experimental results from pitz@zeuthen how to reach … · emittance vs charge ~ linear. slice...

30
experimental results from ATF@BNL, SDL@BNL, GTF@SLAC, SHI+FESTA@Japan, A0@FNAL, ELBE@Rossendorf experimental results from PITZ@Zeuthen How to reach the beam quality required for the XFEL ? Frank Stephan (DESY Zeuthen), TESLA meeting, Zeuthen, January 2004

Upload: lythuy

Post on 13-Apr-2018

218 views

Category:

Documents


5 download

TRANSCRIPT

• experimental results fromATF@BNL, SDL@BNL,GTF@SLAC, SHI+FESTA@Japan, A0@FNAL, ELBE@Rossendorf

• experimental results from PITZ@Zeuthen

• How to reach the beam quality required for the XFEL ?

Frank Stephan (DESY Zeuthen),TESLA meeting, Zeuthen, January 2004

Projected Emittance Measurements at ATF@BNLparameters:* 0.5 nC* 110 MV/m at gun* beam energy: 60 MeVmethode:* fitting Twiss parameters to 4 subsequent beam size measurements* transport optics adjusted to maximize beam size at BPM locations

fit result:n = 0.8 µm for 0.5 nC, accuracy: better than 15%

V. Yakimenko et. al.,FEL 01

path to small emittance:check resolution limit of BPM, stability of laser and RF, BBA of beam optical elements, improve gun gradient and QE, optimize transverse laser shape and emission phase, tune beam with SASE gain at VISA

Transverse Laser Shape Studies from ATF@BNLcylindical symmetric non-cylindical symmetric

F. Zhou et. al., EPAC 02

parameters:

• 0.46 – 0. 48 nC

• phase: 30º from zero crossing

• emittance measured at 40 MeV via quad scan

additional study:emittance vs

charge ~ linear

Slice Emittance Measurements from SDL@BNLsetup:

Courtesy of W. Graves

parameters:

• 200 pC

• 75 MeV

• laser: 2.4 ps FWHM

• slice width ~400 fs

t

y

14 16 18 20 22 24 26160180200220240260280300320340360

sign

al (a

rbun

its)

streak delay (picoseconds)

Slice Emittance Measurements from GTF@SLAC

setup:

D. H. Dowell et. al., LCLS-TN-03-2 (corr.)

parameters:

• 300 pC

• laser: 1.8 ps FWHM2 mm diameter on cathode

• phase: 30º from zero crossing

• slice width 550-750 fs

• beam size: signal cut at 5% of max.

head tail

Energy/Time

Spec

trom

eter

Im

age

head tail

Energy/Time

Spec

trom

eter

Im

age

0

20

40

60

80

100

-4 -2 0 2 4Time (ps)

Curre

nt (A

)0.0

1.0

2.0

3.0

4.0

5.0

-4.0 -2.0 0.0 2.0 4.0Time (ps)

�n

( �m

)

Bsol = 1.982 kGBsol = 1.967 kGBsol = 1.937 kG

projectedemittance

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 6

Projected Emittance vs Charge from GTF@SLAC

Courtesy ofJ. Schmerge

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 7

• 1.6 cell S-band gun (� 4 MeV) + 70 cm SW linac (� 14 MeV)

• Ti:Saphire laser system (� 50 fs long pulses at 800 nm) +pulse shaping (e.g. gratings + liquid crystal spatial light modulator)

• temporal shape of laser pulses: (x-ray streak camera, resolution: ~2 ps)

• transverse laser distributions: (cathode)

WR on Emittance from SHI+FESTA@Japan

F. Sakai et. al., ICFA workshop 2002, SPring8

rise/decay time: 1.5 ps, limited by streak camera

„Gaussian“

„Square“

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 8

1.2

�n � 1.2 � mm mradFor 1 nC:

Methode: quad scan @ 14 MeV, gaussian fit to background subtracted signal frames

F. Sakai et. al., ICFA workshop 2002, SPring8

Measurements at FNPL(A0)@FNALflat beam production:

after solenoid field: after skew quads:

proof-of-principle experiment done, measured:� now working for ratio > 100

Courtesy ofPh. Piot

et. al.

also working on e.g. plasma-wakefield acc., laser-based acceleration (needs E upgrade)

NEXT: energy upgrade + 3.9GHz accelerating structure+ 3.9 GHz deflecting cavity

towards polarized electrons: vacuum !! �crogenic operated 1 ½ cell Cu gun

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 10

Cavity

Cooling insert

Helium tankChoke filter

2.5 mm mrad

0.5 mm mrad

E = 9.5 MeV

I = 1 mA CW

1 nC77 pC

1.3 GHz, 10 kWhalf cell & 3 TESLA cells Ez,max= 33 MV/m (1/2 cell)

= 50 MV/m (T cells)

Cathode

• first operation of a SRF photo gun (1/2 cell) in 2002:� measured current, energy + emittance @ ~1 pC

• start of the 3+1/2 cell project in 2004:

SC RF Gun Development at ELBE@Rossendorf

Courtesy of J. Teichert

Collaboration: BESSY, MBI, TJNAF, Univerity of Peking, BINP, DESY, ACCEL, TU Dresden

(without th. emit.)

