experimental removal of lake trout in swan lake, mt:...

33
Experimental Removal of Lake Trout in Swan Lake, MT: 2013 Annual Report Prepared for the Swan Valley Bull Trout Working Group By: Leo Rosenthal, Fisheries Biologist Montana Fish, Wildlife & Parks And Wade Fredenberg, Fisheries Biologist U.S. Fish and Wildlife Service April, 2014

Upload: tranlien

Post on 02-Apr-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

Experimental Removal of Lake Trout in Swan Lake, MT: 2013 Annual Report

Prepared for the Swan Valley Bull Trout Working Group

By:

Leo Rosenthal, Fisheries Biologist

Montana Fish, Wildlife & Parks

And

Wade Fredenberg, Fisheries Biologist U.S. Fish and Wildlife Service

April, 2014

Page 2: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

2

Background The Swan Valley has historically been home to a stable bull trout population. However, in 1998 anglers began to occasionally catch adult sized (20-30 inch) lake trout from Swan Lake and the Swan River. This caused alarm because lake trout are not native and are notorious for rapidly expanding and dominating fish communities in lakes with Mysis shrimp, particularly at the expense of bull trout and kokanee salmon (Martinez et al. 2009). In 2003, the level of concern was compounded when biologists gillnetted juvenile lake trout from Swan Lake during standard low-intensity sampling efforts, indicating that wild reproduction was occurring. Since 2003, lake trout catch by anglers as well as during Montana Fish, Wildlife and Parks (FWP) biological sampling continued to increase, indicating that the population was expanding. Research efforts from 2006-2008 focused on lake trout population demographics, and exploring potential techniques to reduce lake trout numbers while minimizing bull trout bycatch. Based on case histories from nearby waters, long-term management alternatives for this increasing lake trout population are necessary in order to maintain the popular bull trout and kokanee fisheries. In 2009 FWP released an EA for a three-year experimental removal of lake trout in Swan Lake. This removal experiment was a feasibility study to determine the effectiveness of using targeted gillnetting as a technique to reduce the number of lake trout, and thus minimize threats kokanee and bull trout. From 2009-2011 over 20,000 lake trout were removed from Swan Lake. Modeled total annual mortality rates for lake trout vulnerable to the nets used in the project were higher than literature suggests are sustainable. While much has been learned with regard to our ability to affect lake trout cohort strength from one year to the next, the overall effect this level of removal has on the lake trout population and other fish populations remains unknown. Therefore, in May 2012 FWP released another EA for a five-year extension of the lake trout removal project to further evaluate the effectiveness of the current lake trout suppression effort. Measurable goals and specific success criteria outlined in the original 2009 EA are being used to evaluate the feasibility and effectiveness of alternatives to control expansion of the lake trout population. Based on the results of this assessment and other relevant considerations, FWP, with recommendations from the Swan Valley Bull Trout Working Group (SVBTWG), will consider whether these actions are appropriate or if other changes are warranted in fisheries management of Swan Lake and the lake trout population. Previous annual reports can be found at: http://montanatu.org/resources/swan-valley-bull-trout/ Methods The five-year extension of the lake trout suppression project closely follows the efforts conducted from 2009-2011. This replication of effort allows researchers to maximize lake trout removal in Swan Lake, while providing consistent data for year-to-year comparisons and analysis to evaluate the efficacy of gill net removal of lake trout. Consistent with the work from 2009-2011, the project continues to be comprised of two

Page 3: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

3

distinct netting events. The first event (Juvenile Netting) is aimed at removing juvenile and subadult lake trout throughout the two deep (>60’) basins of Swan Lake. This removal is carried out using small-mesh (1.5 – 2.75 inch stretch) gill nets, set by professional fisheries contractors over a three-week period in late August. This netting is conducted during a time in which most adult bull trout are upstream in the Swan River drainage in preparation for fall spawning and also occurs during the period in which Swan Lake is thermally stratified. Only habitat below the thermocline (>60’) is sampled, in order to reduce incidental bycatch of bull trout and other fish species which occupy shallower depths. The second netting event (Spawner Netting) is directed at removal of adult lake trout during spawning and thus is targeted to directly affect further recruitment. This portion of the project is carried out largely by SVBTWG members and takes place during the month of October. Large-mesh gill nets (4.5 – 5 inch stretch) are set during the nighttime and early morning hours, along spawning areas identified by telemetry work conducted from 2007-2009 (Cox 2010). Results

Juvenile  Netting  Netting for juvenile lake trout has been contracted with Hickey Brothers Fisheries of Baileys Harbor, Wisconsin since 2009. Each year the boat is cleaned and disinfected following a Hazard Analysis and Critical Control Point Plan (HACCP) to minimize the risk of spreading aquatic invasive species. The boat is inspected annually by FWP personnel prior to entering Swan Lake to ensure proper cleaning procedures have been followed. Netting took place from August 11-30, 2013 which was similar to work conducted in 2012, but a week earlier than 2009-2011. This change in timing simplified logistics for the contractor and still provided lake conditions similar to previous years. Additionally, shifting the Juvenile Netting a week earlier ensured that post-spawning bull trout would not have returned to Swan Lake during netting operations. The amount of netting effort and the locations of nets set for juvenile lake trout has been consistent since 2009. The contract with the Hickey Brothers provides 30 lifts, with one lift being described as an event in which nets are set and retrieved. While the number of lifts has not changed since 2009, the number of net panels set has varied slightly since the beginning, as more panels of small mesh net were set to increase the catch of juvenile lake trout (Table 1). Although the number of net panels has varied slightly since inception of the project, the locations of the nets have remained constant (Figure 1).

Page 4: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

4

Table 1: Dates and numbers of nets set for Juvenile Netting 2009-2013.

Year Netting Dates # Lifts # 900’ Net Panels 2009 Aug 24-Sept 11 30 248 2010 Aug 23-Sept 10 30 311 2011 Aug 22-Sept 9 30 399 2012 Aug 13-Aug 31 30 382 2013 Aug 11-Aug 30 30 347

Figure 1: Netting locations and numbers of net panels for Juvenile Netting in Swan Lake 2009-2013. A total of 7,051 lake trout from 5”-37” were removed during the 2013 Juvenile Netting period (Figure 2). This represented a slight decrease from 2012. All fish less than 22” in length were cleaned, packed on ice, and sent to local area food banks for distribution. Fish greater than 22” were not retained for food bank distribution because of human consumption guidelines related to mercury content. Those fish were either given to local wildlife rehabilitation centers or were used by FWP wildlife personnel for trapping lure. The length frequency distribution of lake trout caught during the Juvenile Netting period continues to be skewed heavily toward smaller fish, as a result of targeting their location and fishing smaller mesh nets as the primary method (Figure 3). The majority of the juvenile lake trout catch is comprised of age-3 and age-4 lake trout (Cox 2010). Soak times of each panel of net and the depth of nets fished have remained relatively constant throughout the five years of the project. The depth was maximized and duration of these net sets was minimized in an effort to reduce bycatch and associated mortality of non-target species. Bycatch of other fish species during the Juvenile Netting period can be found in Table 2.

Page 5: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

5

Figure 3: Relative length frequency of lake trout caught during Juvenile Netting in Swan Lake 2009-2013.

Figure 2: Total number of lake trout removed during Juvenile Netting 2009-2013.

Page 6: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

6

Table 2: Bycatch of non-target fish species captured during Juvenile and (Spawner) netting events 2009-2013. Most fish were released alive.

Fish Species 2009 2010 2011 2012 2013

bull trout 238 (26) 212 (87) 237 (104) 334 (103) 168 (135)

kokanee 205 (23) 414 (110) 159 (46) 521 (114) 388 (300)

mountain whitefish 107 (0) 28 (5) 31 (2) 67 (0) 104 (2)

pygmy whitefish 139 (0) 63 (0) 9 (0) 79 (0) 27 (0)

longnose sucker 86 (50) 49 (306) 65 (145) 17 (207) 7 (157)

northern pikeminnow 27 (36) 14 (136) 31 (131) 2 (68) 1 (132)

largescale sucker 0 (58) 0 (109) 0 (111) 0 (54) 0 (96)

rainbow trout 6 (3) 5 (10) 7 (11) 0 (11) 1 (11)

northern pike 0 (2) 0 (0) 0 (7) 0 (2) 1 (7)

Spawner  Netting  Removal of the adult component of the lake trout population, in efforts to directly affect further recruitment of lake trout cohorts, continues to be an important aspect of the project. Netting for spawning lake trout in 2013 was conducted from October 7-25, with nets being set and lifted twice daily, Monday-Friday. While netting did not occur twice every day (Friday afternoons, Saturdays, Sundays, and Monday mornings were not fished), the schedule and subsequent effort was similar to previous years of the project. Adult lake trout catch in 2013 was 216 fish, nearly identical to the 215 captured in 2012. After realizing in 2009 that FWP-owned boats and equipment was inadequate to set and retrieve large amounts of gill net for covering the entire spawning area, the contract with the Hickey Brothers was modified to incorporate the use of their boat during Spawner Netting. This effort has been replicated since 2010. Since 2010, the number of adult lake trout captured during Spawner Netting has decreased by 47% (Figure 4). Relative length frequency of lake trout captured during Spawner Netting has also shifted to smaller individuals, suggesting that efforts are effectively removing the larger, older individuals from the population (Figure 5). Bycatch of fish species other than lake trout during Spawner Netting was similar to past years (Table 2).

