ewea 2011 brussels, belgium: europe’s premier wind energy event

24
EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event Structural reliability analysis of rotor blades in ultimate loading K. C. Bacharoudis 1 , D. J. Lekou 2 , T. P. Philippidis 1 1. University of Patras, Dept. of Mechanical Engng & Aeronautics, Greece 2. Centre for Renewable Energy Sources, Wind Energy Division, Greece Brussels, 14-17 March 2011

Upload: orly

Post on 04-Feb-2016

21 views

Category:

Documents


0 download

DESCRIPTION

EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event. Structural reliability analysis of rotor blades in ultimate loading. K. C. Bacharoudis 1 , D. J. Lekou 2 , T. P. Philippidis 1 University of Patras , Dept. of Mechanical Engng & Aeronautics, Greece - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

EWEA 2011 Brussels, Belgium:Europe’s Premier Wind Energy Event

EWEA 2011 Brussels, Belgium:Europe’s Premier Wind Energy Event

Structural reliability analysis of rotor blades in ultimate loading

K. C. Bacharoudis1, D. J. Lekou2, T. P. Philippidis1 1. University of Patras, Dept. of Mechanical Engng & Aeronautics, Greece2. Centre for Renewable Energy Sources, Wind Energy Division, Greece

Brussels, 14-17 March 2011

Page 2: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

The objectives are:

• Reliability assessment of a given design (safety factors, Target reliability)

• New probabilistic design, sensitivity studies (Improve/optimize blade structural design)

Probabilistic Strength AnalysisProbabilistic Strength Analysis

Brussels, 14-17 March 2011

Page 3: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

• Sectional analysis based on thin wall multi cellular theory was performed by a numerical tool (THIN)

• Monte Carlo, Edgeworth expansion method and Response Surface method/Monte Carlo were used

• Stress resultants, engineering elastic constants (E1, E2 , v12 , G12) and failure stresses (XT, XC, YT, YC, S) in the principal coordinate system of the UD ply were considered random variables (RV)

Probabilistic Strength AnalysisProbabilistic Strength Analysis

Brussels, 14-17 March 2011

Page 4: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

• Stochastic representation of material properties• Stochastic modeling of the stress resultants acting on

the blade section• Implementation of fast and accurate reliability

methods

The effort consists of three major tasks:

Probabilistic Strength AnalysisProbabilistic Strength Analysis

Brussels, 14-17 March 2011

Page 5: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

Sec 9.2m

Thin model

Blade model

Blade section

Rotor Blade ModelRotor Blade Model

Brussels, 14-17 March 2011

Page 6: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

Laminate

Material Property

Mean Std. Rd

Ex (GPa) 22.9 2.1 22.9

Ey (GPa) 7.9 1.6 7.9

vxy0.3 0.05 0.3

Gxy (GPa) 1.7 0.4 1.7

XT (Mpa) 241.2 34.4 134.2

XC (Mpa) 199.5 19.9 123.6

YT (Mpa) 22.0 3.6 11.5

YC (Mpa) 89.3 9.1 55.1

S (Mpa) 9.7 1.4 5.4

Material properties were considered normally distributed

Material properties at the ply level

Stochastic Material PropertiesStochastic Material Properties

Sec 9.2m

THIN model

Blade section

Brussels, 14-17 March 2011

Page 7: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

z

Nz

Mz

Nx

xMx

NyMy

y

Extreme Load Analysis (IEC-61400 ed.3)Extreme Load Analysis (IEC-61400 ed.3)

Directions of the stress resultants of the blade under extreme loading

Brussels, 14-17 March 2011

Page 8: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1000 1200 1400 1600 1800 2000

Flap

mom

ent [

kN*m

]

Sample #

Time series from aero elastic codes

z

Nz

Mz

Nx

xMx

NyMy

y

Extreme Load Analysis (IEC-61400 ed.3)Extreme Load Analysis (IEC-61400 ed.3)

Brussels, 14-17 March 2011

Page 9: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1000 1200 1400 1600 1800 2000

Flap

mom

ent [

kN*m

]

Sample #

Sample valuesThresholdMax

z

Nz

Mz

Nx

xMx

NyMy

y

Extreme Load Analysis (IEC-61400 ed.3)Extreme Load Analysis (IEC-61400 ed.3)