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 11

Experimental Results from PITZ@Zeuthen

BESSY Berlin, DESY (HH + Z),INFN Frascati, INFN Milano,INR Troitsk, INRNE Sofia,LAL Orsay, MBI Berlin,TU Darmstadt, TU Eindhoven,U Hamburg, YERPHI Yerevan

Collaboration:

(1.3 GHz)

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 12

The Laser System at PITZ, ©MBI Berlin

diode-pumpedNd:YLF preamplifier

Pulse shaper(T = 5%)

Diode-pumpedNd:YLF oscillator

Emicro = 16 �JP = 16 W

AOM

fround trip = 27 MHz

EOMAOM

Faraday

pulsepicker1 MHz

pulsepicker

2-stage flashlamp-pumpedNd:YLF booster amplifier

fastcurrentcontrol

shot-to-shotoptimizer

2-stage diode-pumpedNd:YLF amplifier

fastcurrentcontrol

fourthharm.

Emicro = 200 �JP = 200 W

tophotocathode

20 ps flat-top4 ps edges

Emicro = 30 �JEburst = 24 mJUV (266 nm)2

1047 nm

-200

20406080

100120

40 50 60 70 80 90 100t / ps

a.u.

Measured

Flat Top Fit

Longitudinal and Transverse Laser Profiles

round diaphragms in the laser room (~ 20 m from the cathode) are imaged on the cathode

longitudinal (measured at 524 nm)

FWHM � 18-23 psrise/fall ~ 5-7 ps

transverse (measured in UV at virtual cathode)

y

x

variable transverse size:

standard parameters

Longitudinal Momentum of the Electron Beam Mean momentum vs RF phase

�0, degRMS momentum spread vs RF phase

�0, deg

Maximum mean momentum 4.72 MeV/cMinimum rms momentum spread 33 keV/c

Electron Beam Longitudinal ProfileCherenkov radiation

use of aerogel: SiO2 ,

refractive index ≈ 1.03

Bunch length (mm) in RMS 90 %:

�0, deg

Minimum bunch length: FWHM = (21.04 ± 0.45stat ± 4.14syst) ps

= (6.31 ± 0.14stat ± 1.24syst) mm

size of the beamlet is measured for three slit positions:

� �1,0,1

7.0 22

��

���

nnYy screen

yscreen

n �

Transverse Beam Emittance Measurement

Beam spot at screen 2single slitposition

Beamlets at screen 3

Single Slit Scan Technique

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 17

laser diaphragm diameter D = 1.0 mm (not final optimum)

emittance vs. charge, Imain = focus+5A

0.01.02.03.04.05.06.07.08.09.0

10.0

0.01 0.10 1.00 10.00

emitt_X 0degemitt_Y 0degemitt_X -5degemitt_Y -5deg

Transverse Emittance vs Bunch Charge

Q (nC)

εn(π

mm

mra

d)

εn ~ Q

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 18

vacuum mirror

steerer A

Steps to improve Beam Emittance

improvement: > 0.5 π mm mrad

1 nC, D = 1.2 mm

• systematic experimental optimization: long. laser profile, trans.laser profile, 2D scan Imain and RF phase, Ibuck for fine tuning

• status in Sept. 2003: min. emittance ≈ 3 π mm mrad

• improvement: steer beam away from vacuum mirror

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 19

Parameters used for the simulation:

• charge = 1 nC

• longitudinal laser profile:

– flat top

– 20 ps FWHM

– 5 ps rise/fall time

• transverse laser profile

– homogeneous

– �x,y = 0.6 mm

• max. gradient at the cathode: 42 MV/m

ASTRA Simulation of Transverse Emittance

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 20

RFphase - �0 / degree RFphase - �0 / degree

I mai

n-I

focu

s/ A

I mai

n-I

focu

s/ A

norm. emittance X / µm norm. emittance Y / µm

Parameters: 1 nC, ~20 ps FWHM, ~7ps rise/fall time, diaphragm = 1.2 mm

Transverse Emittance Measurements

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 21

transverse profile ( D=1.2 mm )

FWHM � 21 ps; rise/fall time � 7 psmm 0.020.61σmm 0.020.55σ

y

x

��

��

Fine Tuning of Laser Parameters

( measured in UV )

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 22

Measured Transverse Emittance vs Bucking Solenoid

1 nC, -5deg, Imain = 305 A

1,01,21,41,61,82,02,22,42,62,83,0

0 10 20 30 40 50 60Ibuck / A

norm

aliz

ed e

mitt

ance

/ ��m

m m

rad

yx

yx

εεεε

1.7

1.5

WR=1.2

Requirement for the XFEL=0.9

Start-up Requirement for TTF2 =3

Start-up requirement of TTF2 is clearly fulfilled !

