evaluating precision gain for timber and non-timber attributes via landsat-based stratification on...

41
N E W S 70 0 70 140 M iles gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried & Paul Dunham Portla nd Other collaborators: Michael Lefsky, Dale Weyermann

Upload: laurence-ball

Post on 15-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

N

EW

S

70 0 70 140 Miles

Evaluating precision gain for timber and non-timber attributes via

Landsat-based stratification on California’s North Coast

Antti Kaartinen, Jeremy Fried & Paul Dunham

Portland

Other collaborators: Michael Lefsky,

Dale WeyermannDave Azuma

Page 2: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Why stratify?Increase precision of inventory estimates by reducing sampling error (std err of estimate/estimate).

How does it work?Divides area “population” into strata such that:

variability of plots within strata < variability of plots within the population as a whole, andStrata with high variability make up a relatively small proportion of the population.

Then, sample from the strata using stratified random sampling or double-sampling

Page 3: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Standards of precision

Forest Survey Handbook reliability standards:Timberland area: 3% sampling error per million acres Growing stock volume: 10% sampling error per billion cu ftWhere sampling error = std error / estimate

Are these standards or targets?

Page 4: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Two-phase sampling

Phase 1Collect data for stratificationPhoto-interpretation for Forest Land Strata (FLS)

Phase 21/16 of Phase 1 plots are designated field plotsInstall/measure field plots

Efficient strategy for sampling error reduction, but Phase 1 not really cheap

~$2 million for CA, OR, WA

Page 5: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Why evaluate more automated methods?Save time and money?Responsive to national mandate!Standardization could facilitate interpretationTimely- several PIs now 20 years oldHow current does Phase 1 need to be?

Page 6: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

How does FIA stratify elsewhere?Photo-interpretation (PI) in most areasNorth Central: NLCD + Edge classesRocky Mountain: AVHRRNortheast: NLCD+5X5 pixel moving window filter

Page 7: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

PNW’s Stratification TestingTested 3 LANDSAT-TM based stratification methodsCompared with PI & Simple Random SamplingLocation criterion: availability of recent PIAssembled multi-institutional strike team:Antti Kaartinen, Helsinki UniversityMichael Lefsky, Oregon State UniversityDale Weyermann, PNW-FIA, Inv. Reporting & MappingPaul Dunham, PNW-FIA, Inv. Reporting & MappingJeremy Fried, PNW-FIA, Environmental Analysis & ResearchDave Azuma, PNW-FIA, Environmental Analysis & Research

Page 8: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Study Area

N

EW

S

70 0 70 140 Miles

Water

Forest ServiceNational Park Service

North Coast Survey Unit

Private or not reserved

N

20 0 20 40 60 Kilometers

Land Owner Groups

Included in Study:

Excluded from Study:

State of California (state parks)

Page 9: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Stratification sources- all based on TMExisting GIS layers

NLCDCALVEG

Customized system for generating a new GIS layerFIASCO-TM

Page 10: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

NLCD:National Land Cover Dataset

Developed at EROS from LANDSAT 5 TM imagery circa 1992 by MRLCCovers lower 48 statesUsed leaf on/off imageryBuilt on unsupervised classification, census & National Wetlands Inventory data, and digital terrain modelsIntended update cycle is 5-10 years

Page 11: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

CALVEG:Classification and Assessment with Landsat of Visible Ecological Groupings

Developed by USFS R5 RSL, Sacramento & CDFLANDSAT-TM data used for life formOther inputs vary by location and include

Field observationsDEMsLocal knowledge

Classified polygons include life form, tree cover species and stage of stand development

Page 12: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

FIASCO-TM: Forest Inventory and Analysis Stratification with Classification of Thematic Mapper

Developed in cooperation with Michael Lefsky, Oregon State University Dept of Forest ScienceTM scenes trained by a 20% intensity phase 1 PISemi-automated, supervised classificationUses spectral signature of pixels overlaying a PI point as a basis for classifying other pixelsProduces a map of Forest Land Strata (FLS)

Page 13: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

How the class definitions affect the resulting classified image

Page 14: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Image ProcessingReprojectionMaskingImage correctionImage mosaic

