experimental supporting informationp ir-uv\inorganica\dr. juventino garcia\jorge anton 4000.0 3600...

44
S1 Experimental Supporting Information Mn(I) Organometallics Containing the i Pr 2 P(CH 2 ) 2 P i Pr 2 Ligand for the Catalytic Hydration of Aromatic Nitriles Jorge A. Garduño, Alma Arévalo, Marcos Flores-Alamo and Juventino J. Garcia* Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico. Index by categories Experimental procedures Procedure S1. Assays of air-stability for 1 ................................................................................... S7 Procedure S2. Competence for a vacant site in the “fac-[(CO) 3 Mn(dippe)]” core ..................... S15 Procedure S3. Thermolysis of 4 in a 1:2 v/v mixture of THF-d 8 /H 2 O ........................................ S17 Procedure S4. 31 P{ 1 H} NMR analysis of the binding of benzamide to the “fac- [(CO) 3 Mn(dippe)] + ” core .................................................................................................... S18 Procedure S5. 31 P{ 1 H} NMR analysis of the model reaction crude. .......................................... S19 Procedure S6. NMR analysis of the addition of water to a mixture of 2 and excess benzonitrile. ............................................................................................................................................. S20 Procedure S7. NMR monitoring of the actual model reaction mixture. ..................................... S21 Procedure S8. Single crystal X-Ray Diffraction for 2 ................................................................ S23 Procedure S9. General procedure for the catalytic hydration of nitriles with complex 2 ........... S29 Figures Figure S1. 1 H NMR (300 MHz, THF-d 8 ) spectrum of 1. ............................................................. S4 Figure S2. 31 P{ 1 H} NMR (121 MHz, THF-d 8 ) spectrum of 1. ..................................................... S5 Figure S3. FTIR (ATR) spectrum of 1.......................................................................................... S6 Figure S4. 31 P{ 1 H} NMR (121 MHz) analysis of a CDCl 3 solution of 1 exposed to air.............. S7 Figure S5. 1 H NMR (300 MHz) of a CDCl 3 solution of 1 exposed to air for one week. ............. S7 Figure S6. 1 H NMR (300 MHz, THF-d 8 ) spectrum of 2 .............................................................. S8 Figure S7. 31 P{ 1 H} NMR (121 MHz, THF-d 8 ) spectrum of 2. ..................................................... S9 Figure S8. 19 F NMR (282 MHz, THF-d 8 ) spectrum of 2. ............................................................. S9 Figure S9. FTIR (ATR) spectrum of 2........................................................................................ S10 Figure S10. 1 H NMR (300 MHz, THF-d 8 ) spectrum of 3. ......................................................... S11 Figure S11. 31 P{ 1 H} NMR (121 MHz, THF-d 8 ) spectrum of 3. ................................................. S12 Figure S12. 19 F NMR (282 MHz, THF-d 8 ) spectrum of 3. ......................................................... S12 Figure S13. FTIR (ATR) spectrum of 3...................................................................................... S13 Figure S14. 1 H NMR (300 MHz, C 7 D 8 ) spectrum of 3. ............................................................. S14 Figure S15. 31 P{ 1 H} NMR (121 MHz, C 7 D 8 ) spectrum of 3. ..................................................... S14 Figure S16. 1 H NMR (300 MHz) spectra for 3 in THF-d 8 solution and with added PhCN. ...... S15 Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  •   S1

    Experimental Supporting Information

    Mn(I) Organometallics Containing the iPr2P(CH2)2PiPr2 Ligand

    for the Catalytic Hydration of Aromatic Nitriles

    Jorge A. Garduño, Alma Arévalo, Marcos Flores-Alamo and Juventino J. Garcia*

    Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.

    Index by categories

    Experimental procedures

    Procedure S1. Assays of air-stability for 1 ................................................................................... S7 Procedure S2. Competence for a vacant site in the “fac-[(CO)3Mn(dippe)]” core ..................... S15 Procedure S3. Thermolysis of 4 in a 1:2 v/v mixture of THF-d8/H2O ........................................ S17 Procedure S4. 31P{1H} NMR analysis of the binding of benzamide to the “fac-

    [(CO)3Mn(dippe)]+” core .................................................................................................... S18 Procedure S5. 31P{1H} NMR analysis of the model reaction crude. .......................................... S19 Procedure S6. NMR analysis of the addition of water to a mixture of 2 and excess benzonitrile.

    ............................................................................................................................................. S20 Procedure S7. NMR monitoring of the actual model reaction mixture. ..................................... S21 Procedure S8. Single crystal X-Ray Diffraction for 2 ................................................................ S23 Procedure S9. General procedure for the catalytic hydration of nitriles with complex 2 ........... S29

    Figures Figure S1. 1H NMR (300 MHz, THF-d8) spectrum of 1. ............................................................. S4 Figure S2. 31P{1H} NMR (121 MHz, THF-d8) spectrum of 1. ..................................................... S5 Figure S3. FTIR (ATR) spectrum of 1. ......................................................................................... S6 Figure S4. 31P{1H} NMR (121 MHz) analysis of a CDCl3 solution of 1 exposed to air. ............. S7 Figure S5. 1H NMR (300 MHz) of a CDCl3 solution of 1 exposed to air for one week. ............. S7 Figure S6. 1H NMR (300 MHz, THF-d8) spectrum of 2 .............................................................. S8 Figure S7. 31P{1H} NMR (121 MHz, THF-d8) spectrum of 2. ..................................................... S9 Figure S8. 19F NMR (282 MHz, THF-d8) spectrum of 2. ............................................................. S9 Figure S9. FTIR (ATR) spectrum of 2. ....................................................................................... S10 Figure S10. 1H NMR (300 MHz, THF-d8) spectrum of 3. ......................................................... S11 Figure S11. 31P{1H} NMR (121 MHz, THF-d8) spectrum of 3. ................................................. S12 Figure S12. 19F NMR (282 MHz, THF-d8) spectrum of 3. ......................................................... S12 Figure S13. FTIR (ATR) spectrum of 3. ..................................................................................... S13 Figure S14. 1H NMR (300 MHz, C7D8) spectrum of 3. ............................................................. S14 Figure S15. 31P{1H} NMR (121 MHz, C7D8) spectrum of 3. ..................................................... S14 Figure S16. 1H NMR (300 MHz) spectra for 3 in THF-d8 solution and with added PhCN. ...... S15

    Electronic Supplementary Material (ESI) for Catalysis Science & Technology.This journal is © The Royal Society of Chemistry 2018

  •   S2

    Figure S17. 31P{1H} NMR (121 MHz) spectra for 3 in THF-d8 solution and with PhCN added. ............................................................................................................................................. S16

    Figure S18. 1H NMR (300 MHz, THF-d8) of free and coordinated benzonitrile. ...................... S16 Figure S19. 31P{1H} NMR (121 MHz) monitoring of a THF-d8/H2O (1:2 v/v) solution of 2 at

    variable temperature. ........................................................................................................... S17 Figure S20. 1H (300 MHz) spectrum of a THF-d8/H2O (1:2 v/v) solution of 2 at room

    temperature. ........................................................................................................................ S18 Figure S21. 31P{1H} NMR spectra for the addition of benzamide to a THF-d8 solution of 2 .... S19 Figure S22. 31P{1H} NMR spectrum of the model reaction crude. ............................................ S20 Figure S23. 31P{1H} (162 MHz) spectra for the addition of water to a THF-d8 solution of 2 and

    excess benzonitrile. ............................................................................................................. S21 Figure S24. 1H (400 MHz) spectra for the addition of water to a THF-d8 solution of 2 and excess

    benzonitrile. ........................................................................................................................ S21 Figure S25. 31P{1H} NMR (121 MHz, THF-d8) monitoring of the reaction between benzonitrile

    and water catalyzed by 2. .................................................................................................... S22 Figure S26. 1H NMR (300 MHz, THF-d8) monitoring of the reaction between benzonitrile and

    water catalyzed by 2. ........................................................................................................... S22 Figure S27. ORTEP plot (50% probability, 130 K) for complex 2 ............................................ S29 Figure S28. 1H NMR (400 MHz, DMSO-d6) aromatic region of the spectrum of isolated

    benzamide from optimized model reaction ......................................................................... S30 Figure S29. 1H NMR (400 MHz, DMSO-d6) spectrum of isolated benzamide from optimized

    model reaction ..................................................................................................................... S31 Figure S30. 13C{1H} NMR (100 MHz, DMSO-d6) spectrum of isolated benzamide from

    optimized model reaction .................................................................................................... S31 Figure S31. MS(EI) of isolated benzamide from optimized model reaction .............................. S32 Figure S32. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated p-

    trifluoromethylbenzamide ................................................................................................... S32 Figure S33. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated p-

    trifluoromethylbenzamide ................................................................................................... S33 Figure S34. 19F NMR (376 MHz, CDCl3/DMSO-d6) spectrum of isolated p-

    trifluoromethylbenzamide ................................................................................................... S33 Figure S35. MS(EI) of p-trifluoromethylbenzamide .................................................................. S34 Figure S36. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated p-fluorobenzamide . S34 Figure S37. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated p-

    fluorobenzamide ................................................................................................................. S35 Figure S38. 19F NMR (376 MHz, CDCl3/DMSO-d6) spectrum of isolated p-fluorobenzamide S35 Figure S39. MS(EI) of p-fluorobenzamide ................................................................................. S36 Figure S40. 19F NMR (376 MHz, CDCl3/DMSO-d6) spectrum of isolated 2,3,4,5,6-

    pentafluorobenzamide ......................................................................................................... S36 Figure S41. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated 2,3,4,5,6-

    pentafluorobenzamide ......................................................................................................... S37 Figure S42. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated 2,3,4,5,6-

    pentafluorobenzamide ......................................................................................................... S37 Figure S43. MS(EI) of 2,3,4,5,6-pentafluorobenzamide ............................................................ S38 Figure S44. MS(EI) of isonicotinamide ...................................................................................... S38 Figure S45. MS(EI) of nicotinamide .......................................................................................... S39

