evolution of sesquiterpene lactones in angiosperms* · 2006. 12. 1. · sesquiterpene lactones as...

22
Bkx~w-tdca/b'fs/ernat/cs and E~, Vol. 13, No. 2, pp. 145-166, 1985. 0305-1978/85 $3.00+0.00 Printed in GreatBritain. Pergamon PressLtd. Evolution of Sesquiterpene Lactones in Angiosperms* VICENTE DE P. EMERENCIANO'r, MARIA AUXILIADORA C. KAPLAN¢ and OTTO R. GOTTLIEBI" Tlnstituto de Quimica, Univeraidade de S~o Paulo, 05508 S&o Psulo, SP, Brazil; tlnstituto de Quimica, Univemidede Federal Fluminanse, 24000 Niterbi, R J, Brazil Key Word Index--Magnollaceae; Lauraceae; Apiaceae; Asteraceae; germacranes; seKluiterpena lectonas; skeletal specialization, oxidation state; biochemical evolution. AJ~t~act--The paper attempts to discover an outline Of the evolutionary tmnde of seScluiterpene lactones in angiosperms. The working method involves the quantification Of skeletal specialization and oxidelJon state of the compounds and the assignment of evolutionary advancement indices, based on such date, to texa. In the angiosperms as a whole, sesquitarpene lactone evolution proceeds by divemification of structural types and by amplification of the oxidation state of the molecules. The opposite trend appears to operate at lower hierarchical level, in the Asteracese. In this family, which contains most of the known compounds of the class, sescluiterpene lactone evolution follows two parallel pathways in the tribes belonging to two groups of the subfamily Aster- oideae. Introduction Two comprehensive collections of distributional data and plausible biogenetic schemes for germacrane acid (P) derived sesquiterpene lactones have been published in recent years [2, 3]. An exhaustive discussion of the value of sesquiterpene lactones as taxonomic characters in the Asteraceae thus became possible [3]. The present paper attempts to achieve, through quantification of the published data and con- sideration of the principles of micromolecular systematics [4], a clear outline of the trends accompanying the evolution of sesquiterpene lactones in the angiosperms. Experimental Although seSClUiterpene lactona ring closure involves alterna- tively carbons 6 and 8, for simplicity only the former cyclization mode is featured in the representation of germacranolide (Fig. 1), guelanolide (Fig. 2), eudesmanolide (Fig. 3), eremophilano- lide (Fig. 4) and some rarer (Fig. 5) skeletal types. These types are codified according to their position in a biogenetic scheme (Fig. 6). It has been emphasized that, although mechanistically sound, the proposed steps Of the sesquiterpene lactone *Part XXVII in the series "Chemosystematics and Phylog- eny'. For Part XXVI see ref. [1]. Based on the M.Sc. thesis presented by V. de P. Emerencieno to Universidade de S~o Paulo (1983). (Received 23 March 1984) biosynthetic pathways (Fig. 6) have not been established by the usual labelling or enzyme studies [3]. Lack of detailed biosynthetic knowledge, however, ceased to be a vulnerable aspect [5] of our methodology [4]. It suffices that precursor and derivatives be biosynthetically homologous in order that their characteristics, such as skeletal specialization and oxidation level, may be compared. It is now [1] the structural difference between the precursor, in the present case compound P, and a particular derivative which is being measured, rather than, as previously [4], their biosynthetic distance, as conveyed by the number of reaction steps defined in the hypothetic biosyntheticel scheme. The skeletal specialization of a compound (per carbon) (S) with respect to a precursor is determined by counting the number of bonds (to C) broken and the number of bonds (to C, or to a heteroatom if this involves formation of a new cycle) formed for each carbon of the compound; adding these counts; and dividing the sum by the number of C-atoms of the compound. The E--.Z isomerization of a double bond is con- sidered to involve breakage of a bond and formation of another. The oxidation state Of a compound (again per carbon) (Q is determined by counting, for each carbon of the compound, -1 for each bond to H and +1 for each bond to a heteroatom [6]; adding these counts; and dividing the sum by the number of C-atoms of the compound. Loss of groups is considered to operate through oxidized intermediates and for each severed C-C bond which results in the loss of a molecular moiety (in comparison with the precursor) 3 points are added to the count. Such determinations are exemplified for five selected compounds in Table 1. Their results for all ses- quiterpene lactones listed in references [2] and [3] are given in Table 2. A genus may contain several sesqulterpene iectones (Tables 3--6), each present in one or more species and each charac- terized by S and 0 values (Table 2). The averages of these values, weighted by the number of species in which the compound occurs, are considered to represent the evolu- 145

Upload: others

Post on 28-Jan-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • Bkx~w-tdca/b'fs/ernat/cs and E ~ , Vol. 13, No. 2, pp. 145-166, 1985. 0305-1978/85 $3.00+0.00 Printed in Great Britain. Pergamon Press Ltd.

    Evolution of Sesquiterpene Lactones in Angiosperms*

    VICENTE DE P. EMERENCIANO'r, MARIA AUXILIADORA C. KAPLAN¢ and OTTO R. GOTTLIEBI" Tlnstituto de Quimica, Univeraidade de S~o Paulo, 05508 S&o Psulo, SP, Brazil;

    tlnstituto de Quimica, Univemidede Federal Fluminanse, 24000 Niterbi, R J, Brazil

    Key Word Index--Magnollaceae; Lauraceae; Apiaceae; Asteraceae; germacranes; seKluiterpena lectonas; skeletal specialization, oxidation state; biochemical evolution.

    AJ~t~act--The paper attempts to discover an outline Of the evolutionary tmnde of seScluiterpene lactones in angiosperms. The working method involves the quantification Of skeletal specialization and oxidelJon state of the compounds and the assignment of evolutionary advancement indices, based on such date, to texa. In the angiosperms as a whole, sesquitarpene lactone evolution proceeds by divemification of structural types and by amplification of the oxidation state of the molecules. The opposite trend appears to operate at lower hierarchical level, in the Asteracese. In this family, which contains most of the known compounds of the class, sescluiterpene lactone evolution follows two parallel pathways in the tribes belonging to two groups of the subfamily Aster- oideae.

    Introduction Two comprehensive collections of distributional data and plausible biogenetic schemes for germacrane acid (P) derived sesquiterpene lactones have been published in recent years [2, 3]. An exhaustive discussion of the value of sesquiterpene lactones as taxonomic characters in the Asteraceae thus became possible [3]. The present paper attempts to achieve, through quantification of the published data and con- sideration of the principles of micromolecular systematics [4], a clear outline of the trends accompanying the evolution of sesquiterpene lactones in the angiosperms.

    Experimental Although seSClUiterpene lactona ring closure involves alterna- tively carbons 6 and 8, for simplicity only the former cyclization mode is featured in the representation of germacranolide (Fig. 1), guelanolide (Fig. 2), eudesmanolide (Fig. 3), eremophilano- lide (Fig. 4) and some rarer (Fig. 5) skeletal types. These types are codified according to their position in a biogenetic scheme (Fig. 6).

    It has been emphasized that, although mechanistically sound, the proposed steps Of the sesquiterpene lactone

    *Part XXVII in the series "Chemosystematics and Phylog- eny'. For Part XXVI see ref. [1]. Based on the M.Sc. thesis presented by V. de P. Emerencieno to Universidade de S~o Paulo (1983).

    (Received 23 March 1984)

    biosynthetic pathways (Fig. 6) have not been established by the usual labelling or enzyme studies [3]. Lack of detailed biosynthetic knowledge, however, ceased to be a vulnerable aspect [5] of our methodology [4]. It suffices that precursor and derivatives be biosynthetically homologous in order that their characteristics, such as skeletal specialization and oxidation level, may be compared. It is now [1] the structural difference between the precursor, in the present case compound P, and a particular derivative which is being measured, rather than, as previously [4], their biosynthetic distance, as conveyed by the number of reaction steps defined in the hypothetic biosyntheticel scheme.

    The skeletal specialization of a compound (per carbon) (S) with respect to a precursor is determined by counting the number of bonds (to C) broken and the number of bonds (to C, or to a heteroatom if this involves formation of a new cycle) formed for each carbon of the compound; adding these counts; and dividing the sum by the number of C-atoms of the compound. The E--.Z isomerization of a double bond is con- sidered to involve breakage of a bond and formation of another. The oxidation state Of a compound (again per carbon) (Q is determined by counting, for each carbon of the compound, -1 for each bond to H and +1 for each bond to a heteroatom [6]; adding these counts; and dividing the sum by the number of C-atoms of the compound. Loss of groups is considered to operate through oxidized intermediates and for each severed C-C bond which results in the loss of a molecular moiety (in comparison with the precursor) 3 points are added to the count. Such determinations are exemplified for five selected compounds in Table 1. Their results for all ses- quiterpene lactones listed in references [2] and [3] are given in Table 2.

    A genus may contain several sesqulterpene iectones (Tables 3--6), each present in one or more species and each charac- terized by S and 0 values (Table 2). The averages of these values, weighted by the number of species in which the compound occurs, are considered to represent the evolu-

    145

  • 146 VICENTE DE P. EMERENCIANO, MARIA AUXILIADORA C. KAPLAN AND O1"~'O R. GOI-I'UEB

    ! 9

    ~ p 0 ~ / ~ ~ O H

    1.3 1.4 1.6

    FIG. 1. SKELETAL TYPES OF GERMACRANOLIDES.

    ~, O ! .! .4

    FIG. 2. SKELETAL TYPES OF GUAIANOUDES.

  • SESOUITERPENE LACTONES IN ANGIOSPERMS

    % ~ 0 1.2.2

    FIG. 3. SKELETAL TYPES OF EUDESMANOUDES.

    147

    ~ ~-~0 1.2.1 1.2.1.1

    ~.~0

    1.2.1.2

    1.2.1.3

    0 ~ ~ 0

    1.2.1.4 FIG. 4. SKELETAL TYPES OF EREMOPHILANOLIDES.

    • i .7 1 . ~

    %

    i•• i.i~~0 O FIG. 5. SKELETAL TYPES OF MISCELLANEOUS SESQUITERPENE LACTONES.

  • 148 VICENTE DE P. EMERENClANO, MARIA AUXlLIADORA C. KAPLAN AND OTTO R. Go1-rUEB

    1 : 1.1

    = 1.2

    ] = 1.3

    1.5

    - i . ~ ~ !.7 1.8 !.~

    I.!0

    "- ' • i.1.1 - ~ ~ 1.1J.l - 1.1.2 1.1.1.2

    i = i . 1 . 3 1 .1 .1 .3 I I = 1 .1 .4 1 .1 .1 .4

    1.2.2 1.2.1.2

    - 1.2.1.3

    I ~ 1,2.1A

    FIG. 6. BIOGENETIC SCHEME FOR SKELETAL TYPES OF C,~RMACRANE ACID DERIVED SESQUn'ERPENE LACTONES.

    t~naW advencemam pamrn~ere (respectively EA s and EAo) with respect to =escluiterpene lactone~ of the ~enem O'abte 7). The EA s and F-Ao pamn'wtem of mxa of higher ranks are calculllm:l i s again indicated in Table 7. The ¢on~'ibu0on of the character state of a particular cons'dtuem of the taxon to the

    average is thus proportional to its frequency of distribution in the taxon. The ~Pmadl between minimal and maximal Sand 0 values of compounds in texa I re also given in Tabtes 8-10, as are Spome's ~ i c a l advancement indices [7] in Table 8 and basic chromosome numbers [8] in Tables 9 and 10.

    TABLE 1. EXAMPLES OF THE DETERMINATION OF SKELETAL SPECIALIZATION (S) AND OXIDATION STATE (O) VALUES FOR SESQUITERPENES LAC- TONES NUMBERED AS IN REF. [3].

    Formulae Carbons with bonds S Numbers of bonds O

    Broken (b) Formed (~) ~(b+~1 C--H C--O C--C ~ (o+3c--h) At positions No. of C (h) (d (d No. of C

    1 (C,s) 0

    656 (C,s) 0

    ~0~ (c,~) 4 :5 (total 2)

    1348 (C,~) 5,6,10,14 (total 4)

    1252 (C,, ) 2,3,3A,4,15 (total 6)

    (6,12) 2/15-0.13 20 4 (total 2) 5,6,10,12 4/15-0 ~.,6 20 4 (total 4)

    1,5,5,6,12,15 8/I s--0.53 2o 6 (total 6)

    5,5,8,I0,12,14 I0115--0,66 19 3 (total 6)

    1,2A,5,5,6,12,15 14/14-1 .oo 17 9 (total 8)

    a ~ 12

    ~ OR

    10~8 1348, R = ,4~e~lte

    -- -16/15,--1.06

    -- -16115,-1.06

    -- -14115--0.93

    -- -16115--1.06

    1 -5/14=--0.36

    ~ ~ 0

    1 566 12~2

  • SESQUffERPENE LACTONES IN ANGIOSPERMS 149

    TABLE 2. OXIDATION STATES (OVALUES) OF SESQUITERPENE LACTONES CLASSIFIED INTO GROUPS ACCORDING TO THEIR SKELETAL SPECIALI- ZATION (S VALUES). THE NUMBERS 1-1350 AND THE ASTERISKED NUMBERS REFER TO STRUCTURAL FORMULAE LISTED UNDER THE SAME

    NUMBERS IN REFS. [3] AND [2] RESPECTIVELY.

    No. S O No. S O No. S O No. S O

    1 0.13 -1.06 87 0.13 -0.93 114 0.13 -0.80 171 0.13 -0.80 2 0.13 -0.93 ,58 0.13 -0.93 115 0.13 -0.80 172 0.13 -0,80 3 0.13 -0~0 89 0.13 -0.93 116 0.13 -0.80 173 0.13 -0~0 4 0.13 -0.80 60 0.13 -0.93 117 0.13 --0.80 174 0.13 -0.80 5 0.13 -0.80 61 0.13 -0.93 118 0,13 --0.53 175 0.13 -0~0 6 0,13 -0.93 62 0.13 -0.80 119 0.13 -0.66 176 0,13 -0.80 7 0.13 -0~3 63 0.13 -0.80 120 0.13 -0.80 177 0.13 -0.~6 8 0.13 -0.93 64 0.13 -0.80 121 0.13 -0.80 178 0.13 --0.53 9 0.13 -0.93 65 0.13 -0.80 122 0.13 --0~0 179 0.26 -0.53

    10 0.13 -0.93 66 0.13 -0.93 123 0.13 -0.66 180 0,13 -0~0 11 0,13 -0.93 67 0.13 -0.93 124 0.13 -0,80 181 0.13 -0.66 12 0.13 -0.93 68 0.13 -0.93 125 0.13 -0~6 182 0.13 -0~0 13 0.13 -0.93 69 0.13 -0.93 126 0.26 -0.26 183 0.26 -0.40 14 0.13 -0.93 70 0.13 -0.80 127 0.26 -0.26 184 0.26 -0.26 15 0.13 -0.93 71 0.13 -0.80 128 0.26 -0.26 185 0.26 -0.13 16 0.13 -0.93 72 0.13 -0~0 129 0.13 -0.80 186 0,13 -0.80 17 0.13 -0.80 73 0,13 -0.66 130 0.13 -0.66 187 0.13 -0.66 18 0.13 -0.80 74 0.13 -0.66 131 0.13 -0.53 188 0.13 -0.80 19 0.13 -0.80 75 0.13 -0.66 132 0.13 -0.53 188.5 0.13 -0.93 20 0.13 -0.80 76 0.13 -0.66 133 0.13 -0.53 189 0,13 -1.20 21 0.13 -0.80 77 0.13 -0.66 134 0.13 -0.66 190 0.13 -1.06 22 0.13 -0.66 78 0.13 -0.66 135 0.13 -0.66 191 0.13 -0.93 23 0,13 -0.66 79 0.13 -0.66 136 0,26 -0.53 192 0.13 -1.06 24 0.13 -0~0 80 0.13 -0.66 137 0.13 -1.20 193 0,26 -0.26 25 0.13 -0.93 81 0.13 -0.66 138 0.13 -1.06 194 0.26 -0.40 26 0.13 -0.93 82 0.13 -0.66 139 0.13 -1.06 195 0.13 -1.06 27 0.13 -0.93 83 0.13 -0.66 140 0.13 --0.93 196 0.13 -0.93 28 0.13 -0.93 84 0.13 -0.93 141 0.13 -1.06 197 0.13 -0.93 29 0.13 -0.80 85 0.13 -0.80 142 0.13 -1.06 198 0.13 -0.93 30 0.13 -0.80 86 0.13 -0.80 143 0.13 -0.93 199 0.13 -0.80 31 0.13 -0.80 87 0.13 -0.80 144 0.13 -0.93 200 0.13 -1.06 32 0.13 -0.80 88 0.13 -0.80 145 0.13 -1.06 201 0.13 -1.20 33 0.13 -0.80 89 0.13 -0.53 146 0.03 -1.06 202 0.40 -0.40 34 0.13 -0.66 90 0.13 -0.53 147 0.13 -0.80 203 0.40 -0.40 35 0.13 -0.93 91 0.13 -0.53 148 0.13 -0.96 204 0.40 -0.40 36 0.13 -0.93 92 0.13 -0.53 149 0.13 -1.06 205 0.40 -0.40 37 0.13 -0.93 93 0.26 -0.40 150 0.13 -0.66 206 0.40 --0.40 38 0.13 -0.93 94 0.26 -0.40 151 0.13 -0.80 207 0.40 -0.40 39 0.13 -0.93 95 0.26 -0.40 152 0.13 -0.93 208 0.40 -0.40 40 0.13 -0.80 96 0.26 -0.40 153 0.13 -0.93 209 0.40 --0.40 41 0.13 --0.66 97 0.26 -0.40 154 0.26 -0,40 210 0,40 -0.40 42 0.13 --0.80 98 0.13 --0.66 155 0.13 -0.80 211 0.40 -0.40 43 0.13 --0.80 99 0.13 --0.53 156 0.13 --0.93 212 0.40 --0.40 44 0.13 --0.93 I00 0.I 3 -0.40 158 0.I 3 -0.80 213 0.40 -0.40 45 0.13 -0.80 101 0.13 -0.53 159 0.13 --0.80 214 0.40 -0.40 46 0.13 -0.80 102 0.13 -0.80 160 0.13 -0.80 215 0.40 -0.40 47 0.13 -0.80 103 0.13 --0.80 161 0.13 -0.80 216 0.40 -0.40 47.5 0.13 -0.66 104 0.13 --0.66 162 0.13 -0.66 217 0.40 -0.40 48 0.13 -0.80 105 0.13 -0.66 163 0,13 --0.05 218 0.40 -0.40 49 0,13 --0.80 106 0.13 -0.66 164 0.13 --0.80 219 0.40 --0.40 50 0.13 -0~0 107 0.13 -0.66 164.5 0.13 --0.80 220 0.40 --0.40 51 0.13 -0.80 108 0,13 -0.66 165 0.13 -0.80 221 0.40 --0.40 52 0.13 -0.80 109 0.26 --0,40 166 0.13 -0.93 222 0.40 -0.40 " 53 0,13 -0.66 110 0.26 -0,40 167 0.13 -0.93 223 0.40 --0.26 54 0.13 -0.66 111 0.26 --0.40 168 0.13 --0.80 224 0.40 -0.53 55 0.13 -0.66 112 0.13 -0.93 169 0.13 --0.80 225 0.40 --0.40 56 0.13 --0,80 113 0.13 --0.80 170 0.13 -0.80 226 0.40 --0.40

  • 150 VICENTE DE P. EMERENCIANO, MARIA AUXIUADORA C. KAPLAN AND OTI'O R. GOI"I"LIEB

    TA~,.E 2--CONTINUED

    No. S 0 NO. S O No. S O " No. S O

    227 0.40 --0.40 281 0.40 -0.80 338 0.53 -0.26 39"7 0.66 -0.93 228 0.40 -0.40 282 0.40 -0.80 339 0.53 -0.26 398 0.66 -0.80 229 293 0.40 -0.80 340 0.53 -0.13 399 0.66 -0.40 230 284 0.40 -0.80 341 0.53 --0.I 3 400 0.66 -0.40 231 0.40 -0.40 285 0.40 -0.80 342 0.53 -0.13 401 0.66 -0.53 232 0.40 -0.46 286 0.40 -0.80 343 0.53 -0.26 402 0.66 -0.53 233 0.40 -0.40 297 0.40 -0.80 344 0.53 -0.26 403 0,66 -0.53 234 0.40 -0.26 288 0.40 -0.80 345 0.53 -0~6 404 0.66 -0.26 235 0.40 -0.26 289 0.40 -0.80 346 0.53 -0.40 405 0,66 -0.26 236 0.40 -0.53 290 0.40 -0.66 347 0.53 -0.26 406 0.66 -0.26 237 0.40 --0.53 291 0.40 -0.66 348 0.53 --0.26 407 0.66 -0.26 238 0.40 -0.53 292 0.40 -0.66 349 0.53 -0.26 40~ 0,66 -0.13 239 0.40 -0.53 263 0.40 -0.80 350 0.53 -0.40 409 0.66 -0.13 240 0.40 -0.53 294 0.40 -0.93 351 0.53 -0~6 410 0.66 -0.26 241 0.40 -0.40 295 0.40 -0.93 352 0.53 -0.26 411 0.66 -0.66 242 0.40 -0.53 296 0.40 -0.93 353 0.53 -0.26 412 0.66 --0.93 243 0.40 -0.53 296.5 0.40 -0.93 354 0.26 -0.26 413 0.13 --0.93 244 0.40 -0.40 297 0.40 -0.66 355 0.53 -0.53 414 0.13 -0.93 245 0.40 -0.53 298 0.40 -0.66 356 0.53 -0.53 415 0.13 -0.80 246 0.40 -0.40 299 0.40 -0.80 357 0.26 -0,66 416 0.13 --0.80 247 0.40 -0.40 300 0.40 -0.80 358 0.26 -0.80 417 0.13 -0.66 248 0.40 -0.40 301 0.40 -0.80 359 0.26 -0,80 418 0.13 -0.80 249 0.40 -0.40 302 0.40 -0.66 360 0.29 -0.53 419 0.13 --0.80 249.5 0.40 -0.40 303 0.40 -0.66 361 0.26 -0.93 420 0.13 -0.66 249.6 0.40 -0.26 304 0.40 -0.53 362 0.40 -0.53 421 0.13 -0.80 249.7 0.40 -0.26 305 0.40 --0.53 363 0.40 -0.66 422 0.13 - I .06 249.8 0.40 -0.40 306 0.40 -0.66 364 0.40 -0.66 423 0.13 -0.93 250 0.40 --0.13 306.5 0.40 -0.66 365 0.40 --0.66 424 0.40 --0.66 251 0.40 -0.13 30? 0.40 -0.66 366 0.40 -0.66 425 0.13 -0.66 252 0.40 -0.13 308 0.40 -0.66 367 0.66 -0.46 426 0.13 -0.66 253 0.40 --0.13 309 0.40 -0.66 368 0.66 -0.46 42"7 0.13 -0.93 254 0.40 -0.13 310 0.40 -0.66 369 0.66 -0.46 428 0.13 -0.80 255 0.40 -0.13 311 0.40 -0.66 370 0.66 -0.46 429 0.13 -0.40 255.5 0.40 --0.13 312 0.40 -0.66 371 0.66 -0.46 430 0.13 -0.26 256 0.40 -0.26 313 0.40 -0.66 3?2 0.66 --0.46 431 0.40 -0.26 25? 0.40 -0.26 314 0.40 -0.66 373 0.66 -0.60 432 0.40 -0.26 258 0.40 -0,26 315 0.40 --0.53 374 0.66 -0.60 433 0.40 -0.26 259 0.40 -0.26 316 0.40 -0.40 375 0.66 -0.60 434 0.40 -0.26 260 0.40 -0.26 317 0.40 -0.40 3"76 0.53 -0.26 435 0.13 -0.80 261 0.40 --0.26 318 0.40 -0.40 377 0.53 -0.26 436 0.13 -0.93 262 0.40 -0.13 319 0.53 --0.53 3?8 0.53 -0.13 437 0.13 --0.93 263 0.40 -0.00 320 0,53 --0.66 379 0.60 -0.20 438 0.13 -0.93 264 0.40 --0.40 321 0.53 -0.53 380 0.53 --0.26 439 0.13 -0.66 265 0.40 -0.53 322 0.53 -0.53 3~I 0.53 -0.26 440 0.13 --0.80 266 0.40 -0.53 323 0.53 -0,53 382 0.53 -0.26 441 0.40 -0.93 267 0.40 --0.40 324 0.53 --0.53 383 0.53 -0.13 442 0.40 -0.80 268 0.40 -0.40 325 0.53 -0.53 384 0.53 -0.13 443 0.40 -0.80 269 0.40 -0.66 326 0.53 -0.53 385 0.53 -0.13 4~, 0.40 -0.66 270 0.40 --0.53 327 0.53 -0.66 386 0.40 --0.80 445 0.40 --0.66 271 0.40 -0.53 328 0.53 -0.53 387 0.53 -0.40 446 0.40 --0.80 272 0.40 -0.80 329 0.53 -0.53 388 0.53 -0.26 447 0.26 -0.66 273 0.40 -0.80 330 0.53 --0.53 389 0.53 --0.40 448 0.26 -0.53 274 0.40 -0.29 331 0.53 -0.40 390 0.53 -0.40 449 0,26 -0.53 275 0.40 -0.26 332 0.53 -0.40 391 0.53 -0.40 450 0.26 -0.53 276 0.40 -0.26 333 0.53 -0.40 392 0.53 -0.26 451 "0.26 -0.93 277 0.40 -0.26 334 0.53 -0.40 393 0.53 -0.40 452 0.13 --0.53 278 0.13 --0.40 335 0.53 -0.40 394 0.53 -0.40 453 0.13 -0.53 279 0.40 -0.93 336 0.53 -0.40 395 0.26 -0.26 454 0,I 3 -0.66 280 0.40 -0.80 337 0.53 -0.40 396 0.66 --0.26 455 0.13 -0.53