Page 15: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

46

45

31

32

33

N

20 0 20 40 60 Kilometers

Landsat scenes from raw images to georeferenced and normalized mosaic

Page 16: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Image ProcessingReprojectionMaskingImage correctionImage mosaicClassify/Recode

Page 17: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Recode/cross-walk: NLCDStratification crosswalks

Forest/nonforest (fnf)fnf + other forest (fofnf)Deciduous, evergreen, mixed, other forest, non-forest (DEMON)

ForestDeciduous ForestEvergreen ForestMixed Forest

Other forestBare/transitionalShrublandWoody wetland

NonforestEverything else

Page 18: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Recode/cross-walk: CALVEG9 cover typesSeveral stand size class, density and species attributes; 100s of combinationsUltimately aggregated to eight strata

Constructed strata1. non-stocked2. hardwood3. low-volume conifer4. medium-volume conifer5. high-volume conifer6. other-forest7. non-forest8. unclassified

Page 19: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Image ProcessingReprojectionMaskingImage correctionImage mosaicClassify/RecodePost-processing

Filtering via clump & sieve

Page 20: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Original classified image After clump & sieveClumps of pixels, that wereSmaller than the threshold Value (4 pixels) are removed

After neighborhood analysisMajority function in 3*3 pixelwindow defines a new value forEach ‘empty’ cell

Steps in filtering a classified image file

Evergreen & mixed forest

Nonstocked forest

Deciduous forest

Nonproductive forest

Nonforest

30-METER PIXELS

Page 21: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

How filtering changes the image

Page 22: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Image ProcessingReprojectionMaskingImage correctionImage mosaicClassify/RecodePost-processing

Filtering via clump & sieveEdge class generation

Page 23: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Edge classesEdges created around every typeAddresses issues of misregistration-induced incorrect assignments of plots to strata

Such incorrectly assigned plots comprise a smaller strata, thus having less impact on overall varianceExperimented with edge widths of 2-4 pixels

Edge class effectiveness explored for each data source

Page 24: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Forest / Nonforest with 4-pixel edge strata

Forest

Forest Edge

Non Forest

Non Forest Edge

Page 25: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

DEMON with 4-pixel strata

Evergreen Forest

Evergreen Forest Edge

Deciduous Forest

Deciduous Forest Edge

Other Forest

Other Forest Edge

Non Forest

Non Forest Edge

Mixed Forest & Mixed Forest Edge

Page 26: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Table GenerationPopulation estimates & sampling errors for

Timberland areaTimberland growing stock volumeCoarse woody debris volumeArea of vegetation cover classes

Processed via SAS scripts designed to handleDouble samplingStratified random sampling Simple random sampling

Also conventional PI and random (no Phase 1)