  •   S3

    Figure S46. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated picolinamide .......... S39 Figure S47. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated picolinamide . S40 Figure S48. MS(EI) of picolinamide .......................................................................................... S40 Figure S49. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated p-methoxybenzamide

    ............................................................................................................................................. S41 Figure S50. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated p-

    methoxybenzamide ............................................................................................................. S41 Figure S51. MS(EI) of p-methoxybenzamide ............................................................................. S42 Figure S52. MS(EI) of p-toluamide ............................................................................................ S42 Figure S53. 1H NMR (400 MHz, DMSO-d6) spectrum of isolated furan-2-carbamide ............. S43 Figure S54. 13C{1H} NMR (100 MHz, DMSO-d6) spectrum of isolated furan-2-carbamide .... S43 Figure S55. MS(EI) of furan-2-carbamide .................................................................................. S44

    Tables

    Table S1. Crystal data and structure refinement for 2. ............................................................... S23 Table S2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x

    103) for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ..... S24 Table S3. Bond lengths [Å] and angles [°] for 2. ........................................................................ S25 Table S4. Torsion angles [°] for 2. .............................................................................................. S28

  •   S4

    Characterization of fac-[(CO)3Mn(dippe)(Br)] (1)

    1 (146.2 mg, 84%). 1H NMR (300 MHz, THF-d8, δ/ ppm) 3.58 (s, THF), 2.90-2.69 (m, 1H), 2.38-2.22 (m, 1H), 2.18-1.88 (m, 2H), 1.73 (s, THF), 1.47-1.16 (m, 12H). 31P{1H} NMR (121 MHz, THF-d8, δ/ ppm) 80.45 (s). FTIR (ATR) νC-H (cm-1) 2960.77 m, 2934.09 w, 2898.91 w, 2874.40 w; νC-O (cm-1) 2001.29 s, 1921.98 s, 1885.76 s. Anal. Calcd for 1, C17H32BrMnO3P2: C, 42.43; H, 6.70. Found: C, 42.46; H, 6.83.

    Figure S1. 1H NMR (300 MHz, THF-d8) spectrum of 1.

    -0.20.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.03.23.43.63.8f1 (ppm)

    1H-JGR-d001-THF-d8-18-08-2016JGR-d0011H 300 MHzTHF-d818-08-2016JAGR

    1.0

    0

    1.0

    4

    2.0

    7

    13

    .37

    0.1

    0

    1.2

    31.2

    81.3

    11.3

    41.3

    61.3

    81.4

    11.4

    6

    1.7

    31.8

    81.9

    71.9

    82.0

    12.0

    32.0

    82.1

    02.1

    22.1

    82.2

    22.2

    92.3

    02.3

    82.7

    12.7

    52.7

    72.7

    92.8

    02.8

    22.8

    42.8

    42.8

    9

    3.5

    8

    MnCOP

    Br

    CO

    COP

    iPriPr

    iPriPr

    1

  •   S5

    Figure S2. 31P{1H} NMR (121 MHz, THF-d8) spectrum of 1.

    0102030405060708090100110120130140150f1 (ppm)

    31P-JGR-d001-THF-d8-18-08-2016JGR-d00131P 121.4 MHzTHF-d818-08-2016JAGR

    80.4

    5

    MnCOP

    Br

    CO

    COP

    iPriPr

    iPriPr

    1

  •   S6

    Figure S3. FTIR (ATR) spectrum of 1.

    c:\

    docum

    ents

    and s

    ett

    ings\p

    eserv

    ice\m

    y docum

    ents

    \zip

    ir-

    uv\

    inorg

    anic

    a\d

    r. juve

    ntino g

    arc

    ia\jorg

    e a

    nto

    nio

    gard

    uño\jgrd

    001-1

    .asc

    40

    00

    .03

    60

    03

    20

    02

    80

    02

    40

    02

    00

    01

    80

    01

    60

    01

    40

    01

    20

    01

    00

    08

    00

    60

    04

    00

    .0

    0.0510

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    10

    0.0

    cm-1

    %T

    JGR

    D0

    01

    Jorg

    e A

    nto

    nio

    Gar

    duño

    Ro

    jas

    FT

    IR p

    or

    refl

    ecta

    nci

    a A

    TR

    So

    lici

    tud

    no

    . 3

    22

    77

    22

    24

    91

    3-s

    epti

    emb

    re-2

    01

    6R

    eali

    zó:

    Q.

    MG

    F

    39

    18

    .66

    33

    56

    .23

    29

    60

    .77

    29

    34

    .09

    28

    98

    .91

    28

    74

    .40

    20

    01

    .2919

    21

    .98

    18

    85

    .76

    16

    36

    .81

    14

    62

    .85

    14

    14

    .72

    13

    87

    .44

    13

    70

    .0712

    93

    .16

    12

    55

    .54

    11

    27

    .12

    10

    89

    .37

    10

    50

    .24

    10

    29

    .4096

    4.4

    8

    92

    7.0

    0

    88

    3.9

    7

    86

    8.4

    1 81

    1.7

    2

    75

    5.5

    2

    72

    9.5

    2

    70

    1.1

    8

    68

    4.3

    2

    67

    0.2

    6

    65

    5.2

    9

    63

    2.3

    2

    61

    4.7

    7

    56

    0.2

    2

    52

    8.3

    55

    13

    .37

    50

    2.7

    44

    66

    .97

    43

    1.1

    6

    MnCOP

    Br

    CO

    COP

    iPriPr

    iPriPr

    1

  •   S7

    Procedure S1. Assays of air-stability for 1

    1 (5 mg) was exposed to air in the solid state, dissolved in CDCl3 (0.5 mL) and placed into an NMR tube. This solution was monitored both after 20 min and one week. Recorded spectra are as follows:

    Figure S4. 31P{1H} NMR (121 MHz) analysis of a CDCl3 solution of 1 exposed to air.

    Figure S5. 1H NMR (300 MHz) of a CDCl3 solution of 1 exposed to air for one week.

    0102030405060708090100110f1 (ppm)

    CDCl3 solution of 1 exposed to air for one week

    80.2 ppm

    80.2 ppm

    80.5 ppm

    CDCl3 solution of 1 exposed to air for 20 min

    THF-d8 solution of 1 under an inert atmosphere

    0.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.72.82.93.03.1f1 (ppm)

    1H-JGR-d001-CDCl3-31-08-2016JGR-d0011H 300 MHzCDCl331-08-2016JAGR

    1.0

    0

    1.0

    9

    2.2

    0

    11

    .79

    1.2

    81.3

    11.3

    31.3

    51.3

    71.4

    01.4

    01.4

    3

    1.7

    61.7

    81.8

    01.8

    41.8

    71.9

    01.9

    21.9

    41.9

    51.9

    72.0

    02.0

    32.0

    82.1

    02.1

    72.2

    12.2

    32.2

    52.2

    82.3

    02.3

    22.3

    5

    2.7

    32.7

    62.7

    82.8

    12.8

    32.8

    6

  •   S8

    Characterization of for fac-[(CO)3Mn(dippe)(OSO2CF3)] (2)

    2 (43.4 mg, 75%). 1H NMR (300 MHz, THF-d8, δ/ ppm) 2.53-2.27 (m, 1H), 2.18-2.00 (m, 1H), 1.47-1.30 (m, 6H). 31P{1H} NMR (121 MHz, THF-d8, δ/ ppm) 85.74 (s). 19F NMR (282 MHz, THF-d8, δ/ ppm) -78.19 (s). FTIR (ATR) νC-H (cm-1) 2968.39 m, 2941.35 w, 2881.54 w; νC-O (cm-1) 2021.57 s, 1957.71 s, 1895.22 s. Anal. Calcd for 2, C18H32F3MnO6P2S: C, 39.28; H, 5.86; S, 5.82. Found: C, 38.44; H, 5.88; S, 5.75.

    Figure S6. 1H NMR (300 MHz, THF-d8) spectrum of 2

    0.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.73.8f1 (ppm)

    JGR-d004.10.fid

    1.0

    0

    0.9

    6

    5.7

    2

    0.8

    70.8

    90.9

    60.9

    8

    1.3

    01.3

    11.3

    21.3

    41.3

    51.3

    61.3

    71.3

    91.4

    01.4

    21.4

    41.4

    7

    1.7

    31.9

    72.0

    02.0

    12.0

    32.0

    52.0

    62.0

    82.0

    92.1

    12.1

    32.1

    42.1

    62.1

    82.2

    12.2

    72.3

    02.3

    22.3

    42.3

    72.3

    92.4

    12.4

    32.4

    52.4

    62.4

    82.4

    82.5

    12.5

    3

    3.5

    8

    MnCO

    O

    PCO

    COP

    iPr iPr

    iPriPr S

    O

    CF3

    O2

  •   S9

    Figure S7. 31P{1H} NMR (121 MHz, THF-d8) spectrum of 2.

    Figure S8. 19F NMR (282 MHz, THF-d8) spectrum of 2.

    0102030405060708090100110120130140150f1 (ppm)

    JGR-d004.11.fid

    85

    .74

    -78.95-78.90-78.85-78.80-78.75-78.70-78.65-78.60-78.55-78.50-78.45-78.40-78.35-78.30-78.25-78.20-78.15-78.10-78.05-78.00-77.95-77.90-77.85-77.80-77.75-77.70-77.65-77.60f1 (ppm)

    JGR-d004.12.fid

    -7

    8.8

    8

    -7

    8.6

    7

    -7

    8.4

    2

    -7

    8.3

    6

    -7

    8.2

    2

    -7

    8.1

    9

    -7

    8.0

    4

    -7

    7.7

    5

    MnCO

    O

    PCO

    COP

    iPr iPr

    iPriPr S

    O

    CF3

    O2

    MnCO

    O

    PCO

    COP

    iPr iPr

    iPriPr S

    O

    CF3

    O2

  •   S10

    Figure S9. FTIR (ATR) spectrum of 2.

    c:\

    docum

    ents

    and s

    ett

    ings\p

    eserv

    ice\m

    y docum

    ents

    \zip

    ir-

    uv\

    inorg

    anic

    a\d

    r. juve

    ntino g

    arc

    ia\jorg

    e a

    nto

    nio

    gard

    uño\jgrd

    004.a

    sc

    40

    00

    .03

    60

    03

    20

    02

    80

    02

    40

    02

    00

    01

    80

    01

    60

    01

    40

    01

    20

    01

    00

    08

    00

    60

    04

    00

    .0

    0.0510

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    10

    0.0

    cm-1

    %T

    JGR

    D0

    04

    Jorg

    e A

    nto

    nio

    Gar

    duño

    Ro

    jas

    FT

    IR p

    or

    refl

    ecta

    nci

    a A

    TR

    So

    lici

    tud

    no

    . 4

    31

    39

    98

    44

    42

    6-s

    epti

    emb

    re-2

    01

    6R

    eali

    zó:

    Q.

    MG

    F

    39

    61

    .34

    37

    80

    .09

    29

    68

    .39

    29

    41

    .35

    28

    81

    .54

    20

    21

    .57

    19

    57

    .71

    18

    95

    .22

    18

    60

    .45

    15

    53

    .37 14

    65

    .05

    14

    14

    .37

    13

    90

    .91

    13

    74

    .19

    13

    14

    .10

    12

    55

    .94

    12

    31

    .53

    11

    98

    .27

    11

    70

    .5810

    89

    .80

    10

    51

    .12

    10

    29

    .35

    10

    05

    .6392

    8.4

    5

    88

    4.4

    8

    86

    8.4

    2

    81

    9.7

    4

    80

    2.8

    8

    76

    3.2

    9 70

    4.5

    8

    68

    5.3

    46

    70

    .67

    66

    2.4

    8

    63

    5.5

    3

    60

    2.3

    8

    51

    4.9

    7

    49

    4.6

    84

    60

    .32

    MnCO

    O

    PCO

    COP

    iPr iPr

    iPriPr S

    O

    CF3

    O2

  •   S11

    Characterization of fac-[(CO)3Mn(dippe)(κ1-PhCN)](OSO2CF3) (3)

    3 (30.9 mg, 85%). 1H NMR (300 MHz, THF-d8, δ/ ppm) 8.06-7.49 (m, 5H), 3.58 (s, THF), 2.78-1.94 (m, 8H), 1.73 (s, THF), 1.53-1.23 (m, 24 H). 31P{1H} NMR (121 MHz, THF-d8, δ/ ppm) 3, 87.03 (s); 2, 85.74 (s). 19F NMR (282 MHz, THF-d8, δ/ ppm) -78.17. FTIR (ATR) νC-H (cm-1) 2965.79 w, 2939.65 w, 2878.40 w, 2903.02 w; νC-N (cm-1) 2250.91 vw; νC-O (cm-1) 2021.53 s, 1937.65 s, 1921.16 s. Anal. Calcd for 3, C25H37F3MnNO6P2S: C, 45.95; H, 5.71; N, 2.14; S, 4.91. Found: C, 44.06; H, 5.77; N, 2.00; S, 5.03.

    Figure S10. 1H NMR (300 MHz, THF-d8) spectrum of 3.

    0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

    JGR-d006-.10.fid

    1.0

    0 1.7

    3

    5.0

    1

    0.1

    10.8

    40.8

    60.8

    90.9

    10.9

    60.9

    81.3

    11.3

    21.3

    31.3

    41.3

    61.3

    81.3

    91.4

    21.4

    51.4

    71.4

    71.5

    01.7

    32.0

    22.0

    42.0

    52.0

    72.0

    82.0

    92.1

    22.1

    42.1

    52.1

    72.1

    92.2

    22.2

    72.2

    92.3

    02.3

    22.3

    42.3

    62.4

    32.4

    62.4

    62.4

    82.5

    12.5

    42.5

    62.5

    92.6

    22.6

    42.6

    52.6

    62.6

    82.6

    92.7

    03.5

    87.4

    97.5

    17.5

    37.5

    67.5

    87.6

    17.6

    37.6

    67.6

    97.7

    07.7

    17.7

    27.7

    58.0

    38.0

    6

    MnCOP

    N

    CO

    COP

    iPriPr

    iPriPr

    3

    OSO2CF3

  •   S12

    Figure S11. 31P{1H} NMR (121 MHz, THF-d8) spectrum of 3.

    Figure S12. 19F NMR (282 MHz, THF-d8) spectrum of 3.

    0102030405060708090100110120130140150f1 (ppm)

    JGR-d006-.12.fid

    85

    .74

    87

    .03

    -79.6-79.5-79.4-79.3-79.2-79.1-79.0-78.9-78.8-78.7-78.6-78.5-78.4-78.3-78.2-78.1-78.0-77.9-77.8-77.7-77.6-77.5-77.4-77.3-77.2-77.1-77.0-76.9f1 (ppm)

    JGR-d006-.13.fid

    -7

    8.8

    7

    -7

    8.6

    5

    -7

    8.4

    0

    -7

    8.1

    7

    -7

    7.7

    4

    MnCOP

    N

    CO

    COP

    iPriPr

    iPriPr

    3

    OSO2CF3

    MnCOP

    N

    CO

    COP

    iPriPr

    iPriPr

    3

    OSO2CF3

  •   S13

    Figure S13. FTIR (ATR) spectrum of 3.

    c:\

    docum

    ents

    and s

    ett

    ings\p

    eserv

    ice\m

    y docum

    ents

    \zip

    ir-

    uv\

    inorg

    anic

    a\d

    r. juve

    ntino g

    arc

    ia\jorg

    e a

    nto

    nio

    gard

    uño\jgrd

    006.a

    sc

    40

    00

    .03

    60

    03

    20

    02

    80

    02

    40

    02

    00

    01

    80

    01

    60

    01

    40

    01

    20

    01

    00

    08

    00

    60

    04

    00

    .0

    0.0510

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    10

    0.0

    cm-1

    %T

    JGR

    D0

    06

    Jorg

    e G

    ard

    uño

    Ro

    jas

    FT

    IR p

    or

    refl

    ecta

    nci

    a A

    TR

    So

    lici

    tud

    no

    . 5

    26

    66

    98

    13

    53

    0-s

    epti

    emb

    re-2

    01

    6R

    eali

    zó:

    Q.

    MG

    F

    38

    46

    .93

    29

    65

    .79

    29

    39

    .65

    28

    78

    .40

    22

    50

    .91

    20

    21

    .5319

    37

    .65

    19

    21

    .16

    15

    94

    .99

    14

    62

    .04

    14

    47

    .38

    14

    17

    .52

    13

    92

    .63

    13

    73

    .60 1

    27

    1.5

    6

    12

    56

    .50

    12

    22

    .51

    12

    02

    .44

    11

    79

    .03

    11

    44

    .80

    10

    92

    .82

    10

    51

    .71

    10

    28

    .46

    92

    6.1

    1

    88

    2.0

    9 81

    3.7

    07

    59

    .79

    70

    4.9

    8

    68

    9.6

    6

    68

    3.3

    2

    66

    8.4

    56

    58

    .57

    63

    3.9

    0

    61

    0.4

    1

    57

    1.0

    0

    55

    6.9

    5

    54

    5.4

    15

    26

    .61

    51

    5.3

    7

    48

    8.4

    6

    46

    8.6

    3

    MnCOP

    N

    CO

    COP

    iPriPr

    iPriPr

    3

    OSO2CF3

  •   S14

    Figure S14. 1H NMR (300 MHz, C7D8) spectrum of 3.

    Figure S15. 31P{1H} NMR (121 MHz, C7D8) spectrum of 3.

    -0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

    JGR-d006B.11.fid

    0.2

    60.8

    20.8

    40.8

    80.9

    40.9

    60.9

    91.0

    81.1

    11.2

    81.3

    01.3

    21.3

    71.4

    12.0

    72.0

    72.0

    82.0

    92.0

    92.4

    3

    2.7

    7

    6.6

    66.6

    96.7

    16.8

    16.8

    46.8

    66.9

    77.0

    17.0

    9

    7.7

    0

    404550556065707580859095100105110115120125130135f1 (ppm)

    JGR-d006B.13.fid

    85.2

    3

    86.8

    7

    MnCOP

    N

    CO

    COP

    iPriPr

    iPriPr

    3

    OSO2CF3

    MnCOP

    N

    CO

    COP

    iPriPr

    iPriPr

    3

    OSO2CF3

  •   S15

    Procedure S2. Competence for a vacant site in the “fac-[(CO)3Mn(dippe)]” core

    In the glovebox, 3 (11 mg, 0.017 mmol) was dissolved in the minimal amount of THF-d8. To this pale-yellow solution was added a colorless THF-d8 solution of benzonitrile (5.3 mg, 0.051 mmol) to form a yellow solution, which was placed in a Wilmad NMR tube equipped with a J. Young valve and stirred for 20 minutes. An NMR analysis of this solution was performed. After that, in the glovebox, benzonitrile (29.8 mg, 0.29 mmol) was added to the same mixture and the almost colorless solution formed was stirred inside the same NMR tube for 20 minutes. A new NMR analysis of the solution was performed. Recorded spectra are as follows:

    Figure S16. 1H NMR (300 MHz) spectra for 3 in THF-d8 solution and with added PhCN.