  • SF.SQUffERPENE LACTONES IN ANGIOSPERMS : ; ~:~ 151

    TABLE 2--CONTINUED

    No. $ 0 No. $ 0 No. S 0 No. $ 0

    456 0.13 "-0.53 511 0.40 .-0.66 563 0.66 --0.66 619 0.13 -1.06 457 0.13 --0.53 512 0.40 -0.53 564 0.66 -0.40 619.5 0.13 -I.06 458 0.13 -0.53 512.5 0.40 -0.66 595 0.66 -0.40 620 0,13 -1.06 459 0.13 -0.53 513 0.26 .-0.40 986 0.26 -1.06 621 0,13 -1.06 460 0.13 -0.53 514 0.13 --0.66 567 0.26 --0.93 622 0.13 -1.06 461 0.13 -0.53 515 0.13 -0.53 568 0,26 -0.93 623 0.13 -1.06 462 0.13 -0.40 515.5 0.26 -0.26 989 0.26 -0.93 624 0,13 -%06 463 0.13 -0.40 516 0.13 --0.80 570 0,26 -0.93 625 0.13 -I.06 464 0.13 -0.40 517 0.13 -0.66 571 0~6 -0.93 626 0.13 -I.06 4~5 0.13 -0.40 518 0.26 -0.53 571.5 0.26 -1.06 627 0.13 -0.93 466 0.13 -0.40 519.0 0.13 -0.80 572 0.26 -0.80 628 0.13 --0.93 467 0.13 -0.53 519.1 0.13 .-0.40 573 0,26 -0.80 629 0.13 .-0.93 467.4 0.13 --0.53 519.2 0,13 -0.40 574 0.26 -0,66 629.5 0.13 --1.26 467.5 0.13 -0.53 519,3 0.13 -0.40 575 0.26 -0.66 630 0.13 --1.06 467.6 0.13 -0.53 520 0.13 -0.40 576 0.26 -0.66 631 0.13 --1,00 468 0,26 -0.66 521 0.13 --1.20 577 0.26 -0.66 632 0.13 --1.20 469 0.26 -0.53 522 0.13 --1.06 578 0.26 -0.66 633 0.13 --1.06 470 0.13 -0.80 523 0.13 --1.06 579 0.26 -0.66 634 0.26 -0.80 471 0.13 -0.80 524 0.13 --0.93 580 0.26 -0.66 635 0.26 --1.02 472 0.26 --0.40 525 0.13 -0.80 581 0.26 -0.66 636 0,26 -0.80 473 0.26 -0.40 526 0.13 -0.80 582 0.26 -1.06 637 0.26 -0.80 474 0,26 -0.40 527 0.66 -0.66 583 0.26 -0.80 638 0.26 -1.02 475 0.26 -0,40 528 0.66 ,-0.53 584 0.26 --0.93 639 0.26 -1.02 476 0.26 -0.40 529 0.66 -0.53 585 0.26 -0.80 640 0.26 -0.93 47"/ 0.26 ,-0.40 530 0.13 -0.80 586 0.26 -0.80 641 0.26 -0.93 478 0.26 -0.40 530.5 0.13 -0.80 587 0.26 --0.80 642 0.26 -0.93 478.5 0.26 -0.40 530.6 0.13 -0.80 588 0.26 -0.66 643 0,26 --0.80 479 0.26 -0.66 531 0.13 --0.80 589 0.26 -0.80 644 0.26 -0.80 480 0.26 -0.66 532 0.26 -0.40 590 0.26 -0.80 645 0.26 -0.66 481 0.26 -0.40 533 0.26 -0.40 591 0.26 -0.93 645.5 0.26 -0.80 482 0.26 -0.53 534 0.13 -0.80 592 0.26 -0.80 646 0.26 -0.66 483 0.26 --0.53 535 0.13 --0.53 593 0,26 --1.06 647 0.26 --0.66 484 0.26 -0.53 536 0.13 -0.80 594 0.26 --0.93 648 0.26 -1.20 485 0.26 --0.40 537 0.13 --0.80 595 0.26 --0.80 649 0.26 -1.02 486 0.26 .-0.40 538 0.13 ,-0.80 596 0.26 -0.80 650 0.26 --0.93 487 0.26 -0.40 539 0,13 -0.80 597 0.26 --0.80 651 0.26 -0.93 488 0.26 -0.40 540 0.13 --0,93 598 0.26 -0.80 652 0.26 --0.93 489 0,26 -0.40 641 0.40 -0.66 599 0.26 -0.80 653 0.26 "--0.80 490 0.26 -0.40 642 0A0 -0.66 600 0.26 -0.80 654 0.26 --0.80 491 0.26 -0,40 543 0,40 -0.40 601 0.26 --0.80 655 0.26 --0.66 492 0.26 -0.40 544 0,26 -0.40 602 0.26 -0.80 656 0.26 -1,20 493 0.26 --0,40 645 0.53 -0.13 603 0.26 -0.80 657 0.26 -0.93 4~4 0,26 -0.46 546 0,53 --0.13 604 0.26 -0.80 658 0.26 -0.93 495 0.26 ---0.40 647 0.53 --0.26 6~4.5 0.26 -1.06 659 0.26 -0.93 49~ 0.26 --0.40 548 0.53 --0.26 605 0.26 -0.66 660 0.26 --0.93 497 0,40 --0.53 549 0.53 -0.26 606 0.26 --0.93 661 0.26 -1.02 4 ~ 0.40 -0.53 550 0.53 -0.26 607 0.26 --0.80 662 0.26 --0.93 498 0.13 --0.53 551 0.53 -0.26 606 0.26 -0.80 663 0.26 -0.93 500 0.13 --0.40 552 0.66 -0.40 609 0.26 -0.66 664 0.26 -0.80 501 0.26 -0.53 553 0A0 -0.26 610 0.26 -0.53 665 0,26 -0.93 502 0.26 -0.66 554 0.40 -0.53 611 0.26 -0.93 666 0.26 -1.02 503 0.26 -0.66 555 0.40 -0.53 612 0.26 -0.80 667 0.26 -0.93 ~ 0.26 -0.66 ,556 0.40 -0.53 613 0.26 -1.06 668 0.26 -0.93 ~ 0,13 --0.53 557 0.40 -0.53 614 0,26 -1.06 669 0.26 -0.80 506 0.13 -0.53 559 0.40 -0.53 615 0.26 -0.80 670 0.26 -0.93 507 0,40 -0.66 559 0.40 -0.53 616 0.26 -0.80 671 0.26 --0.93 508 0.40 .-0,66 560 0.40 -0.53 617 0.13 -0.66 672 0.26 -0,93 50~ 0,40 -0.53 561 0.40 -0.53 617.5 0.13 -0.93 673 0.26 -0.93 510 0.40 -0.66 562 0.26 -0.80 618 0.13 --1.26 674 0.26 --1.02

  • 152 VICENI~ DE P. EMERENCIANO, MARIA AUXIUADORA C. KAPLAN AND OTTO R. GOTTUEB

    TABLE 2--CONTINUED

    No. S 0 No. S 0 No. S O No. $ 0

    675 0.26 --0.93 731 0.26 --I .02 788.5 0.26 --0.66 845 0.26 -0.66 676 0.26 -0.80 732 0.26 --I .02 789 0.26 -0.80 846 0.26 -0.66 677 0.26 -0.80 733 0.26 - I .02 790 0.26 -0.66 84"/ 0.26 -0~56 678 0.26 -0.93 734 0.26 -0.93 791 0.26 -0.80 848 0.26 -0.66 679 0.26 -0.80 735 0.26 -0.93 792 0.26 -0.80 849 0.26 -0.66 680 0.26 -0.80 736 0.26 - I .02 793 0.26 -0.66 850 0.26 -0.80 681 0.26 -0.66 737 0.26 -1.02 793.5 0.26 I -0.66 851 0.26 -0.93 682 0.26 -0.80 738 0.46 -0.60 794 0.26 -0.66 852 0.26 -0.80 683 0.26 -0.80 739 0.40 -0.80 795 0.26 -0.80 853 0.26 -0.80 683.5 0.26 -033 740 0.40 -0.80 796 0.26 -0.40 854 0.26 -0.80 684 0.26 -0,93 741 0.40 -0.80 797 0.26 -0.40 855 0.26 -0.53 684.5 0.26 -0.93 742 0.40 -0.66 768 0.26 -0.66 856 0.26 -0~0 684.6 0.26 -0.93 743 0.40 - I .02 799 0.26 -0.53 857 0.26 -0~0 685 0.26 -0.66 744 0.66 -0.66 799.5 0.26 -0.53 858 0.26 -0.80 686 0.26 - I .02 "/45 0.53 -0.80 800 0.40 --0.53 859 0.26 --0.53 687 0.26 -0.96 746 0.40 -0.93 801 0.26 -0.40 860 0.26 -0.53 688 0.26 -0.80 74; 0.66 -0.66 802 0.26 -0.40 861 0.26 -0.53 689 0.26 -0.80 746 0.66 -0.68 803 0.26 -0.53 862 0.26 -0.53 690 0.26 -0.93 749 0.66 --0.66 804 0.26 -0.53 863 0.26 -0.80 691 0.26 -0.93 750 0.66 -0.66 805 0.26 --0.40 864 0.26 -0.53 692 0.26 -0.80 751 0.66 -0.66 806 0.26 -0.53 865 0.26 -0.53 683 0.26 -0.80 752 0.66 -0.66 807 0.26 -0.53 866 0.26 -0.53 694 0.26 -0.80 753 0.26 -0.80 80~ 0.26 -0.40 867 0.26 -0.53 695 0.26 -0.80 753.5 0.26 -0.80 809 0.26 -0.66 868 0/,6 --0.53 696 0.26 -0.60 754 " 0.26 -0.53 810 0.26 -0.66 869 0.26 -0.80 697 0.26 -0.93 755 0.26 --0.53 811 0.26 -0.66 870 0.26 -0.66 698 0.26 -0.93 756 0.26 -0.66 812 0.40 --0.26 8";I 0.26 -0.66 699 0.26 -0.93 757 0.26 -0.66 813 0.26 -0.93 872 0.26 -0.40 700 0.26 -0.66 758 0.26 -0.66 814 0.26 -0.26 873 0.26 -0.40 701 0.26 -0.80 759 0.26 -0.66 815 0.26 -0.40 874 0.26 -0.53 702 0.26 -0.80 760 0.26 -0.66 816 0.26 -0.40 875 0.26 -0.80 703 0.26 -0.80 761 0.26 -0.66 817 0.26 -0.40 876 0.26 -0.80 704 0.26 -1.06 762 0.26 -0.53 818 0.26 -0.40 877 0.26 -0.93 705 0.26 -1.06 763 0.26 -0.53 819 0.26 -0.26 878 0.26 --0.53 706 0.26 -1,06 754 0.26 -0.66 820 0.26 -0.40 879 0.26 -0.53 707 0.26 -0.93 765 0.26 -0.40 821 0.26 -0.26 880 0.26 -0.80 708 0.26 - 1.06 766 0.26 -0.26 822 0.26 -0.26 881 0.26 -0.80 709 0.26 --0.80 767 0.26 -0.66 823 0.40 -0.26 882 0.26 -0.80 710 0.26 --0.80 768 0.26 -0.66 824 0.40 --0.26 683 0.26 --0.53 711 0.26 -0.80 769 0.26 -0.80 825 0.26 -0.66 884 0.26 --0.53 712 0.26 -0.93 770 0.26 -0.66 826 0.26 --0.53 884.5 0.26 -0.53 713 0.26 --0.66 771 0,26 -0.53 827 0.26 -0.53 885 0.26 -0.40 714 0.26 -0.66 772 0~26 -0.53 828 0.26 -0.53 886 0.26 -0.40 715 0.26 -0.66 773 0.26 -0.40 829 0.26 -0.53 887 0.40 -0.53 716 0.40 --0.66 774 0.26 -0,40 830 0.26 -0.53 888 0.40 --0.40 717 0.26 -0.66 775 0.26 -0.66 631 0.26 --0.53 889 0.40 -0.53 718 0.26 --0.66 776 0.26 --0.53 832 0.26 -0.53 890 0.26 -0.26 719 0.26 --0.93 777 0.26 -0.66 833 0.26 -0.53 891 0.26 -0,40 720 0.26 -0.93 778 0.26 --0.66 834 0.26 --0,93 892 0.26 -0.66 721 0.26 -0.93 779 0.26 -0.53 835 0.26 --0.80 893 0.26 -0.53 722 0.26 --0.80 780 0.26 -0.53 836 0.26 -0.80 894 0.26 --0.53 723 0.26 -1.20 781 0.26 -0.26 837 0.26 -0.80 895 0.26 --0.53 724 0.26 -1.06 782 0.26 -0.93 838 0.26 -0.80 896 0.26 -0.40 725 0.26 -1.20 783 0.26 -0.80 83~ 0.26 --0.80 897 0.26 --0.40 726 0.26 .-0.93 784 0.26 -0.80 840 0.26 -0.80 898 " 0.26 --0.93 727 0.26 -0.93 795 0.26 --0.80 841 0.26 -0.66 899 0.26 -0.93 726 0.26 -0.80 786 0.26 -0.80 842 0.26 --0.80 900 0.26 -0.80 729 0.26 -1.02 787 0.26 -0.66 843 0.26 -0,80 901 0.26 -0.93 730 0.26 --0.93 788 0.26 -0.66 844 0.26 --0.66 902 0.26 -0.93