Page 7: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

7

Figure 4: Total number of lake trout removed during Spawner Netting in Swan Lake 2009-2013.

Figure 5: Relative length frequency of lake trout captured during Spawner Netting 2009-2013.

Page 8: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

8

Bycatch,  Bull  Trout,  and  Kokanee  Bull trout bycatch continues to be closely monitored as this project has progressed. Since the inception of the project, reducing the amount of bull trout bycatch and minimizing the mortality rates of inadvertently caught bull trout has been a priority. While this project continues to be first and foremost a research experiment, with data being collected in a consistent manner annually, slight changes are being made to reduce bycatch mortality for bull trout. An example of this was the elimination of 3.5” and 4.0”-mesh gill nets during the Spawner Netting period in 2013. Analysis in 2012 revealed that 4.5” and 5.0”-mesh nets accounted for the majority of adult lake trout catch and resulted in the least amount of bull trout bycatch. This change in mesh size still allows for comparable data and should be considered a benefit of the adaptive management approach the working group is taking on this project. A total of 303 bull trout were inadvertently captured during netting activities in 2013. The Juvenile Netting period resulted in 168 bull trout and the Spawner Netting period added another 135. Despite using every effort to reduce mortality of accidentally netted bull trout, roughly 40% of these fish do not survive. Research led by the USFWS (see Appendix) suggests that bycatch mortality is likely higher, as some released bull trout may swim off but perish later. Therefore, a calculated mortality rate of 53.6% is being applied throughout this project. Estimated bycatch motality of bull trout in 2013 was 162 fish. Bull trout bycatch from 2009-2013 has averaged 329 fish/year, resulting in an estimated annual mortality of 176 fish/year. Bull trout bycatch was identified as a considerable concern during the 2012 EA process for a five-year extension of this project. During that time, a commitment was made to further evaluate the cumulative impacts bycatch could have on the bull trout population, and determine if there is a threshold in which changes in the netting project are warranted. The Appendix attached at the end of this annual report contains analysis by the USFWS on the potential cumulative effects of bull trout bycatch since the beginning of this study. While an exact number was not identified as a point in which netting operations would come to a halt, the analysis does suggest that in its current configuration, the level of bycatch mortality (170-180 fish/year) should be sustainable. This analysis is consistent with the fact that until 2012 anglers were able to harvest one bull trout daily from Swan Lake, with an estimated annual harvest of 176 fish. The USFWS analysis provides a “worst case scenario” of what the potential maximum effect of the bull trout bycatch could be. While the Appendix suggests that bycatch can negatively affect bull trout redd numbers, the subsequent benefits to bull trout from the removal of lake trout remains unknown. These potential benefits are the primary reason this experimental removal was initiated and will be the focus for evaluating the success of the project in future years.

Page 9: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

9

Introduced kokanee salmon are another important fish species for Swan Lake. Kokanee provide one of the more popular angling opportunities in Swan Lake for both ice and open-water fishermen, and also represent an important food resource for adult bull trout. Case histories from surrounding area lakes have demonstrated that the combination of Mysis, kokanee, bull trout, and lake trout typically results in decreased abundance of bull trout and elimination of kokanee. Therefore, kokanee represent another indicator of potential project success, as increases in abundance may suggest a reduction in lake trout density. Kokanee abundance in Swan Lake is monitored annually through redd counts along an index reach of Swan Lake. Similar to adult bull trout trends, kokanee spawner abundance had declined from 2005-2011 (Figure 7). Redd count surveys in 2011 revealed the lowest abundance throughout the period of record. Surveys conducted in 2012 and 2013 both produced higher redd numbers and the increase over the past two years is encouraging. This trend will continue to be closely monitored to determine if the project is effective in relieving predation from lake trout. In addition to the slight increase in kokanee redd numbers, the total number of kokanee caught as bycatch in both netting periods has also increased in both 2012 and 2013. While bycatch is not typically viewed as favorable, this increase in catch could be representative of increased abundance of kokanee in Swan Lake. As mentioned previously, netting locations and effort have remained relatively constant throughout the project, so the kokanee bycatch data can potentially be viewed as a standardized index. Length frequency analysis of kokanee inadvertently captured during the 2013 netting reveals no missing age classes in Swan Lake (Figure 8). Kokanee in the bycatch ranged from 6-20 inches (150-500 mm). Kokanee smaller than 6” were likely not captured as a result of the mesh sizes used for the netting. The observation of numerous small kokanee should be viewed as positive, as these fish are likely to be most affected by an increasing lake trout population.

Page 10: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

10

Evaluation Criteria This lake trout removal project in Swan Lake was initiated to evaluate the efficacy of using gill nets to control the expansion of the lake trout population and benefit bull trout and kokanee. Criteria to evaluate this project were outlined in the original 2009 EA, and continue to be monitored throughout the study. An in-depth review of these criteria with

Figure 7: Kokanee redd count data from Swan Lake 1987-2013.

Figure 8: Length frequency of kokanee captured during both Juvenile and Spawner Netting in 2013.

Page 11: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

11

regard to the 2009-2011 efforts can be found in the 3-year Summary Report (Rosenthal et al. 2012). Netting mortality during Juvenile Netting continues to be evaluated on an annual basis. Total annual mortality rates in excess of 50% have been shown to cause population declines in some fisheries (Healey 1978). Conservative estimates of exploitation (mortality) of age-3 and age-4 lake trout have exceeded 50% in most years since 2009. Estimated lake trout mortality during Juvenile netting in 2013 was slightly below 50%. These modeled estimates are most accurate for the two aforementioned age classes of fish, as they are the most vulnerable to the nets being deployed and the locations being sampled. While the estimated mortality rates are encouraging, model validation is likely required. The overall decline in catch throughout the netting period is used to calculate the estimated mortality rates. Catch has consistently declined over the 3-week period each year of the project. Work in upcoming years should test whether this decline is real or a result of fish behavior related to netting activities. Lake trout length frequency during Spawner Netting continues to be skewed toward smaller fish. This shift in length suggests that netting has been effective in removing many of the older, larger individuals, as most fish captured have recently reached sexual maturity. Initial netting in 2009 resulted in the capture of many fish greater than 700 mm (27.5”), with the mode of the distribution centered on 750 mm (29.5”). However in 2013 the mode of the fish caught on the spawning grounds was 575 mm (22.6”), indicating a decrease in the length of spawning fish. In addition to the decrease in length of lake trout captured on the spawning areas, catch per unit effort of lake trout has also decreased over the past four years, suggesting that fewer lake trout are showing up on the spawning areas (Figure 10).

Page 12: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

12

Figure 10: Lake trout catch per unit effort during Spawner Netting 2010-2013. Juvenile Netting in 2013 provided researchers the first glimpse of how past efforts have affected the overall lake trout population. Spawner Netting for adult lake trout began in 2009. Undoubtedly some adult lake trout spawned that fall and their offspring would then be age-0 fish during Juvenile Netting in 2010, age-1 in 2011, and age-2 in 2012. Because of fish behavior and the nets being used for this project, lake trout do not fully recruit to the nets until they are age-3. Therefore, netting in 2013 represented the first year of sampling lake trout that had been affected by past Spawner Netting. While the overall number of fish removed during Juvenile Netting in 2013 was considerably lower than in 2012, more years of data are necessary to determine if this trend is real. The upcoming years will determine whether past efforts have been sufficient to significantly reduce the lake trout population. 2014 Plans Netting in 2014 will follow the same schedule as was completed from 2009-2013. Juvenile Netting will be conducted the last three weeks in August. This schedule is identical to that of 2012 and 2013, starting a week earlier than 2009-2011. Lake conditions are similar throughout the month, and the shift of one week ensures that no post-spawn bull trout will be returning to Swan Lake during netting operations. Spawner Netting will follow the same schedule as was done from 2009-2013. As mentioned previously, removal of the spawning adult lake trout is an important component of this project, as it directly affects further recruitment to the lake trout

