exchange bias 1 - university of washington · exchange bias in antiferromagnetic-ferromagnetic...

18
1 Exchange Bias in Antiferromagnetic- Ferromagnetic Bilayers Kannan M. Krishnan Department of Materials Science and Engineering University of Washington, Seattle DoE/BES Condensed Matter Colloquium, Physics Department, UW (11/01) Broad Research Themes and Projects Growth and Properties of Thin Film Structures Nanoscience and Nanotechnology Advanced Characterization with Electron and Photon Probes Deposition by Ion Beam Sputtering, Sol-Gel Processing Exchange Interactions in AFM/FMbilayers Growth mode of complex oxides Magnetically actuated shape memory alloy films Synthesis by chemical, metallurgical and lithography routes (Group) Achieving theoretical coercivity and role of dilution in Fe-Nd-B alloys Self-Assembled Magnetic Nanocrystals (Mike Beerman , Yuping Bao) Patterned Media to overcome the superparamagnetic limit (J.D. Wright, G. Kusinski) Measurements of Interface roughness and correlation with GMR (M.E. Gomez) Quantitative measurements of elemental segregation in Co-Cr media (Dr. W. Grogger) Detection/Resolution limits of energy-filtered imaging (Dr. W. Grogger, G. Kusinski) Magnetic imaging with electrons and photons - complementarity (G. Kusinski) UW, UCB/LBNL

Upload: others

Post on 30-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Exchange Bias in Antiferromagnetic-Ferromagnetic Bilayers

    Kannan M. Krishnan

    Department of Materials Science and EngineeringUniversity of Washington, Seattle

    DoE/BES

    Condensed Matter Colloquium, Physics Department, UW (11/01)

    Broad Research Themes and Projects

    Growth and Properties of Thin Film Structures

    Nanoscience and Nanotechnology

    Advanced Characterization with Electron and Photon Probes

    Deposition by Ion Beam Sputtering, Sol-Gel ProcessingExchange Interactions in AFM/FM bilayersGrowth mode of complex oxidesMagnetically actuated shape memory alloy films

    Synthesis by chemical, metallurgical and lithography routes (Group)Achieving theoretical coercivity and role of dilution in Fe-Nd-B alloys Self-Assembled Magnetic Nanocrystals (Mike Beerman , Yuping Bao)Patterned Media to overcome the superparamagnetic limit (J.D. Wright, G. Kusinski)

    Measurements of Interface roughness and correlation with GMR (M.E. Gomez)Quantitative measurements of elemental segregation in Co-Cr media (Dr. W. Grogger)Detection/Resolution limits of energy-filtered imaging (Dr. W. Grogger, G. Kusinski)Magnetic imaging with electrons and photons - complementarity (G. Kusinski)

    UW, UCB/LBNL

  • 2

    Magnetic Thin Films and NanostructuresMagnetic Thin Films and Nanostructures

    ☛ Physical phenomena (magnetoresistance, hysteresis etc.) - fundamental studies☛ Microstructure - unique characterization tools and atomic level control☛ Technology (Magnetic Recording, MRAM, hard magnets, MEMS, NDE ….. )

    Vertically integrated ProgramVertically integrated Program

    • UHV Ion-beam deposition • Chemical synthesis• Pulsed Laser Deposition (IML)

    Synthesis & Processing Properties & Phenomena

    Characterization NCEM - Electron microscopy

    Mg Fe Mn

    - 2

    -1.5

    - 1

    -0.5

    0

    0.5

    1

    -4

    -3

    -2

    -1

    0

    1

    2

    690 700 710 720 730

    MC

    D

    MC

    D Integration

    Energy (eV)

    MCDMCD Integr.

    b0

    2

    4

    6

    690 700 710 720 730

    Ab

    sorp

    tion

    Energy (eV)

    +3T/LC-3T/LC

    a

    ALS - X-ray magnetic circular dichroism

    EELS

    Mn-L Sr-M

    O-K

    • Magnetic• Transport

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    100 150 200 250 300ρρρρ

    (((( ΩΩΩΩ

    ))))