    NOTE: In the figure above: (a) 3 as synthesized and purified in THF-d8 solution with no extra PhCN added; (b) 3 in THF-d8 solution with 3 equivalents of PhCN added; and (c) 3 in THF-d8 solution with 20 equivalents of PhCN added. Above each assigned signal are shown values for the integrals. In parentheses are shown the actual integral values as extracted from the spectra. From the integrals on trace (a) it is inferred some PhCN dissociates when 3 is in solution. In traces (b) and (c) the values in parentheses approximate to the expected integral values for 3, so in the presence of an excess PhCN, species 3 becomes predominant in solution.

    -0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

    JGR-d019-2.10.fid

    JGR-d019-.10.fid

    JGR-d006-.10.fid

    (a) 3 in THF-d8

    (b) 3 + 3 PhCN

    (c) 3 + 20 PhCN

    2H (1.00) 8H (4.28)

    24H (13.02)

    2H (1.00) 6H (2.77)14H (6.60)

    40H (19.60)

    2H (1.00)

    24H (13.55)

    8H (4.54)

  •   S16

    Figure S17. 31P{1H} NMR (121 MHz) spectra for 3 in THF-d8 solution and with PhCN added.

    NOTE: In Figure S17: (a) 3 as synthesized and purified in THF-d8 solution with no extra PhCN added; (b) 3 in THF-d8 solution with 3 equivalents of PhCN added; and (c) 3 in THF-d8 solution with 20 equivalents of PhCN added. Signals are assigned to species 2 (86 ppm) and 3 (87 ppm) coexisting in solution in trace (a). On increasing the concentration of PhCN [traces (b) and (c)], species 3 becomes predominant.

    Figure S18. 1H NMR (300 MHz, THF-d8) of free and coordinated benzonitrile.

    NOTE: In Figure S18: the green trace displays the signals for free benzonitrile and the blue trace corresponds to a mixture of free and coordinated benzonitrile in complex 3. Blue trace was taken from the aromatic region of trace b in Figure S16.

    (a) 3 in THF-d8 solution

    5101520253035404550556065707580859095100105110115120125130f1 (ppm)

    (b) 3 + 3 PhCN

    (c) 3 + 20 PhCN

    3 (87 ppm)

    3 (87 ppm)

    3 (87 ppm)

    2 (86 ppm)

    2 (86 ppm)

    7.457.507.557.607.657.707.757.807.857.907.958.008.058.10f1 (ppm)

    7.4

    9

    7.5

    1

    7.5

    4

    7.5

    6

    7.5

    8

    7.6

    1

    7.6

    3

    7.6

    6

    7.6

    9

    7.7

    2

    7.7

    5

    8.0

    4

    8.0

    7

  •   S17

    Procedure S3. Thermolysis of 4 in a 1:2 v/v mixture of THF-d8/H2O

    In a Wilmad NMR tube equipped with a J. Young valve, 2 (5 mg, 0.0092 mmol) was dissolved in THF-d8 (0.5 mL) and then H2O (1 mL, 0.055 mmol) was added. The readily formed yellow solution was heated in an oil bath at 100 ºC for 6 h and then for 12 h to complete a total heating time of 18 h. 31P{1H} NMR analysis of the mixture at t = 0, 6 h, and 18 h, were performed at room temperature. Recorded spectra are as follows:

    Figure S19. 31P{1H} NMR (121 MHz) monitoring of a THF-d8/H2O (1:2 v/v) solution of 2 at variable

    temperature.

    NOTE: Upon the addition of excess water to a THF-d8 solution of 2, the corresponding chemical shift changes from δP 85.7 ppm (See Figure S7) to δP 86.8. On the basis of the observed phenomena when increasing the amount of a neutral donor molecule in the medium, namely benzonitrile (See Figure S17), the new signal at 86.8 ppm is proposed to stem from species fac-[(CO)3Mn(dippe)(OH2)](OTf) (4).

    -100-90-80-70-60-50-40-30-20-100102030405060708090100110120130f1 (ppm)

    THF-d8/H2O (1:2) solution of 2 at room temperature

    THF-d8/H2O (1:2) solution of 2 heated at 100 ºC for 6 h

    THF-d8/H2O (1:2) solution of 2 heated at 100 ºC for 18 h

    86.8 ppm

    86.8 ppm

    86.8 ppm

    16 ppm18 ppm

  •   S18

    Figure S20. 1H (300 MHz) spectrum of a THF-d8/H2O (1:2 v/v) solution of 2 at room temperature.

    Procedure S4. 31P{1H} NMR analysis of the binding of benzamide to the “fac-[(CO)3Mn(dippe)]+” core

    In the glovebox, 2 (15 mg, 0.027 mmol) was dissolved in the minimal amount of THF-d8. To this yellow solution was added a colorless THF-d8 solution of benzamide (3.3 mg, 0.027 mmol) to form a yellow solution, which was placed in a Wilmad NMR tube equipped with a J. Young valve and stirred for 20 minutes. An NMR analysis of this solution was performed. After that, in the glovebox, to the same mixture was added benzamide (29 mg, 0.24 mmol) and the yellow solution formed was stirred inside the same NMR tube for 20 minutes. A new NMR analysis of the solution was performed. Recorded spectra are as follows:

    -4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f1 (ppm)

    JGRd035.10.fid

    1.2

    6

    1.7

    3

    2.1

    3

    2.4

    8

    3.6

    0

    4.5

    6

    1.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.7f1 (ppm)

    1.1

    81.2

    01.2

    41.2

    51.2

    61.2

    71.3

    01.3

    11.3

    21.3

    41.3

    61.3

    9

    1.7

    3

    2.0

    42.0

    52.0

    82.1

    02.1

    32.1

    52.1

    62.4

    32.4

    42.4

    62.4

    72.4

    82.4

    92.5

    02.5

    12.5

    32.5

    42.5

    52.5

    6

    H2O

    MnCO

    OH2

    PCO

    COP

    iPr iPr

    iPriPr

    4

    OSO2CF3

  •   S19

    Figure S21. 31P{1H} NMR spectra for the addition of benzamide to a THF-d8 solution of 2

    NOTE: Upon the addition of excess benzamide to a THF-d8 solution of 2, a new signal is observed at δP 87.8. On the basis of the observed phenomena when increasing the amount of a neutral donor molecule in the medium, namely benzonitrile (See Figure S17), new signal at 87.8 ppm is proposed to stem from species fac-[(CO)3Mn(dippe)(PhC(O)NH2)](OTf) (5).

    Procedure S5. 31P{1H} NMR analysis of the model reaction crude.

    In the glovebox, a colorless THF solution of benzonitrile (47.3 mg, 0.46 mmol) was added dropwise to a yellow THF solution of 2 (5 mg, 0.0092 mmol). The readily formed yellow solution was transferred to a 25 mL Schlenk tube (Synthware Glass) (1 mL THF total volume), to which water (2 mL, 111 mmol) was added to form a pale-yellow emulsion. The reaction mixture was stirred into an oil bath at 100 ºC during 18 h. After that, the solvent and volatiles were removed under reduced pressure in the inert gas/ vacuum double manifold and the residue was dried under vacuum for 4 h. Taking care to not expose the remaining mixture to the air, this was dissolved in THF-d8 inside the glovebox and transferred to a Wilmad NMR tube equipped with a J. Young valve to perform the corresponding analysis of the readily formed yellow solution.

    -10-505101520253035404550556065707580859095100105110115120125130f1 (ppm)

    1175-31P_JGRD051A31P H3PO4 / D2O0 ppm05.junio.2017tpwr=53 pw90=8

    1143-31P_JGRD0511143

    USAII-UNAM21.JUNIO.2017Dr. Juventino GarciaJorge Garduño / THF-d831p 162 MHz400-VNMRSRDM

    (a) THF-d8 solution of 2 with 1 equivalent of benzamide added

    (b) THF-d8 solution of 2 with 10 equivalents of benzamide added

    2 (85.7 ppm)

    5 (87.8 ppm)

    5 (87.8 ppm)

    2 (85.7 ppm)

  •   S20

    Figure S22. 31P{1H} NMR spectrum of the model reaction crude.

    NOTE: In the (e) trace is displayed the spectrum recorded after performing the experiment described in

    Procedure S5. The (a) to (d) upper traces are included for comparative purposes.

    Procedure S6. NMR analysis of the addition of water to a mixture of 2 and excess benzonitrile.

