exciton diffusion and interfacial charge separation in...

29
October 21, 2004 1 Exciton diffusion and interfacial charge separation in porphyrin/TiO 2 bilayers Laurens D.A. Siebbeles Delft University of Technology The Netherlands

Upload: lamphuc

Post on 23-Aug-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

October 21, 2004

1

Exciton diffusion and interfacial charge separation in porphyrin/TiO2bilayers

Laurens D.A. SiebbelesDelft University of TechnologyThe Netherlands

October 21, 2004 2

Research in Delft on opto-electronic properties of materials

SS

SS

conducting polymers DNA supra-molecularassemblies

discotic liquid crystals

composite systems

inorganic nanoparticles, nanorods

October 21, 2004 3

Sample morphologies

dilute solution / gel bulk solid

+

thin film on (active) substrate heterogeneous blends

4S1

S0

CB

antenna

2 1

semiconductor3

5

VB

October 21, 2004 4

Dynamics of charge carriers and excitons

- e- accelerator - lasers

Radiation pulse

+ e-

e-+

Time-resolved detection

• electronic structure calculations (HF, DFT etc.)• quantum mechanical calcs. on charge and exciton motion• Monte Carlo simulations of hopping transport

Charge carriers• mobility, trapping, recombination• optical abs. spectra

Excitons• dissociation, diffusion and decay• polarizability, opt. abs. spectra

Formation(fsec - nsec)

Detection (microwave, THz, optical)

Theory

October 21, 2004 5

Exciton diffusion in bilayer model systems

N

NN

N

CO2H

HO2C CO2H

CO2HTiO2 porphyrin

+

-

+-

- +

5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin(TPPC)

M

M=H2, Pd

October 21, 2004 6

Simple bilayer dye-sensitized solar cell

+

-

+

-

- +

porphyrinTiO2

+

sunlight

Requirements:• efficient light absorption• large exciton diffusion length• efficient charge separation at interface• escape of charge from recombination• mobile charges

October 21, 2004 7

Relevant processes

4

porphyrin

2 1

TiO2 3

5

1: photo-excitation2: (non)radiative decay3: exciton diffusion and annihilation4: interfacial electron transfer5: interfacial charge recombination

CB

VB

October 21, 2004 8

Bilayer is inefficient due to small exciton diffusion length

+

-

+

-

- +

organic materialTiO2

+

sunlight

light penetration depth Λhν ~ 100 nm

exciton diffusion length ΛE =√(DE*τE) < 10 nm

only small fraction of excitons reaches interface

October 21, 2004 9

In heterogeneous structure ΛE can be short

- +

+-

Disadvantages:• percolation paths needed• recombination losses• exciton quenching on trapped charges

-+ +

-

October 21, 2004 10

Exciton diffusion and charge separation in bilayer model systems: effect of Pd

+

-

+-

- +

porphyrinTiO2

5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin(TPPC)

N

NN

N

CO2H

HO2C CO2H

CO2H

M

M=H2, Pd

3 nslaser pulse

Layer preparation

quartz plate

TiO2 layer (80 nm)by EBE

porphyrin (60 nm) by spin-coating from pyridine/EtOH

October 21, 2004 11

October 21, 2004 12

Absorption spectra

TiO2

porphyrin

excitation

Selective excitation of porphyrin(400-700 nm) or TiO2 (300 nm)

October 21, 2004 13

Time-resolved microwave conductivity measurementsprobe mobile electrons in TiO2

P P-∆P

e-

e-

e-

e-

+

-

+

+

+

+

+

∆σ = A ∆PP

= enµ−

microwaves10 GHz

TiO2 porphyrin

October 21, 2004 14

Measurement cell

sample

microwave

detector

source

quartz window

laser puls:iris

X-band waveguide

2.5 cm

October 21, 2004 15

Porphyrin on quartz: no photoconductivity

λ = 430 nm

H2TPPC only

October 21, 2004 16

TiO2: small short lived photoconductivity

TiO2 only

H2TPPC only

λ = 430 nm

October 21, 2004 17

Porphyrin/TiO2 bilayer: long-lived photoconductivity

TiO2 only

TiO2 / H2TPPCbilayer

H2TPPC only

λ = 430 nm

TiO2/H2TPPCbilayer

+

-

October 21, 2004 18

Porphyrin/TiO2bilayer: wavelength dependence

• No preferential charge separation at specific wavelength

• IPCSE < 0.8 % (Fa=0.6 at 430 nm)

• Exciton diffusion length only 1-2 monolayers of porphyrin

IPCSE = no. of chargesno. of incident photons

Kroeze, J. E.; Savenije, T. J.; Warman, J. M., J. Photochem. Photobiol. A-Chem. 2002, 148, 49-55.