  • SESQUITERPENE LACTONES IN ANGIOSI~RMS .... 153

    TABLE 2--CONTINUED

    No. $ 0 No. S 0 No. $ 0 No. S 0

    903 0.26 --0.80 961 0.26 --0.93 1018 0.40 --0.80 1073.6 0.40 -0.53 904 0.26 --0.66 962 0.26 -0.93 1019 0.40 -0.80 1074 0.40 -0.40 905 0.26 -0.66 963 0.40 --0.73 1020 0.40 -0.93 1075 0.40 -0.40 906 0.26 -0.66 964 0.40 -0.93 1021 0.13 -0.80 1076 0.40 -0A0 907 0.26 -0.53 965 0.40 --0.93 1021.5 0.13 -1.20 1077 0.40 -0,40 90e 0,26 -0.53 966 0.53 -0.53 1022 0.40 -0.93 1078 0.40 -0.40 S0~) 0~6 -0.53 967 0.40 -1.06 1023 0A0 -0.93 1079 0.40 -0A0 ~10 0.26 -0.53 968 0.40 -0.80 1024 0.40 --0~0 1080 0.40 --0.40 911 0.26 -0.93 969 0A0 -0.66 1025 0A0 -0~0 1061 0.40 -0A0 911.5 0~,6 -1.06 970 0.40 -0.80 1026 0A0 -0.66 1062 0.40 --0.40 912 0.26 -0.80 971 0.40 -0.66 1027 0~0 -0.80 1083 0A0 -0.40 913 0.26 -0.66 972 0.26 -0.40 1026 0A0 -0.93 1084 0.40 -0.40 914 0.26 -0.66 973 0.26 -0.53 1029 0.40 -0.93 1085 0.66 -0,40 915 0~6 -0.66 974 0.26 -0.66 1030 0.40 -1.06 I0~6 0.53 -0.53 916 0.26 -0.80 975 0.26 -0.53 1031 0.40 -0.93 1067 0.53 -0.40 917 0.26 -0.80 976 0.26 -0.53 1032 0.40 --0.93 1088 0.40 - I .06 918 0.26 -0.80 976.5 0.26 -0.53 1033 0.40 -0.93 1089 0.40 - I .06 919 0.26 -0.80 977 0.26 -0.66 1034 0.40 -0.80 1090 0.40 - I .06 920 0.26 -0.80 978 0.26 -0.66 1035 0.40 - I .06 1091 0.40 -1.06 921 0~6 -0.66 979 0.26 -0.80 1036 0.40 -0.80 1092 0.40 -0.66 922 0.26 -0.66 980 0 ~ -0.80 1037 0.40 -0.93 1093 0.40 -0.80 923 0.26 -0.66 981 0.26 -0.93 1038 0.40 -1.06 1094 0.40 -0.80 924 0.26 -0.53 982 0.40 -0.66 1039 0.40 -0.93 1095 0.40 -0.93 925 0.26 -0.53 983 0.26 -0.66 1040 0.40 -0.93 1096 0.40 - I ~0 926 0.26 -0.53 984 0.26 -0.53 1041 0.40 -0.93 1097 0.40 -0.40 927 0.26 -0.53 985 0.26 -0.80 1042 0.40 -0.80 I 0 ~ 0.53 -0.93 928 0.26 -0.93 986 0.26 -0.80 1043 0.40 -0.80 1099 0.53 -0.80 929 0.26 -0.66 987 0.26 -0.93 1044 0.40 -0.80 1100 0.53 -0.66 930 0.26 -0.66 988 0.26 -0.53 1045 0.53 -1.06 1101 0.53 -0.66 931 0.26 --0.66 989 0.26 -0.80 1046 0.40 -0.93 1102 0.53 -0.66 932 0.26 -0,93 990 0.26 -0.80 1047 0.93 -0,53 1103 0,53 -0.80 933 0.26 -0.80 991 0.26 -0.66 1048 0.93 -0.66 1104 0.53 -0.80 934 0.26 -0.66 992 0.26 -0.93 1 049 0.53 -0.93 11 04.5 0.53 -0.66 935 0,26 -0,53 993 0.26 -1.06 1049.5 0.53 -0.93 1105 0.53 -0.80 936 0.26 -0,80 994 0.26 -0.40 1050 0A0 --1.20 1106 0.53 -0.80 937 0.26 --0,40 995 0,26 -0.80 1051 0,40 --1.06 1107 0.53 -0,80 938 0.26 -0.40 996 0.26 -0.93 1052 0,53 -1.06 1108 0.53 -0.80 939 0.26 -0.80 997 0.26 -0.80 1053 0.40 -0.80 1109 0.53 --0.90 940 0.26 -0.93 998 0.26 --0,93 1054 0.40 -0.80 1110 0.66 -0.53 941 0.26 -0.93 999 0.26 --0,66 1055 0.40 --0.93 1111 0.53 --0.80 942 0.26 -0.80 1000 0.26 -0.93 1056 0.40 -0.80 1112,5 0.53 -0.66 943 0.26 -0.80 1001 0.26 --0.93 1057 0.40 --0.66 1113 0.53 -0.66 944 0.26 -0.66 1002 0.26 -0.80 1058 0.53 -0.40 1114 0.53 -0.53 945 0,26 -0.80 1003 0.26 -0.80 1059 0,53 -0.40 1115 0.53 -0.66 946 0.26 -1.06 1004 0,26 -0,80 1060 0.53 -0,13 1116 0,53 -0.66 947 0.26 --1.06 1005 0.26 -1.06 1061 0.53 -0.66 1117 0.53 -0.80 948 0.26 -0.66 1006 0.26 -0.66 1062 0.40 -1.20 1118 0.53 -0.93 949 0.26 -0.66 1007 0.26 -0,93 1063 0.40 "-0.93 1119 0.53 -0.93 950 0.26 -0.66 1008 0.26 -0,93 1064 0.40 -0.93 1120 0,53 -1.06 951 0.26 -0.66 1009 0.26 -0.93 1065 0.40 -0.93 1121 0.53 -0.80 952 0,26 -0.80 1010 0.26 -0.93 1066 0.40 -1.06 1122 0.53 -0.80 953 0.26 -0.93 1011 0,26 -0.80 1067 0.53 -0.40 1123 0.53 --0.80 994 0.26 -0.93 1012 0.26 -0.80 1068 0.53 -0.40 1124 0.53 -0.80 955 0.26 -0,93 1013 0.26 -0.80 1069 0.66 -0.26 1125 0.53 -0.93 9~6 0.26 -0.93 1013.5 0,26 -0.80 1070 0.40 -0.53 11 26 0.53 -0.93 957 0.26 -0.80 1014 0.26 --0.80 1071 0.40 -0.53 1127 0.53 -0.66 958 0.26 -0.80 1015 0.26 -0.93 1072 0.40 -0,53 11 26 0.53 -0.93 959 0.26 -0.80 1016 0.26 -0.80 1073 0A0 -0.53 1129 0.53 -0.93 960 0.26 -0.80 1017 0.26 -0.66 1073.5 0.40 -0.53 1130 0.53 --1.06

  • 154 V1CENTE DE P. EMERENCIANO, MARIA AUXlLIADORA C. KAPLAN AND OTtO R. GO1-1"LIEB

    rABLE 2--CONTINUED

    ~Vo. S O No. $ O No. S O No. S O

    1131 0.53 -0.93 1186 0.53 -0.66 1244 0.80 -0.66 1300 0.80 -1.06 1132 0.53 -0.93 1187 0.53 -0,53 1245 0.80 -0,80 1301 0.80 - I .06 1132,5 0.53 -0.93 1188 0.53 -0,66 1246 0.80 -0.80 1302 0.53 -0.66 1133 0.53 -0.93 1189 0.53 --0.93 1247 0.80 -0.93 1303 O. 53 -0.66 1134 0.53 -0.80 1190 0.53 -0.68 1248 0.80 -1.20 1309 0.66 -0.93 1135 0.53 -0.66 1191 0.53 -0,66 1249 0.80 -0.93 1310 0.66 -0.66 1136 0.53 -0.80 1192 0.53 -0.80 1250 0.60 --0.73 1311 0.26 -1.06 1137 0.53 -0.93 1193 0.66 -0.66 1251 0.60 -0.66 1312 0.26 -0.80 1138 0.53 -0.93 1194 0.53 -0.80 1252 1.00 -0.36 1313 0.26 -0.93 1139 0.53 -0.93 1195 0.53 -0.66 1253 0.53 -0.53 1314 0.26 -0.93 1140 0.53 -0.93 1196 0.53 -0,66 1254 0.53 -0,66 1315 0.26 "-0.53 1141 0.53 -0.93 1197 0.53 -0.66 1255 0.66 -.0.93 1316 0.26 -0.80 1142 0.53 -0.93 1198 0.53 -0,66 1256 0.66 -0.93 1317 0.26 -0.80 1143 0.53 -0.93 1199 0.53 -0.53 1257 0.71 -0.47 1318 0.26 -0.80 t144 0.53 -1.06 1200 0,53 -0.66 1258 0.71 -0.60 1319 0.26 -0.80 1145 0.53 -0.80 1201 0.53 -0.66 1259 0.53 -1.06 1320 0.26 -1.06 1146 0.53 -1.06 1202 0,53 "-0.93 1260 0.53 -1.06 1321 0.26 -0.80 1147 0.53 -0,93 1203 0.53 -0.80 1261 0.53 -1,20 1322 0.26 -0.93 1148 0.53 -0.93 1204 0.53 -0.93 1261,5 0.40 -1.06 1325 0.53 -1.33 1149 0.53 -0.93 1205 0.53 -0.93 1261,6 0.40 -1.06 1326 0.53 -1,20 1149.5 0.66 -0.53 1205.5 0.53 -0.80 1261.7 0.40 -1.20 1327 0.53 -1.06 1150 0.80 -0.66 1206 0.53 -0.80 1262 0.53 -0.80 1328 0.53 -1.06 1151 0.80 -0.66 1207 0.53 -0,80 1263 0.53 -0.66 1329 0.53 -1.06 1151.5 0.80 -0.80 1208 0.53 -0.80 1264 0.53 -0.66 1330 0,53 -1.06 1152 0,80 -0.80 1209 0.53 -0.80 1265 0.53 -0.66 1331 0.53 -0.93 1153 0.80 -0.66 1210 0.53 -0.80 1266 0.53 -0.66 1332 0.53 -0.80 1154 0.66 -0.66 1211 0.53 -0.80 1267 0.53 -0.93 1333 0.53 -1.20 1155 0.80 -0.40 1212 0.53 -0.80 1268 0.53 -0.80 1334 0.53 -0.93 1156 0.80 -0.40 1213 0,53 -0.80 1269 0.53 -0.80 1335 0.53 -0.80 1157 0.80 -0.66 1214 0.53 -0.66 1270 0,53 -0.80 1336 0.53 -1.20 1158 0.93 -0,66 1215 0.53 -0.93 1271 0.53 - 1.20 1337 0.53 -0.93 1159 0.53 -0.93 1216 0,53 -0.80 1272 0.53 -1.06 1338 0.53 -0.80 1160 0.53 -0.80 1217 0.53 -0.80 1273 0.53 -1.06 1339 0.53 -0.80 1161 0,53 -0,80 1218 0.53 -0.93 1274 0.53 - 1.06 1340 0.53 -0.80 1162 0,53 -0,53 1219 0,53 -0.93 1275 0.53 -1,06 1341 0.66 "-0.93 1163 0.53 -0.80 1220 0.66 -0.80 1276 0.53 -1.06 1342 0.66 -0.93 1164 0.53 -0.53 1221 0.53 -0.93 1277 0.53 --0.93 1343 0.66 -0.80 1165 0.53 -0.53 1222 0.53 -0.80 1278 0,53 -1.06 1344 0,66 -0.80 1166 0.53 -0,53 1223 0.53 -0.40 1279 0.53 -1.06 1345 0,66 -0.66 1167 0.53 -0,53 1224 0.53 -040 1280 0.53 -0.93 1346 0.53 -1.20 1168 0.53 -0.53 1225 0.66 -0.53 1281 0.53 -0.93 1347 0.40 --0.93 1169 0.53 --0.66 1226 0.53 --0.66 1282 0.66 -0.66 1348 0,66 --1.06 1169.5 0.53 -0.80 1227 0.53 -0.80 1283 0.66 -0.53 1349 0.53 -1.06 1170 0.53 -0.66 1228 0.53 -0.93 1284 0.53 -0.80 1350 0.53 - 1.06 1171 0.53 --0.66 1229 0.53 --0.66 1285 0.53 -0.80 17* 0.13 -1.06 1172 0.53 -0,80 1230 0,53 -0.80 1286 0.53 -0.80 38" 0.13 -0.93 1173 0.53 -0.93 1231 0.53 -0,80 1287 0.66 -0.80 39" 0.13 -0.93 1174 0.53 --0.80 1232 0.53 -0,80 1288 0.66 --0.53 80 ° 0.13 --0,80 1175 0.53 --0.66 1233 0.53 --0.80 1289 0.66 -0,40 83" 0.13 --0.80 1176 0.53 --0.80 1234 0.53 --0,80 1290 0.60 --1.00 93* 0.13 -0.93 1177 0.53 -0.80 1235 0,53 --0.80 1291 0.60 --1.00 105" 0.13 --0.93 1178 0.53 --0.66 1236 0.53 -0.66 1292 0.80 --1.20 233" 0.26 --0.66 1179 0.53 -0.66 1237 0.80 --0.80 1293 0.80 --0.93 234* 0.26 --0.53 1180 0.53 --0.66 1238 0.80 --0,80 1294 0.80 --0.93 235" 0.26 --0.66 1181 0.53 --0.80 1239 0.80 --0.80 1295 0.80 --0.93 236" 0.26 -0.53 1182 0.53 --0.80 1240 0.80 -0.80 1296 0.80 -0.93 237" 0,26 --0.53 1183 0.53 --0.80 1241 0.80 -0,66 1297 0.80 --0.93 238" 0.26 --0.53 1184 0.53 -0.66 1242 0.80 --0,66 1298 0.80 -0.93 239 ° 0.26 --0.40 1185 0.53 --0.66 1243 0.80 --0.66 1299 0.80 --1.06 240" 0.26 --0.26

  • SESQUITERPENE LACTONES IN ANGIOSPERMS 155

    TABLE 2--CONTINUED

    No. S O No. S O No. S O No. S 0

    241 * 0~6 -'0.40 398" 0.26 --I .06 623* 0~6 --0.53 700" 0.26 -0~0 242* 0~6 -0.26 3~9" 0.26 --I.06 624" 0.26 -0,53 728* 0.26 -0~6 243* 0.26 -0.53 408°a 0.26 -0.66 625," 0.26 -0.53 "/29 ° 0.26 -0.66 244" 0.26 --0.40 414" 0.26 -0.93 633," 0.26 --I.06 793" 0.40 -0.93 246 ° 0.13 -0.93 415" 0.26 -0.80 634* 0.26 -0.66 807* 0.40 --I.06 248" 0.13 -0.93 428* 0~6 -0.93 635* 0~6 -0.53 808* 0.40 --0.93 249* 0~6 -1.06 429* 0.26 --0.93 626" 0.26 -0.53 809' 0.40 -0.66 253" 0,13 -0,66 430" 0.26 -0.66 63"/* 0.26 -0.53 810" 0.40 --0.53 2M* 0.13 "--0.66 434" 0.26 -0.80 649* 0.26 -0.53 1005" 0,53 -0.80 3~2" 0.40 -0.66 478," O.Z~ -0.93 659* 0.26 -0.93 1146" 0.13 -0.80 354* 0.40 -'0.93 479* 0.26 -0.80 660" 0.26 -0.93 1217" O ~ -0.66 365* 0.26 -0.93 483* 0~6 -0.80 666 ° 0.26 -0.80 1227" 0.26 -0.93 370"a 0.Z,6 -0.80 577" 0,26 -0.80 667* 0.26 -0.66 1240" 0~,6 --1.06 374* 0~6 -0.93 587* 0.26 -0.66 692" 0~6 --1.06 1242" 0.26 -0.80 384* 0~6 -0.66 5~2" 0.26 -0.66 696" 0.26 -0.53 1254" 0.53 -0.80 385* 0.26 -0.80 613" 0.26 --0.93 658* 0.26 -0.80 1261 = 0.29 -0.80 397* 0~,6 --1.06 621 * 0.26 -0.53 699* 0.26 -0.80

    TABLE 3. OCCURRENCE OF SESQUITERPENE LACTONES IN GENERA OF MAGNOLIACEAE INDICATED BY ASTERISKED NUMBERS WHICH REFER TO STRUCTURAL FORMULAE GIVEN IN REF. [2]/NUMBERS OF SPECIES IN WHICH THE COMPOUND HAS BEEN FOUND

    Liriodendn~38=ll, 3S*ll, 83*ll, 93*ll, 254"11,3"/0a*/I; ,Y,~gno~il~O*/1, 246"11, 248"11.253"11,365"11, 374"11; Mk:he//a17*11, 80°11,249"11,385"12,374=12, 1149"11, 1227"/I, 1240°11.

    TABLE 4. OCCURRENCE OF SESQUITERPENE LACTONES IN GENERA OF LAURACEAE INDICATED AS IN TABLE 3

    Lindera 233= /1, 235"/1, 238"/1, 262"/1, 354"/1, 478"11, 4"/9"/1, 483"/1, 807"/1, 808"/1; Neo/~ea 234"/1, 236"/1, 237"/1, 239"/1, 240"/1, 241 ,'/1, 242"/1, 243=/1o 244=/1, 809"/1, ~10"/1; Ocorea 126'/1.