    T (K)

    cm

    H = 0

    H = 1T

    -0.0015

    0

    0.0015

    -150 0 150

    M (

    emu)

    H (Oe)

    Spin Valve - Hysteresis Loop

    Systems of Reduced Dimensions3D 2D 1D 0D

    DoS

    EnergyEF

    d

    DoS

    EnergyEF

    f(d)

    For 2D behaviorOnly ONE level within∆∆∆∆E = + kT (0.026 eV) of EF

    1st estimate, set energyof lowest level ~ kT ~ p2/2m

    de Broglie wavelengthλλλλ ~ h/p ~ 8 nm (slabthickness)

    Ultrathin filmsMultilayersInterfaces

    ChemicalSynthesis

    +Self

    Assembly

    And

    Lithography

  • 3

    Growth & Novel Properties of 2D Structures

    Ultrathin FilmsMultilayersInterfaces

    UHV Ion-beam DepositionAFM FM

    Frustration & Proximity Effects

    M/M

    s

    Field (Oe)

    -1.2

    0

    1.2

    -400 0 400

    (A) 200 °C(B) 250 °C(C) 300 °C

    He

    Exchange Bias

    Cheng, Ahn and Krishnan, J. Appl. Phys., 89, 6597 (2001).

    Perpendicular Interface Anisotropy

    Ean = Keff Sin2θ

    Keff = -2πMs2 + 2Ks/tm + KvCho, Krishnan, Lucas and Farrow, J. Appl. Phys. , 72, 5799 (1992).

    Giant Magnetoresistance

    H

    R

    ∆R/R ~ 20-80%

    Cyrille, Kim, Gomez, Santamaria, Leighton, Krishnan and Schuller, Phys. Rev. B. 62, 15079-15083 (2000)

    H

    200 nm

    50 nm

    Nanoscale materialsby Self-assembly

    Chemical method --Size-selective precipitationSurfactant controls shapeBottoms-up approachMagnetism in systems of reduced dimensions

    Puntes, Krishnan & Alivisatos,Science, 291, 2115 (2001)

    Small Particles

    Metallurgical ApproachAchieving theoretical coercivity limits & understanding mechanisms

    Girt, Krishnan, Thomas and Girt, J. Mag. Mag. Mat., 231, 219 (2001)

    4 µm

    “Patterned” Media

    Ion-implantation throughStencil Masks; Top-down approachOvercoming the super -paramagnetic limit

    Kusinski, Krishnan, Denbeaux, Thomas, Weller, Rettner. Terris Appl. Phys. Lett. 79, 2211(2001)

  • 4

    Eij = -2 Jij Si Sj = Jij |S|2 θθθθ 2 for small θθθθ

    • No fundamental limit on strength• Isotropic, Amorphous magnets• Determines magnetic orderJij =

    3 kB Θc2 Z S(S+1)

    θ

    Jij

    Mn

    Fe

    Co

    Nirabrd

    Bethe- Slater Curve

    Factors affecting magnetic behaviour: Exchange Interactions

    The spin-orbit-lattice interaction

    sin2 sin4 Emcuniaxial = Ko + Ku1 θ + Ku2 θ + ..Cobalt Ku1 = 4.1x10

    5 J/m3 Ku2 = 1.0x105 J/m3

    Factors affecting magnetic behaviour: Anisotropy

    Determines Magnetic Orientation

  • 5

    Magnetic Behavior of Ferromagnets & Antiferromagnets

    IronΘc ~ 790°C (1063 K)Strong magnetic Order

    Weak Orientation

    Superparamagnetic limit

    KV

    ~25kBT

    Rc ~ kBT

    K

    13

    AFM + FM heterostructures

    Exchange Bias : Unique Behavior not Observed in Bulk FM

    ΘN

    χ

    T

    Weak Magnetic OrderStrong Orientation

    Antiferromagnet

    Angle (Theta °)

    He(B)= -111Oe [cos(ϑ )-0.15cos(3ϑ )-0.01cos(5ϑ )+0.01cos(7ϑ )+...]Hc(B)= 44Oe [1+0.82cos(2ϑ )+0.24cos(4ϑ )+0.05cos(6ϑ )+...]

