M, Tong L, Espiritu M, Singh G, Chopp M., “Photodynamic therapy with photofrin in combination with Buthionine Sulfoximine (BSO) of human glioma in the nude rat”, Las. Med. Sci. 18, 128–133 (2003)

474. Simstein R., Burow M., Parker A., Weldom C., Beckman B., “Apoptosis, chemoresistance, and breast cancer: insight from the MCF-7 cell model system”, Exp. Biol. Med. 228, 995-1003 (2003)

475. Alexandrova R., “Tumor heterogeneity”, Exp Pathology and Parasitology 4/6, 57-67 (2001) 476. Alexandrov I., Wesselinova D., Alexandrova R., “Resistance to implantation of SR-RSV-induced

sarcoma cells in rats”, Exp. Oncol. 20, 45-48 (1998) 477. S.Jacques, “The mathematics of PDT dosimetry for cancer treatment”.

http://omlc.ogi.edu/pdt/articles/PDTmath/index.html (1998)