    TABLE 5. OCCURRENCE OF SESOUITERPENE LACTONES IN GENERA OF APIACEAE INDICATED AS IN TABLE 3

    Feru/a 384"12, 385"12, 3~9=12, 414*11, 415"12, 432*11,433*11, 434"11, 621"11. 623"11, 633°11, 634"11, 635=11, 636"11, 637°11, 728"11, 729*11; Laser 429*11, 696"/I, 793"11 ; Laserpitium428*ll, 613=11, 621 °11, 624"11, 625*11, 649*11, 698"11, 700"11, 1242*11 ; Me/anosenium 397"11, 398°11, 408a*11, 430"11 ; Smyrnium 1005"/I, 1254"11.

    Results The distribution of sesquiterpene lactones, clas- sified into structural types, in taxa of angiosperms is given in Tables 11, 12 and 13. Presence (-t-) signs are inserted whenever a structural type, although not actually repre- sented by an isolated derivative, must nevertheless be present, even if only transitorily, _

    since it functions as a biosynthetic intermediate to an isolated metabolite.

    Only the most common structural types 1, 1.1 and 1.2 of sesquiterpene lactones have so far been located in Magnoliaceae (Table 11). Diver- sification of types occurs from here on in two directions, one towards the Lauraceae which produce characteristically furanogermacrano- lides (1 F) and one towards the Apiaceae-Asteraceae which both develop mainly the guaianolide and eudesmanolide themes. A correlation of the EA s and EA o parameters (Fig. 7) also can best be interpreted in the light of this two-directional evolution of sesquiterpene lactones. Clearly the Magnolia- ceae contain biosynthetically much simpler and less oxidized compounds of this class than the Lauraceae on one hand and the Apiaceae- Asteraceae on the other (Fig. 7). Indeed the EA s and EA o values, and perhaps even better the/~s and/~o values (Fig. 8), for sesquiterpene lactones of these families correlate well with their evolu- tionary advancement, as measured by Sporne indices [7] based on morphological criteria.

    The distribution of sesquiterpene lactones in the Asteraceae is quite heterogeneous (Table 12). Only the common types 1, 1.1 and 1.2 have been found in the Cichorioideae, a subfamily which in this respect resembles the Magnolia- ceae or, more closely, if EA s and EA o values are also considered (cf. Table 8 and 9), the Apiaceae. The subfamily Asteroideae group 1 [9] which

  • 156 VICENTE DE P. EMERENCIANO. MARIA AUXlUADORA C. KAPLAN AND O'1-1"O R. GOI"t'LIEB

    TABLE 6. OCCURRENCE OF SESQUITERPENE LACTONES IN GENERA, CLASSIFIED IN TRIBES. OF ASTERACEAE INDICATED BY NUMBERS WHICH REFER TO SI~UCTURAL FORMULAE GIVEN IN REF. [3J/NUMBER OF SPECIES IN WHICH "rile COMPOUND HAS BEEN FOUND

    I. Lactuceae C4~orkzm 97211' 97311; H),pochoer/s 63911, 083/I, 26411' 004.511, 90311' 91211, 262/1' 9~311; L.acluca 76311' 97213, 973•3; Picridium 77711, 90512, 936/2; ,,~onchus 60~/1' 63512, 26314; 7ar~x~um 9811' 14711' 66011, 66111, 97311; Urosperrnum 9011, 9111.

    2. Arcototeae A~tob~s 112/2, 82512, 55911, 95211. 96611, 96811; Berkhe, ya 4811; G~zan/a 60611' 60711; P/atycarpha 5711, 14611 ; I/~u~/um 87011.

    3, Liabeae ~ 753.5/1' 778/1, 788/1' 7~8.5/1, 79011' 79311; Fen~y~n=hu~ 97911; G/echom~ 20011; L~bum 112, 26611' 83411; Mumm=~ 43611.

    4. Muti$ieae C-ochnatiinae and Mutilsinae

    ~ 7011, 79/1, 83711; D~coma 17711. 17811, 55611, 64811; D/no$er~ 706; Cm~tm~ 1~/1' 17011, 17211,173/1. 174/1, 17~/1, 41111; M ~ ~ 1 1 , 61311. 648/1; Pert~ ~5~1; Wunder/~h~ 161/1.

    5. Cardueae Carduinae

    Ac~oliton~2~ll, ~2911, ~3311, ~511, 26211, 26811; Am~m 4914, 50/1; ~ m B 3 4 1 1 ' 94611; Cy~re82611, 84112, 870/1; Ju~b~ 4~/1, 53/1, 5511, r=611,19111, ~28/1, ~30/1, ~3/1, 93911, 95711; Onopordurn 50/3, 6411' 6511, 10~4/1, 10~5/1; P C T o , ~ n ~32/2, 94412; S~aBum~ 111' 11711, ~4/1 ' ~41/1, ~67/1, 946/1, 97711, g7~12. 106211.

    Centaureinae Atrdmt~me ~41 I1, 844/1, ~63/1, r /o / l , 95411. 95511, ~ / 1 ; Cen~uma 111, 48/1, 5216, 11711. 16~/1, 17011. 17614, 19112, 61212, ~2~/1' 929/9, ~33/1, 84112, ~4411, ~47/1, 848/4, B49/9, B / 2 , ~60/2, ~6112, ~62/9, ~64/1. 86511, 86611, 94~/1, 94911, 95611, 1053/1, 10~/2, 1063/1, 10~1/4; C/~u~ 4~/1, 52/1.

    Cadineae A~ac~#ode$1349/1, 135011; Xeranthemum 9~011.

    G~mer= not ==~igned to =ubtrlbes. (:Y~rm/e/~ 870/1; Gtt~=he/ma 87012.

    6. Vemonieae Cen~r~herum 267/1, 26211, 71B4/1' ~54/1; C h r ~ 488/1, 48~/1, 51811 ; Eleph~n~Ol~$ 93/2, 12611, ~1/1, 12711, 15411, 12711, 50111, B~/1. B~/1, 515,5/1, ~611, 98711 ; F, mm~nthu$1 I1, 36713, 26~12, 9~/2, 3"/0/1, 37411, 37511, 26711. 388/1, :~911, ~0/1, 455/10 451 I1, ~211, 7~12, ~11 , ~0/1, 940/1; Er~ngea 42911, 43011, 779/1, 787/1, 519.3/1 ; Hefemcoma 78211; Lychno~hora 112, ~911' 37111, ~11 , ~413, 7~2/9, 7~11' ~411, ~ / 1 , ~111, 88211. 95311 ; Marffeldanthus 171 I1 ; P~loc~rp~ 4g011, 491/1, 49211, 493/1, 49411, 49511; P ~ 44811, 4 6 7 / 1 ; / ~ = L ~ 37111, 37211, ~111, 39212; Rol~ndm 49711, 49811. 49911, 50011; $~t~ke=/~ 47"//1, 47~/1, 478.5/1, 48611. 4~7/1, 83411. 85011; V e n / / / ~ 111, 52/1, 9111, 92/1, 387/1. 26812, ~ / 2 , 7~2/2; M~rnon~ 112, 54/1, 58/1, 59/1. 13111, 132/1, 133/3, 13419, 13512, 19611, 473/2, 47411, 475/1, 476/1, 479/1, 4~0/1, 4~J3, 483/2, 4~4/1' 48512, 513/1, 51711, 519.1/22, 519.2/27, 52011, 52712, 52811, 52911, 73812, 783/1. 825/3, ~'/11. ~31/1' ~34/3, ~35/1, B~7/9, ~B/4, ~40/1' ~ / 1 , ~11 , 95111.

    7. Eupatorieae ,4~er~tk~ 617.5/1, 629,511, ~02/1; Agr~n~u= ~06/1, 81911; Aual~N~tdce//~ 761/1; C h r o m ~ 28611 ; C o ~ 351/1, 35212; ~ 112, 604.§/1. 671.511; ~ e l a 9 8 9 1 1 ; Di~lnaphia346II, 51911. 55311, 106011; Eupatorium312. 412, 1111, 14/1,15/1, 1711, 18/1' 1911, 20/1. 2111, ~1/1, 33/1, 3411, 4511.4611, 47.511. 51/2. 99/1, 11612. 118/3, 119/9, 12211, 12313, 12414. 15011, 15111, 28211' 28312, 286/1, 2~/1, ~0/1. 29111' 29711, 29911, 30012, 44112, 44213, 51012, 51111. 51212. 512.511, 76511, 76611, 781/1. 79112, 79611, 79711, 79912, 799.5/1, 80111, ~02/1, ~0311' 814/1, ~1711' 81811, ~20/1, 821/1, ~22/1' 823/2, 82411, 87211, r/3/1, 26011, 93711, 93811, 974/1. 97511. 97611. 976.511, ~4/1; Gra~=~ 532/1, r~3311, ~4/10 535/1, ~=36/1, 537/1, 83811, r~9/1, ~4111, 81211; Guevar~ 77311; H~.ft~Wg/h/~ 36311, 36411; L~cn~ 12/1, 3211. 28911, 29311, 29411, ~11, ~1611, ~17/I, ~15/1, ~ / 1 , 26111, 26211, ~02/3, 503/1, 50411, 55211, ~)4/1' ~5513, 807/1, 80~11, ~15/1' 97411, 87811, 87911. 109111; Lo~e/g~ 261/1; Mil~nia~6/1, 67/1. 55/1' 68/1, 1~3/1' 18411.1~5/5, 193/5, 19411, 98111. 10~8/1, 108511; Oxylobu$111, 56611. ~2/1, ~ / 1 , ~26/1; ~ 14011, 79111. 792/2, 79511, r~ /1 ' 94111' 114011; T r / ~ n ~ 54411, 54611, 54711, 54~/1, 54911, r~o/1, 551 I1, 554/1, 55511, ~ 1 1 , 55711, ~ / 1 ' ~ / 1 , 55011, ~61/1. F~3/1' 56411, 56511.

    8. Heliantheae 8.1. Mellmpodiinae

    Acen~oermum 2~611, 2~BI1. 23~/1' 241/1, 24211, 243/1, 244/1, 24511. 24611, 24711. 24811, 24911, 400/1, 401/1, 40311, 543/1, 55211 ; Melarnl~dium 7511, 7611, 7711, 7~11, 10011, 12511. 223/1. 22411. 22711, 25011, 25111. 25211' 25311, 25413, 25511. 255.5/1, 25611, 2~0/12, ~o211. 26311, 26511, 2~/1, 26712, 26~20 27413, 27514. 276/1, 27711, 27~/2, 30211, 30311, 40411. 40511. 40611, 40711.40811, 40911' 410/1, 99111; Po/ymn= 168/1, 69011; $igesbeotia 23111, 23211, 249.811, 51611; Sm~/~n~hu= 202/1, 20311. 22511, 22611, 22811, 2~3/2, 249.511, 249.6/1' 249.7/1, 255/1, 25511, 2~0/1' 26111, 26911, 27011. 271/1, 6~6/1; Tetragono~heca 205/1. 20611. 20711. 20~/1, 20911. 21011, 211/1, 21211, 21311. 21411, 21,511, 21611, 21711, 21~/1' 21911. 22011, 221/1. 22211, 22611. 23411. 23511. 25611. 43111, 43211. 433/2.

    8.2. Zinniinae ~ 2611, 7~2/1, 7~5/1, 7~6/1, ~711, 83~11, 8~9112, ~13/2, 85711, 55~/1, g~ l l , 106~11, 1070/2,107112, 107212, 107~/2, 107~.~/1, 107Z1.6/1, 107412, 107511, 107611, 107711,1078/1, 107911. 10~0/1' 10~111,126211, 10~3/1, 10~4/1, 10~911,10~0/1, 10~4/1. 1085/1.

    8.3. Ecliptinae ~ 3511, 70011, 70111. 70211. 70311; B~/nv///e~ 95/1. 5511' 9711, 13611, 24011, 26411, 32611; ~ 25711, 25~11, 2~O/1; ~ 6~011, 71611. 71711, 71911, 1230/1, 123111, 1232/1, 123311, 123411.

  • SESOUrTERPENE LACTONES IN ANGIOSPERMS 157

    T,~LE 6-- CON~'~ED

    8A. Vertmtnin~e Dk~mslWna 57511, 577/2, 57~/2, §7~/1, ~11, ~ I1; ~ 1 ~ 1 ; ~ ~ 1 , ~ 1 , 2~1, ~/1, 4111, 1 ~ 1~1, ~ / 1 ; ~ m ~ I , ~11, ~ I , ~ 1 1 ; ~ ~ ~11, ~ 1 , ~ I , ~ I , ~ I ; ~ ~.511, ~.611; ~ I ~ I , 1~11; ~ ~11, ~11, ~11, ~711, ~ / I , ~11, ~ I , ~ I , ~11, ~11.

    8.5. ~ n ~ ~ ~ / 2 , ~ /1 , ~ , ~ ; ~ ~ . 5 / ~ 1 ~ 1 ; ~ ~4, 4/1, 42/1. ~ 1 , ~/1, ~ .~1 , ~ ~ / 1 . ~ / 1 , ~ / 1 , ~ / 1 , ~ 2 , ~ 2 , ~ / 1 , ~ / 1 , ~ / 1 . ~ /1 , ~ 1 , ~ 1 . ~7/1, ~ 7 . ~ ~ /1 , ~.5/1, ~.6/1, ~ / 1 . ~ 1 , ~ . ~ 1 ; ~ ~ 1 , ~ /1 , 11~1, 1~7/1, 1~/1, 1~/1; S ~ 1~/1; ~ 5/1, ~1,1~/1, 1~1, 1~/1, ~/1, 1~/1, ~ / 1 . ~2/1, ~9/1, ~4/1, ~ 1 , ~ /1 , ~ 1 , ~ / 2 , ~7/1, ~ 1 , ~ / 1 , ~ /1 , 5~/1, ~ / 1 , ~ / 1 ; ~ / 1 , 1 ~ / 1 , ~ 1 , ~0/1, ~1/1, ~ 2 , ~ 1 , ~ ~ .

    8.6. G a i ~ ~ 2 , I~I/~, 11~I. I~ /2 ,11~/I , I ~ / I , 1 1 ~ , 11~/2,11~2. I ~ / ~ I ~ / I , I ~ I , I ~ I ; ~ 11~/I. 11~/I, I ~ I , I ~ / I .

    ~7. ~ ~ ~ : ~ / ~ .