    He(A)= -26Oe [cos(ϑ )-0.34cos(3ϑ )+0.13cos(5ϑ)-0.07cos(7ϑ )+...]Hc(A)= 80Oe [1+0.46cos(2ϑ )-0.04cos(4ϑ )+0.01cos(6ϑ)+...]

    -100

    -50

    0

    50

    100

    0 100 200 300

    H (

    Oe)

    He(B)

    Hc(B)

    Hc(Fe)

    M/M

    s

    Field (Oe)

    -1.2

    0

    1.2

    -400 0 400

    (A) 200 °C(B) 250 °C(C) 300 °C

    Unidirectional CouplingUnidirectional CouplingSample

    HysteresisHysteresis

    Exchange Bias in AFM/FM Bilayers

  • 6

    Frustration , Interface and Proximity Effects

    • Phenomenon poorly understood• Interface effects dominate• Need element-specific probes• Growth of ideal structures - epitaxy• Technology

    H

    R0 RH

    ∆∆∆∆R/R ~ 20 %

    R

    H

    “Spin”Valves

    AFMFM

    20nm 20nm

    MnFe

    Free Energy:

    AFM

    FMJint

    θ

    F = H MFM tFM Cos θ - Jint Cos θ + KFM Sin2θ

    Solution in terms of an effective field

    H’ = H - Jint / (MFM tFM ) = H - HE

    HE = Jint / (MFM tFM )

    If typical values for JFM are usedthen observed HE are too small

    Exchange Bias: Basics

    Easy Direction

  • 7

    Uncompensated

    Compensated

    Exchange Bias: Basics ….

    Mauri (1987) Planar Domain Wall

    Malozemoff (1987, 1988) Random Field Model

    AFM Domain

    Koon (1997) Spin Flop Coupling Model

    Frustration Spin-Flop

    a-axis normal

    3.58Å

    4.07Å

    4.07Å

    Spin Uncompensated

    3.58Å

    4.07Å

    4.07Å

    c-axis normalSpin Compensated

    Pal et al, Jour. Appl. Phys. 39, 538. 1968

    Crystal and Spin Structure of AFM Mn50Pd50

  • 8

    Ion-beam Deposition

    Vacuum System

    ThicknessMonitor

    Substrate Heater (1000°C)

    KaufmanIon Gun

    Multiple Target Holder

    Ar

    Cathode

    Anode

    GlowDischarge

    Magnets

    2.5 cm diameter 1-2 keV20-50 mAmps0.5 Å/sec sputtering

    UHV Reactive Ion-beam Deposition SystemUHV Reactive Ion-beam Deposition System

    ComputerCotrolled Process &Diagnostics

    Portable Platform

    Accurate control of gas flowrates (O2, N2, Ar)

    Load-lock Gate Valve

    Sample-transferChamber

    Transfer Rod

    Kauffman-type ionsource

    Target(4)rotation

    Targetblock

    Shutter

    Substrate heater feed through (1000°C)Thermocouple

    Thickness Monitor

    Residual gas analyser

    Versatile, Portable (ALS)

  • 9

    Epitaxial growth and exchange biasing of FM/AFM bilayers

    Normal Structure

    PdMn (~280Å)

    Fe (~60Å)MgO(001)

    10 20 30 40 50 60 70 80

    inte

    nsity

    (a.u

    .)1

    theta

    a-growth (002)MgO

    (200)MnPd

    (004)Fe-0.8

    0

    0.8

    -500 0 500

    mom

    ent(

    mem

    u)

    H(Oe)

    He= 9 Oe

    theta

    inte

    nsity

    (a.u

    .)