Page 13: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

13

population. While the decrease in catch per unit effort of lake trout on the spawning grounds is encouraging, researchers must be able to determine if this trend is a result of fewer fish or displacement of fish and/or the presence of alternate spawning areas. Therefore in 2014 an additional 30 adult lake trout will be implanted with sonic transmitters and tracked throughout the spawning period. This valuable information will be collected to determine the efficacy of Spawner Netting activities and whether changes to the current operations are necessary. In addition to work being conducted in Swan Lake, research will continue to examine the lake trout populations in Lindbergh Lake and Holland Lake. Lake trout first appeared in FWP sampling in Lindbergh Lake in 2009 and were found in Holland Lake in 2012. Both of these headwater lakes also contain their own populations of bull trout and the implications of these newly established lake trout remain unknown. Biologists are concerned with this expansion of the lake trout population, as bull trout numbers in these two lakes are limited. A sonic telemetry project was initiated by the United States Geological Survey (USGS) in 2013. During the summer of 2013, 9 adult lake trout in Lindbergh Lake were implanted with transmitters. Concurrently, three adult lake trout were given transmitters in Holland Lake. These fish were tracked during the fall of 2013 to begin to identify potential spawning areas. This project will continue in 2014, with an additional 12 transmitters being put into fish. .This information will better inform biologists of the potential for lake trout reproduction in these two lakes and if the potential exists for future suppression. Sonic telemetry was used effectively to identify the spawning area in Swan Lake and this has been the focus of netting operations from 2009-2012 (Cox 2010). Monitoring of the other aquatic organisms will also continue in the Swan Lake system. Annual Mysis sampling will occur in early June, bull trout juvenile estimates will occur in August, bull trout redd counts will happen in October, and kokanee redd counts will be completed in early December. Additionally, spring gill net monitoring will be conducted in Swan Lake, Lindbergh Lake, and Holland Lake to look for trends of all fish species.

Page 14: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

14

References Cox, B.S. 2010. Assessment of an invasive lake trout population in Swan Lake, Montana.

Master’s thesis. Montana State University, Bozeman. Healey, M.C. 1978. The dynamics of exploited lake trout populations and implications

for management. Journal of Wildlife Management 42:307-328. Martinez, P. J., P. E. Bigelow, M. A. Deleray, W. A. Fredenberg, B. S. Hansen, N. J.

Horner, S. K. Lehr, R. W. Schneidervin, S. A. Tolentino, and A. E. Viola. 2009. Western lake trout woes. Fisheries 34(9):424-442.

Rosenthal, L., W. Fredenberg, J. Syslo, and C. Guy. 2012. Experimental Removal of

Lake Trout in Swan Lake, MT: 3-year Summary Report. Prepared for the Swan Valley Bull Trout Working Group. Kalispell, Montana.

Page 15: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

15

APPENDIX

 

2007-­‐2013  Bull  Trout  Bycatch  Analysis  

Wade  Fredenberg,  U.S.  Fish  and  Wildlife  Service  

Bull  Trout  Background  and  Swan  Lake  Population  Dynamics  

  Because  bull  trout  are  listed  as  a  threatened  species  under  the  U.S.  Endangered  Species  Act  (USFWS  1998),  the  U.S.  Fish  and  Wildlife  Service  has  the  lead  role  in  monitoring,  evaluating,  and  coordinating  efforts  to  minimize  bycatch  of  bull  trout  in  Swan  Lake  associated  with  the  lake  trout  suppression  effort.    Swan  Lake  is  considered  to  be  an  important  bull  trout  “core  area”,  one  of  the  more  robust  of  over  100  bull  trout  core  areas  in  the  U.S.  range  of  the  species.    Important  tributaries  to  Swan  Lake  (e.g.,  Lion,  Woodward,  Elk,  etc.)  are  considered  to  host  “local  populations”,  each  supporting  spawning  and  rearing  (SR)  habitat  for  genetically  identifiable  and  diverse  stocks  of  bull  trout.    The  mainstem  Swan  River  and  Swan  Lake  are  considered  foraging,  migrating,  and  overwintering  (FMO)  habitat,  where  the  separate  local  populations  mingle  to  grow,  mature,  and  develop  prior  to  completing  their  life  cycle.    The  bull  trout  population  of  the  Swan  is  primarily  a  migratory  adfluvial  population,  meaning  that  individuals  require  both  SR  (tributary)  and  FMO  (lake  and  river)  habitat  to  complete  their  complex  life  cycle.  

  An  extensive  data  base  on  Swan  Lake  bull  trout  populations  has  been  collected,  extending  back  to  the  early  1980’s.    A  combination  of  research  efforts  and  ongoing  monitoring  has  resulted  in  a  well-­‐documented  history  of  bull  trout  numbers,  spawning  locations,  life  history  attributes,  and  other  demographic  information.    We  are  using  this  information  to  our  advantage,  both  in  predicting  impacts  of  lake  trout  expansion  as  well  as  to  examine  unintended  consequences  of  bycatch  from  lake  trout  suppression  efforts,  angling,  and  other  mortality  sources.  

  In  order  to  effectively  suppress  lake  trout  and  not  exert  excessive  mortality  on  bull  trout  or  other  important  species  (such  as  rainbow  or  cutthroat  trout  and  kokanee)  the  lake  trout  suppression  effort  has  been  carefully  designed  and  constantly  adjusted  in  both  its  timing  and  method.    We  conducted  a  preliminary  benefit/risk  analysis  prior  to  implementing  the  2007-­‐2011  suppression  efforts  (Fredenberg  and  Rumsey  2007).    At  that  time,  we  estimated  an  adult  bull  trout  population  of  around  5,000  fish  in  the  Swan  Lake  core  area.    We  knew  from  extensive  surveys  that  bull  trout  spawned  annually  at  detectable  levels  in  at  least  10  Swan  Lake  tributaries.    Figure  1  (see  also  Table  2)  shows  the  trend  in  bull  trout  redd  counts  in  those  ten  combined  tributaries,  since  the  

Page 16: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

16

beginning  of  comprehensive  basinwide  surveys  in  1995.    Counts  from  the  comprehensive  basinwide  surveys  do  not  monitor  every  single  bull  trout  redd  in  the  system,  but  are  known  (based  on  several  more  extensive  basinwide  searches)  to  encompass  the  vast  majority  of  spawning  reaches  (estimated  90%  or  more)  and  these  redd  counts  are  thought  to  provide  highly  accurate  tracking  of  bull  trout  spawner  trends.  

 

Figure  1.    Swan  Lake  basinwide  bull  trout  redd  counts  1995-­‐2013.  

 

 

  The  1995  to  present  trend  in  basinwide  redd  counts  covers  a  period  of  relatively  high  bull  trout  population  levels,  based  upon  what  is  known  about  the  latter  20th  century  historical  condition  for  this  core  area.    These  high  levels  reflect  largely  favorable  conditions  of  an  abundant  forage  base  (primarily  Mysis  relicta  and  kokanee)  in  Swan  Lake,  stable  or  improving  habitat  trends  in  the  spawning  tributaries,  and  restricted  angling  mortality.    Angler  harvest  of  bull  trout  declined  (despite  stable  or  increasing  bull  trout  populations)  from  an  estimated  482  bull  trout  in  1995  (Rumsey  and  Werner  1997)  to  an  estimated  176  bull  trout  in  2009  (MFWP  2010,  unpublished),  as  fishing  regulations  were  gradually  tightened;  all  legal  bull  trout  harvest  was  eliminated  beginning  in  2012.      

  Additional  data  from  comprehensive  bull  trout  studies  in  the  Swan  basin  include  work  by  Leathe  and  Enk  (1985)  and  Leathe  et  al.  (1985  a,  1985  b)  which  described  physical  and  fishery  attributes  of  the  important  bull  trout  spawning  tributaries.    Those  

0  100  200  300  400  500  600  700  800  900  

1995  

1996  

1997  

1998  

1999  

2000  

2001  

2002  

2003  

2004  

2005  

2006  

2007  

2008  

2009  

2010  

2011  

2012  

2013  

Page 17: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

17

reports  determined  that  bull  trout  spawning  populations  in  Swan  tributaries  were  comprised,  on  average,  of  38%  Age  5,  36%  Age  6,  20%  Age  7,  6%  Age  8,  and  <1%  Age  9  and  older  bull  trout.    Those  same  studies  contained  extensive  analysis  of  age  and  growth  information  for  bull  trout.      

  In  2007,  we  (Fredenberg  and  Rumsey  2007)  estimated,  based  largely  on  previous  netting  experience  in  Swan  Lake,  that  a  lake  trout  gillnet  suppression  effort  conducted  during  midsummer  (late  August-­‐  early  September)  when  most  adult  bull  trout  were  up  the  river  on  spawning  migrations  would  catch  between  225-­‐900  bull  trout  annually,  with  an  expected  mortality  rate  of  netted  fish  between  10-­‐25%  and  a  maximum  estimated  bull  trout  mortality  of  315  fish.    We  determined  that  this  rate  of  bycatch  mortality  should  be  sustainable  given  demographic  parameters,  thereby  allowing  the  project  to  proceed.    We  concluded  that  this  rate  of  loss  would  likely  not  cause  an  irreversible  decline  in  a  bull  trout  population  that  was  also  being  harvested  by  angling  and  was  estimated  at  over  5,000  adults.  