    82. F ~ ~ / ~ , ~/ I , ~ / I , ~ I , ~ / I . ~2/I, ~ / I .

    8.9. 5ahiln~ ~ ~ / I . ~ / I . ~ I , ~ / I , ~ / I , 7 ~ I , 7 ~ I . 7~/I, ~ I ; ~ ~ / ~ ~ I , ~.S/1, ~ . ~ I .

    8.10. ~ d ; i ~ 8.11. G a ~ i n ~

    ~ I ~ , ~ / ~ , ~ / I , ~ / ~ , ~ / I , ~ / I , ~ / 2 . ~ / ~ , ~I / I . ~ , ~ / I , ~ / I . ~7/~, ~ / I . ~ / I , ~ / I , ~ 2 , ~ / I , ~ / I , 3~/2, ~ / 2 , ~ / 2 , ~ / I , ~ / I . ~ / I , ~5/I. ~ / I , 4~/I, ~ I , 4~/2, ~7/I, ~ / I , ~ / I , ~ / I , ~ / I , ~ / I , ~ . ~ / I , ~5/~, ~ / I , ~7.5/I. ~ . 6 / I ; ~ ~ /I , ~ I , ~ I . M/I , ~ / I , ~ I , ~ I . ~ / I , ~ / I , ~7/~.

    • 12. ~ u ~ n ~ n ~ ~ ~ / I , ~5 /I ; ~ I/I, 10/I, ~ I , ~ / I , ~ / ~ . ~ / 2 , ~ 3 , ~I /2 , I ~ 2 , ~ 9 / 2 .

    8.13. E~Imsn~n~ ~ / I , ~ I ; ~ I ~ / I ; ~ ~ / ~ .

    8.~. ~ i ~ a e ~ I / ~ 2/I. ~2, I~2, ~ 2 , ~ 2 , 112/4, ~ /~ , ~ , I~ .~I . ~ / 2 , ~ / 2 , ~ / 6 , ~ I , 5 ~ I , ~ / 3 . ~8/2. 6 ~ 2 , ~ / ~ , ~ / ~ , ~ / ~ , ~7/I, ~ / 2 , ~ / I , I ~ / I , I ~ / I , I ~ . I ~ / 6 , 1107/I, 11~3. 11~/2, ~ I ~ , ~2/~, 1113/I. 1116/I. 1117/I, I~18/I, 1119/I. 11~/2,11~/~, 11~/~, 11~/~ 11~/I. I ~ / 3 , 11~3, ~I~/~, I ~ / 3 , ~ / ~ . I~ /~ , ~5/~, I~/~, I~.~/~, ~ I ~ , ~151/I, 1151.5/~, 11~/~0, ~53/7, ~ / I . 11~/~, I~57/~. I ~ / I ; ~ I/I. 61~2, I ~ / I , 1111/I, 111~I, I~17/2, ~I~/I, 11~/I, 11~/I ; ~ ~ / I , ~ / 2 . ~ / 2 , ~ , ~ 2 ~ , ~ / ~ . ~ / I , ~ / 2 , I ~ / I . I ~ / I ~ I ~ / I . I0~/I, I 0 ~ I . I0~/I, I0~/~, I0~/~, I ~ / I , I ~ / I , I ~ / I , I~11/2. 11~2/I, 1117/~: ~ I ~ I ; ~ 1~/~, ~ 3 / I , I ~ . I ~ / 3 , 11~/6, I~01/5, 11~/I, 11~/4, 11~/~. 11~.5/I, ~I~/I, ~110/2, ~111/I. 1112/I, ~113/I, 11~/3. 1115/I, ~7 /2 , 11~/5, 1 1 ~ , 1 1 ~ , ~I~I . 11~3. 11~/I, 1127~, 11~/~; ~ 10~/2, I0~/I, I0~/5, ~0~/9. I0~/I, I~ /~ , I~2/4, I ~ / 7 , I ~ / I , I ~ / ~ , I ~ / I .

    ~.15. Milte~ilnae ~ ~ / I ; ~ I ~ / I , I~ /~ , I ~ / I .

    9. ~ n ~ ~ ~ / I , ~ / 2 . ~0/2, ~ / I ; ~ I~/~, ~ / 2 , ~3/2. ~ / I , ~5/~, ~ / ~ . I~ /~ , 11~/I, 11~/I, 11~/I, I ~ 2 , I ~ / I , 11~/~, 11~/I, 1174/I. 11~/5. 11~/I, ~I~/~. I ~ / 2 , 11~/~. 11~I, ~ / I , 11~/I. ~I~3, I ~ / ~ , ~9 / I , I ~ / I ; ~ m ~ / 1 , ~ I , ~ / ~ , I ~ / I . I ~ / I , I ~ / ~ , I~ /~ , 30~0/~, I014/~, ~0~5/~, I017/I, I~9/2, 11~/2, 1163/6, 11~/3, 11~/5, IM.~I, I~70/I, 11~/~, 1172/I, I~74/2, I~/~, 11~/I. ~18~/~. ~ / 2 . 11~/I. 1191/I, 11~/I, 11~/I, 11~/13, 11~I, I~I/2, I~3/~, I ~ / 2 , I~0/I, ~2 / I , ~ , I ~ 2 , i~7/2, I~ /12 , I~ /~ . I ~ / I , I ~ / I , 12~I, 1251/I, 12~/3, I~7/3, 12~/I: ~ 11~/I, 1167/I. 11~/3, ~ / ~ . I ~ / I , ~ / I , I~ .5 / I , ~4 / I , I~8/I, 32~/I, I ~ / I , I~7/I, 1 2 ~ , ~ / I , I ~ / I , I ~ / I , 1247/~, 12~/~. ~249/~, 12M/I ; ~ 11~/~, I ~ / I . I~ /~ , 1241/I, I~2/I, 12~I, 12~/I, I ~ .

    10. ~ e m a e ~ r T ~ / ~ , ~ / ~ . ~ / ~ , ~ / ~ , ~ / ~ , ~7/~, I ~ / I ; ~ p ~ o n ~ / ~ .

    I~. inu~ae ~ 11~/~ ~ Ag~,f~us ~0~/I: ~n~en~r~ I~/~ ; ~/oce~a/us ~ / ~ . ~ / ~ . ~016/I; Ca~es~um ~ / ~ . 6~/2, ~ / ~ , ~9/~, I~5/2, I~4/2; ~ / ~ , ~01~2, I~7/2, 3~7/2, I ~ / 2 , I ~ 2 , 12~/2; ~ m ~ 1 , I ~ / I ; ~ I/I. 7/I, ~ 2 , ~ I . ~/I , ~ , ~ 2 , ~/~, 112/~. ~ / I , I~/~, I~/2, 2~/I, 412/I, 427/I, ~ / ~ . 4~/I. 4~/~, S~S/~. 6~/I, ~ / I . ~ / I , ~4/2, 675/~, ~ / 5 . ~7/I, ~ / I , ~ / ~ . ~ / I . ~ / ~ , ~7/I, ~ / I . ~ / 5 , 7~/I, 707/I. ~ / I , 7~/I, 7~2 , 725/2, ~ / ~ . ~ / ~ , 7~/I. ~ / ~ . ~ / 2 , I ~ I , I ~ / 3 . I ~ , I ~ I , I~I/2, 1~5/I, I ~ / I , I~3/~, ~3~/I, I ~ / I . 1227/I, I~5/I. ~ / I , 3~/3, ~322/3: ~ c ~ n ~ 6~/~, ~ / I ; ~ 574/~ ; ~ 7~/3, I~ /~ . I0~/I, I0~/~, I ~ / 3 . ~ / ~ , I~ /~ , I ~ / 3 , I ~ / I , 11~/I; T e ~ ~ / I , ~7/I, ~ / ~ , 723/3, 11~/~, 11~/~; ~ m ~ I ~ I . ~ .

    12. ~ m ~ a e ~ ~ /~ , 142/I. ~ / I , ~ I , ~ / ~ , ~ / I . ~ 3 . ~ / I , 912/3. 9~3, 915/~. ~ / I , I~2/4; ~ M / I ; ~ 112/I, ~ / I , I~/~. ~ / ~ , ~ / I , ~ / I , ~7/I, ~ / I , ~4/I. I~ .5 / I ; ~ ~/2, ~I. 6/I, 8/I, 25/~, 27/2,1~/~. ~I/~, I~/I , ~ / I , ~ / I . I ~ I , ~ 4 , ~ / 4 , ~ / I , 41~2, 415/4. 4~6/I, 4~7~, 4~/I, 4~/I. ~ / I , 42~I, ~ , ~ / 4 , ~ / I , ~ / I , ~7/2, ~I / I , ~2/~, ~3/3, ~ / 4 , ~ / 3 , ~ / I , 572/I, ~ , ~ / 2 , ~ I , ~ / ~ , ~ / I , ~I/6. ~ / 2 , ~ 2 , ~ / ~ , ~ / I , ~ / 3 , ~3~, ~5/I, 61~2. ~ / 2 , ~ / I . ~ I , ~ / I , ~ / 3 , ~I / I . ~2/I, ~3/24, ~ /~2 , ~.5/17, ~ / 3 . ~ / I . ~7.~I. ~ / I , ~ 3 , ~ I ~ , ~ / 2 , ~ , ~S/1. ~ / 2 , ~7/I, ~ / ~ , ~ / I , ~ / I , 672/I, ~ / ~ , ~7/I, ~0/I, 7 ~ . ~ / 3 . ~ / ~ , ~ / 3 , ~7/~, M / I , ~ / I , ~4/~, ~ / 2 , ~ , M/~, ~ / I , M/I . ~ / I , 8 ~ 2 , ~ / I . 8~/2, ~ I , ~ / I . ~ 2 . ~ / 5 , ~ / I , ~ / I . ~ 4 . ~ / I , ~ /14 . ~ S , 912/4. ~3/I, 9~/I. 9~/~, 9~/~, ~2/4. ~ / ~ , ~ / ~ , 9~/~, ~2/I, ~ 2 . ~ I , ~ / I , ~ / 2 . ~ / 2 . ~ / I ; ~ / I , M/ I ,

  • 158

    TABLE 6.--CONTINUED

    VICENTE DE P. EMERENCIANO, MARIA AUXILIADORA C. KAPLAN AND OTTO R. GOTTUEB

    75611. 757/1, 760/1. 762/1, 88711, 88811, 8~9/1; C/mmaeme/um 28111; ~ n t h e m u m 1/2, 112/2. 166/1, 18012, 397/1, 42611. 588/1, 59411, 56211, 67711, 678/1, T/0/1, T/6/2, 79511. 895/2, 912/1. ~6/1, S82/1 ; Co~/a 111, 44'1, 76112. 79511 ; Handelia 25/1, 876/1. 985/1, 96311 ; Lidbectua 761/1 ; M a ~ r ~ 111, 120/1, 753/1, g03/1, 905/1, 906/1, 912/1, 932/1, 933/1, 1312/1 ; Osm/Iof~ 813/1.967/1, ~6/1; Penm;a 775/1; Peymusea 761/1; Tanace~um 112/t, 182/1, 27~/1, 425/1, 440/1, 58811, ~0/1, ~=84/1, 611/1, 682/1, 67711, 6"/9/1. 875/1, r/6/1. 102o/1; (Am/n/a 156/1, 158/1, 156.5/1, 157/1, 351/1.

    13. Amicineee Anna 104912,1049.§/1, 1190/2, 11~5/1, 11S7/1,1206/1, 1207/2,1206/1, 1209/1, 1211/1, 121511; C/menac~ 11/2; EnOphy//um 11/1, 80/1, 81/1, 83/1, 304/1. 30511, 306/1, 31511, 524/1, 62511, 74011, 74111, 106111;/.a~t~w/e ~S/2, ~6/1. 1Z~1.712; Peucepht4um 285/1.

    14. Senecione~e Bedford= 1050/1.1051/1, 1290/1. 1291/1 ; CacaJb 12~2/2, 134111. 1347/1; Eu~t~os 1267/1,126~/1; Homo91~e 1~92/1. 12¢J~/1. 1300/1; Lygu~r~ 127011. 127612, 1277/1, 12~2/1, 1283/1, 12~8/2. 12~9/1. 1292/30 129S/1. 130011; Pemw~s 1271/2, 1272/1. 1273/2. 1274/2, 1275/2, 1276/3,127711, 1292/4. 1293/1. 129411. 128511. 1297/1, 12S8/1, 130111, 134611; Se~ck, 747/1. 74811, 748/1. ~0/1, 7~1/1, 75211, 126211. 1263/1, 126411,1~6/1, 1278/1. 12"/9/1, 1280/1. 1286/1, 12~7/1. 12~2/1.

    TABLE 7. EVOLUTIONARY ADVANCEMENT PARAMETERS OF TAXA WITH RESPECT TO SKELETAL SiIECJALIZATION AND OXIDATION LEVEL OF SESQUWERPENE LACTONES

    Taxa EA5 F, Ao

    Genera

    Tribes or families (except Astersceee)

    Family (Asteraceae) TEA5 of tribe [F-Ao of tribe

    t !

    S--ikeletal q~cialization, O--oxidltion level of I com¢x)und, n-- number of i~ecies of the taxo~ in which the compound occurs, t--number of tribes.

    additionally produces type 1.5 is even more similar to the Apiaceee, chiefly if the Vemonieae are considered to be peripheral. The sasquiter- pene lactone data of this tribe are close to the data for Eupetorieee, which, although it was formerly indeed considered to be akin to Ver- nonieae [10], is placed in Asteroideae group 2 by

    Wagenitz [9]. In this group affinities can be detected easily by inspection of the registry of the skeletal types (Table 12). Heliantheae, Inuleae and Anthemideee are definitively very different from Senecioneas where eremophilanolidas are formed exclusively.

    An EAslEA o correlation (Fig. 9) provides a dynamic picture of this situation, revealing not only the affinity of Cichorioideee and Asteroi- deae, group 1, the distance of Anthemidase from Asteroideee, group 2 [9], and the relationship of Amicineae and Heliantheee [11], all anticipated on morphological grounds, but also the exist- ence of two major directions of sesquiterpene lactone development. One direction encom- passes the tribes of Asteroideee, group 1 and Cichorioideae, and the pair Vernonieae-Eupetor- ieae is indeed situated on one of its extremes. The other direction encompasses the tribes of Asteroideae, group 2, to which Senecioneae is only distantly related.