    10 20 30 40 50 60 70 80

    (001)MnPd

    (002)MnPd

    (002)MgO

    (004)Fe

    c-growth

    -0.5

    0

    0.5

    -500 0 500

    mom

    ent(

    mem

    u)

    H(Oe)

    He = 30 Oe

    a-axis normal

    3.58Å4.07Å

    4.07Å

    Spin Uncompensated

    3.58Å

    4.07Å

    4.07Å

    c-axis normal

    Spin Compensated

    X-ray TEM

    GIXRD

    Plan View

    X-sectionθθθθ−−−−2222θθθθ

    Scattering Geometries:

    Complementary information for thin films

    Electron Diffraction in a TEM

  • 10

    SAD[100]a-axis growthannealed

    Chemical ordering of a-axis grown PdMn by annealing

    a -ordereda -disordered

    SAD[100]a-axis growth as-grown

    10 20 30 40 50 60 70 80

    inte

    nsity

    (a.u

    .)

    2theta (degree)

    (002)MgO(200)

    Fe( 002)

    He ~ 0 He ~ 8-10 Oe

    Cheng, Ahn and Krishnan, JAP (2001)

    PdMn/Fe/MgO : Summary of growth & magnetic properties

    -10

    0

    10

    20

    30

    40

    0 100 200 300 400 500

    He

    (Oe)

    Growth Temperature (°C)

    Annealed

    As-grown

    a-axis growth c-axis growth

    Disordered

    Ordered

  • 11

    Epitaxial growth and exchange biasing of FM/AFM bilayers

    -1

    0

    1

    -500 0 500

    Mom

    ent(

    mem

    u)

    H(Oe)

    He ~ 010 20 30 40 50 60 70 80

    inte

    nsity

    (a.u

    .)

    theta

    (002)MgO

    (200)MnPd

    (004)Fe3.58Å4.07Å

    4.07Å

    a-axis normal

    -1

    0

    1

    -500 0 500

    Mom

    ent (

    mem

    u)

    H(Oe)

    He = 72 Oe10 20 30 40 50 60 70 80

    inte

    nsity

    (a.u

    .)

    theta

    (002)MgO

    (002)MnPd

    (001)MnPd

    (004)Fe

    3.58Å

    4.07Å

    4.07Å

    c-axis normal

    Inverse Structure

    PdMn (~280Å)

    Fe (~60Å)

    MgO(001)

    Phillips 200/FEG with Image Filter

    d band

    2p3/22p1/2

    1s

    e-

    Diplole Selection Rule ∆l = + 1 apply

    High Resolution EELS Studies in a TEMElement-specific spectroscopy and imaging at high spatial resolution

    550 600 650 700 750 800

    100K

    200K

    300K

    400K

    500K

    600K

    700K

    Energy Loss (eV)

    12 nm

    Cr L 3,2 Fe L 3,2

    Element-resolvedlocal electronic structure

    Spatially-resolved measurements

  • 12

    Energy-filtered Imaging in a TEM: Detection Limits

    Phillips 200/FEG with Image Filter

    d band

    2p3/22p1/2

    1s

    e-

    Diplole Selection Rule ∆l = + 1 apply

    Spatially-resolved measurements

    Si

    PdMn

    Mn

    PdMn

    PdMn

    PdMn

    PdMn

    PdMn

    PdMn

    Mn

    Mn

    Mn

    Mn

    Mn

    Mn

    10 nm

    arb.

    uni

    tsnm

    0

    1

    2

    3

    4

    5

    6

    arb.

    uni

    ts0 1 0 2 0 3 0 4 0 5 0

    nm

    0.4 0.9 1.3 1.7 2.0 2.4 nm1.1

    4 Å

    8 Å

    12 Å

    16 Å

    20 Å

    24 Å

    c)

    20 nm

    -1

    0

    1

    - σσσσ

    + σσσσ

    Simple Roughness Measurements Using Energy-filtered Images

    MgO

    NiMnTEM Bright Field Image

    Fe-L2,3 jump ratio image

    Trace or Mean Position

  • 13

    Fe Layer Roughness in Fe/MnPd bilayers

    2/12

    1

    2 ))1

    1()( ( >

  • 14

    x0

    ξξξξ////////

    xL

    σσσσL(x0)z(x)

    x

    h(x)

    h

    Interface Profile h(x)Average Value or hHeight Deviation z(x) = h(x) - h

    Interface width ~ rms roughness σ(L) ∼ < σ L(x0) >x where the averaging is done over all points x within L and