 

Bull  Trout  Bycatch  During  Lake  Trout  Gillnetting  Suppression  Activities  

  During  2007  and  2008,  early  experimental  gillnetting  efforts  occurred.    In  2009-­‐2011  a  more  comprehensive  three-­‐year  experimental  lake  trout  suppression  effort  was  conducted.    That  3-­‐year  effort  was  evaluated  and,  subsequently,  five  more  years  of  lake  trout  suppression  were  approved  starting  in  2012.    Procedures,  overall  catch,  and  effort  are  summarized  elsewhere.    The  purpose  of  this  analysis  is  to  determine  potential  effects  of  bycatch  from  ongoing  lake  trout  suppression,  specific  to  the  impact  on  threatened  bull  trout.    During  the  seven  years  of  netting  to  date  (2007-­‐2013),  we  have  captured  a  total  of  over  2,200  bull  trout  (n  =  2,237)  in  combined  lake  trout  suppression  efforts.    Annual  catch  totals  are  shown  in  Table  1.  

Table  1.    Bull  trout  bycatch  in  lake  trout  suppression  efforts,  by  year,  with  ratio.  

Netting  Year   Total  Bull  Trout  Bycatch   Lake  Trout  :  Bull  Trout  Ratio  2007   378   5.6  2008   240   15.8  2009   238   22.9  2010   299   33.5  2011   342   15.9  2012   437   24.3  2013   303   23.8  TOTAL   2,237   20.0  

 

Page 18: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

18

  The  cumulative  size  structure  of  bycaught  bull  trout  that  were  measured  (n  =  2,047)  in  2007-­‐2013  (Figure  2),  depicts  a  relatively  normal  distribution  with  diminishing  numbers  above  the  peak  size  range  of  340-­‐359  mm  (Figure  2).    This  distribution  continues  to  reflect  a  generally  strong  population  of  age  3  and  4,  mostly  juvenile  bull  trout  in  the  samples  (~  320-­‐340  mm  and  smaller),  with  declining  numbers  of  age  5  and  older  fish,  many  of  which  would  be  mature  adults.  During  typical  August-­‐September  netting  windows,  an  unknown,  but  presumably  high  proportion  of  the  mature  population  would  have  left  the  lake  for  the  annual  spawning  migration  and  those  fish  were  typically  absent  from  the  lake  population  and  unavailable  for  capture  in  our  gear.      

 

Figure  2.    Length  frequency  of  bull  trout  bycatch  (includes  2,047  fish  that  were  measured)  from  gillnets,  2007-­‐2013.  

 

 

  There  was  a  pronounced  shift  to  smaller  bull  trout  in  the  bycatch  sample,  beginning  in  2009  (Figure  3),  when  netting  effort  became  more  focused  on  juvenile  lake  trout  in  deeper  water.    The  size  range  of  fish  captured  directly  reflects  changing  net  dimensions  (especially  mesh  size)  and  to  a  lesser  degree,  changing  effort,  but  does  not  necessarily  correlate  to  the  size  and  age  structure  of  the  bull  trout  population.    More  than  60%  of  all  bull  trout  captured  (including  both  types  of  netting  for  juvenile  lake  trout  and  spawners)  in  2009-­‐2013  were  under  400  mm  total  length  (Figure  3)  and  nearly  all  those  fish  are  considered  immature  juveniles  and  subadults  based  solely  on  their  size.    

0  

20  

40  

60  

80  

100  

120  

140  

160  

180  

200  

220  

240  

260  

280  

300  

320  

340  

360  

380  

400  

420  

440  

460  

480  

500  

520  

540  

560  

580  

600  

620  

640  

660  

680  

700+  

Length  Categories  (20  mm)  

Num

ber  M

easured  

Page 19: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

19

While  net  standardization  was  considered  important  for  assessing  program  success,  that  consideration  was  sometimes  overshadowed  by  adjustments  made  in  the  mesh  sizes  we  fished  in  order  to  minimize  bull  trout  bycatch.    In  recent  years,  we  have  increasingly  focused  on  use  of  smaller  gillnet  mesh  sizes  for  juvenile  lake  trout  suppression  in  August  (1.5”  –  2.75”  stretch)  backed  by  increasingly  larger  mesh  sizes  (4.5”  –  5”  stretch)  during  lake  trout  spawner  netting  in  October.    The  separate  targeting  of  small  fish  in  August  juvenile  netting  and  large  fish  in  October  spawner  netting  accounts  for  the  increasingly  bimodal  distribution  of  bull  trout  lengths  exhibited  in  the  2011-­‐2013  netting  results  (Figure  3),  since  nets  that  would  target  medium  sized  fish  (3”-­‐  4”  stretch)  are  no  longer  routinely  used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 20: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

20

Figure  3.    Length  frequency  (by  20  mm  size  group  by  year)  of  bull  trout  captured  in  annual  gillnet  bycatch  associated  with  lake  trout  suppression  netting  in  Swan  Lake  during  2007-­‐2013.  

 

 

In  comparing  the  bull  trout  samples  captured  in  the  gillnetting  efforts,  those  captured  in  spawner  netting  conducted  in  October  and  early  November,  after  adult  bull  trout  had  returned  to  the  lake,  contained  an  expectedly  higher  proportion  of  adult  sized  fish.    Roughly  two-­‐thirds  of  the  bull  trout  captured  during  spawner  netting  in  2009-­‐2013  were  mature  size  (i.e.,  presumably  Age  6  and  older  and  greater  than  ~425  mm)  specimens.  Up  

0

10

20

30

40

50

60

% o

f Ann

ual D

istr

ibut

ion

Length Categories (20 mm)

2013 2012 2011 2010 2009 2008 2007

....Age  3.../......Age  4......../........Age  5....../........Age  6......../.........Age  7........./........Age  8........./...9+  

Page 21: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

21

to  half  of  those  fish  appeared,  based  on  external  characteristics,  to  be  post-­‐spawning  adults  that  had  recently  returned  to  the  lake  from  upriver  spawning  activity;  but  visual  identification  of  postspawn  adults  was  likely  conservative.      

 

Bull  Trout  PIT  Tags  and  Returns  

  In  2010,  we  also  began  inserting  PIT  tags  into  the  dorsal  sinus,  anterior  to  the  dorsal  fin,  of  all  bull  trout  released,  in  order  to  directly  verify  that  survival  was  occurring  and  to  further  evaluate  the  accuracy  of  the  survival  classification  scheme.    Between  130  and  261  unique  PIT-­‐tagged  bull  trout  were  released  annually,  734  in  total  (Table  2).    During  sampling,  we  assess  mortality  of  gillnetted  and  released  bull  trout  by  assigning  each  fish  to  one  of  four  condition  categories.    Class  “0”  =  Mort  (dead  or  moribund);  Class  “1”  =  Poor  (not  orienting,  possible  bleeding,  respiration  shallow);  Class  “2”  =  Fair  (tired,  but  orienting  and  respiring,  considered  “likely  to  survive”);  Class  “3”  =  Good  (vigorous,  struggles  to  escape,  swims  away  upon  release).    For  each  of  these  mortality  classes  we  have  subjectively  ascribed  a  rough  estimate  of  survival  probability.    For  Class  “0”  survival  probability  is  nil.    Class  “1”  survival  probability  is  estimated  at  10-­‐50%  (average  30%).    Class  “2”  survival  probability  is  estimated  at  51-­‐90%  (average  70%).    Class  “3”  survival  probability  is  estimated  at  91-­‐100%  (average  95%).    During  the  progression  of  the  netting  surveys  we  have  further  attempted  to  enhance  survival  capacity  of  netted  fish,  particularly  those  in  survival  classes  1  and  2,  by  holding  them  for  up  to  30  minutes  in  an  oxygenated,  chilled,  recirculation  tank  known  as  a  Fraser  Tank.    We  have  documented  instances  where  fish,  upon  capture,  appear  moribund  due  to  suffocation  but  are  later  observed  to  revive  in  the  Fraser  Tank  to  be  released  as  condition  Class  1  or  even  Class  2.      

  Eighty-­‐four  of  the  PIT-­‐tagged  fish  we  released  were  condition  Class  1  (11.4%),  another  226  were  condition  Class  2(30.8%),  leaving  424  that  were  condition  Class  3  (57.8%).    Results  are  preliminary,  but  in  2010-­‐2013  a  total  of  55  marked  bull  trout  were  recaptured,  3  of  which  had  finclips  but  no  PIT  tag  (apparent  tag  loss  approximating  5.5%).    Of  the  52  PIT-­‐tagged  fish  that  were  recaptured,  21  were  at  large  3  weeks  or  less,  indicating  they  were  recaught  during  the  same  juvenile  or  spawner  netting  session  when  they  were  tagged.    One  of  those  fish  (5%)  was  originally  designated  Class  1  upon  release,  10  each  (47.5%)  were  originally  designated  as  Class  2  or  Class  3  upon  release.    Length  at  first  capture  ranged  from  238-­‐622  mm  and  mean  length  at  first  capture  was  378  mm.    Seven  of  those  fish  (33%)  were  caught/recaught  during  spawner  netting  and  14  other  fish  (67%)  during  the  higher  effort  associated  with  juvenile  netting  events.    Most  mesh  sizes  of  gillnet  were  represented  in  this  sample,  from  1.5”  to  5”  stretch.    Both  captures  and  recaptures  were  distributed  across  both  North  and  South  basins  of  Swan  Lake.  

