exploiting*criticalityon*hrl’s“ latigo”...

11
© 2016 HRL Laboratories, LLC. All Rights Reserved Exploiting Criticality on HRL’s “Latigo” Neuromorphic Device Nigel Stepp, Praveen Pilly, José CruzAlbrecht [email protected] HRL Laboratories, LLC Malibu, CA

Upload: others

Post on 27-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

Exploiting  Criticality  on  HRL’s  “Latigo”  Neuromorphic  Device

Nigel  Stepp,  Praveen  Pilly,  José  Cruz-­Albrecht

[email protected]

HRL  Laboratories,  LLCMalibu,  CA

Page 2: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

Neuromorphic  Computing  at  HRL

#  Neurons

Complexity

HRL

Simple  or  Complex?-­ Trade-­offs  lead  to  designs  with  many  simple  neurons,  or  a  few  complex  ones

-­ HRL,  in  DARPA  SyNAPSE,  chose  complexity  over  multiplicity

-­ Scaling  up  from  there  is  likely  easier

HRL’s  first  real  chip  – “Surfrider”:-­ 576  Neurons,  37k  Synapses-­ Axonal  delays-­ Synaptic  kinetics-­ Spike  Timing  Dependent  Plasticity-­ Again,  complexity  over  scale

Page 3: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

Reservoir  Computing  with  HRL  Surfrider

23  Inputs

50  Outputs

1%  Random  Connectivity

300  Excitatory  Neurons

25  Inhibitory  Neurons

Reservoir  computing  provides  a  way  to  use  a  small  network  for  relatively  complex  applications:

Pattern  Recognition-­ Audio-­ Video-­ Mobile  sensor

Anomaly  Detection

Page 4: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

Summary  of  Surfrider Results

Reservoir  computing  methods  using  Surfrider were  especially  successful  for  spectral  data

Spectrogram

Input  Spikes

Output Spikes

Class  Readout

Page 5: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

Summary  of  Surfrider Results

Image  data  is  also  usable,  but  only  at  extremely  low  resolutions.

Take  23  pixels

Mug

Statue Stapler

Page 6: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

Neuromorphic  Computing  at  HRLLatigo Chip

14.8  mm

434  um

Receptor  Kinetics

Neuron  withAxonal  delays

Memory

HomeostaticPlasticity

STDP

STP

Diagnostic  

Probe

“Latigo”  contains  1024  neurons,  131k  synapses-­ Increase  from  96  I/Os to  at  least  512  – Thousands  with  additional  board  dev-­ Each  neuron  has  local  parameters-­ New  features:  Short  term  potentiation,  homeostatic  plasticity-­ Intrinsic  support  for  chip  tiling

Neurobiological  dynamics  while  maintaining  low  size,  weight,  and  power

#  Neurons

Complexity32x32  array

Page 7: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

What  Can  These  Features  Do?

Stepp,  N.,  Plenz,  D.,  &  Srinivasa,  N.  (2015).  Synaptic  plasticity  enables  adaptive  self-­tuning  critical  networks.  PLoS ComputBiol,  11(1),  e1004043.

The  combination  of  STDP  (excitatory  and inhibitory)  and  STP  allows  self-­tuning  critical  dynamics

Parameter  search  finds  networks  that  dynamically  balance  activity  to  remain  in  a  critical  state

A  single  high-­level  parameter  search  can  find  networks  that  look  generally useful

Page 8: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

Exploiting  Self-­tuning  Criticality

Srinivasa,  N.,  Stepp,  N.,  &  Cruz-­Albrecht,  J.  (2015).  Criticality  as  a  Set-­Point  for  Adaptive  Behavior  in  Neuromorphic  Hardware.  Frontiers  in  neuroscience,  9.

Exploiting  self-­tuning  criticality  in  hardware  gets  around  application  specifics-­ With  lots  of  complex  features,  parameter  space  is  large  and  not  smooth

-­ Latigo has  4  STDP,  4  STP  and  2  HP  parameters  at  every  neuron-­ Also  voltage  thresholds  and  synaptic  time-­constants

-­ A  general  set-­point  means  one-­time  parameter  tuning

0 200 400 600 8000

200

400

600

Time (ms/1000)

Neu

ronLiquidInput

OfflineReadout

80%  Excitatory20%  Inhibitory1%  Connectivity

14

8002

Page 9: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

Criticality  on  Latigo?

0 200 400 600 8000

200

400

600

Time (ms/1000)

Neu

ron

Self-­tuning  criticality  is  achievable  on  the  Latigo hardware

Avalanche  sizes  are  consistent  with  a  power-­law-­ Small  avalanches  are  near  critical  branching  exponent  -­1.5-­ Larger  avalanches  fall  near  -­1,   literal  1/f-­ Consistent  with  Stepp et  al  (2015)  – input  causes  deviation  from  criticality,  but  self-­tuning  force  is  still  present

Page 10: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

The  central  claim  of  Srinivasa et  al  (2015)  is  that  self-­tuning  criticality  is  general  purpose

Here  we  apply  the  critical  network  to  an  intrusion  detection  problem:

The self-­tuning  critical  reservoir  is  able  to  perform  well  without  problem-­specific  tuning

Exploiting  Criticality  for  Reservoir  Computing

Page 11: Exploiting*Criticalityon*HRL’s“ Latigo” NeuromorphicDeviceornlcda.github.io/neuromorphic2016/presentations/...Latigo Chip 14.8mm 434um Receptor" Kinetics Neuron"with Axonal"delays

©  2016  HRL  Laboratories,  LLC.    All  Rights  Reserved  

434  um

Receptor  Kinetics

Neuron  withAxonal  delays

Memory

HomeostaticPlasticity

STDP

STPAdvanced  neurobiological  features  support  complex  dynamics  in  neuromorphic  hardware

Complex  behavior  such  as  criticality  and  self-­organization  promise  non-­algorithmic  solutions  where  algorithms  are  hard  to  write,  e.g.-­ Problem  agnostic  parameter  tuning-­ Adaptable  inverse  kinematics

When  contained  in  extremely  low  SWAP  hardware,  these  features  enable  capabilities  on  small    or  unattended  platforms  beyond  simpler  neuromorphic  systems

Complicated  Hardware  for  Complex  Dynamics

#  Neurons

Complexity