    σL(x0) = < |z(x) - zav(L)|2>L1/2 zav(L) is z(x) averaged over L

    Correlation length, ξξξξ || is extractedby fitting

    σσσσ((((L)))) ∼∼∼∼ σσσσsat [ 1- exp (-L/ξξξξ ||)]

    Definitions: Rough interface with various characteristic length scales

    Xray Magnetic Circular Dichroism

    d band

    2p3/22p1/2

    1s

    EE

    ( or )

    L3

    ∆l = + 1XAS & EELS

    L2

    XMCD∆l = + 1

    ∆mj = + 1

    left

    right

    spinorbital Sum Rules

    - 2

    -1.5

    - 1

    -0.5

    0

    0.5

    1

    -4

    -3

    -2

    -1

    0

    1

    2

    690 700 710 720 730

    MC

    D

    MC

    D Integration

    Energy (eV)

    MCDMCD Integr.

    b

    0

    2

    4

    6

    Ab

    sorp

    tion

    +3T/LC-3T/LC

    a

    morb / mspin = 0.03

    morbmspin

    = 2q

    (9 p - 6 q)

    Element Specific, Spin/Orbital Resolved Magnetic Measurements

  • 15

    circularlypolarizedx-ray photon

    silicon window

    silicon nitridemembrane

    NiMnFe(Co)

    Au cap

    Magnetic structure of AFM-FM bilayer interfaces

    690 710 730 750

    Absorption

    680 700 720 740 760

    Dichroism

    Cheng, Krishnan, Farrow, Young, Girt , .JAP (in press)

    M/M

    s

    Field (Oe)

    -1.2

    0

    1.2

    -400 0 400

    (A) 200 °C(B) 250 °C(C) 300 °C

    Fe L3,2

    660 680 700 720 740 760 780

    C

    B

    A

    He

    He ( B > C > A ) MFe (A > C > B)

    • Iron Moment Correlates inversely with Exchange field• The films show (111) texture• (111) is spin compensated• Iron diffuses into MnNi and orders antiferromagnetically• The decrease in iron moment suggests ~ 4MLs of diffusion• Fe-Mn is a well known disordered AFM• Need to investigate chemical and structural roughness

    MicrospectroscopyMicrospectroscopy & & SpectromicroscopySpectromicroscopy with Photons (ALS) with Photons (ALS)

    PhotoEmission Electron Microscope

  • 16

    3, RT 18, 170 C 27, 220 C

    39, 280 C 48, 3.9, 300 C 63, BKRT

    PEEM : Temperature Dependence

    HB

    Cheng, Ohldag, Krishnan (2001)

    Interface is key to understanding such anisotropy.

    K = - 2 ππππ Ms+ + K 2 Kt

    s

    MV

    2

    effE = K sin ΘΘΘΘan eff

    2

    Perpendicular Interface Anisotropy

    GaAs (001)

    Ag

    [110] Pt, Ag

    GaAs (001)

    Ag

    [001] Pt, Ag

    GaAs (111)

    Ag

    [111] Pt, Ag

    Co

    Kef

    f tm

    CoxPd18

    FexPd18

    x(Å)4 8

    Recent discoveries in artificially structured magnetic films

  • 17

    Exchange Bias in Systems with Out-of-Plane Coupling ?

    3.58Å

    4.07Å

    4.07Å

    MnPd

    FePdFePd

    Malozemoff (1987, 1988)

    Random Field Model

    AFM Domain

    MgOFe

    MnPd

    Lithographically Patterned Antiferroamgnetic Elements ?

  • 18

    Acknowledgements

    Ning Cheng - Growth & Magnetic measurementsDr. J.-P. Ahn - Ion Beam DepositionDr. Werner Grogger - EFTEM Imaging & AnalysisChris Nelson - Philips CM200 OperationDr. H. Ohldag - PEEM Beamline ScientistDr. Tony Young - XMCD measurements

    DoE/BESMax Kade Foundation