Page 22: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

22

Table  2.    Number  of  unique  PIT-­‐tagged  bull  trout  released,  by  year  and  condition  class.  

Year   Class  1   Class  2   Class  3   Total  2010   22   33   75   130  2011   21   48   95   164  2012   24   88   149   261  2013   17   57   105   179  TOTAL   84   226   424   734    

  There  were  three  PIT-­‐tagged  bull  trout  caught  originally  in  juvenile  netting,  then  recaptured  in  spawner  netting  events  49-­‐63  days  later  during  the  same  year.    All  three  were,  almost  by  necessity,  larger  fish  (452-­‐631  mm  in  length),  since  that’s  what  the  spawner  netting  mostly  captures.    One  of  these  was  condition  Class  2,  and  the  other  two  were  condition  Class  3  when  originally  captured.  

  The  most  interesting  group  of  recaptures  were  28  PIT-­‐tagged  fish  that  were  at  large  316  days  or  longer,  from  one  netting  year  to  the  following  year  or  longer.  Nine  of  those  fish  (32%)  were  originally  captured  during  spawner  netting  events  and  19  (68%)  were  originally  captured  during  juvenile  suppression  netting.    Of  the  recapture  events,  13  (46%)  occurred  during  spawner  netting  and  15  (54%)  during  juvenile  suppression  netting,  with  again  most  mesh  sizes  represented.    Of  the  28  longterm  recaptures,  2  fish  (7%)  were  originally  classified  as  survival  Class  1,  another  5  fish  (18%)  were  survival  Class  2,  and  the  remaining  21  fish  (75%)  were  survival  Class  3  when  originally  handled.    These  results  would  seem  to  corroborate  our  hypothesis  that  subjective  evaluation  of  health  status  when  released  is  a  reasonable  indicator  of  long-­‐term  survival  probability.    Comparison  to  short-­‐term  recapture  results  (above)  may  also  indicate  that  some  delayed  mortality  of  Class  2  fish  occurs,  as  fish  released  as  Class  2  were  much  more  prevalent  in  short-­‐term  returns  than  in  long-­‐term  returns.    Initial  lengths  of  long-­‐term  recaptures  were  again  representative  of  the  spectrum,  ranging  from  212-­‐520  mm,  though  no  fish  longer  than  520  mm  when  originally  tagged  was  recaught  a  year  or  more  later.    This  may  reflect  higher  natural  or  angling  mortality  or  possibly  netting  mortality,  but  as  previously  noted  the  sample  is  biased,  because  larger  adults  are  mostly  vulnerable  only  during  spawner  netting.      

  Recaptures  of  fish  at  large  316  days  or  longer  ranged  from  310-­‐586  mm  total  length  at  time  of  recap.    All  fish  at  large  316  days  or  longer  showed  positive  growth  increments.    Fifteen  of  the  28  longterm  recaptures  grew  100  mm  or  more.    Seventeen  fish  that  were  at  large  roughly  one  year  (316-­‐423  days)  grew  an  average  of  78.6  mm  (range  5-­‐139  mm).    Ten  fish  that  were  at  large  roughly  two  years  (661-­‐787  days)  grew  an  average  of  186.3  mm  (range  66-­‐212  mm).    One  exceptional  specimen  grew  277  mm,  

Page 23: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

23

doubling  in  length  from  277  mm  when  tagged  to  554  mm  after  being  at  large  1157  days,  an  average  increment  of  over  7  mm  per  month  over  3+  years.  

  There  were  four  PIT-­‐tagged  bull  trout  that  survived  multiple  recapture/release  events.    One  bull  trout  originally  PIT-­‐tagged  as  a  250  mm  fish  on  10/21/11  and  released  as  a  condition  Class  3,  was  recaught  on  8/13/12  at  310  mm  and  released  as  a  Class  2,  then  caught  again  on  8/12/13  at  373  mm  and  succumbed.    Another,  originally  PIT-­‐tagged  as  a  433  mm  fish  on  8/22/11  and  released  as  a  Class  2,  was  recaught  more  than  two  years  later,  on  10/16/13  at  564  mm  and  released  as  a  Class  1,  then  caught  again  the  following  day  during  spawner  netting  and  released  again  as  a  Class  1.    A  third  fish,  originally  PIT-­‐tagged  as  a  358  mm  fish  on  8/25/10  and  released  as  a  Class  3,  was  recaught  more  than  two  years  later,  on  10/18/12  during  spawner  netting  at  570  mm,  and  released  as  a  Class  2,  only  to  be  caught  again  and  succumbing  the  following  day.    The  ultimate  survivor,  however,  was  a  fish  originally  caught  on  8/24/10  at  277  mm  on  the  north  end  of  the  lake,  released  as  a  Class  3  and  then  caught  and  released  again  8  days  later  as  a  Class  3  nearby.    This  fish  was  caught  again  two  years  later  at  448  mm  on  8/22/12,  and  again  released  as  a  condition  Class  3  on  the  north  end  of  Swan  Lake.    Finally,  this  fish  was  caught  a  4th  time,  during  a  spawner  netting  event  on  10/24/13  on  the  south  end  of  the  lake  at  a  length  of  554  mm,  and  it  survived  again  to  be  released  as  a  condition  Class  2.    It  is  presumably  still  at  large,  after  being  gillnetted  and  released  four  times.      

  In  summary,  from  2010-­‐2013  a  total  of  734  uniquely  tagged  bull  trout  were  released;  52  recapture  events  of  these  PIT-­‐tagged  fish  occurred,  with  5  multiple  recaptures  involving  4  different  fish.    Of  the  47  first-­‐time  recapture  events,  3  involved  fish  originally  marked  as  condition  Class  1,  another  15  involved  fish  originally  marked  as  condition  Class  2,  and  the  other  29  involved  fish  originally  marked  as  condition  Class  3.    This  means  Class  1  fish  at  large  were  recaptured  3.6%  of  the  time  (3/84),  Class  2  fish  were  recaptured  6.6%  of  the  time  (15/226),  and  Class  3  fish  were  recaptured  6.8%  of  the  time  (29/424).    

 

Assessment  of  Bull  Trout  Bycatch  by  Cohort  

  We  made  a  previous  effort  to  assess  the  potential  impact  to  the  bull  trout  population  of  selective  losses  to  bycatch  in  2007-­‐2011  (Rosenthal  2012).    As  the  redd  counts  declined  in  2008-­‐2011  (Table  3,  see  also  Fig.  1),  there  was  appropriate  concern  that  the  netting  could  be  a  causative  or  contributing  factor  in  the  decline.    In  order  to  best  evaluate  this  concern,  we  first  estimated  the  ages  of  bull  trout  captured  in  the  

Page 24: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

24

netting  by  back-­‐correlating  their  sizes  with  the  previous  information  on  age  and  growth  (Leathe  and  Enk  1985).    We  determined  that  roughly  10%  of  the  total  gillnetted  sample  was  comprised  of  age  3  fish  (~181-­‐248  mm);  24%  were  age  4  (~249-­‐337  mm);  25%  were  age  5  (~338-­‐427  mm);  22%  were  age  6  (~428-­‐518  mm);  12%  were  age  7  (~519-­‐611  mm);  5%  were  age  8  (~612-­‐694  mm);  and  2%  were  age  9  or  older  (>  ~695  mm).      

  There  are  multiple  assumptions  involved  in  this  analysis.    By  assuming  bull  trout  captured  were  of  known  age,  we  were  then  able  to  assign  individuals  back  to  the  spawning  cohort  from  which  they  originated  and  essentially  reconstruct  mortality  estimates  by  age  cohort  (Table  3).    We  assumed  the  netting  affects  six  age  classes  of  bull  trout,  ages  3-­‐8;  since  age  1  and  2  fish  are  generally  in  the  tributaries  and/or  below  sizes  of  recruitment  to  our  gear,  and  age  9+  fish  are  an  insignificant  portion  of  the  spawning  population.      

Table  3.    Bull  trout  spawning  cohorts,  basinwide  redd  counts,  and  calculated  maximum  mortality  by  cohort  due  to  lake  trout  suppression  netting  during  2007-­‐2013.                

Spawning  Cohort  

#  Redds  Basinwide  

Years  During  Which  Netting  Affects  Cohort  

Netting  Bycatch  for  Cohort  

(#  bull  trout  Age  3-­‐8)  

Calculated  Mortality  =  53.6%  of  bycatch  (#  of  bull  trout)  

1996   748        1997   833        1998   829   2007   24   13  1999   682   2007-­‐2008   76   41  2000   719   2007-­‐2009   137   73  2001   687   2007-­‐2010   279   150  2002   540   2007-­‐2011   173   93  2003   592   2007-­‐2012   151   81  2004   597   2008-­‐2013   284   152  2005   588   2009-­‐2014   243   130  2006   656   2010-­‐2015   231   124  2007   762   2011-­‐2016   366   196  2008   598   2012-­‐2017   150   80  2009   481   2013-­‐2018   20   11  2010   378   2014-­‐2019   0   0  2011   312   2015-­‐2020   0   0  2012   405   2016-­‐2021   0   0  2013   335   2017-­‐2021   0   0    

  Cumulatively,  the  2007-­‐2011  bull  trout  database  included  1,477  fish  for  which  survival  class  was  recorded  (20  fish  in  the  total  sample  lacked  a  survival  code).    About  39.7%  (n  =  586)  were  direct  mortalities,  8.5%  (n  =  126)  were  Class  “1”,  13.9%  (n  =  205)  

Page 25: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

25

were  Class  “2”,  and  the  remaining  37.9%  (n  =  560)  were  Class  “3”.    By  assigning  the  predicted  average  survival  to  each  class,  we  estimated  total  gillnet  mortality  was  586  (Class  “0”)  +  88  (70%  of  Class  “1”)  +  62  (30%  of  Class  “2”)  +  56  (5%  of  Class  “3”)  =  792.    Thus,  our  calculated  estimate  of  total  bull  trout  gillnet  mortality  was  792/1,477  =  53.6%  of  the  fish  handled.    We  did  not  recalculate  this  ratio  to  include  2012-­‐2013  sampling,  but  saw  no  reason  to  expect  significant  variance.    In  Table  3,  we  assigned  53.6%  mortality  to  each  cohort  in  order  to  better  estimate  the  impact  of  mortality  on  the  bull  trout  population.      

  Applying  the  four-­‐stage  condition  survival  scale  to  the  bull  trout  bycatch  resulted  in  a  calculated  total  mortality  by  year  associated  with  juvenile  netting  of  101-­‐189  fish  per  year  in  2007-­‐2013  (Table  4).    We  began  spawner  netting  in  2009.    Calculated  mortality  for  spawner  netting,  using  the  same  protocol,  was  18-­‐53  fish  per  year  in  2009-­‐2013.    In  cumulative,  juvenile  netting  from  2007-­‐2013  resulted  in  a  calculated  mortality  of  937  fish  and  spawner  netting  from  2009-­‐2013  added  214,  for  a  total  calculated  mortality  of  1,151  bull  trout  in  2007-­‐2013  (an  average  of  164  per  year).    

Table  4.    Bull  trout  bycatch  associated  with  2007-­‐2013  lake  trout  suppression  efforts,  by  year,  with  estimated  total  mortality  after  factoring  in  estimated  delayed  mortality.  

Netting  Year   Total  Bull  Trout  Bycatch  

Estimated  Suppression  Netting  Mortality  

Estimated  Spawner  Netting  Mortality  

Estimated  Total  Mortality  

2007   378   189     189  2008   240   131     131  2009   238   109   18   127  2010   299   121   48   169  2011   342   133   49   182  2012   437   153   53   206  2013   303   101   46   147  TOTAL   2,237   937   214   1,151  

 

 

Projected  Impact  of  Gillnetting  Bycatch  on  the  Bull  Trout  Population    

  The  impact  of  gillnetting  bycatch  loss  on  the  potential  basinwide  bull  trout  redd  production  for  the  Swan  Lake  core  area  is  a  function  of  the  number  of  fish  removed,  their  age  (which  relates  to  the  number  of  potential  spawning  years  they  could  contribute),  size  (related  to  fecundity),  and  sex  ratio  (undetermined,  but  assumed  equal).    The  impact  is  also  partially  dependent  upon  whether  or  not  spawning  occurs  

Page 26: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

26

annually,  whether  or  not  compensatory  mortality  is  occurring,  as  well  as  mortality  rates  and  other  factors.    In  the  simplest  model,  we  assume  all  spawners  make  an  equal  contribution  (standard  age,  size,  and  sex  ratio)  and  that  there  are  3.2  adults  per  redd,  an  oft-­‐used  conversion  factor  applied  in  the  bull  trout  literature  that  is  based  on  earlier  studies  in  Flathead  Lake  (Fraley  and  Shepard  1989)  and  Lake  Pend  Oreille  (Downs  et  al.  2006).    Some  historical  information  (largely  pre-­‐Mysis  and  applicable  to  bull  trout  populations  sympatric  with  kokanee)  indicated  that  adfluvial  bull  trout  in  Flathead  Lake  and  similarly  productive  headwater  systems  such  as  Swan  Lake  routinely  trended  toward  alternate  year  spawning.    More  recent  studies  (e.g.  Johnston  and  Post  2009,  studying  Lake  Kananaskis,  Alberta;  Downs  et  al.  2006,  studying  lake  Pend  Oreille),  and  our  current  Swan  Lake  observations  indicate  that  very  few  adult-­‐sized  bull  trout  are  present  to  be  captured  during  the  immediate  pre-­‐spawning  period  (late  August  –  early  September)  when  juvenile  lake  trout  netting  is  occurring.    This  suggests  that  most  adult  Swan  Lake  bull  trout  at  this  time  are  either  annual  spawners  or  otherwise  avoiding  capture.    For  purposes  of  our  simple  model,  we  assume  that  no  compensatory  mortality  is  occurring  and  that  once  bull  trout  reach  age  3  the  annual  mortality  is  nil.    We  assume  that  every  bull  trout  that  reaches  the  age  of  5  spawns  annually  at  ages  5,  6,  7,  and  8;  an  assumption  that  would  maximize  the  potential  lifetime  productivity  of  individual  fish.    This  results  in  a  worst-­‐case  scenario  in  order  to  predict  the  maximum  possible  impact  of  gillnetting  bycatch.  

  Applying  these  assumptions,  we  calculated  the  projected  maximum  annual  loss  of  spawners  and  subsequent  potential  impact  to  redd  counts  due  to  gillnetting  bycatch  removal.    In  2007,  for  example,  when  the  project  began,  we  estimated  gillnet  mortality  of  189  bull  trout.    Since  most  spawners  were  likely  out  of  the  lake  by  the  time  netting  began  (or  avoiding  capture),  the  impact  on  the  redd  count  in  2007  (n  =  762  basinwide)  would  have  been  nil.    To  estimate  the  impact  of  2007  gillnet  bycatch  on  the  bull  trout  redd  count  in  2008,  we  applied  the  average  age  class  distribution  (10%  age  3;  24%  age  4;  25%  age  5;  22%  age  6;  12%  age  7;  7%  age  8+)  to  the  calculated  bull  trout  mortality  from  2007  (n  =  189)  and  estimated  that  about  19  of  the  mortalities  were  age  3,  ~45  were  age  4,  ~  47  were  age  5,  ~42  were  age  6,  ~23  were  age  7,  and  finally  about  13  age  8+  bull  trout  were  removed  (Table  5).    We  further  assumed  those  fish  age  4  and  older  that  we  removed  in  2007  would  have  all  survived  to  spawn  (age  5  and  older)  in  2008;  with  exception  of  those  age  8  and  older,  which  we  eliminated  from  the  spawner  population  due  to  senescence.    In  this  fashion,  2007  gillnetting  was  estimated  to  remove  45+47+42+23  =  157  adult  spawners  from  the  2008  population  (Table  6).    Converting  this  number  to  the  observed  number  of  redds,  using  the  standard  3.2  adults/redd  formula:  157/3.2  =  49.    Thus,  our  estimate  was  that  the  2007  gillnetting  potentially  removed  a  total  of  up  to  49  redds  from  the  2008  basinwide  count.      

Page 27: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

27

  Similar  calculations  were  performed  annually  for  years  2007-­‐2013  (Table  6).    Using  this  model,  removal  of  fish  that  are  Age  4  has  the  greatest  long-­‐term  impact,  even  though  they  do  not  spawn  until  Age  5,    as  we  assumed  noncompensatory  mortality  (and  unrealistically  low  0%  annual  mortality),  meaning  loss  of  those  fish  would  continue  to  affect  the  redd  count  baseline  for  four  successive  years.  

Table  5.    Calculated  age-­‐class  structured  bycatch  mortality  of  bull  trout  for  each  year  of  lake  trout  suppression  netting  to  date.  