    Also in a/~s//~ o correlation clustering of points representing tribes is observed (Fig. 10). Struc- tural variation of sesquiterpene lactones is

    TABLE 8. EX1REME S N~ID O VALUES OF SESQUITERPENE LACTONES AND E V O L ~ Y ADVANCEMENT PARAMETERS FOR FAMlUES OF ANGIOSPERMS

    ~ex s s /~ EA= O 0 ~o EA~ [7] min max min max

    Megnolieceae 25 0.13 0.26 0.13 0.20 -1.06 -0.~6 0.40 -0.90 Laursceee 52 0.26 0A0 0.14 0.30 -1.06 -0.26 0.80 -0.83 A~=/~ace~e 51 0.13 0.53 0.40 0,28 -1.06 -0.53 0.53 -0.70 A l t e r m 72 0.13 0~10" 0.67" 0.32 --1.20 0.00 1.20 --0.78

    "The extraordinarily high S v~ue$, 0.93 and 1.00, for two r.oml~ourRb w e ~ excluded.

  • SESOUrrERI=ENE LACTONES IN ANGIOSPERMS

    TABLE 9. EXTREME SAND OVALUES OF SESQUITERPENE LACTONES FOR TRIBES OF ASTERACEAE

    159

    Basic chromosome $ S /~s EAt O O

    numbers rain rrax rain max Is]

    Cichorioideae Lactuceae 9, 6, 8, 7 0.13 0.26 0.13 0.25 -1.06 0.40 0.66 -0.68

    Am~oid~e, group 1 Vernonieae 10, 8, 9 0.13 0.66 0.52 0.28 -1.06 -0~,6 0.80 -0,56 Liabeae 0.13 0.40 0.27 0~.5 -1.06 -0.66 0.40 -0.82 Mutisieae 9 0.13 0.66 0.53 0.21 -1.20 0.53 0.67 -0.85 , Cardueae 12, 13, 10 0.13 0.53 0.40 0.24 -1.20 -0.53 0.67 -0.72 Arctoteae 9 0.13 0.26 0.13 0.20 -1.06 -0,66 0.40 -0.85

    Asteroideae, group 2 Eupatorie~e 10 0.13 0.66 0.53 0.29 -1.20 -0.13 1.07 -0.61 Helientheae 18, 17, 12, 15 0.13 0.93 0~0 0.40 -1~0 0.00 1.20 -0.72 Helenieae 19, 18 0.26 0.80 0.54 0.53 -1.20 -0.13 1.07 -0.73 Amicineae - 0.13 0.53 0.40 0.36 -0.93 -0.53 0.40 -0.80

    " A~tereae 9, 5 0.26 0.53 0.27 0.32 --1.06 -0.26 0.80 -0.92 I~uleae 10, 7, 9 0.13 0.93 0.80 0.33 --1.20 -0.53 0.67 -0.86 Senecloneae 10 0.40 0~0 0.80 0.59 -1 ~0 -0.53 0.67 --0.96 Anthemidese 9 0.13 0.80 0.67 0.27 -1.20 -0.26 0.80 --0.81

    TABLE 10. EXTREME SAND OVALUES OF SESQUITERPENE LACTONES AND EVOLUTIONARY ADVANCEMENT PARAMETERS FOR SUBTRIBES OF THE TRIBE HELIANTHEAE (ASTERACEAE)

    Basic chromosome

    numbers $ S /~ s EAs 0 0 [8] rain max min max

    /~o EAo

    Melampodiin~e 10, 15 0.13 0.66 0.53 0.40 -1.20 0.00 1.20 --0 38 Zinniinae 11, 14 0.13 0.53 0.40 0.35 -1.06 -0.40 0.66 -0.63 Ecliptinae 15, 16 0.13 0.66 0.53 0.35 --0.93 -0.26 0.67 -0.63 Verbe$ininae 15, 16, 17 0.13 0.53 0.40 0.26 -0.93 -0.26 0.67 -0.75 Helianthinae 17, 18 0.13 0.53 0.40 0.32 -1.20 -0.26 0.54 -0.72 Gaillardiinae 15. 16, 17. 19 0.26 0.80 0.54 0.54 -1.20 -0.13 1.07 -0.73 Coreopsidinae 12 0.13 0.13 0.00 0.13 -1.06 -0.93 0.13 -1.02 Fitchiinae ? 0.13 0.26 0.13 0.19 --0.93 -0.80 0.13 -0.90 Bahiinae 8, 9, 10, 12 0.26 0.66 0.40 0.38 --1.06 --0.26 0.80 -0.68 Gelin$oginae 8, 9 0.13 0.53 0.40 0.39 -0.80 -0.13 0.67 -0.41 Neurolaeninae 8, 9 0.13 0.40 0.26 0.26 -1.06 -0.53 0.53 -0.85 Engetmaniinae 9 0.26 0.53 0.27 0.33 -1.06 -0.53 0.53 -0.80 Ambrosiinae 18 0.13 0.93 0.80 0.47 -1.20 " -0.40 0.80 -0.82 Milteriinae 8?, 12. 15 0.13 0.53 0.40 0.13 -0.93 -0.66 0.27 -0.81

    smaller for Cichorioideae and Asteroideae, group 1, than for Asteroideae, group 2. Again Anthemideae constitute a borderline case and Vernonieae is clearly peripheral to group 1. Here, however, the situation of Eupatorieae in group 2 admits no doubts.

    Many of the sesquiterpene lactone types have been located in the subtribes of the Heliantheae (Table 13), one of the largest tribes of the Aster-

    aceae. With respect to their basic chromosome numbers, the subtribes were classified into four groups. Two major ones, grouped around Ver- besinae (x-15, 16, 17) and Galinsoginae (x--8, 9), and two minor ones with Coreopsidinae (x-12) and Milleriinae (x-12) [8] (Table 10). The EAslEA o correlation indicates that, although EA o is consistently higher for representatives of the former major group, parallel evolution of sesqui-

  • 160 VICENTE DE P. EMERENCIANO, MARIA AUXlLIADORA C. KAPLAN AND O1"1"O R. GoI"rLIEB

    TABLE 11. NUMBER OF SESQUITERPENE LACTONES, CLASSIFIED INTO STRUCTURAL TYPES (FIG. 6), DISTRIBUTED IN FAMILIES OF THE ANGIOSPERMS

    Asteraceae MAG LAU API ClC AST 1 AST 2

    1 8 + + 4 190 291 1F 14 + 1.1 1 24 23 144 288 1.1-- 482 1.2 7 3 9 3 14 309 1.2.1 1 36 1.2.1~ 37 1.2.2 7 1.3 1 183 1.4, 1.7, 1.8. 1.10 100 1.5 1 13 34 1.6 1 33 1.9 2

    MAG Magnoli~ceae, LAU Lauraceae, API Apiaceme. Subfamilies of the Asteraceae: CIC Ciehorioideae, AST Asteroldeae groups 1 and 2.

    terpene lactone characteristics has occurred in both groups (Fig. 11). Especially the EA s para- meter is considerably lower for representatives of the minor gmups. The dependence of chromosome numbers and secondary products chemistry becomes especially convincing upon inspection of the /~s//~o plot (Fig. 12). This evidences a positive relation to exist for the t~ansition of x 12--,9-,15-,18 and the structural variation of sesquiterpene lactones.

    Discussion It is not intended to suggest that sesquiterpene lactone data establish a close relationship between Magnoliaceae and Asteraceae, although the topic has been discussed [5]. The relationship between Apiaceae and Asteraceae, however, has been proposed on micromolecular

    TABLE 12. NUMBER OF SESQUITERPENE LACTONES, CLASSIFIED INTO Sll:tUCTURAL TYPES (FIG. 6). DISTRIBUTED IN TRIBES OF THE SUBFAMILIES CICHORIOIDEAE (CIC) AND ASTEROIDEAE (FAMILY ASTERACEAE)

    ClC Asteroideae, group 1 Ast~roideae, group 2 LAC MUT ARC LIA CAR VER EUP ANT HELl HELE ARN INU AST SEN

    4 12 4 4 39 130 66 70 128 1 8 18 + + 23 2 7 11 82 42 53 153 47 16 3 15 +

    1 + 159 117 11 9 2 51 4 2 34 4

    1

    1 1.1 1.1.1 1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.1.2 1.1.3 1 .I .4 1.2

    1.2.1 1.2.1.1 1.2.1.2 1.2.1.3 1.2.1.4 1.2.2 1.3 1,4 1.5 1.6 1.7 1.8 1.9 1.10

    17 4 1

    43 1 3 16 3 4

    1 3 5 2 4 3 8 166 71 8 1 49 6

    4 1 1

    5 2 1 33 39 7 98 1 5

    2 ~4 7 6 2 30 1 1 .

    1 2 20 1

    31 2O 6 6 5

    LAC L~"tuce~e, ARC Arcto~ae, LIA Liebe~, MUT Mu~le~e, CAR C~rdu~e0 V~R Vemonleae, EUP Eul~tm'i~e, HEU I.IMienthel~e, HELE Helenieae, AST Astem~e, INU Inuteae, ANT Aedhemideae, ARN Amicine~e, SEN SenecloneM.

  • S~SOUITERPI~N~ LACTONES IN ANGIOSI:I~RMS 161

    TABLE 13, NUMBER OF SESQUITERPENE LACTONES, CLASSIFIED INTO STRUCTURAL TYPES (FIG 6), DISTRIBUTED IN SUBTRIBES OF THE TRIBE HEUANTtdE~ (FAMCY A S T E R ~ E )

    MEL 71N ECL V~R HEL GAI COR FIT BAH MAD GAL. N£U ENG AMB MIL

    26 6 4 13 31 2 3 2 + 18 4 19 11 + 4 + 1 3 2 11 10

    5 2 4 18 140 8

    1.

    1.1 1.1.1 1.1.1.1 1.1.1.3 1,1.2 1.1A 13 13.1 1~3 13 1A 1.5 1~ 1~

    1 1

    2 17 16 21 8 2 3

    3 2 5 30 9 39

    80 5 27

    12 I 3 I

    41

    1 21 1 2

    2

    MEL Melampodiinae, ZlN Zinniirme, ECL Ecliptinae, VER Vedoeainae, HEL H~lian~inae, GA] Gaillardiin~e, COR C o ~ i n a e , FIT Fitc~iinae, BAH Bllhiinae, MAD Madiinae, GAL Galinsoginae. NEU Neurolaeninae. ENG Engelmaniinae, AMB AmbroeiinH, MIL Mtll~riinae.

    e I . A u

    e A P *

    O A ~ T

    e m J ~

    I t ! o.m*O 0.~'~ ~ A s 0 . ~ 0

    FIG. 7. CORRELA'rlON OF EA~ AND EAo PARAMETERS FOR FAMILIES OF ANGIOSPERMS CHARACTERIZED BY THEIR SPORNE INDEXES (cf. Table 8). For a glossary of the three-le~er acronyms see Table 11.

    [12, 13] and macromolecular [14] grounds, in the face of criticism based on morphological criteria [15]. Magnoliaceae and Asteracsee were plotted in Figs. 7 and 8 in the hope that they might be of assistance in the solution of the remaining problem: the evolutionary polarity of the Astera- ceae tribes along the two lines of sesquiterpene lactone development. Does it proceed in the sense of structural diversification or simplifica- tion? Considering the location of the point representing the Magnoliaceae, it appears that the former prevails, i.e. that the sequence of

    primitive to advanced tribes involves Mutisieae-,Vemonieae-Eupatorieae and Aster- eae-,Heliantheae. This, however, is unlikely upon consideration of the point representing the Apiaceae (Fig. 9). Its central location, between the two Asteraceae lineages, makes it improb- able that Mutisieae and Astereae constitute the basic tribes. Indeed the sesquiterpene lactone chemistry of Apiaceae may have been ancestral with respect to the analogous chemistry of Asteraceae. In this case evolution of groups 1 and 2 got under way by increase in oxidation

  • 162 VICENTE DE P. EMERENClANO, MARIA AUXILIADORA C, KAPLAN AND 01-tO R, GOTTLIEB

    Is , O

    ~0

    U O

    OAa~

    OLAU

    OAPi

    O.40 O~m~O I ..... I

    O.OO ¢1~0 ~ s O.O0

    FIG. 8. CORRELATION OF /~= AND ~o VALUES FOR FAMIUES OF ANGIOSPERMS CHARAC~RIZED BY THEIR SFGflNE INDEXES (of. Table 8). F(x a glossary of the th~e-lmt~r ~ o n y m l m Tolde 11.

    state (in Vemonieae) and skeletal specialization (in Heliantheae) respectively. Reduction of oxi- dation state and loss of skeletal specialization followed in both cases (towards Mutisieae and Astereae, respectively). This, however, is only a working hypothesis. It will be necessary to insert into this frame other micromolecular data appearing as replacement characters, in order to arrive at a clearer picture.

    Finally, it was deemed desirable to verify the

    strength of the present analysis in face of the permanent flow of new information. A prior i i t is hoped that the system involving structural types and averages of chemical characters, rather than single compounds, should lead to more durable conclusions. This seems to be the case.

    The present analysis is based on data assem- bled by Fischer et al. [2] and by Seaman [3] which reviewed the literature up to 1982. Table 14 lists 50 species of Asteraceae the composition of which became known subsequently. A com- parison of their sesquiterpene lactone types and their EA s and EA o parameters with the analogous data registered in Tables 12 and 9 is instructive.

    Among the eight new species of Mutisieae (Table 14) predominate compounds of type 1, a feature shared indeed by Mutisieae, Vernonieae and Heliantheae (Table 12). The two latter tribes, however, are characterized by considerably higher EA s and EA o values (Table 9). Among the three new species of Vemonieae predominate compounds of types 1 and 1.3. This feature and the high EA o values of the species are indeed consistent with the general characteristics of the tribe, as well as of Eupatorieae and Heliantheae, the species of the latter, however, possessing higher F_A s values. Among the seven new species of Eupatorieae predominate again com- pounds of type 1.3 and, reciprocally, differentiation from Vernonieae is difficult. The 10 new species of Heliantheae are distinguished, as

    ~ . o (

    OvIM

    ~l [up,

    ~.LAG~ X

    OcA~

    #L Ej~i., r IDA~N ,~

    ~ O m T I o l l u ~R~

    IANT

    BHEU

    0.,1~o ~ lEA=

    ~H~'l.j

    ~ e

    FIG. 9. CORRELATION OF F..A, AND £A= PARAMETERS FOR TRIOES OF ASTERACEAE BELONGING TO THE SUBFAMIUES CIO4ORIOIDEAE (~) AND ASTEROIDEAE GROUP 1 ~ ) AND 2 (~|; ANO FOR APIACEAE (X). For a glossary of she ~ 4 o t m r ac~mtyms ~e Ta~e 12.