    In the glovebox, 2 (20.4 mg, 0.037 mmol) was dissolved in the minimal amount of THF-d8. To this yellow solution was added a colorless THF-d8 solution of benzonitrile (192 mg, 1.86 mmol) to form a yellow solution, which was placed in a Wilmad NMR tube equipped with a J. Young valve and stirred for 20 minutes to finally yield a pale-yellow solution. An NMR analysis of this solution was performed. After that, in the glovebox, to the same mixture was added water (1 µL, 0.056 mmol) and the yellow solution formed was stirred inside the same NMR tube for 20 minutes. A new NMR analysis of the solution was performed. Finally, in the glovebox, to the same mixture was added water (32 µL, 1.78 mmol) and the yellow solution formed was stirred inside the same NMR tube for 20 minutes. A final NMR analysis of the solution was performed. Recorded spectra are as follows:

    5101520253035404550556065707580859095f1 (ppm)

    (2)

    (3)

    (2)

    (4)

    (2)

    (4)

    (5)

    (2)(5)

    (dippe)

    chemical shift

    (2): fac-[(CO)3Mn(dippe)(OTf)] 85.7 ppm

    (3): fac-[(CO)3Mn(dippe)(PhCN)](OTf) 87.0 ppm

    (4): fac-[(CO)3Mn(dippe)(H2O)](OTf) 86.8 ppm

    (5): fac-[(CO)3Mn(dippe)(PhC(O)NH2)](OTf) 87.8 ppm

    dippe 9.2 ppm

    (a)

    (b)

    (c)

    (d)

    (e)

    THF-d8 solution of "as synthesized" 3

    THF-d8 solution of 2

    THF-d8/H2O (1:2 v/v) solution of 2 heated at 100 ºC for 18 h

    THF-d8 solution of 2 with 10 equivalents of benzamide added

    THF-d8 solution of the reaction crude

    Conditions: A THF/H2O (1:2 v/v) solution of 2 with added PhCN (50 equiv.) heated at 100 ºC for 18 h

  •   S21

    Figure S23. 31P{1H} (162 MHz) spectra for the addition of water to a THF-d8 solution of 2 and

    excess benzonitrile.

    Figure S24. 1H (400 MHz) spectra for the addition of water to a THF-d8 solution of 2 and excess

    benzonitrile.

    NOTE: In the 1H NMR spectra, upon the addition of water [0 equiv (red trace), 1.5 equiv (green trace), and 50 equiv (blue trace)] to a THF-d8 solution of 2 and 50 equiv of benzonitrile, the signature signal for coordinated benzonitrile shown in the inset is still observed (to compare see Figure S18). Additionally, in the 31P{1H} spectra only one signal is observed, corresponding to complex 3, indicating that under these conditions water does not substitute benzonitrile at the [Mn] core. Procedure S7. NMR monitoring of the actual model reaction mixture.

    In the glovebox, a THF-d8 colorless solution of benzonitrile (47.3 mg, 0.46 mmol) was added dropwise to a yellow THF-d8 solution of 2 (5 mg, 0.0092 mmol). The readily formed yellow solution was transferred to a Wilmad NMR tube equipped with a J. Young valve (0.6 mL THF total volume), to which water (1 mL, 56 mmol) was added to form a pale-yellow emulsion. An NMR analysis of the as prepared mixture (aqueous layer) was performed at room temperature. Then, the reaction mixture was heated into an oil bath at 100 ºC for 3 h during which a pale-yellow solution was observed inside the NMR tube. After that, acquisition of NMR spectra was performed at room temperature. Finally, the reaction mixture was heated

    -200-180-160-140-120-100-80-60-40-20020406080100120140160180200f1 (ppm)

    2 + 50 PhCN in THF-d8 at room temperature

    2 + 50 PhCN + 1.5 H2O in THF-d8 at room temperature

    2 + 50 PhCN + 50 H2O in THF-d8 at room temperature

    7.407.457.507.557.607.657.707.757.807.857.907.958.008.058.10f1 (ppm)

    7.867.887.907.927.947.967.988.008.028.04f1 (ppm)

  •   S22

    into an oil bath at 100 ºC during 6 h (accumulated time of 9 h) and new NMR spectra were recorded at room temperature.

    Figure S25. 31P{1H} NMR (121 MHz, THF-d8) monitoring of the reaction between benzonitrile and

    water catalyzed by 2.

    Figure S26. 1H NMR (300 MHz, THF-d8) monitoring of the reaction between benzonitrile and water catalyzed by 2.

     

    3035404550556065707580859095100105110115120125130135140f1 (ppm)

    (a)

    (b)

    (c)

    As prepared model reaction mixture

    Model reaction mixture after 3 h at 100 ºC

    Model reaction mixture after 9 h at 100 ºC

    86.6 ppm

    86.6 ppm

    86.6 ppm

    0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

    (a)

    (b)

    (c)

    As prepared model reaction mixture

    Model reaction mixture after 3 h at 100 ºC

    Model reaction mixture after 9 h at 100 ºC

  •   S23

     

    Procedure S8. Single crystal X-Ray Diffraction for 2

    In the glovebox, a freshly synthesized batch of 2 (20 mg, 0.036 mmol) was dissolved in toluene (about 1 mL). The yellow solution was stored at -30 ºC for 48 h under an argon atmosphere, after which yellow crystals were obtained. Before analysis, the solid was protected with Fluorolube®.  

    Table S1. Crystal data and structure refinement for 2.

    Identification code 2 Empirical formula C18 H32 F3 Mn O6 P2 S Formula weight 550.37 Temperature 130(2) K Wavelength 0.71073 Å Crystal system Orthorhombic Space group P 21 21 21 Unit cell dimensions a = 8.6949(6) Å b = 13.9549(9) Å c = 19.9508(15) Å Volume 2420.8(3) Å3 Z 4 Density (calculated) 1.510 Mg/m3 Absorption coefficient 0.818 mm-1 F(000) 1144 Crystal size 0.400 x 0.130 x 0.030 mm3 Theta range for data collection 3.394 to 25.347°. Index ranges -6

  •   S24

    Table S2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

    x x y z U(eq) C(1) 3651(13) 5646(10) 6474(7) 40(3) C(2) 3487(16) 5518(11) 5757(8) 63(4) C(3) 4850(20) 4921(12) 4492(9) 75(3) C(4) 5077(18) 5826(12) 4132(7) 70(4) C(6) 5040(20) 3671(12) 5702(9) 75(3) C(9) 5891(14) 5534(8) 7506(6) 36(3) C(10) 7459(15) 5787(9) 7817(6) 45(3) C(11) 4598(16) 5688(10) 8003(6) 50(3) C(12) 5174(15) 7399(7) 6881(6) 36(3) C(13) 6649(15) 7980(9) 6965(7) 49(4) C(14) 4131(16) 7876(9) 6365(6) 45(3) C(15) 8923(17) 6372(9) 6206(6) 38(3) C(16) 6870(14) 6760(10) 5372(7) 43(3) C(17) 8454(15) 5320(8) 5120(6) 35(3) C(18) 8930(17) 3053(10) 6998(8) 50(4) F(1) 7809(11) 2530(6) 6743(6) 92(3) F(2) 10145(10) 2511(5) 7067(4) 68(3) F(3) 8502(12) 3341(7) 7585(5) 84(3) Mn(1) 7299(2) 5720(1) 5830(1) 30(1) O(6) 9120(12) 5135(7) 4653(5) 56(3) O(1) 9961(10) 6820(6) 6377(4) 44(2) O(2) 6706(11) 7483(6) 5092(5) 49(2) O(3) 7815(9) 4497(5) 6404(4) 33(2) O(4) 9857(13) 3663(7) 5858(5) 68(3) O(5) 10440(11) 4614(6) 6842(5) 59(3) P(1) 5165(4) 4897(2) 5393(2) 34(1) P(2) 5562(4) 6123(2) 6686(2) 31(1) S(1) 9350(4) 4064(2) 6454(2) 36(1) C(5) 3420(20) 4412(17) 4268(12) 75(3) C(7) 6120(50) 3080(20) 5240(20) 75(3) C(8) 3500(30) 3263(18) 5859(15) 75(3) C(5P) 2890(50) 5100(60) 4560(40) 75(3) C(7P) 5890(90) 2930(40) 5350(40) 75(3) C(8P) 4400(60) 3430(40) 6340(20) 75(3)

  •   S25

    Table S3. Bond lengths [Å] and angles [°] for 2.

    C(1)-C(2) 1.447(19) C(1)-P(2) 1.840(12) C(1)-H(1A) 1.0078 C(1)-H(1B) 0.9900 C(2)-P(1) 1.846(15) C(2)-H(2A) 0.9105 C(2)-H(2B) 0.9734 C(3)-C(4) 1.47(2) C(3)-C(5) 1.50(2) C(3)-C(5P) 1.73(4) C(3)-P(1) 1.817(18) C(3)-H(3) 1.0000 C(4)-H(4A) 0.9800 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(6)-C(8P) 1.43(4) C(6)-C(7P) 1.46(5) C(6)-C(8) 1.49(3) C(6)-C(7) 1.55(4) C(6)-P(1) 1.822(17) C(6)-H(6) 1.0134 C(9)-C(11) 1.514(16) C(9)-C(10) 1.539(17) C(9)-P(2) 1.854(11) C(9)-H(9) 1.0000 C(10)-H(10A) 0.9800 C(10)-H(10B) 0.9800 C(10)-H(10C) 0.9800 C(11)-H(11A) 0.9800 C(11)-H(11B) 0.9800 C(11)-H(11C) 0.9800 C(12)-C(14) 1.525(16) C(12)-C(13) 1.527(17) C(12)-P(2) 1.853(11) C(12)-H(12) 1.0000 C(13)-H(13A) 0.9800 C(13)-H(13B) 0.9800 C(13)-H(13C) 0.9800 C(14)-H(14A) 0.9800 C(14)-H(14B) 0.9800 C(14)-H(14C) 0.9800 C(15)-O(1) 1.150(15) C(15)-Mn(1) 1.840(15) C(16)-O(2) 1.163(15) C(16)-Mn(1) 1.756(14) C(17)-O(6) 1.125(14) C(17)-Mn(1) 1.825(13) C(18)-F(3) 1.293(17) C(18)-F(2) 1.306(15) C(18)-F(1) 1.320(16) C(18)-S(1) 1.817(14) Mn(1)-O(3) 2.103(7)

    Mn(1)-P(2) 2.348(4) Mn(1)-P(1) 2.350(4) O(3)-S(1) 1.468(8) O(4)-S(1) 1.385(10) O(5)-S(1) 1.445(9) C(5)-H(5A) 0.9800 C(5)-H(5B) 0.9800 C(5)-H(5C) 0.9800 C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800 C(5P)-H(5PA) 0.9800 C(5P)-H(5PB) 0.9800 C(5P)-H(5PC) 0.9800 C(7P)-H(7PA) 0.9800 C(7P)-H(7PB) 0.9800 C(7P)-H(7PC) 0.9800 C(8P)-H(8PA) 1.0473 C(8P)-H(8PB) 0.9800 C(8P)-H(8PC) 0.9801 C(2)-C(1)-P(2) 111.2(9) C(2)-C(1)-H(1A) 133.4 P(2)-C(1)-H(1A) 99.1 C(2)-C(1)-H(1B) 109.3 P(2)-C(1)-H(1B) 109.3 H(1A)-C(1)-H(1B) 91.9 C(1)-C(2)-P(1) 111.6(10) C(1)-C(2)-H(2A) 96.6 P(1)-C(2)-H(2A) 113.6 C(1)-C(2)-H(2B) 97.9 P(1)-C(2)-H(2B) 114.5 H(2A)-C(2)-H(2B) 119.3 C(4)-C(3)-C(5) 111.9(16) C(4)-C(3)-C(5P) 93(3) C(4)-C(3)-P(1) 118.7(12) C(5)-C(3)-P(1) 114.2(14) C(5P)-C(3)-P(1) 94(3) C(4)-C(3)-H(3) 103.1 C(5)-C(3)-H(3) 103.2 C(5P)-C(3)-H(3) 146.5 P(1)-C(3)-H(3) 103.3 C(3)-C(4)-H(4A) 109.5 C(3)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 C(3)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 C(8P)-C(6)-C(7P) 117(3)

  •   S26

    C(8)-C(6)-C(7) 118(2) C(8P)-C(6)-P(1) 123(2) C(7P)-C(6)-P(1) 118(3) C(8)-C(6)-P(1) 118.9(15) C(7)-C(6)-P(1) 105.2(15) C(8P)-C(6)-H(6) 85.3 C(7P)-C(6)-H(6) 92.6 C(8)-C(6)-H(6) 136.4 C(7)-C(6)-H(6) 88.3 P(1)-C(6)-H(6) 82.2 C(11)-C(9)-C(10) 111.2(10) C(11)-C(9)-P(2) 113.6(8) C(10)-C(9)-P(2) 113.0(8) C(11)-C(9)-H(9) 106.1 C(10)-C(9)-H(9) 106.1 P(2)-C(9)-H(9) 106.1 C(9)-C(10)-H(10A) 109.5 C(9)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 C(9)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 C(9)-C(11)-H(11A) 109.5 C(9)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 C(9)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 C(14)-C(12)-C(13) 110.0(10) C(14)-C(12)-P(2) 112.7(8) C(13)-C(12)-P(2) 112.4(8) C(14)-C(12)-H(12) 107.1 C(13)-C(12)-H(12) 107.1 P(2)-C(12)-H(12) 107.1 C(12)-C(13)-H(13A) 109.5 C(12)-C(13)-H(13B) 109.5 H(13A)-C(13)-H(13B) 109.5 C(12)-C(13)-H(13C) 109.5 H(13A)-C(13)-H(13C) 109.5 H(13B)-C(13)-H(13C) 109.5 C(12)-C(14)-H(14A) 109.5 C(12)-C(14)-H(14B) 109.5 H(14A)-C(14)-H(14B) 109.5 C(12)-C(14)-H(14C) 109.5 H(14A)-C(14)-H(14C) 109.5 H(14B)-C(14)-H(14C) 109.5 O(1)-C(15)-Mn(1) 173.0(11) O(2)-C(16)-Mn(1) 173.8(11) O(6)-C(17)-Mn(1) 174.4(11) F(3)-C(18)-F(2) 108.5(12) F(3)-C(18)-F(1) 108.0(14) F(2)-C(18)-F(1) 108.5(12) F(3)-C(18)-S(1) 111.0(10) F(2)-C(18)-S(1) 110.5(11) F(1)-C(18)-S(1) 110.3(10) C(16)-Mn(1)-C(17) 88.0(5)

    C(16)-Mn(1)-C(15) 88.1(5) C(17)-Mn(1)-C(15) 92.6(6) C(16)-Mn(1)-O(3) 178.4(5) C(17)-Mn(1)-O(3) 93.3(4) C(15)-Mn(1)-O(3) 90.9(4) C(16)-Mn(1)-P(2) 92.5(4) C(17)-Mn(1)-P(2) 172.9(4) C(15)-Mn(1)-P(2) 94.5(4) O(3)-Mn(1)-P(2) 86.3(2) C(16)-Mn(1)-P(1) 92.4(4) C(17)-Mn(1)-P(1) 89.8(4) C(15)-Mn(1)-P(1) 177.5(4) O(3)-Mn(1)-P(1) 88.5(2) P(2)-Mn(1)-P(1) 83.07(12) S(1)-O(3)-Mn(1) 124.4(5) C(3)-P(1)-C(6) 110.1(8) C(3)-P(1)-C(2) 105.2(8) C(6)-P(1)-C(2) 105.1(8) C(3)-P(1)-Mn(1) 118.4(5) C(6)-P(1)-Mn(1) 112.4(6) C(2)-P(1)-Mn(1) 104.4(5)

    C(1)-P(2)-C(12) 103.4(6) C(1)-P(2)-C(9) 100.5(6) C(12)-P(2)-C(9) 105.6(6) C(1)-P(2)-Mn(1) 109.1(4) C(12)-P(2)-Mn(1) 120.0(4) C(9)-P(2)-Mn(1) 115.9(4) O(4)-S(1)-O(5) 117.7(7) O(4)-S(1)-O(3) 113.4(6) O(5)-S(1)-O(3) 114.4(5) O(4)-S(1)-C(18) 105.3(7) O(5)-S(1)-C(18) 103.0(6) O(3)-S(1)-C(18) 100.2(6) C(3)-C(5)-H(5A) 109.5 C(3)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 C(3)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 C(6)-C(7)-H(7A) 109.5 C(6)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 C(6)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 C(6)-C(8)-H(8A) 109.5 C(6)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 C(6)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 C(3)-C(5P)-H(5PA) 109.5 C(3)-C(5P)-H(5PB) 109.5

  •   S27

    H(5PA)-C(5P)-H(5PB) 109.5 C(3)-C(5P)-H(5PC) 109.5 H(5PA)-C(5P)-H(5PC) 109.5 H(5PB)-C(5P)-H(5PC) 109.5 C(6)-C(7P)-H(7PA) 109.5 C(6)-C(7P)-H(7PB) 109.5 H(7PA)-C(7P)-H(7PB) 109.5 C(6)-C(7P)-H(7PC) 109.5 H(7PA)-C(7P)-H(7PC) 109.5

    H(7PB)-C(7P)-H(7PC) 109.5 C(6)-C(8P)-H(8PA) 123.3 C(6)-C(8P)-H(8PB) 108.0 H(8PA)-C(8P)-H(8PB) 105.6 C(6)-C(8P)-H(8PC) 109.3 H(8PA)-C(8P)-H(8PC) 100.5 H(8PB)-C(8P)-H(8PC) 109.5

  •   S28

    Table S4. Torsion angles [°] for 2.

    P(2)-C(1)-C(2)-P(1) 47.4(12) C(4)-C(3)-P(1)-C(6) -173.2(14) C(5)-C(3)-P(1)-C(6) 51.4(16) C(5P)-C(3)-P(1)-C(6) 91(3) C(4)-C(3)-P(1)-C(2) 74.1(14) C(5)-C(3)-P(1)-C(2) -61.3(16) C(5P)-C(3)-P(1)-C(2) -21(3) C(4)-C(3)-P(1)-Mn(1) -42.0(16) C(5)-C(3)-P(1)-Mn(1) -177.4(12) C(5P)-C(3)-P(1)-Mn(1) -137(3) C(8P)-C(6)-P(1)-C(3) -144(3) C(7P)-C(6)-P(1)-C(3) 48(4) C(8)-C(6)-P(1)-C(3) -84.0(19) C(7)-C(6)-P(1)-C(3) 50(2) C(8P)-C(6)-P(1)-C(2) -31(3) C(7P)-C(6)-P(1)-C(2) 161(4) C(8)-C(6)-P(1)-C(2) 29(2) C(7)-C(6)-P(1)-C(2) 163(2) C(8P)-C(6)-P(1)-Mn(1) 81(3) C(7P)-C(6)-P(1)-Mn(1) -87(4) C(8)-C(6)-P(1)-Mn(1) 141.8(17) C(7)-C(6)-P(1)-Mn(1) -84(2) C(1)-C(2)-P(1)-C(3) -173.9(10) C(1)-C(2)-P(1)-C(6) 69.9(12) C(1)-C(2)-P(1)-Mn(1) -48.5(10) C(2)-C(1)-P(2)-C(12) 104.3(11)

    C(2)-C(1)-P(2)-C(9) -146.7(10) C(2)-C(1)-P(2)-Mn(1) -24.5(11) C(14)-C(12)-P(2)-C(1) -45.9(10) C(13)-C(12)-P(2)-C(1) -170.9(10) C(14)-C(12)-P(2)-C(9) -151.0(9) C(13)-C(12)-P(2)-C(9) 84.0(10) C(14)-C(12)-P(2)-Mn(1) 75.8(10) C(13)-C(12)-P(2)-Mn(1) -49.3(10) C(11)-C(9)-P(2)-C(1) -53.1(10) C(10)-C(9)-P(2)-C(1) 179.0(9) C(11)-C(9)-P(2)-C(12) 54.2(11) C(10)-C(9)-P(2)-C(12) -73.7(10) C(11)-C(9)-P(2)-Mn(1) -170.4(8) C(10)-C(9)-P(2)-Mn(1) 61.7(9) Mn(1)-O(3)-S(1)-O(4) -67.0(8) Mn(1)-O(3)-S(1)-O(5) 71.9(8) Mn(1)-O(3)-S(1)-C(18) -178.7(6) F(3)-C(18)-S(1)-O(4) 177.3(10) F(2)-C(18)-S(1)-O(4) 57.0(12) F(1)-C(18)-S(1)-O(4) -63.0(12) F(3)-C(18)-S(1)-O(5) 53.4(12) F(2)-C(18)-S(1)-O(5) -66.9(12) F(1)-C(18)-S(1)-O(5) 173.1(11) F(3)-C(18)-S(1)-O(3) -64.8(11) F(2)-C(18)-S(1)-O(3) 174.9(10) F(1)-C(18)-S(1)-O(3) 54.9(12)

    ________________________________________________________________

  •   S29

     Figure S27. ORTEP plot (50% probability, 130 K) for complex 2

    Procedure S9. General procedure for the catalytic hydration of nitriles with complex 2

    In the glovebox, a THF solution of the corresponding nitrile (0.46 mmol) was added dropwise to a yellow THF solution of 2 (5 mg, 0.0092 mmol, or 10 mg, 0.0184 mmol). The formed solution was transferred to a 25 mL Schlenk tube (Synthware Glass) (1 mL THF total volume), to which water (2 mL, 111 mmol) was added to form an emulsion, which evolved to a solution upon heating. The reaction mixture was stirred into an oil bath at 100 ºC during 18 h. After that, the solvent and volatiles were removed under reduced pressure in the inert gas/ vacuum double manifold and the residue was chromatographed on a silica gel column with hexanes/ethyl acetate mixtures as the eluent. The solvents of the collected fractions were evaporated under vacuum, the remaining solids were recrystallized from acetone and finally washed with fresh hexanes. Characterization of amides 2a-j. 2a (50 mg, 90%); m.p. 126-128 ºC (lit.1 m.p. 126-127 ºC). 1H (400 MHz, DMSO-d6) 7.97 (bs, 1H), 7.87 (dt, 3JHH = 7 Hz, 4JHH = 2 Hz, 2H), 7.51 (tt, 3JHH = 7.3 Hz, 4JHH = 2 Hz, 1H), 7.44 (tdd, 3JHH = 7.6 Hz, 4JHH = 2 Hz, 5JHH = 1 Hz, 2H), 7.35 (bs, 1H). 13C{1H} (100 MHz) 167.9, 134.3, 131.2, 128.2, 127.4. MS (EI) m/z 121 [M+ (100)], 122 [M+1 (9 ± 0.5)], 123 [M+2 (

  •   S30

    Figure S28. 1H NMR (400 MHz, DMSO-d6) aromatic region of the spectrum of isolated benzamide from optimized model reaction

    7.057.107.157.207.257.307.357.407.457.507.557.607.657.707.757.807.857.907.958.008.058.108.158.20f1 (ppm)

    1.0

    0

    2.2

    6

    1.1

    3

    2.2

    6

    0.9

    7

    7.3

    5

    7.4

    37.4

    47.4

    6

    7.5

    07.5

    17.5

    3

    7.8

    67.8

    77.8

    87.8

    9

    7.9

    7

  •   S31

    Figure S29. 1H NMR (400 MHz, DMSO-d6) spectrum of isolated benzamide from optimized model

    reaction

    Figure S30. 13C{1H} NMR (100 MHz, DMSO-d6) spectrum of isolated benzamide from optimized

    model reaction

    -0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5f1 (ppm)

    1.0

    02

    .26

    1.1

    32

    .26

    0.9

    7

    2.4

    92.5

    02.5

    02.5

    02.5

    1

    3.3

    5

    7.3

    57.4

    37.4

    47.4

    67.5

    07.5

    17.5

    37.8

    67.8

    77.8

    87.8

    97.9

    7

    122124126128130132134136138140142144146148150152154156158160162164166168170172174f1 (ppm)

    127.4

    3128.1

    8

    131.1

    9

    134.2

    5

    167.8

    9

  •   S32

     Figure S31. MS(EI) of isolated benzamide from optimized model reaction

    2b (77 mg, 88%); m.p. 184-185 ºC (lit.2 m.p. 182-183 ºC). 1H (400 MHz, CDCl3/DMSO-d6) 8.04 (bs, 1H), 8.01 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 8.1 Hz, 2H), 7.25 (bs, 1H). 13C{1H} (100 MHz) 167.3, 137.5, 131.8 (q, 1JCF = 32.2 Hz), 128.1, 124.8 (q, 3JCF = 3.7 Hz), 122.2. 19F (376 MHz) -60.3 (s). MS (EI) m/z 189 (M+).

    Figure S32. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated p-

    trifluoromethylbenzamide

    7.157.207.257.307.357.407.457.507.557.607.657.707.757.807.857.907.958.008.058.10f1 (ppm)

    1.0

    0

    2.1

    1

    3.0

    9

    M1

    7.2

    5

    7.6

    3

    7.6

    5

    8.0

    08.0

    38.0

    4

  •   S33

    Figure S33. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated p-

    trifluoromethylbenzamide

    Figure S34. 19F NMR (376 MHz, CDCl3/DMSO-d6) spectrum of isolated p-

    trifluoromethylbenzamide

    115.5116.0116.5117.0117.5118.0118.5119.0119.5120.0120.5121.0121.5122.0122.5123.0123.5124.0124.5125.0125.5126.0126.5127.0127.5128.0128.5129.0129.5f1 (ppm)

    119.5

    298

    122.2

    365

    124.7

    410

    124.7

    774

    124.8

    143

    124.8

    496

    124.9

    442

    127.6

    521

    128.0

    648

    -61.9-61.8-61.7-61.6-61.5-61.4-61.3-61.2-61.1-61.0-60.9-60.8-60.7-60.6-60.5-60.4-60.3-60.2-60.1-60.0-59.9-59.8-59.7-59.6-59.5-59.4-59.3-59.2-59.1-59.0f1 (ppm)

    -60.7

    5

    -60.3

    2-60.3

    1-60.2

    5-60.2

    1-60.2

    0

    -60.0

    2

  •   S34

    Figure S35. MS(EI) of p-trifluoromethylbenzamide

    2c (57 mg, 89%); m.p. 154-156 ºC (lit.3 m.p. 153-154 ºC). 1H (400 MHz, CDCl3/DMSO-d6) 7.92 (dd, 3JHH = 8.6 Hz, 4JHF = 5.6 Hz, 2H), 7.89 (bs, 1H), 7.22 (bs, 1H), 7.14 (t, 3JHH = 3J HF = 8.7 Hz, 2H). 13C{1H} (100 MHz) 165.1, 162.6, 130.4, 129.9 (d, 3JCF = 8.9 Hz), 114.7 (d, 1JCF = 21.5 Hz). 19F (376 MHz) -107.5 (tt, 3JFH = 8.6 Hz, 4JFH = 5.5 Hz). MS (EI) m/z 139 (M+).

    Figure S36. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated p-fluorobenzamide

    6.86.97.07.17.27.37.47.57.67.77.87.98.08.18.28.38.4f1 (ppm)

    1.0

    0

    1.0

    4

    M1 M2

    7.1

    157

    7.1

    351

    7.1

    374

    7.1

    391

    7.1

    592

    7.2

    219

    7.8

    905

    7.9

    035

    7.9

    174

    7.9

    250

    7.9

    389

    8.1

    264

  •   S35

    Figure S37. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated p-fluorobenzamide

    Figure S38. 19F NMR (376 MHz, CDCl3/DMSO-d6) spectrum of isolated p-fluorobenzamide

    112114116118120122124126128130132134136138140142144146148150152154156158160162164166168f1 (ppm)

    M1M2

    114.5

    7918

    114.7

    9396

    129.8

    5381

    129.9

    4188

    130.4

    2855

    130.4

    3851

    162.5

    7997

    165.0

    5781

    166.8

    8371

    -107.72-107.70-107.68-107.66-107.64-107.62-107.60-107.58-107.56-107.54-107.52-107.50-107.48-107.46-107.44-107.42-107.40-107.38-107.36-107.34-107.32-107.30f1 (ppm)

    M1

    -107.5

    636

    -107.5

    491

    -107.5

    405

    -107.5

    341

    -107.5

    261

    -107.5

    176

    -107.5

    117

    -107.5

    033

    -107.4

    888

  •   S36

    Figure S39. MS(EI) of p-fluorobenzamide

    2d (91 mg, 94%); m.p. 152-153 ºC (lit.4 m.p. 150 ºC). 1H (400 MHz, CDCl3/DMSO-d6) 8.05 (bs, 1H), 7.84 (bs, 1H). 13C{1H} (100 MHz) 158.5, 144.4-144.0 (m), 142.3-141.6 (m), 139.7-139.4 (m), 138.2-137.7 (m), 135.7-135.2 (m), 113.0-112.4 (m). 19F (376 MHz) -139.3 (dtd, 3JFF = 22 Hz, 4JFF = 6.2 Hz, 5JFF = 2.5 Hz), -151.7 (t, 3JFF = 21.2 Hz), -159.5 (tdd, 3JFF = 21.4 Hz, 4JFF = 6.6, 5JFF = 2.7 Hz). MS (EI) m/z 211 (M+).