Page 27: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

min

ima

l

k=1 k=0.83 k=0.67 k=0.50 k=0.25

mo

de

rate

sub

sta

ntia

l

exc

elle

nt

Re

lativ

e c

on

fiden

ce in

terv

als

at d

iffe

ren

t le

vels

of s

tatis

tica

l effi

cie

ncy

Variance with stratificationVariance with simple random sampling

Design effect k= after Särndal et al. 1992

Page 28: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

METHODTIMBERLAND

AREA

SAMPLING ERROR / 1,000,000

DESIGN EFFECT

Production PI 2,924,100 2.9% 30%

Optimal PI 2,911,300 3.0% 31%

CALVEG Edge 2,854,800 3.5% 41%

NLCD fnf 2,911,700 3.7% 48%

FIASCO_post 2,809,200 4.2% 58%

Random Sample 2,847,300 5.4% 100%

Timberland area

Timberland area

0%

1%

2%

3%

4%

5%

6%

Photo-interpretation

NLCD CALVEG FIASCO Random Sample

Sampling error per

1 million acres

Page 29: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

METHOD FT3 VOLUMESAMPLING

ERROR / 1,000,000,000

DESIGN EFFECT

Optimal PI 10,490,000,000 12.9% 58%

Production PI 10,618,000,000 14.3% 71%

CALVEG FLS 10,297,000,000 14.7% 73%

NLCD fofnf 10,410,000,000 14.7% 74%

FIASCO_post 10,050,000,000 14.7% 72%

Random Sample 10,245,000,000 17.2% 100%

Volume on timberland

Volume on timberland

0%

5%

10%

15%

Photo-interpretation

NLCD CALVEG FIASCO Random Sample

Sampling error per

1 billion cubic feet

Page 30: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

METHOD CWD VOLUMESAMPLING

ERROR / 1,000,000,000

DESIGN EFFECT

Production PI 5,692,500,000 14.6% 78%

FIASCO_post 5,386,000,000 15.8% 87%

CALVEG density 5,392,200,000 15.9% 88%

NLCD fnf 5,525,300,000 16.0% 92%

Random Sample 5,393,400,000 16.9% 100%

Coarse Woody Debris

Sampling error per1 billion

cubic feet

Coarse woody debris

0%

5%

10%

15%

Photo-interpretation

NLCD CALVEG FIASCO Random Sample

Page 31: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Understory vegetation cover classes

MethodArea of

schrubcover class 1

Sampling error /

1,000,000

Design effect (k)

Production PI 3,128,600 3.49% 63%CALVEG Edge 3,177,500 3.55% 66%Optimal PI 3,161,400 3.64% 69%FIASCO_post 3,187,700 3.74% 73%NLCD fofnf 3,148,900 3.75% 73%Random Sample 3,183,300 4.37% 100%

MethodArea of

schrubcover class 2

Sampling error /

1,000,000

Design effect (k)

Production PI 1,313,500 4.54% 74%Optimal PI 1,299,400 4.66% 77%CALVEG Edge 1,283,700 4.71% 78%NLCD fofnf 1,310,300 4.81% 83%FIASCO_post 1,278,300 4.89% 84%Random Sample 1,282,700 5.34% 100%

MethodArea of

schrubcover class 3

Sampling error /

1,000,000

Design effect (k)

FIASCO_post 551,520 5.51% 85%NLCD fofnf 565,050 5.60% 90%Optimal PI 564,070 5.73% 95%CALVEG Edge 564,870 5.78% 96%Production PI 582,520 5.71% 97%Random Sample 558,650 5.92% 100%

Class 1:(0% shrub cover)

Class 2:(0 – 40 % shrub cover)

Class 3:( >= 40 % shrub cover)

Page 32: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Cost ($) per million acres

ComponentTraditional

PI FIASCO NLCDCALVEG

CACALVEG

outside CA

Photo acquisition 1,945 778Photo Setup 14,140 5,998Photo Interpretation 2,203 441Landsat scenes 36 0 0 0Reproject, mosaic & mask 251 251 251 251Classify/post-process filtering/edging 503 503 1,715 1,715Administration/coordination 251 101 251 251CALVEG Creation 80,000Total 18,288 8,259 854 2,218 82,218

Method cost per million acres

Page 33: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

California

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 5000 10000 15000 20000

Cost ($) per million acres

Sa

mp

ling

Err

pe

r m

illio

n a

cre

s

Area

Volume

rnd

pi

nlcd calveg fiasco

Page 34: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

PI- advantagesGenerally high precisionOpportunities for ancillary studiesEasy to fine tune

For areas of interestTo fit FIA definitions

Opportunities for year-round employment of some data collection staff

Page 35: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

NLCD - advantagesCould standardize in lower 48Development costs shared among agenciesPre-rectified/classified imagery huge savingsPrecision nearly as good as PI for this study area

Page 36: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

FIASCO-TM - advantagesEasily fine tuned to local conditions/needsCurrent version gives good precision; may be amenable to improvementGenerates a wall-to-wall FLS map which may be useful to some clients

Page 37: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

CALVEG - advantagesPolygons have many attributes, facilitating customizationData may be useful for other purposesPrecision performance good

Page 38: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

CaveatsCost comparisons don’t consider

value of maps produced incidental to the stratificationcapacity to conduct ancillary studiesself-sufficiency wrt phase 1 production

We don’t yet know true costs for NLCD 2000

Page 39: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Sparse forest extension Forest Cover Thresholds