  • SESOUITERPENE LACTONES IN ANGIOSPERMS 163

    TABLE 14. SESOUITERPENE LACTONE DATA FOR RECENTLY ANALYSED SPECIES OF THE ASTERACEAE. FOR A GLOSSARY OF THE THREE-LETI'ER ACRONYMS SEE TABLE 12

    Structural type/ Species Tribe Ref. No. of compounds i$oieted EA 5 F_.,4 o

    Ano~3ra/a p/nrmt/fida LAC [19] 1.1/1 0.26 --0.53 f .A,~p~c~n ~ s L~C [41 ] 1A/2 0.40 --0.53 A.~/ea ~gr=ns MUT [28] 1.1/5 0.26 -0.90 D/coma anoma/a ~ub =p. anoma/a MUT [23] 1.3/1 0.13 -0.53 k~m, =ub =p. ckck~des MUT [23] 114, 1.1/2, 1~/3 0~ ) -0.63 D/coma m~croce/~a/a MUT [23] 113 0.13 -0.80 O. tomentosa MUT [28] 1/4, 1.4/6 0.29 ---0,69 D. schinzii MUT [23] 1/3, 1.2/3 0.20 -0,73 D. zeyheri MUT [23] 1.1/1 0.26 -0.53 Gochna= pardcu/a~a MUT [44] 1.1/1.1.114,1.2/1 0.28 -0.78 Centaurea behen CAR [42] 1.115 0.26 -0.77 Ereman~hus cro=noides VER [16} 1.3/9 0.60 -0.43 E. g/oumeratus VER [16] 1.112 0.40 -0.60 Vemon~ na~a~ens~ VER [31] 1/4 0.13 -0.60 Eupatorium scabridum EUP [35] 1/4, 1.1/4 0.20 --0.61 Li~tris acMota EUP [47] 1.316 0.40 --0.53 L. a~era EUP [47] 1.3/4 0.13 - 0 ~ 0 L. mucronata EUP [47] 1.3/4 0.40 -0.53 ~tev~ monardaefol~a EUP [45] 1.3/1 0.40 -0,93 $. myr~denia EUP [21 ] 1.1/2 0.28 -0.80 Tni=hogon/o~ mon'i EUP [24] 1/3, 1.211, 1.3/3 0.28 -0.55 Calea angusta HELl [27] 1.3/2 0.53 --0.20 C hymeno/eps~s HELl 128] 1/2 0.33 -0.33 C. ~enuifolia HELl [32] 1/3 0.13 -0.62 C v#losa HELl ]39] 1/2, 1.3/5 0.42 -0.42 Enhyclra fluctuan$ HELl I17] 1.4/6 0.40 --0.28 Hetianthus ant)us HELl [38] 1.3/4 0.33 -0.56 Ich~hyoz~ere terminMis HELl [331 1.4/2 0.46 -0.13 Monanoa tomentosa HELl [25] 1.3/2 0.40 --0.73 Parlhenium hyterophoru$ HELl [20] 1.1.1/2 0.53 -0.80 Wedelia hookeriana HELl [34] 1/4, 1.1/4 0.26 -0.66 Gaillardia arislata HELE [48] 1.1.1/4 0.53 -0.66 Calostel~hane divaricata INU [22] 1.2/5 .0.28 -0.66 Geigeria a~oera vat. asoera INU [18] 1.1/5. 1.2/4, 1.1.2/3, 1.2.1/1 0.38 -0.90 G. brevifolia INU [18] 1.2/4, 1.2.1/1 0.34 -1.06 G burkeisub sp. burkei INU [18] 1.2/2 0.35 -1.15 idem, var. elata INU [18] 1.1.2/1 0.53 -0.93 idem, var. interrnedia INU [18] 1.1/1, 1.1.1/1, 1.1.2/3 0.48 -0.88 /dern, var. zeyheri INU [18] 1.1/1, 1.1.1/1 0.46 --1.06 G. burkeisub ~ . diffusa INU [18] 1.2/2. 1.1.2/2 0.53 -0.60 Artemisia herba alba ANT [43] 1/3 0.13 --0.97 A. herba alba ANT [43] 1/3 0.13 -0.97 Inezia integrifolia ANT [41 ] 1.1/1.1.2/3 0.28 -0.83 O~anthu$ mari~mu$ ANT [46] 1.1/4 0.28 -0.66 Tanacetum par~eniurn ANT [37] 1.8/1.1.1/10.1.2/1 0.27 -0.74 Lopholaena distichia SEN [30] 1.2.1/5 0.53 -1.17 L. segmentata SEN [30] 1.2.1/6 0.53 -1.08 L. tomentosa SEN [30] 1.2.1/6 0.53 --1.06 Senecio corormtus SEN [36] 1.2.1/9 0.53 -0.61 $. glandulo.pilosus SEN [40] 1.2.1/2 0.53 -1.00

  • 164 VICENTE DE P. EMERENCIANO. MARIA AUXILIADORA C. KAPLAN AND O1-I"O R. GoI-rLJEB

    i.+l. o

    l.OC

    ~,

    ~ , ~

    I

    lHmu

    mlKuP mNm'L.ml

    mA|T OYEm m.~r,

    &m.~ OoAo ~ m ~ Im, u

    B~m~¢ O ~ A mJmN

    m ~ . o o.a~ m ~ ~

    RG. lO. ~ f l ~ ~ ~s ~D ~ V~UES ~ ~[S ~ ~ BE~GI~ ~ ~E S~I~S C ~ l ~ ~) ~D ~ ~ G R ~ 1 ~ ) ~ 2 ~) . F~ m O ~ ~ ~ m ~ r m ~ n ~ m Tm~ 12.

    expected, by compounds of type 1.4 and by uniformly high EA s values. The eight new species of Inuleae contain compounds of various types, including type 1.2 and possess low EA o values. The situation for the five new species of Anthemideae with respect to type 1.2 is similar, but F-A s values are considerably lower. All five new species of Senecioneae contain types 1.2.1. This distinctive feature, together with very low EA o and very high F_A s values, make recognitions in this group especially easy.

    The global analysis of the presem paper thus not only reveals valid trends, but also shows that the way is paved to a useful chemosystematic device for the cla=sification of the Asteraceae.

    A c k n ~ m e ~ t - - C o n ~ l h o Nacional de De~envolvirnento Cientifico • Tecnolbgi¢o (CNPq) provided a graduate fellow- ship (to V. de P, E.).

    References 1. Silva, M. F. das G. Fo, Go~iieb00. Ft. sm~ Oreyer0 0. L. (1984)

    ~ochem. $~st ~co/. 12, 299.

    ~ o

    mA

    ~ !

    ~,film'L

    B O i L

    Z*N~

    h~. ~,w.~

    ~ ¥ ~

    B ~ ~ B ~ m,,,mu

    &~OT

    AOOel

    o~1,o ~ =~. ~ - J

    ~,~. ~. c o ~ e ~ o~ ~, ~o ~ ~ M ~ r ~ SuO~lOeS o~ .eu~'r.e,oz. C~,~CTe~'O O~ ~e.~ O~C C.~OMO~O~ NUMBERS, BELONGING TO THE GROUPS CENTERED IN VERBE$1MNA~ t~), GAUNSOGINAE ~) , COREOPSIDINAE (~) AND MILLERIINAE (Z~). For a Oloa~ary of the ~me4Ottor acronyms see Tatde 11.

  • SESQUITERPENE LACTONES IN ANGIOSPERMS 165

    O . N

    0.~'0

    ~ H | L

    nBAH

    OmEL

    0o41

    VBN

    n A m l

    GM~L

    &FIT

    =~,o o.~o o.&o oJ~ '~s

    FIG. 12. ~RRE~ON ~ ~s ~ D ~ V~UES FOR SUB~tBES OF f lELIA~E~, C ~ R ~ R ~ D BY ~EIR B~IC C H R O ~ M E NU~ERS, B E L ~ I ~ TO ~E G R ~ ~ E D IN VERBESlNIN~ (~), G ~ I N S ~ I ~ ~), C ~ E ~ I B ~ (~) AND MI~ERIIN~ ~). F~ a g lo~w ~ ~ ~ r acmn~s ~ Tab~ 11.

    2. Rscher, N. H., Olivier, E. J. and Fischer, H. D. (1979) Prog. 22. Chem. Org. A/eL Prod. :~, 48.

    3. Seaman, F. C. (1982) BoL Rev. 4~, 121. 23. 4. Goffiieb, O. R. (1982) Micromolecular Evolution, Systematics

    and Ecology--An Essay into a Novel Botanical Discipline, 170 24. pp. Springer, Berlin.

    5. Gershenzon, J. and Mabn/, T. (1983) Nord. J. BoL 3, 5. 25. 6. Hendrickson, J. B., Cram, D. J. and Hammond, G. S. (1970)

    Organic Chemistry,, 3rd ed., p. 739, McGraw-Hill, New York. 26. 7. Spome, K. R. (1980) New Phytol. 85, 419. 8. Stuessy, T. F. (1977) in The Biology and Chemistry of the 27.

    Compos/cae (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds.) Vol. II, p. 621. Academic Press, London. 28,

    9. Wsgenitz, G. (1976) Plant SysL Evol. 125, 29. 10. Carlquist, S. (1976) Aliso 8, 465. 29. 11. Nordenstam, B. (1977)in The Biology and Chemistry of the

    Compos/~ae (Heywood, V. H., Harborne, J. B. and Turner, B. 30. L., eds.), Vol. II, p. 799. Academic Press, London.

    12. Hegnauer, R. (1971) BoL J. Linn. Soc. ~4 (Suppl. 1 ), 267. 31. 13. Ferreira, Z. S. and Goffiieb, O. R. (1982) 8iochem. SysL Ecol. 32.

    10, 155. 14. Boulter, D., Gleaves, J. T., Haslett, B. G., Peacock, D. and 33.

    Jensen, U. (1979) Phytochemistry 17, 1585. 15, Cronquist, A. (1977) Rant Syst. Evol. (Suppl. 1), 180. 34. 16. Bohtmann, F., Singh, P., Zdero, C., Ruhe, Ao, King, R. M.

    and Robinson, H. (1982) Phytochemis~'y21, 1669. 35. 17. Bohlmann, F., Ahmed, M., Robinson, H. and King, R. M

    (1982) Phytochemis~y21, 1675. 36. 18. Bohlrnann, F, Zdero, C. end Ahmed, M. (1952) Phylo- 37.

    chemistry 21, 1801. 38. 19. Bohlrnann, F. and Gupta, R. K. (1982) Phy~ochernistry 21.

    1799. 39. 20. Pieman, A. K., Baiza, F. and Towers, G. N. H. (1982) Phy/o-

    chemism/21, 1801. 40. 21. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H.

    (1982) Phwochem/s~'y21, 202_1. 41.

    Bohlmann, F., Jakupovic, J. and Ahmed, M (1962) Phy~o- chemistry 21, 2027. Bohlmann, F., Singh, P. and Jakupovic, J. (1982) Phy~o- chemistry 21, 2029. Bohlmann, F., Zdero, C., King, R. M and Robinson, H. (1982) Phy~ochemistry21, 2035. Quijano, L., Calder~n, J. S., Gbmez, F. and Rico, I. (1982) Phytochernistry 21, 2041. Bohlmann F., Mathur, R., Jakupovic, J., Gupta, R. K., King, R. M. and Robinson, H. (1982) Phytochemistry21, 2045. Bohlmann F., Gupta, R. K., King, R. M. end Robinson, H. (1982) Phytochemistry21, 2117. Bohlmann F. and Chen, Z. L. (1982) Phytochemistry 21, 2120. Bohlmann, F., Singh, P. and Jakupovic, J. (1982) Phyto- chemistry 21, 2122. Bohlmann F, and Wallmeyer, M (1982) Phylochemistry21, 2126. Bohlmann F. and Zdero, C. (1982) Phy~ochemistry21, 2263. Lee, I. Y., Olivier, E. J., Urbatsch, L. E. and Fischer, N. H. (1982) PhytochemisUy21, 2313. Bohlmann, F., Jakupovic, J., Schuster, A., King, R. M. and Robinson, H. (1982) Phy~ochemistry21, 2317. Bohlmsnn, F., Zdem, C., King, R. M. and Robinson, H. (1982) Phytochemistry21, 2329. Herz, W. and Kulanthaivel, P. (1982) Phylochemism/21, 2475. Bohlmann, F. and Zdero, C. (1982) Phy~ochemistry21, 2537. Bohlmann, F. and Zdero, C. (1982) Phytochemis~y21, 2543. Spring, O., Albert, K. and Hageer, A. (1982) Phytochemistry 21, 2551. Bohlmann, F., Gupta, R. K., King, R. M. and Robinson, H, (1982) Phytochemism/21, 2593. Bohlrnann, F. and Gupta, R. K. (1982) Phytochernisl~/21, 2595. Bohlmann, F. end Zdero, C. (1982) Phytochemistry21, 2743.

  • 166 VICENTE DE P. EMERENCIANO, MARIA AUXILIADORA C. KAPLAN AND OTtO R. GOI-rLJEB

    42. Oksuz, S., Ulubelen, A., Aynechi, Y. and Wagner, H. (1982) Phytochemistry 21, 2747.

    43. Segal, R., Feuersteis, I., Duddeck, H., Kaiser, M. and Danin, A. (1983) Phytochemistry22, 129.

    44. Bohlmann, F., Ahmed, M., Jakupovic, J., King, R. M. and Robinson, H. (1983) Phytochemis~y22, 191.

    45. Gbmez, G., Quijano, L., Calderbn, J. S., Perales, A. and Rios, T. (1983) Phylochemis~ry22, 197.

    46. Sabri, N. N., Abd EI-Salan, N. A., Self El-Din, A. A. and Khafagy, S. M (1983) Phy~ochemist~22, 201.

    47. Herz, W. and Kulanthaivel, P. (1983) PhytochemistTy22, 513. 46. Gill, S., Dembihska-Migas, W., Zielihska-Stasiek, M.,

    Daniewski, W. M. and Wawrzuh, A. (1983) Phytochemistry 23° 599.