Year  Netted  

Calculated  Mortality  (juv+spawn)  =  

Mortality  Age  Class  3  (0.10)  

Mortality  Age  Class  4  (0.24)  

Mortality  Age  Class  5  (0.25)  

Mortality  Age  Class  6  (0.22)  

Mortality  Age  Class  7  (0.12)  

Mortality  Age  Class  8+  (0.07)  

2007   189   19   45   47   42   23   13  2008   131   13   31   33   29   16   9  2009   109+18  =  127   13   30   32   28   15   9  2010   121+48  =  169   17   41   42   37   20   12  2011   133+49  =  182   18   44   45   40   22   13  2012   153+53  =  206   21   49   52   45   25   14  2013   101+46  =  147   15   35   37   32   18   10    

Table  6.    Calculated  cumulative  bycatch  mortality  of  bull  trout  in  relation  to  spawning  year,  for  combined  lake  trout  netting  to  date.  

Spawn  Year  

Bycatch  Mortality  Loss    (5  years  prior)  

Bycatch  Mortality  Loss    (4  years  prior)  

Bycatch  Mortality  Loss    (3  years  prior)  

Bycatch  Mortality  Loss    (2  years  prior)  

Bycatch  Mortality  Loss    (1  year  prior)  

Cumulative  Bycatch    Mortality    Loss  by  Cohort    

2008           45+47+42+23   157  2009         19+45+47+42   31+33+29+16   262  2010       19+45+47   13+31+33+29   30+32+28+15   322  2011     19+45   13+31+33   13+30+32+28   41+42+37+20   384  2012   19   13+31   13+30+32   17+41+42+37   44+45+40+22   426  2013   13   13+30   17+41+42   18+44+45+40   49+52+45+25   474  2014   13   17+41   18+44+45   21+49+52+45   35+37+32+18   467  2015   17   18+44   21+49+52   15+35+37+32     320  2016   18   21+49   15+35+37       157  2017   21   15+35         71  2018   15           15      

  In  summary,  we  theoretically  observe  an  accumulating  trend  in  the  loss  of  potential  spawners  which,  as  discussed,  would  have  a  maximum  effect  to  bull  trout  after  

Page 28: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

28

five  consecutive  years  of  netting  (removing  age  classes  4-­‐8).    This  is  logically  an  overestimate  because  some  level  of  compensatory  mortality  may  be  occurring  and  annual  mortality  certainly  occurs,  though  levels  are  not  known.    Conversely,  some  bull  trout  may  spawn  past  age  8,  but  those  numbers  are  believed  to  be  low.    Nonetheless,  these  bycatch  mortality  totals  were  designed  to  estimate  the  maximum  potential  effect  of  the  bycatch  on  the  bull  trout  population.    We  observe  from  the  last  column  (in  bold)  from  Table  6  that  the  maximum  loss  of  bull  trout  spawners  due  to  netting  begun  in  2007  did  not  accumulate  until  spawning  year  2012,  when  an  estimated  426  spawners  were  potentially  removed  from  the  bull  trout  population.    Similarly,  in  2013  we  lost  an  estimated  maximum  of  474  spawners  and  for  2014  the  estimated  loss  will  accrue  to  467  spawners.    For  those  three  years  where  we  estimate  complete  bycatch  loss  totals,  estimated  reduction  of  spawners  was  up  to  426-­‐474  annually,  averaging  456.    Using  the  existing  conversion  factor  of  3.2  adults  per  redd,  a  reduction  of  456  spawners  would  net  a  maximum  reduction  of  about  142  redds  annually.      

 

Conclusions  

  Basinwide  bull  trout  redd  counts  for  the  Swan  Lake  core  area  steadily  declined  from  2007  through  2011  (Figure  1),  but  appeared  relatively  stable  in  2011-­‐2013.    Since  netting  began  in  2007,  a  recent  peak  of  762  redds  was  counted  in  2007;  with  a  more  recent  range  of  roughly  half  that  (312-­‐405  redds  in  2010  through  2013).    Based  on  the  preceding  analysis,  it  appears  the  gillnetting  bycatch  likely  contributed  to  the  2007-­‐2011  decline,  but  is  at  most  partially  responsible.    The  maximum  potential  reduction  in  redds  attributable  to  bycatch  mortality  can  be  roughly  estimated  by  dividing  the  cumulative  bycatch  mortality  (last  column  in  Table  6)  by  3.2  (#  adults/redd).    Thus,  the  maximum  amount  that  the  gillnet  bycatch  potentially  reduced  redd  counts  was  by  approximately  49  in  2008,  82  in  2009,  101  in  2010,  120  in  2011,  133  in  2012,  and  148  in  2013.    The  highest  (2013)  estimate  is  unlikely  to  be  exceeded  in  the  future  under  the  current  netting  protocols.    Further,  as  discussed,  these  are  absolute  maximum  estimates  since  we  have  chosen  to  discount  annual  and  compensatory  mortality  and  assume  annual  spawning  for  every  fish.    If  the  lake  trout  gillnetting  program  continues  at  existing  levels,  then  bycatch  of  bull  trout  can  be  expected  to  contribute  to  the  loss  of,  at  most,  130-­‐150  bull  trout  redds  per  year.    If  the  gillnetting  program  were  to  be  discontinued,  reduced  in  intensity  or  duration,  or  otherwise  improved  by  reducing  the  level  of  bycatch  or  increasing  survival  of  bycaught  bull  trout,  then  the  ongoing  impacts  to  the  redd  counts  would  still  be  felt  through  at  least  2018,  though  at  increasingly  reduced  levels  for  the  next  5  years.      

Page 29: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

29

  It  is  important  to  note,  however,  that  if  redd  counts  decline  further,  effects  of  netting  bycatch  could  become  more  consequential  to  the  bull  trout  population.    Loss  of  150  redds  from  a  peak  of  762  (as  in  2007)  would  represent  only  16%  off  the  top,  but  loss  of  150  redds  from  a  count  of  312  (as  in  2011)  represents  nearly  a  one-­‐third  (32%)  decline  in  potential.    Another  way  to  measure  the  potential  impact  of  the  loss  of  redds  due  to  netting  relative  to  potential  bull  recruitment  could  be  through  the  ongoing  bull  trout  juvenile  abundance  surveys  conducted  annually  by  MFWP  in  four  primary  spawning  streams.    Multi-­‐pass  population  estimates  of  age  1  and  older  bull  trout  have  been  conducted  more  or  less  annually  in  the  same  sections  of  Elk,  Goat,  Lion,  and  Squeezer  Creeks  since  1987  (MFWP  2013,  unpublished).    Results  are  expressed  in  terms  of  fish/100m2.    A  composite  index  number  is  obtained  by  averaging  the  point  estimate  from  individual  streams,  typically  for  all  four  streams  but  at  minimum  two  (in  some  years  not  all  streams  were  surveyed).    For  2001  through  2013  the  data  set  is  continuous.    Because  juvenile  abundance  (mostly  age  1  and  2)  is  primarily  a  measure  of  recruitment  from  redds  counted  2  and  3  years  prior  to  the  juvenile  survey,  we  use  a  2-­‐year  time  lag  between  redd  counts  and  juvenile  numbers  to  make  a  direct  line-­‐by-­‐line  comparison  in  the  table  (Table  7).      

  The  composite  juvenile  abundance  index  ranged  from  2.26  to  4.64  bull  trout  /  100m2  in  (MFWP  2013,  unpublished)  in  2003-­‐2013,  corresponding  to  juveniles  produced  during  redd  count  years  2001-­‐2011,  and  averaged  3.41,  very  near  the  longterm  (23-­‐year)  average  of  3.45  compiled  since  1985.    The  average  composite  juvenile  abundance  in  the  first  seven  of  those  years,  immediately  prior  to  any  effects  from  the  initiation  of  lake  trout  suppression  (juveniles  sampled  in  years  2003-­‐2009,  representing  redds  counted  in  2001-­‐2007),  was  equivalent  to  the  longterm  average  at  3.45  bull  trout  /  100m2.    Redd  counts  in  2001-­‐2007  ranged  from  402-­‐521,  averaging  458.    In  the  succeeding  four  years,  when  bull  trout  bycatch  associated  with  lake  trout  suppression  efforts  could  have  had  an  impact  on  redd  counts  (2008-­‐2011)  redd  counts  ranged  from  210  to  395  and  averaged  310;  about  two-­‐thirds  of  the  level  posted  in  the  preceding  seven  years.    Yet,  the  composite  estimate  of  juvenile  abundance  measured  in  2010-­‐2013  (correlated  to  those  2008-­‐2011  redd  counts)  ranged  between  2.26  and  4.39,  averaging  3.34    juvenile  bull  trout  /  100m2.      The  observation  that  a  one-­‐third  decline  in  redd  counts  resulted  in  only  an  insignificant  decline  (0.11  juvenile  bull  trout  /  100m2)  in  juvenile  abundance  provides  some  assurance  that  juvenile  recruitment  is  still  robust,  despite  lower  redd  numbers.    In  fact,  at  recent  redd  count  levels  there  appears  to  be,  at  most,  a  weak  positive  relationship  between  redd  counts  and  juvenile  recruitment  two  years  later  (Figure  4).      