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 23

yxεε

Summary PITZ1

• electron beam was characterized in a wide range of machineparameters (e. g. Q, Φ0, Imain, Ibuck, laser parameters)

• optimum settings @ 1 nC:= 1.7 � mm mrad= 1.5 � mm mrad have been reached with:

longitudinal laser shape:‘flat top’, FWHM � 21 ps, rise/fall time ≤ 7 ps

transverse laser profile:‘homogeneous’, �x,y � 0.55 - 0.6 mm

solenoid current:Imain � 305 A, Ibuck � 20-25 A → Bz = 0 at cathode

RF parameters:phase: � � �0 - 5� , gradient at cathode: ~ 42 MV/m

• cavity is now installed at TTF2

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 24

How to reach the beam quality required for XFEL

• upgrades with ~ 40 MV/m at the cathode:– really homegenous transverse laser profile:

� εn ~ 1.5 π mm mrad @ 1 nC (ongoing in 2004)

– improved longitudinal laser profile ( 2 ps rise/fall time):

� εn ~ 1.2 π mm mrad @ 1 nC (realisation in ~2004-2006)

• in addition, with 60 MV/m at the cathode:� εn ~ 0.9 π mm mrad @ 1 nC (started, ongoing in 2004,

depending on 10 MWklystron)

Goal: 0.9 π mm mrad from the injector for 10 Hz, 650 µs !!

Z0 - 50 cm Z0 - 25 cm Z0 Z0 + 25 cm Z0 + 50 cm

3 m

m

M2M1 M3 M4 MV

0 m 10 m5 m 15 m 20 m

f = 3000 mm

L out,2b L

in,1 L out,1b

f = 750 mmf = 750 mm

beam-shapingaperture

photo-cathode

<-------------- shaft --------------><----- laser table -----> <- wall -> <------ optical rail ------>

<------------- M = 7.3 ------------->

Gaussianinput beamFWHM = 2mm

± 0

cm+

50 c

m

- 50

cmL out,2a

f = -750

marginal rays

f = 750 f = -750

<--- M = 1:1 --->

L out,1a

f = -5000 d = 2 mm

pinhole

L in,2a L

in,2b

V - 50 cm

0

0.2

0.4

-0.2 -0.1 0 0.1 0.2

V - 25 cm

0

0.2

0.4

-0.2 -0.1 0 0.1 0.2

V - 00 cm

0.0

0.2

0.4

-0.2 -0.1 0 0.1 0.2

V + 25 cm

0

0.2

0.4

-0.2 -0.1 0 0.1 0.2

V + 50 cm

0

0.2

0.4

-0.2 -0.1 0 0.1 0.2

© I. Will (MBI), status: Draft

Proposed Setup for Laser Beam Line to Cathode

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 26

How to reach the beam quality required for XFEL

• upgrades with ~ 40 MV/m at the cathode:– really homegenous transverse laser profile:

� εn ~ 1.5 π mm mrad @ 1 nC (ongoing in 2004)

– improved longitudinal laser profile ( 2 ps rise/fall time):

� εn ~ 1.2 π mm mrad @ 1 nC (realisation in ~2004-2006)

• in addition, with 60 MV/m at the cathode:� εn ~ 0.9 π mm mrad @ 1 nC (started, ongoing in 2004,

depending on 10 MWklystron)

Goal: 0.9 π mm mrad from the injector for 10 Hz, 650 µs !!

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 27

Photo Cathode Laser Development for PITZ 2Strategy:

• further improve the Nd:YLF laser system

• two-channel mixingscheme

Goals: - stable and reliable laser system for long pulse trains

- micropulses temporal profile: 20 ps FWHM,rise and fall time ≤ 2 ps

- homogenous transverse intensity profile

- laser parameters widely variable

© I. Will, MBI

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 28

ASTRA Simulation of PITZ 2 (20ps FWHM, 2ps rise/fall time)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10z / m

Xrms(TESLA) / mm

EmX(TESLA) / um

Xrms(CDS14) / mm

EmX(CDS14) / um

Xrms(no booster) / mm

EmX(no booster) / um

matchingcondition

(M. Ferrario)

CDS booster

diagnostics section

�m

�m

�m

εn =1.2 µm

PITZ 2 setup:

Gun Booster

used gun gradient: 40 MV/m

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 29

How to reach the beam quality required for XFEL

• upgrades with ~ 40 MV/m at the cathode:– really homegenous transverse laser profile:

� εn ~ 1.5 π mm mrad @ 1 nC (ongoing in 2004)

– improved longitudinal laser profile ( 2 ps rise/fall time):

� εn ~ 1.2 π mm mrad @ 1 nC (realisation in ~2004-2006)

• in addition, with 60 MV/m at the cathode:� εn ~ 0.9 π mm mrad @ 1 nC (started, ongoing in 2004,

depending on 10 MWklystron)

Goal: 0.9 π mm mrad from the injector for 10 Hz, 650 µs !!

Frank Stephan TESLA meeting, Zeuthen, Jan. 2004 30

Transverse Beam Parameters for the XFEL Injector

proj. emittance

� 0.5 mrad mm

(no th. emittance)

11.5 MV/m 25.0 MV/m

13.9 MV/m

44°injecting phase

60 MV/mgun acc. gradient

20 ps, uniform

laserpulse length

0.74 mrad mm

assumed therm. emittance

0.75 mm, uniform

rms laser spot

Gun param.: