europlanet graz, 1-2 june 2007 1 gerald duma central institute for meteorology and geodynamics...

36
1 Europlanet Graz, 1-2 June 2007 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE ACTIVITY Workshop Earthquakes: Ground-based and Space Observations

Upload: james-ford

Post on 20-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

1

Europlanet Graz, 1-2 June 2007

Gerald Duma

Central Institute for Meteorology and Geodynamics

Vienna, Austria

AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

ACTIVITY

WorkshopEarthquakes: Ground-based and Space Observations

Page 2: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

2

Europlanet Graz, 1-2 June 2007

Studies performed

10-year research pogramme Several cooperations in Europe, Asia, America Effect verified for many earthquake zones worldwide Plausible interpretation and model

Page 3: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

3

Europlanet Graz, 1-2 June 2007

Observations (1996) – daily range

AUSTRIAM 2.5, 1901-1990

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (UTC +1)

02

04

06

0

Nu

mb

er

of

ea

rth

qu

ake

s /

ho

ur

(3 h

r ru

nn

.av.

)

20

77

02

07

80

20

79

02

08

00

Ma

gn

etic

inte

nsi

ty (

nT

)

Sq-variationObs W IK, 1983-85

comp N

GeomagneticObservatory

Page 4: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

4

Europlanet Graz, 1-2 June 2007

Duma, Vilardo (INGV),1998

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC +1)

01

00

20

03

00

40

0

Str

ain

re

lea

se /

ho

ur

(3 h

r ru

nn

.av.

)

24

39

02

44

00

24

41

02

44

20

Ma

gn

etic

inte

nsi

ty (

nT

)

Sq-variationObs AQU, 1986

comp N

GeomagneticObservatory

Observations (1997) – daily range

Mt. VESUVIUS volcanic eqs, area 10 x 10 km , 1.8 M 3.1,

1972-1996, 1400 events

Page 5: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

5

Europlanet Graz, 1-2 June 2007

A seismic daily cycle

Aristoteles Pliny the Elder, 79 A.D. eruption of Mt.Vesuvius Tams, 1926 Conrad, 1932 Shimshoni, 1972 Lipovics, 2000, 2005 Schekotov & Molchanov, 2005 Poorly investigated in recent decades, no

interpretation given yet

Page 6: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

6

Europlanet Graz, 1-2 June 2007

A seismic daily cycle

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (M EZ)

04

81

21

62

0

04

81

21

62

0

04

81

21

62

0

Num

ber

of e

arth

quak

es p

er h

r (3

-hrs

run

n.av

.)

1901-1930

1961-1990

1931-1960

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (M EZ)

020

4060

Num

ber

of e

qs p

er

hr

04

812

entireAUSTRIA1901-1990

IMST1997

3 sub-periods 20th centuryAUSTRIAM 2.5

May 31 – June 18, 1997Earthquake swarm in Austria,

region IMST

Page 7: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

7

Europlanet Graz, 1-2 June 2007

A seismic daily cycle

Observed in many main seismic regions

Earthquakes M 5 and M 6

A very powerful geodynamic process acting!

Page 8: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

8

Europlanet Graz, 1-2 June 2007

GeomagneticObservatory

1880 1900 1920 1940 1960 1980 2000Year

02

46

8

Num

ber

of e

arth

quak

es p

er y

ear

(10

yr r

unn.

av.)

2040

020

650

2090

0

Mag

netic

inte

nsity

(nT

)

Obs WIK, comp N

‚ secular variation‘

AUSTRIAM 3.1 (Io 5°)

Observations (1996) – long term

Page 9: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

9

Europlanet Graz, 1-2 June 2007

Mechanism, models?

Dependence on Local Time Process related to sun A mechanism which penetrates the whole Earth‘s lithosphere Tides ? No! High energy mechanism

Can a few nT influence tectonic performance?

Page 10: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

10

Europlanet Graz, 1-2 June 2007

The electromagnetic model

Geomagnetic variations in a conductive lithosphere

Maxwell‘s equations (E-H) ‚Telluric currents‘ associated with all natural

geomagnetic variations (frequency range from min – solar cycle)

Page 11: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

11

Europlanet Graz, 1-2 June 2007

The electromagnetic model

Telluric currents and forces

F = e . [ ve . B ]

F ... mechanic force vector

e ... electron charge

ve ... velocity vector

B ... magnetic field vector

‚Lorentz force‘

F

B

ve

e

Page 12: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

12

Europlanet Graz, 1-2 June 2007

The electromagnetic model

Magnetic observatories monitor: H(t) ~ IH(t) ~ FV(t) vertical force

M agneticO bservatory

Page 13: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

13

Europlanet Graz, 1-2 June 2007

The electromagnetic model

R up ture zone

r

P1

P2

I2 ≠ I1

Regional mechanic moment, torque Tr

Page 14: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

14

Europlanet Graz, 1-2 June 2007

The electromagnetic model

The gradient of H(t) reflects the change of regional torque Tr(t) (azimuth Az)

G eogr. Longitude

Geo

gr. L

atitu

de

Seism ic reg ionH(Long,Lat)

grad

ient

H

(directio

n A

z)Torque

axis

P

Page 15: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

15

Europlanet Graz, 1-2 June 2007

Energy – diurnal variation

T = MM x H

MMMagnetic Moment

I

Horizontal intensity HEarth’s main field

Ionospheric current system

Lithospheric current systeminduced

A large scale current field, covering 1/3 of the

northern Earth‘s hemisphere

The dayside Sq induced lithospheric current vortex (Chapman, Bartels, 1940; Matsushita, 1968)

Page 16: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

16

Europlanet Graz, 1-2 June 2007

Energy – diurnal variation

The mechanic moment of Sq for a single loop (Duma, Ruzhin, 2003)

Vsm2Am 11100.89

4)/(DIMM

A 10 10 I current Ring

km 3000 D Diameter

: MM moment Magnetic

0

2

3

Joule VAs 10 26.6 A/m 30 *Vsm )10.(

HMM T

:TTorque

11

11

890

The example demonstrates:

The deformation energy provided to the lithosphere by a single current loop, radius 1500 km and current 10 kA, is equivalent to the energy of an earthquake M 5,1.

50

0

10 kA

1500 km

1000( ca . 1 h r LT )

resistivity:5 * 102 ohmm

current density:2 * 10-8 A/m2

M M ’

Page 17: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

17

Europlanet Graz, 1-2 June 2007

Energy – diurnal variation

60% of total moment concentrates in a 30° segment

0

0

0

0

0

0

0.1

0.1

0.1

0.2

0

0

0

0

0

0

0.1

0.1

0.1

0.2

0

0

0

0

0

0.1

0.1

0.1

0.2

0.2

0

0

0

0

0

0.1

0.1

0.1

0.2

0.2

0

0

0

0

0

0.1

0.1

0.1

0.2

0.3

0

0

0

0

0

0.1

0.1

0.2

0.2

0.3

0

0

0

0

0

0.1

0.1

0.2

0.2

0.3

0

0

0

0

0.1

0.1

0.1

0.2

0.3

0.4

0

0

0

0

0.1

0.1

0.2

0.2

0.3

0.4

0

0

0

0

0.1

0.1

0.2

0.3

0.3

0.4

0

0

0

0

0.1

0.1

0.2

0.3

0.4

0.5

0

0

0

0.1

0.1

0.2

0.2

0.3

0.4

0.6

0

0

0

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0

0

0

0.1

0.1

0.2

0.3

0.4

0.6

0.7

0

0

0

0.1

0.2

0.2

0.4

0.5

0.7

0.8

0

0

0

0.1

0.2

0.3

0.4

0.6

0.8

1

0

0

0.1

0.1

0.2

0.3

0.5

0.7

0.9

1.1

0

0

0.1

0.1

0.3

0.4

0.6

0.8

1

1.3

0

0

0.1

0.2

0.3

0.5

0.7

1

1.2

1.5

0

0

0.1

0.2

0.4

0.6

0.9

1.1

1.4

1.7

0

0

0.1

0.3

0.5

0.8

1.1

1.4

1.7

2

0

0.1

0.2

0.4

0.6

1

1.3

1.6

2

2.3

0

0.1

0.2

0.5

0.8

1.2

1.6

2

2.3

2.6

0

0.1

0.3

0.7

1.1

1.5

2

2.4

2.7

3.1

0

0.2

0.5

1

1.5

2

2.4

2.8

3.2

3.5

0

0.3

0.8

1.4

2

2.5

3

3.4

3.7

4

0.1

0.5

1.2

2

2.6

3.2

3.6

4

4.2

4.4

0.2

1

2

2.8

3.5

4

4.3

4.6

4.7

4.9

0.5

2

3.2

4

4.4

4.7

4.9

5.1

5.2

5.2

2

4

4.7

5.1

5.2

5.3

5.4

5.4

5.4

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

2

4

4.7

5.1

5.2

5.3

5.4

5.4

5.4

5.5

0.5

2

3.2

4

4.4

4.7

4.9

5.1

5.2

5.2

0.2

1

2

2.8

3.5

4

4.3

4.6

4.7

4.9

0.1

0.5

1.2

2

2.6

3.2

3.6

4

4.2

4.4

0

0.3

0.8

1.4

2

2.5

3

3.4

3.7

4

0

0.2

0.5

1

1.5

2

2.4

2.8

3.2

3.5

0

0.1

0.3

0.7

1.1

1.5

2

2.4

2.7

3.1

0

0.1

0.2

0.5

0.8

1.2

1.6

2

2.3

2.6

0

0.1

0.2

0.4

0.6

1

1.3

1.6

2

2.3

0

0

0.1

0.3

0.5

0.8

1.1

1.4

1.7

2

0

0

0.1

0.2

0.4

0.6

0.9

1.1

1.4

1.7

0

0

0.1

0.2

0.3

0.5

0.7

1

1.2

1.5

0

0

0.1

0.1

0.3

0.4

0.6

0.8

1

1.3

0

0

0.1

0.1

0.2

0.3

0.5

0.7

0.9

1.1

0

0

0

0.1

0.2

0.3

0.4

0.6

0.8

1

0

0

0

0.1

0.2

0.2

0.4

0.5

0.7

0.8

0

0

0

0.1

0.1

0.2

0.3

0.4

0.6

0.7

0

0

0

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0

0

0

0.1

0.1

0.2

0.2

0.3

0.4

0.6

0

0

0

0

0.1

0.1

0.2

0.3

0.4

0.5

0

0

0

0

0.1

0.1

0.2

0.3

0.3

0.4

0

0

0

0

0.1

0.1

0.2

0.2

0.3

0.4

0

0

0

0

0.1

0.1

0.1

0.2

0.3

0.4

0

0

0

0

0

0.1

0.1

0.2

0.2

0.3

0

0

0

0

0

0.1

0.1

0.2

0.2

0.3

0

0

0

0

0

0.1

0.1

0.1

0.2

0.3

0

0

0

0

0

0.1

0.1

0.1

0.2

0.2

0

0

0

0

0

0.1

0.1

0.1

0.2

0.2

0

0

0

0

0

0

0.1

0.1

0.1

0.2

0

0

0

0

0

0

0.1

0.1

0.1

0.2

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

1000

2000

km 30

40

50

20

10

0

Geographic latitude

60

Local Time

6 9 12 15 18

H

I

Page 18: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

18

Europlanet Graz, 1-2 June 2007

Modelling the electromagnetic effect

Data for H(lat,long) to compute gradient

Daily variation: hourly mean values

Model of Sq telluric current vortex Regional observatory data (lati, longi)

Long term: annual mean values

Retrieved from IGRF, 1900-2010 (grid data) Regional observatory data (lati, longi)

Page 19: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

19

Europlanet Graz, 1-2 June 2007

Case studies – Regions

Austria Taiwan

California Baikal region

Page 20: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

20

Europlanet Graz, 1-2 June 2007

Case studies – Austria (M ≥ 3.2, Gradient H – N10W)

Gradient H from IGRF10 (1900-2010)

Diurnal range Long term

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 1)

11.

21.

41.

61.

82

Mod

el M

SM

- T

OR

QU

E T

(log

ener

gy, r

elat

ive)

-0.0

8-0

.04

00

.04

0.08

log

sei

smic

ene

rgy

/ hou

r(3

-hr

runn

.av.

)

1900 - 2003

1920 1940 1960 1980 2000Y ear

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

log

sei

smic

ene

rgy

/ yea

r(1

1-yr

run

n.av

.)

0.0

0.2

0.4

0.6

Mod

el M

SM

- T

OR

QU

E T

(log

ener

gy, r

elat

ive)

Gradient H from Sq-Model

Page 21: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

21

Europlanet Graz, 1-2 June 2007

Case studies – Taiwan (M ≥ 5, Gradient H – N55E)

Gradient H from IGRF10 (1900-2010)

Diurnal range Long term

Gradient H from Sq-Model

1973 - 1998

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (UTC +8)

1.2

1.4

1.6

1.8

22

.2

Mod

el M

SM

- T

OR

QU

E T

(log

ener

gy, r

elat

ive)

0.2

40

.26

0.2

80

.30

.32

0.3

4

log

seis

mic

ene

rgy

/ hou

r(3

-hr

runn

.av.

)

1970 1980 1990 2000 2010

0.0

0.4

0.8

1.2

log

en

erg

y re

lea

se /

yea

r(5

-yrs

ru

nn

.av.

)

00.

40

.81.

2

Mod

el M

SM

- T

OR

QU

E

(ene

rgy,

rel

ativ

e)

Chi-Chi, 1999

Page 22: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

22

Europlanet Graz, 1-2 June 2007

Case studies – Baikal area (M ≥ 5, Gradient H – N00E)

Gradient H from IGRF10 (1900-2010)

Diurnal range Long term

Gradient H from Sq-Model

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

log

sei

smic

ene

rgy

/ ye

ar(5

-yr

run

n.a

v.)

-4-2

02

Mo

de

l MS

M -

TO

RQ

UE

T(l

og

en

erg

y, r

ela

tive

)

1900 1920 1940 1960 1980 2000Y ear

eq-cata logue:U SG S(PD E)

eq-cata logue:SSR

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC -7)

1.2

1.4

1.6

1.8

2

Mo

del

MS

M -

TO

RQ

UE

T(l

og

en

erg

y, r

ela

tive

)

-0.1

00

.10

.20

.3

log

se

ism

ic e

ne

rgy

/ ho

ur

(5-h

r ru

nn

.av.

)

eq-cata logue:U SG S(PD E)(2001-2006)

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC -7)

0.8

11.

21.

41.

61.

82

Mo

del

MS

M -

TO

RQ

UE

T(l

og

en

erg

y, r

ela

tive

)

0.2

0.25

0.3

0.35

0.4

0.45

log

sei

smic

ene

rgy

/ ho

ur

(5-h

r ru

nn.a

v.)

eq-cata logue:SSR (1900-1980)

1900 - 1980

2001 - 2006

Page 23: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

23

Europlanet Graz, 1-2 June 2007

Case studies – California (M ≥ 6, Gradient H – N30E)

Gradient H from IGRF10 (1900-2010)

Diurnal range Long term

Gradient H from Sq-Model

1970 - 2005

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC -8) 1

.82

. 02

. 22

.42

.6

Mod

el M

SM

- T

OR

QU

E T

(lo

g en

ergy

, rel

ativ

e)

0.2

0.2

40

.28

0.3

20

.36

log

seis

mic

en

erg

y / h

our

(3-h

r ru

nn.

av.

)

1890 1910 1930 1950 1970 1990 2010Y ear-0

.8-0

.40.

00.

40.

8

log

se

ism

ic e

ne

rgy

/ ye

ar

(9 y

ea

r m

ov.

av.

)

-2.5

-2-1

.5-1

-0.5

00.

5

Mo

de

l SM

S -

TO

RQ

UE

T(l

og

en

erg

y, r

ela

tive

)

Page 24: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

24

Europlanet Graz, 1-2 June 2007

Case study – earthquakes 2004-2006 2004 08 01 – 2006 12 31, M 5

S-ITALYIONIAN IS

AEGEAN

Page 25: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

25

Europlanet Graz, 1-2 June 2007

Case study – earthquakes 2004-2006

IONIAN ISLANDSSeismic activity – Local Time

M 5

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 2)

-0.1

-0.05

0

0.05

0.1

0.15

en

erg

y re

lea

se p

er

ho

ur

(lo

g)

(ru

nn

.av.

)

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 2)

-0 .4

-0.3

-0.2

-0.1

0

en

erg

y re

lea

se p

er

ho

ur

(lo

g)

(ru

nn

.av.

)

1965 – 1989 (25 yrs, PDE)

1990 – 2003 (14 yrs, PDE)

2004 08 01 – 2006 12 31 M 5

n = 11 (PDE)

Gradient H (N85E)

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 2)

-50

-25

0

25

50

Mod

el M

SM

- T

OR

QU

E(lo

g en

ergy

, rel

ativ

e)

-0.2

-0.1

0

0.1

en

erg

y re

lea

se /

ho

ur

(ru

nn

. av.

)

Page 26: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

26

Europlanet Graz, 1-2 June 2007

Case study – earthquakes 2004-2006 1910 – 1980 (72 yrs, INGV)

2004 08 01 – 2006 12 31 M 5n = 4 (PDE)

2004 08 01 – 2006 12 31 M 4.5 n = 11 (PDE)

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 1)

-0 .5

-0.4

-0.3

-0.2

-0.1

0

en

erg

y re

lea

se p

er

ho

ur

(lo

g)

(ru

nn

.av.

)

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 1)

-0 .2

-0.1

0

0.1

0.2

0.3

en

erg

y re

lea

se p

er

ho

ur

(lo

g)

(ru

nn

.av.

)

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 1)-0 .4

-0.3

-0.2

-0.1

0e

ne

rgy

rele

ase

pe

r h

ou

r (l

og

)(r

un

n.a

v.)

S-ITALYSeismic activity – Local Time

M 5

Page 27: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

27

Europlanet Graz, 1-2 June 2007

Case study – earthquakes 2004-2006

Aegean Sea

2004 08 01 – 2006 12 31 M 5n = 5 (PDE)

Crete

Aegean Sea vs. CreteSeismic activity – Local Time

M 5

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 2)-0 .3

-0.2

-0.1

0

0.1

0.2

en

erg

y re

lea

se p

er

ho

ur

(lo

g)

(ru

nn

.av.

)

2004 08 01 – 2006 12 31 M 5n = 4 (PDE)

0 2 4 6 8 10 12 14 16 18 20 22 24Local T im e (U TC + 2)

-0 .3

-0.2

-0.1

0

0.1

0.2

en

erg

y re

lea

se p

er

ho

ur

(lo

g)

(ru

nn

.av.

)

Aegean Sea / Strongest events 2004-2006:

2006 01 08 UT=11 34 55.64 lat=36.31° long=23.21° d=66 km M=6.7

Page 28: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

28

Europlanet Graz, 1-2 June 2007

Case study – earthquakes 1963-2006

AegeanM 4, n = 956 (NOA)

1960 1970 1980 1990 2000 2010

010

203

040

50

Ann

ual n

umbe

r of

eqs

(5 y

r m

ov.a

v.)

-0.8

-0.4

00.4

0.8

Mod

el M

SM

- T

OR

QU

E T

(log

ener

gy, r

elat

ive)

1960 1970 1980 1990 2000 2010

04

81

21

6

Ann

ual n

umbe

r of

eqs

(5 y

r m

ov.a

v.)

Ionian IsM 4, n = 237 (NOA)

Gradient H from IGRF10

AEGEAN vs. IONIAN ISSeismic activity – long term

M 4

Page 29: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

29

Europlanet Graz, 1-2 June 2007

Case study – earthquakes 1963-2006

Ionian IsM 5, n = 36 (NOA)

S-ItalyM 5, n = 57 (INGV+PDE)

1960 1970 1980 1990 2000 2010

-1.5

-1-0

.50

0.5

1

log

ener

gy r

elea

se /

year

(5 y

r m

ov.a

v.)

1960 1970 1980 1990 2000 2010

-1.5

-1.0

-0.5

0.0

log

ener

gy r

elea

se /

year

(5 y

r m

ov.a

v.)

S-ITALY vs. IONIAN ISSeismic activity – long term

M 5

Page 30: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

30

Europlanet Graz, 1-2 June 2007

Novel aspects

External sources – causing geomagnetic variations - strongly influence seismic activity (trigger)

Origins: solar radiation, ionosphere, Sq ; magnetic dynamo

Answer to daily rhythm of seismic activity (LT) Monitoring the process: easy by geomagnetic

observatories Predictability: systematic diurnal, seasonal, secular

variations (IGRF 2010) Not yet investigated: influence of magnetic storms Faster monitoring of variations by space observations ?

Page 31: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

31

Europlanet Graz, 1-2 June 2007

Observations (1997) – long term

Duma, Vilardo (INGV),1998

n: annual number of eqs M 1.8, 1972-1996sf: annual number of solar flares (103)

Duma, Vilardo (INGV),1998

sf

n

1960 1970 1980 1990 2000Year

04

81

2

An

nu

al n

um

ber

of

sola

r fl

ares

(10

3 )

01

00

20

03

00

40

0

An

nu

al n

um

ber

of

eqs

(5 y

r ru

nn

.av.

)

Solar cyclesNo. 20 No. 21 No. 22

Mt. VESUVIUS volcanic eqs, area 10 x 10 km , 1.8 M 3.1,

1972-1996, 1400 events

Page 32: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

32

Europlanet Graz, 1-2 June 2007

Tectonic settings & faulting mechanisms in Greece

(Dewey et al., 1973 / A. Tzanis, UOA, 2003)

Page 33: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

33

Europlanet Graz, 1-2 June 2007

Model of Sq telluric current vortex Fits observed Sq-variations at observatories Computes grad H(LT)

Seism icregion

Sq inducedcurrent vortex

M

P

Q

P

North

East

Surface at P

Seismic region

Curr - E

Cur

r - N

Current I

Page 34: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

34

Europlanet Graz, 1-2 June 2007

H – current density

293

6

6

30

/10310

103

/3/103

10;24;10;2

mAE

j

kmmVmVE

mhTnTHTH

E

y

x

y

x

:example) space (half theory neticElectromag

Page 35: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

35

Europlanet Graz, 1-2 June 2007

The electromagnetic model

M agneticO bservatory

Magnetic observatories monitor horizontal force FhC (t)

Z

Earth’s m ainm agnetic field

H

C

G eogr.North time

C

H or . F or ce

F h [I x Z]

CC

Ccu rr. IC

Z

Page 36: Europlanet Graz, 1-2 June 2007 1 Gerald Duma Central Institute for Meteorology and Geodynamics Vienna, Austria AN ELECTROMAGNETIC PROCESS REGULATES EARTHQUAKE

36

Europlanet Graz, 1-2 June 2007

Energy – diurnal variation Sq: solar controlled, heating, ionization, tides

(Chapman, Bartels, 1940)

Ionospheric current system (Chapm an, Barte ls, 1940)dayside vortex, N -hemisphere

currents in 1000 Am pere

rot.

10 LT8 LT

6 LT