    Figure S40. 19F NMR (376 MHz, CDCl3/DMSO-d6) spectrum of isolated 2,3,4,5,6-

    pentafluorobenzamide

    -159.9-159.8-159.7-159.6-159.5-159.4-159.3-159.2-152.0-151.9-151.8-151.7-151.6-151.5-151.4-151.3-139.6-139.5-139.4-139.3-139.2-139.1-139.0f1 (ppm)

    M1 M2M3

    -159.6

    090

    -159.5

    939

    -159.5

    532

    -159.5

    371

    -159.4

    971

    -159.4

    794

    -159.4

    723

    -151.7

    321

    -151.6

    757

    -151.6

    196

    -139.3

    290

    -139.3

    241

    -139.3

    088

    -139.3

    055

    -139.2

    654

    -139.2

    487

    -139.2

    386

  •   S37

    Figure S41. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated 2,3,4,5,6-

    pentafluorobenzamide

    Figure S42. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated 2,3,4,5,6-

    pentafluorobenzamide

    7.507.557.607.657.707.757.807.857.907.958.008.058.108.158.208.258.308.358.408.45f1 (ppm)

    1.0

    0

    1.0

    2

    7.8

    4

    8.0

    5

    2030405060708090100110120130140150160170f1 (ppm)

    38.8

    939.1

    039.3

    139.5

    239.7

    339.9

    440.1

    5

    52.1

    4

    77.7

    878.1

    178.4

    4

    112.3

    6112.3

    9112.4

    1112.6

    2112.8

    2112.8

    3112.8

    6112.9

    5

    135.1

    6135.4

    3135.6

    6137.7

    3137.9

    4138.1

    5139.3

    5139.5

    4139.7

    3141.5

    9141.7

    4142.2

    7144.0

    7144.2

    3144.4

    3

    158.5

    4

  •   S38

    Figure S43. MS(EI) of 2,3,4,5,6-pentafluorobenzamide

    2e (50 mg, 90%); m.p. 154-156 ºC (lit.5 m.p. 158 ºC). MS (EI) m/z 122 (M+).

    Figure S44. MS(EI) of isonicotinamide

  •   S39

    2f (51 mg, 91%); m.p. 130-132 ºC (lit.6 m.p. 129-131 ºC). MS (EI) m/z 122 (M+).

    Figure S45. MS(EI) of nicotinamide

    2g (39 mg, 70%); m.p. 106-108 ºC (lit.7 m.p. 105-106 ºC). 1H (400 MHz, DMSO-d6) 8.62 (d, J = 4.4 Hz, 1H), 8.11 (bs, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.97 (td, J = 7.6 Hz, 1.6 Hz, 1H), 7.64 (bs, 1H), 7.58 (ddd, J = 7.4 Hz, 4.7 Hz, 1.3 Hz, 1H) 13C{1H} (100 MHz) 166.0, 150.3, 148.4, 137.6, 126.4, 121.9. MS (EI) m/z 122 (M+).

    Figure S46. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated picolinamide

    7.47.57.67.77.87.98.08.18.28.38.48.58.68.7f1 (ppm)

    1.0

    0

    0.8

    2

    1.0

    6

    1.0

    4

    0.8

    5

    1.0

    7

    3.0

    0

    1.9

    57.5

    627

    7.5

    658

    7.5

    745

    7.5

    778

    7.5

    812

    7.5

    844

    7.5

    931

    7.5

    962

    7.6

    462

    7.9

    529

    7.9

    568

    7.9

    723

    7.9

    760

    7.9

    911

    7.9

    950

    8.0

    322

    8.0

    515

    8.1

    140

    8.6

    184

    8.6

    295

  •   S40

    Figure S47. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated picolinamide

    Figure S48. MS(EI) of picolinamide

    116118120122124126128130132134136138140142144146148150152154156158160162164166168170f1 (ppm)

    121.8

    8

    126.4

    2

    137.6

    1

    148.4

    3

    150.2

    8

    166.0

    2

  •   S41

    2h (65 mg, 93%); m.p. 166-168 ºC (lit.8 m.p. 166 ºC). 1H (400 MHz, CDCl3/DMSO-d6) 7.83 (ddd, 3JHH = 8.8 Hz, 4JHH = 3.6 Hz, 5JHH = 1.6 Hz, 2H), 7.70 (bs, 1H), 6.93 (bs, 1H), 6.87 (ddd, 3JHH = 8.8 Hz, 4JHH = 3.6 Hz, 5JHH = 1.6 Hz, 2H), 3.78 (s, 3H). 13C{1H} (100 MHz) 167.8, 161.5, 129.2, 126.2, 112.9, 54.9. MS (EI) m/z 151 (M+).

    Figure S49. 1H NMR (400 MHz, CDCl3/DMSO-d6) spectrum of isolated p-methoxybenzamide

    Figure S50. 13C{1H} NMR (100 MHz, CDCl3/DMSO-d6) spectrum of isolated p-methoxybenzamide

    3.63.73.83.94.04.16.66.76.86.97.07.17.27.37.47.57.67.77.87.9f1 (ppm)

    1.0

    0

    2.1

    4

    3.1

    7

    3.1

    5

    0.9

    3

    2.1

    7

    3.7

    8

    6.8

    56

    .86

    6.8

    66

    .88

    6.8

    86

    .89

    6.9

    3

    7.7

    0

    7.8

    17

    .81

    7.8

    27

    .83

    7.8

    47

    .84

    100105110115120125130135140145150155160165170175180185f1 (ppm)

    112.9

    5

    126.2

    0

    129.1

    7

    161.4

    5

    167.7

    8

  •   S42

    Figure S51. MS(EI) of p-methoxybenzamide

     2i (56 mg, 90%); m.p. 160-162 ºC (lit.9 m.p. 162-163 ºC). MS (EI) m/z 135 (M+).

    Figure S52. MS(EI) of p-toluamide

  •   S43

    2j (47 mg, 93%); m.p. 136-138 ºC (lit.10 m.p. 141-142 ºC). 1H (400 MHz, DMSO-d6) 7.78 (s, 1H), 7.75 (bs, 1H), 7.36 (bs, 1H), 7.09 (s, 1H), 6.58 (s, 1H). 13C{1H} (100 MHz) 159.4, 147.9, 144.9, 113.5, 111.7. MS (EI) m/z 111 (M+).

    Figure S53. 1H NMR (400 MHz, DMSO-d6) spectrum of isolated furan-2-carbamide

     

    Figure S54. 13C{1H} NMR (100 MHz, DMSO-d6) spectrum of isolated furan-2-carbamide

    5.85.96.06.16.26.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.98.08.18.28.38.48.58.6f1 (ppm)

    1.0

    0

    1.1

    6

    1.1

    1

    2.2

    0

    M1

    6.5

    8

    7.0

    9

    7.3

    6

    7.7

    57.7

    8

    namely 2 mol% 2 2 and a mixture H2O/ THF in a 2:1 v/v ratio at 100 ºC,

    104106108110112114116118120122124126128130132134136138140142144146148150152154156158160162164166168f1 (ppm)

    111.6

    5

    113.5

    0

    144.8

    7

    147.9

    5

    159.4

    0

  •   S44

    Figure S55. MS(EI) of furan-2-carbamide

       References                                                                                                                1 Liu, K. T.; Shih, M. H.; Huang, H. W.; Hu, C. J. Synthesis 1988, 715. 2 Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett. 2007, 9, 73-75. 3 Sharma, S. K.; Bishopp, S. D.; Allen, C. L.; Lawrence, R.; Bamford, M. J.; Lapkin, A. A.; Plucinski, P.; Watson, R. J.; Williams, J. M. J. Tetrahedron Lett. 2011, 52, 4252-4255. 4 Barbour, A. K.; Buxton, M. W.; Coe, P. L.; Stephens, R.; Tatlow, J. C. J. Chem. Soc. 1961, 808-817. 5 Balicki, R.; Kaczmarek, L. Synth. Commun. 1993, 23, 3149. 6 Crisóstomo, C.; Crestani, M. G.; García, J. J. Inorg. Chim. Acta 2010, 363, 1092-1096 . 7 Katritzky, A. R.; Pilarski, B.; Urodgi, L. Synthesis 1989, 949. 8 Ali, M. A.; Punniyamurthy, T. Adv. Synth. Catal. 2010, 352, 288. 9 Zhang, L.; Wang, S.; Zhou, S.; Yang, G.; Sheng, E. J. Org. Chem. 2016, 71, 3149-3153. 10 Jie, J.; Fang, J. J. Org. Chem. 2003, 68, 1158.