   

Page 30: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

30

Table  7.    Index  redd  counts  and  juvenile  bull  trout  (age  1  and  older)  composite  average  abundance  index  (#/100m2)  calculated  two  years  later,  for  four  combined  index  streams  of  the  Swan  Lake  bull  trout  core  area  (Elk,  Goat,  Lion,  and  Squeezer  creeks).  

 

 

 

 

   

   

Spawning  Year   Index  Redd  Count   Composite  Juvenile  Abundance  Index    Two  Years  Later  (#  age  1+  /100m2)  

1985   109   6.72  1986   210   2.99  1987   290   2.59  1988   321   3.21  1989   371   3.11  1990   263    1991   366    1992   375   2.06  1993   432   2.61  1994   493    1995   508   3.36  1996   526   3.64  1997   586   2.83  1998   612    1999   501   4.38  2000   519   4.27  2001   502   3.91  2002   430   3.26  2003   425   4.64  2004   435   3.49  2005   402   2.30  2006   489   2.51  2007   521   4.01  2008   395   4.39  2009   366   2.26  2010   268   3.63  2011   210   3.07  2012   252    2013   201    MEAN     3.45  

Page 31: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

31

Figure  4.    Association  between  composite  juvenile  bull  trout  abundance  index  (juvenile  

bull  trout  /  100m2)  in  2003-­‐2013  and  the  redd  counts  two  years  prior  that  were  responsible  for  producing  those  juvenile  fish.  

 

   

  In  future  years,  it  will  be  important  to  continue  to  collect  and  track  juvenile  recruitment  data  as  a  potential  early  warning  of  any  imminent  population  collapse.    There  could  be  a  threshold  effect  below  which  bull  trout  juvenile  numbers  begin  to  decline.    In  the  late  1980’s  and  early  1990’s,  redd  counts  similar  to  the  range  seen  in  the  recent  past  also  produced  composite  juvenile  abundance  similar  to  the  long-­‐term  average  (3.45  bull  trout  /  100m2  ).    Current  redd  counts  do  not  appear  to  be  approaching  any  threshold  that  limits  juvenile  recruitment.  

  Finally,  in  order  to  be  proactive,  MFWP  closed  the  bull  trout  harvest  fishery  on  Swan  Lake  beginning  March  1,  2012.    In  1983-­‐1984  the  estimated  angler  harvest  of  bull  trout  from  Swan  Lake  was  738  fish  and  as  recently  as  1995,  estimated  angler  harvest  was  482  fish,  well  above  numbers  of  bull  trout  currently  removed  by  gillnet  bycatch.    The  angler  harvest  has  continued  to  decline  since  then,  attributable  to  tighter  regulations  and  perhaps  changing  angler  ethics  in  regard  to  bull  trout,  with  an  estimate  of  only  176  bull  trout  harvested  in  the  fishery  2009  (MFWP  2010,  unpublished).    It  is  logical  to  assume  that  the  angler  harvest  in  2007-­‐2011  was  additive  to  the  bycatch  mortality  from  netting  and  so  by  closing  the  harvest  fishery  some  additional  buffer  should  be  gained.    The  recent  level  of  angler  harvest  (n  =176)  appears  to  have  been  roughly  equivalent  to  the  total  number  of  bull  trout  removed  (calculated  bycatch  mortality  of  127-­‐206  –  see  Table  3)  with  gillnets.      

2  

2.5  

3  

3.5  

4  

4.5  

5  

200   250   300   350   400   450   500   550  Compo

site  Ju

venile    A

bund

 Inde

x  

Index  Redd  Count  

Index  Redd    2001-­‐2011  vs  Juv  Abundance  2003-­‐2013  

Page 32: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

32

  In  conclusion,  the  bull  trout  bycatch  associated  with  the  lake  trout  gillnetting  program,  as  it  is  currently  configured  (30  juvenile  netting  events  followed  by  20  spawner  netting  events),  is  likely  to  remain  at  around  300-­‐400  fish  per  year  (Table  1),  with  roughly  half  those  fish  killed.    The  predicted  population  level  impact  of  that  removal  is  a  reduction  of  up  to  150  bull  trout  redds  per  year  from  the  systemwide  total.    Based  on  our  current  understanding  of  bull  trout  population  dynamics  in  Swan  Lake,  that  level  of  reduction  should  be  sustainable  and  should  not  have  long-­‐term  population  level  consequences  to  bull  trout.    The  2007-­‐2011  redd  count  declines  were  steeper  than  what  would  have  been  predicted  solely  by  gillnet  bycatch.    There  is  no  way  to  feasibly  determine  the  impact  to  bull  trout  from  competition  or  predation  by  lake  trout,  but  the  removal  of  nearly  45,000  lake  trout  from  Swan  Lake  by  gillnetting  (2007-­‐2013)  should  benefit  the  bull  trout  population  by  reducing  competition  and  predation  risk  and,  importantly,  should  also  help  to  maintain  a  viable  kokanee  population  which  is  a  vitally  important  forage  species.    

 

Literature  Cited  

Downs,  C.C.,  D.  Horan,  E.  Morgan-­‐Harris,  and  R.  Jakubowski.    2006.    Spawning  demographics  and  juvenile  dispersal  of  an  adfluvial  bull  trout  population  in  Trestle  Creek,  Idaho.    North  American  Journal  of  Fisheries  Management  26:190-­‐200.    

Fraley,  J.J.  and  B.B.  Shepard.  1989.  Life  history,  ecology,  and  population  status  of  migratory  bull  trout  (Salvelinus  confluentus)  in  the  Flathead  Lake  and  River  system,  Montana.  Northwest  Science.  63:133-­‐143.    

Fredenberg,  W.  and  S.  Rumsey.    2007.    Benefit  and  risk  analysis.    2007  trap  net  and  gill  net  survey  –  Swan  Lake,  Montana.    U.S.  Fish  and  Wildlife  Service,  Kalispell.      

Johnston,  F.D.  and  J.R.  Post.    2009.    Density-­‐dependent  life-­‐history  compensation  of  an  iteroparous  salmonid.    Ecological  Applications  19(2)449-­‐467.  

Leathe,  S.A.  and  M.D.  Enk.  1985.  Cumulative  effects  of  microhydro  development  on  the  fisheries  of  the  Swan  River  drainage,  Montana.  I.  Summary  Report.  Montana  Department  of  Fish,  Wildlife  and  Parks,  Kalispell,  Montana.  Prepared  for  Bonneville  Power  Administration,  Portland,  Oregon.  Project  82-­‐19.  

Leathe,  S.A.,  S.  Bartelt,  and  L.M.  Morris.  1985a.  Cumulative  effects  of  microhydro  development  on  the  fisheries  of  the  Swan  River  drainage,  Montana.  II.  Technical  

Page 33: Experimental Removal of Lake Trout in Swan Lake, MT: …montanatu.org/wp-content/uploads/2014/05/2013-SVBTWG_-Annual... · Experimental Removal of Lake Trout in Swan Lake, MT: 2013

33

Information.  Montana  Department  of  Fish,  Wildlife  and  Parks,  Kalispell,  Montana.  Prepared  for  Bonneville  Power  Administration,  Portland,  Oregon.  Project  82-­‐19.    

Leathe,  S.A.,  S.  Bartelt,  and  L.M.  Morris.  1985b.  Cumulative  effects  of  microhydro  development  on  the  fisheries  of  the  Swan  River  drainage,  Montana.  III.  Fish  and  Habitat  Inventory.  Montana  Department  of  Fish,  Wildlife  and  Parks,  Kalispell,  Montana.  Prepared  for  Bonneville  Power  Administration,  Portland,  Oregon.  Project  82-­‐19.  

MFWP  Unpublished.  2010.    Results  of  2009  Swan  Lake  creel  survey.    Montana  Fish,  Wildlife  and  Parks,  Kalispell.  

MFWP  Unpublished.  2013.    Compiled  juvenile  bull  trout  abundance  estimates  for  Elk,  Lion,  Goat  and  Squeexzer  Creeks,  1985-­‐2013.    Montana  Fish,  Wildlife  and  Parks,  Kalispell.  

Rosenthal,  L.    2012.    Draft  Environmental  Assessment  for  an  extension  of  experimental  lake  trout  removal  efforts  in  Swan  Lake,  Montana.    Montana  Fish,  Wildlife  and  Parks,  Kalispell.      

Rumsey,  S.  and  T.  Werner.  1997.  Swan  Lake,  Montana  angler  creel  survey  -­‐  1995.  Montana  Fish,  Wildlife  and  Parks.  Helena.    

U.S.  Fish  and  Wildlife  Service.  1998.  Endangered  and  threatened  wildlife  and  plants;  Determination  of  threatened  status  for  the  Klamath  River  and  Columbia  River  distinct  population  segments  of  bull  trout.  Final  rule.  Federal  Register  63(111)31647-­‐31674.