Pick local maxima according IEC 61400-1 Ed.3

Thrs.=mv+1.4*sd

Brussels, 14-17 March 2011

Page 10: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

-2

0

2

4

6

8

10

12

14

1300 1500 1700 1900 2100

-Ln(

-Ln(

F max

))

Flap moment [kN*m]

EmpiricalLognormalWeibull3pWeibullGumbelGumbel_1

Find best-fit probability distributions for every mean wind speed bin

z

Nz

Mz

Nx

xMx

NyMy

y

Extreme Load Analysis (IEC-61400 ed.3)Extreme Load Analysis (IEC-61400 ed.3)

Brussels, 14-17 March 2011

Page 11: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

300 1300 2300 3300

P(F e

xt>=

F/T=

10 m

in)

Flap moment [kN*m]

Lognormal

Weibull

3pWeibull

Gumbel

Gumbel_1

P=3.8e-7

Maximum observation

Pr , Pr ,ob F F T P F T ob F F V T p V dVext e extV

V

in

out

z

Nz

Mz

Nx

xMx

NyMy

y

Extreme Load Analysis (IEC-61400 ed.3)Extreme Load Analysis (IEC-61400 ed.3)

Brussels, 14-17 March 2011

Page 12: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2730 2830 2930 3030 3130 3230 3330

P(F e

xt<F

/T=2

0 yr

s)

Flap moment [kN*m]

EmpiricalNormalLognormalWeibull3pWeibullGumbel

P F F T yr P F F Text ext

N

20 1 10min

z

Nz

Mz

Nx

xMx

NyMy

y

Extreme Load Analysis (IEC-61400 ed.3)Extreme Load Analysis (IEC-61400 ed.3)

Brussels, 14-17 March 2011

Page 13: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

Stress resultants are modeled as Gumbel distribution

F x e e

x b

a

z

Nz

Mz

Nx

xMx

NyMy

y

Extreme Load Analysis (IEC-61400 ed.3)Extreme Load Analysis (IEC-61400 ed.3)

Section 9.2mFd a b

Nx [kN] 306.00 1.297 243.6Ny [kN] 200.50 5.163 155.6Nz [kN] 145.87 4.289 112.7

Mx [kNm] 17.80 0.667 13.6Mz [kNm] 1872.50 50.610 1451.3My [kNm] 1253.75 35.510 970.4

Brussels, 14-17 March 2011

Page 14: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26 31 36

Corr

elati

on

Sample #

Edge M.-TorsionEdge M.-Flap M.Edge M.-Flap F.Edge M.-Edge M.Edge M.-Edge F.Correlation matrix of stress resultants for section

9.2m from root

Tor. Flap M. Flap F Edge M. Edge F.

Tor. 1 0.48 0.53 0.77 0.79

Flap M. 0.48 1 0.95 0.33 0.32

Flap F. 0.53 0.95 1 0.28 0.27

Edge M. 0.77 0.33 0.28 1 0.99

Edge F. 0.79 0.32 0.27 0.99 1

z

Nz

Mz

Nx

xMx

NyMy

y

Extreme Load Analysis (IEC-61400 ed.3)Extreme Load Analysis (IEC-61400 ed.3)

Brussels, 14-17 March 2011

Page 15: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

z

Nz

Mz

Nx

xMx

NyMy

y

Element failure probabilityElement failure probability

i j

Laminate

i j

Assuming :•Laminate is a series system of layers•Each ply has one failure mode described by the specified failure criterion•Positive correlated failure modes among the layers

Brussels, 14-17 March 2011

Page 16: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

z

Nz

Mz

Nx

xMx

NyMy

y

Element failure probabilityElement failure probability

i j

Laminate

i j

1

1

max , ,

max , ,

max ,

node i layer layer n

node j layer layer n

element node i node j

f f f

f f f

f f f

P P P

P P P

P P P

Brussels, 14-17 March 2011

Page 17: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

z

Nz

Mz

Nx

xMx

NyMy

y

Failure criterionFailure criterion

i j

Laminate

i j

Limit state function for every ply formulated by Tsai-Hahn failure criterion

1

1

max ,

max , ,

max , ,

element node i node j

node i layer layer n

node j layer layer n

f f f

f f f

f f f

P P P

P P P

P P P

0 , 0g fail g safe 1g X R

Brussels, 14-17 March 2011

Page 18: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

Reliability methods: Monte CarloReliability methods: Monte Carlo

Basic Variables (RVs)