NLCD = 25% FIA = 10%

Test aging of phase 1 Scheduled for Winter 2002 in 4 Central OR

counties

Page 40: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

####

#####

####################

#######

#############

#####

#############

##

##########

##########

########

###

#########

########

###

#####

####

###########

#####

####

#######

##########

##

#

###

#######

##########

######

##############

#########

#######

####

###############

#####

###

#################

#

###

#

##

##

#

####

##

#

##

#

#########

##

#######

######

##

###########

#############

####

#

##

#################

#############

#####

##############

####

###

######

##

#######

#

##############

#

#

####

############

#

################

##

##

####

#########

##

#

#####

#######

####

#

############

########

######

##

##

##

###

#

####

#

##

#

##

#

#########

###########

###

#############

####

#####

###############

################

####

########

###

####

#####

########

##########

##

###########

#########

#######

##########

###

###

#####

#####

######

###

##########

####

##############

#

#

##

###########

###

####

######

#

##############

#

#

#

#

#

#

####

######

#

###########

###########

#

#

##########

###

####

#####

###

#####

####

#

##

#####

####

########

##

#

##

#####

##

###

#########

#####

####

###

#####

#########

####

####

#

##

####

#

###

#

##

#######

#

########

########

#

########

#

#

####

####

##

##

#

#########

###

#######

#

##

#######

######

####

#

###

######

##########

##

##

# ### ##

#

##

##

#

#

##

###

###

###

##

#

#

##

###

###

#

#####

###

###

##

##

#####

#####

#####

#####

#####

#####

#####

#####

##

########

#########

#

##########

########

##

#####

#####

##

#

#

##

##

#

#

###

#

###

#

#

#

#########

#

#########

#

#########

########

##

##########

##########

##

##

#######

########

#

#####

###

#

########

#

#

#

############

###

#

#

#

#

#

#

#

#

#

#

#

#

###

##

#

#

#

#

#

#

#

#

#

#

#

##

#

###

##

#####

#

######

#

#

##

##

#

##

#

##

####

#

#

#

#

#

##

###

###

#####

#

##

# ##

###

####

####

######

#

####

###

#

##

#

#

##### ##

#

#

##

####

###

##

#

####

##########

##########

##

########

####

##

#

####

#####

##

#####

#####

#########

#

##

####

#

###

#

##

###

####

####

##

###

##

#

#

####

#

#

###

##

##

#

###

#

#

#####

#####

######

#######

#

##

#

#####

##

##

#

#

#

#

#

#

##

######

########

#

##

######

######

###

#

###

######

##########

##

##

#

##

##

#

###

###

###

#######

###

###

######

#

##########

##########

##########

##

##

#

##

########

#

###

###

#

######

##

#

########

#

##########

###

#######

######

####

#

#########

#####

#####

##########

##

##

##

#

#######

###

##

########

###

######

#

##########

##########

#####

#####

##

########

#

#

##

##

#

#####

#####

##

########

###

######

#

##########

########

##

##########

##

######

##

#########

##

##########

####

#####

##

##

#

####

#

#

#####

#####

##

#####

###

###

######

#

###

#######

########

##

#

####

#####

##

##

#

##

####

#

#

#

#########

##########

#

########

#

##########

########

##

#####

#####

##

#

#

#

##

#

#########

##########

##

########

#

#########

##########

#

#######

##

#####

#####

##

##

#

##

########

######

#####

##

###

##

#

#####

####

##

########

#########

#

##########

########

##

##

###

#####

##

#######

#

##

#

#

#########

##

#######

#

#

##

######

#

##########

########

##

#####

#####

###

##

####

#

##

##

##

#

#

###############

##

#

#

#

##

###

#

#

####

#

###

#

##

#

#

##

###

####

#

####

####

##

#

#

#

#########

#######

#######

#######

#######

#####

##

#######

#

#

##

#

#

#

##

###

###

####

#

#

###

#

##

#

#

########

##########

#

##

######

######

###

#

###

######

##########

##########

#

#

#######

#######

#######

#######

#######

#######

######

## #####

#

#

#

##########

#######