October 21, 2004 19

In H2TPPC photoconductivity results from singlet excitons

1: photo-excitation 2: internal conversion 3: interfacial electron transfer 4: (non)radiative decay 5: intersystem crossing

5

TiO2 porphyrin

CB

VB

14

3 S1

S0

S22

T1

1

2

3

4

-1

-2

-3

0

E (V vs NHE)

(10 ps)

Singlets (τ=11 ns) undergo intersystem crossing to triplets (φ=0.78, τ=0.4 ms)which diffuse via slow Dexter mechanism

October 21, 2004 20

D* A D A*

Singlet:Förster energy transfer 'hν'

D* A D A*

Triplet:Dexter energy transfer

October 21, 2004 21

Mixing of singlet and triplet by spin orbit couling due to heavy metal

Excitons in Pd substituted porphyrin: - long lifetime due to triplet character- diffusion via singlet character

N

NN

N

CO2H

HO2C CO2H

CO2H

Pd

October 21, 2004 22

Pd substitution enhances IPCSE on longer times to 12% due to diffusion of excitons with mixed singlet/triplet character

14

12

10

8

6

4

2

0

IPC

SE

(%)

1ns 100ns 10µs time

H2TPPC

PdTPPCH2TPPC PdTPPC

τS (ns) 11 ~ 10-2

τT (ms) 0.4 0.29

φT 0.78 ~1

kP (s-1) 0.0067 61

E(S0) (eV) -5.5 [-1.1] -5.7 [-1.3]

E(S1) (eV) -3.6 [0.8] -3.5 [0.9]

E(S2) (eV) -2.6 [1.8] -2.7 [1.7]

E(T1) (eV) -4.1 [0.3] -3.9 [0.5]

2.5x1016 photons/m2

Kroeze, J. E.; Savenije, T. J.; Warman, J. M. Adv. Mater. 2002, 14, 1760-1763.

October 21, 2004 23

Enhanced diffusion length in PdTPPC

TiO2 TiO2 Pd porphyrinH2 porphyrin

+-

+

-

+-

- +

+

-

- +

October 21, 2004 24

In PdTPPC diffusion via singlet and triplet

Ψexc = cSΦS + cTΦT

Λ = Dτ

D=δ2 khop =δ2 Ps2kForster + 1− Ps( )kDexter[ ] τ = 1

Pskrad +knrad

Λ =δ2 Ps

2kForster + 1− Ps( )kDexter[ ]Pskrad + knrad

October 21, 2004 25

Effect of laser intensty on conductivity in PdTPPC/TiO2 bilayer

increasing I0

Strong influence of I0 → bimolecular exciton-exciton annihilation

October 21, 2004 26

Monte Carlo computer simulations

injection in TiO2

z

yx

• 3D excitation profile; Lambert-Beer along x

• Exciton mean lifetime τ and diffusion coefficient D

• Excitons peform 3D random walk

• Annihilation if 2 excitonswithin distance Rann

• Electron injection with chance φinj at TiO2 interface

• Output: charge separation efficiency vs time

October 21, 2004 27

Triplet exciton diffusion in PdTPPC simulated

15

10

5

0

IPC

SE

(%)

1ns 10ns 100ns 1µs 10µs

time

2.5 x 1016 m-2

86 x 1016 m-2

20

15

10

5

0

IPC

SE

(%)

1015

1016

1017

1018

1019

I0 (photons/m2/pulse)

20 ns exp 10 µs exp simulation

23 x 1016 m-2

• D=8×10-11 m2/s (5 ns hopping time for d=1.5 nm) , τ ≥ 10 µs• Exciton diffusion length ≥ 28 nm!• φinj = 0.4• Rann = 1.5 nm

Kroeze, J. E.; Savenije, T. J.; Candeias, L. P.; Warman, J. M.; Siebbeles, L. D. A. Solar Energy Mater. Solar Cells 2004, in press.

October 21, 2004 28

D = 8×10-11 m2/s for triplets in PdTPPC

literature:

D = 2.8×10-8 m2/s for singlets in lc porphyrin derivativeD = 10-8 - 10-6 m2/s for singlets in conjugated polymers

D = 10-12 m2/s for triplets in ZnTPPC

October 21, 2004 29

Conclusion

• Singlet-triplet mixing due to heavy atoms enhances exciton diffusion length

• Simple bilayer devices may become competitive with designs based on mesoporous nanocrystalline materials

Acknowledgments

Dr. J.E. Kroeze, Dr. T.J. Savenije and Dr. J.M. Warman

Netherlands Organization for Scientific Research (NWO)