E1, E2, v12, G12

XT, XC, YT, YC, SNx, Ny, Nz, Mx, My, Mz,

THIN analysis Output Variable (RV)

εx, εy, εs

Limit state function

g x R 1

• Random number generation for the basic variables•THIN analysis•Evaluation of limit state function• Layer failure probability

•Estimation of element failure probability• 2,000,000 simulations

0layer

failsf

total

nP P g n

Brussels, 14-17 March 2011

Page 19: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

2

3 4 63 343 322 222 2

22 2

1 2, 2 2, 3,2 21 1 1

1 1 103

4! 6!3!

1, , ...

2

0layer

g

M M M

i i ii i ii i i i

f

F g g g g g

g g g gg

X X X X

P P g

Reliability methods: EDWReliability methods: EDW

Basic Variables (RVs) Output Variable (RV)

Limit state function

g x R 1

E1, E2, v12, G12

XT, XC, YT, YC, SNx, Ny, Nz, Mx, My, Mz,

Brussels, 14-17 March 2011

Page 20: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

Reliability methods: RSM/MCReliability methods: RSM/MC

Basic Variables (RVs) Regression models Output Variable (RV)

Limit state function

g x R 1

• Random number generation for the basic variables•Stress-strain analysis through regression models•Evaluation of limit state function• Layer failure probability

•Estimation of element failure probability• 2,000,000 simulations

0layer

failsf

total

nP P g n

εx, εy, εs (top and bottom layers)

E1, E2, v12, G12

XT, XC, YT, YC, SNx, Ny, Nz, Mx, My, Mz,

Brussels, 14-17 March 2011

Page 21: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

εx, εy, εs (top and bottom layers)

Reliability methods: RSM/MCReliability methods: RSM/MC

Input Variables (RVs)

E1, E2, v12, G12

Nx, Ny, Nz, Mx, My, Mz,

Regression models Output Variable (RV)

Limit state function

g x R 1

Building regression models

Design of Experiment10 input variables5 levels to be tested for every input variable (circumscribed CCD)6 output parameters (strains at the lower face of the bottom and the upper face of the top ply of the laminate).149 THIN analyses

Brussels, 14-17 March 2011

Page 22: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50

Failu

re p

roba

bilit

y

# element

MC

RSM

EDW

Very good agreement between MC and RSM/MC.EDW is less accurate. (Correlation was not considered)

Failure Probability (IFF): Section 9.2mFailure Probability (IFF): Section 9.2m

[90][90]

[90]

[90][90]

[90]

[90]

[45] [45] [45]

[45]

[45]

[45]

[45]

[-45]

[-45][45]

[45][-45]

[-45]

[-45]

[90][90]

[90][90][90][90][90]

[90]

[90]

[90]

[90][90]

[90]

[90]

[90]

[45]

[-45]

[90]

[45]

Layer #

1

6

1220

26

32

40

41

44

45

48

Element #

Brussels, 14-17 March 2011

Page 23: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

Failure Probability (IFF): Section 9.2mFailure Probability (IFF): Section 9.2m

[90][90]

[90]

[90][90]

[90]

[90]

[45] [45] [45]

[45]

[45]

[45]

[45]

[-45]

[-45][45]

[45][-45]

[-45]

[-45]

[90][90]

[90][90][90][90][90]

[90]

[90]

[90]

[90][90]

[90]

[90]

[90]

[45]

[-45]

[90]

[45]

Layer #

1

6

1220

26

32

40

41

44

45

48

Element #

Reliability analysis3h-MC, 30 min-RSM/MC, 10 sec-EDW

Brussels, 14-17 March 2011

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50

Failu

re p

roba

bilit

y

# element

MC

RSM

EDW

Page 24: EWEA 2011 Brussels, Belgium: Europe’s Premier Wind Energy Event

ConclusionsConclusions

• Assessment of the reliability level of a rotor blade already designed according to IEC ed. 3 at the ply level was performed

• The stochastic modeling of sectional stress resultants of the blade under extreme loading was achieved

•The probabilistic analysis was performed by using MC, RSM/MC, EDW

• A numerical tool was developed that can be combined with aero elastic codes and can be used for reliability analysis and probabilistic design

Brussels, 14-17 March 2011