###

##########

###

#######

##########

##########

######

####

#######

###

#######

###

##

########

###

######

#

###

#######

########

##

#####

#####

##

##

#

##

#

#

##

# ##

##########

###

#######

##########

###

#######

#

#######

##

##########

#

##

#

#

#########

##

#######

#

#

#########

##########

########

##

#####

#####

##

#

#

##

#

###

###

#

#########

#

##

#

####

#

#

##

#

##

#

#

#

####

#####

#

##

#####

#######

######

#

#####

#########

#######

##

##########

#

##

#########

######

#####

###

#

###########

###

###########

###

#

#######

######

###

####

####

##

######

#######

#

###

####

###

#########

#

#

#

#####

######

##

####

######

######

#

#####

####

##

######

#####

#

######

####

##

####

##

#

#####

######

#

##

##### ##

#######

####

##

#

######

######

######

######

#

#####

####

##

##

##

##

###

###

######

######

##

####

######

######

#####

#

######

##

##

#

##

####

######

##

##

##

#

#####

##

##

##

######

###

##

#

####

##

######

####

##

######

######

#

##

#######

####

####

####

#

##

####

###

##

##

###

#

#

#

##

##

#

#

####

##

#

####

#

##

#####

####

####

##

#####

#####

##

##

#

###

#

#

#########

##

#######

#

#

########

#

##########

########

##

#####

#####

##

#

#

#

##

#

#

######

######

######

######

####

##

#

#####

#

##

#

#

#

#

##

#

###

#####

####

#

#

######

#####

#

#

##

##

#####

#

###

#

##########

##

#

#

#

##

#

###

##

########

########

#

#######

#

#

##

#

##

#

###

#

#

#

#####

####

##########

#

#########

########

##

#

#######

##

#

#########

##

##

#

##

#

######

##

####

######

##

####

######

######

######

#

######

#

###

#

#

#

#

#

#####

#

####

#

#

#

#

#

#

#

#

#

#

#########

########

#

#

#######

######

####

#

###

######

##########

####

#

#

#

##

#

##########

##########

###

######

#

######

####

##########

##########

##########

#

#

###

###

######

#####

#

######

######

##

####

#

#

##

#

#

#

#

##

####

#

####

##

###

###

#

#

#

#

##

##

#####

#####

#####

#####

##

########

###

######

#

###

##

###

#

#

#

###

#

##

#

#

#

#

######

#####

#

######

######

####

##

#

#####

######

##

##########

##

#######

#

#########

#

##########

########

##

#####

#####

##

###

###

##

##

#

#

##

#####

##

########

#

#########

##########

########

##

#####

#####

#####

######

#########

#

#########

##########

#

####

#####

#

####

#

####

##

##

#

#########

#

#########

##########

#

#########

######

####

####

######

##########

##

##

#

##

##

#####

#####

###

##

#####

#####

#####

##

###

##

#

##########

##

########

###

######

#

###

#######

########

##

#####

#####

##

######

#######

#####

##

###

#

####

#####

#

####

#####

##

##

#

#########

#

######

###

##

########

#

#########

##########

########

##

##########

##

##

#

#####

#

#########

##

##

###

####

###

###

#

###

#

####

#

#

# ####

##

##

#

#

##

#

#

#

##

###

#

#

#####

#

#######

#

#####

#

#

##

#

###

#

# ###

#

#

##

#

#

##

#

##

##

##

#

###

#

#####

##

###

#

###

#

##

##

##

##

####

######

#######

##

#########

########

#

##

#

#####

#

#

##

###

##

####

#

#

###

#

#

#

####

#

#

###

#

#

###

##

#

###

###

#

#

####

####

#####

###

##

#######

######

####

###

######

#########

##########

#

#

##

#

#

#

##

#

#

#

###

##

####

##

##

###

###

#

#

####

##

#

#

#

#

###

#

#

#

########

#########

#

#####

#

##

#####

##########

#

######

#####

#

##

##

#

#

#

######

#

LAKE

HARNEY

MALHEUR

KLAMATH

GRANT

BAKER

CROOK

UMATILLA

UNION

WASCO

WALLOW A

DESCHUTES

MORROW

WHEELER

GILLIAM

JEFFERSON

SHERMAN

Sparse forest extension1981 and 2001 PINLCD 1992FIASCO-TM

Built on 1981 PIBuilt on 2001 PI

Page 41: Evaluating precision gain for timber and non-timber attributes via Landsat-based stratification on California’s North Coast Antti Kaartinen, Jeremy Fried

Thank you for your patience…

Questions????