eurocodes - is-argebau2. contents of eurocode 7 - parts 1 & 2 3. some aspects of eurocode 7-1...

76
EUROCODES Background and Applications “Dissemination of information for training” workshop 18-20 February 2008 Brussels EN 1997 Eurocode 7: Geotechnical design Organised by European Commission: DG Enterprise and Industry, Joint Research Centre with the support of CEN/TC250, CEN Management Centre and Member States

Upload: others

Post on 09-Feb-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • EUROCODESBackground and Applications

    “Dissemination of information for training” workshop 18-20 February 2008 Brussels

    EN 1997 Eurocode 7: Geotechnical design Organised by European Commission: DG Enterprise and Industry, Joint Research Centre with the support of CEN/TC250, CEN Management Centre and Member States

  • Wednesday, February 20 – Palais des Académies EN 1997 - Eurocode 7: Geotechnical design Bordet room

    9:00-10:00 General presentation of EC 7 Geotechnical design part 1 General rules

    R. Frank Ecole Nationale des Ponts et Chaussées

    10:00-11:00 Section 2: Basis of geotechnical design B. Schuppener Bundesanstalt für Wasserbau

    11:00-11:15 Coffee

    11:15-12:15 Section 3 Geotechnical data and 6 Spread foundations

    T. Orr Trinity College Dublin

    12:15-14:00 Lunch

    14:00-15:00 Section 7 Pile foundations R. Frank Ecole Nationale des Ponts et Chaussées

    15:00-16:00 Section 8 Anchorages and Section 9 Retaining structures

    B. Simpson Arup

    16:00-16:15 Coffee

    16:15-17:15 Section 10 Hydraulic failure, Section 11 Overall stability and Section 12 Embankments

    T. Orr Trinity College Dublin

    17:15-18:15 Eurocode 7 part 2: Ground investigation and testing

    B. Schuppener Bundesanstalt für Wasserbau

    All workshop material will be available at http://eurocodes.jrc.ec.europa.eu

  • GEOTECHNICAL DESIGN PART 1 GENERAL RULES

    R. Frank

    Ecole Nationale des Ponts et Chaussées

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 1

    EUROCODESBackground and Applications

    General presentation of EUROCODE 7

    ‘Geotechnical design’

    Workshop “Eurocodes: background and applications”

    Brussels, 18-20 February 2008

    Roger FRANK, Professor

    Ecole nationale des ponts et chaussées, Paris

    Brussels, 18-20 February 2008 – Dissemination of information workshop 2

    EUROCODESBackground and Applications

    1. Introduction

    2. Contents of Eurocode 7 - Parts 1 & 2

    3. Some aspects of Eurocode 7-1Characteristic valuesULS Design ApproachesSLS –Serviceability limit states

    Brussels, 18-20 February 2008 – Dissemination of information workshop 3

    EUROCODESBackground and Applications

    EN 1990EN 1990

    EN EN 19911991

    EN 1992EN 1992 EN 1993EN 1993 EN 1994EN 1994

    EN 1995EN 1995 EN 1996EN 1996 EN 1999EN 1999

    Basis of StructuralBasis of Structuraldesigndesign

    Actions onActions onstructuresstructures

    ««MaterialMaterial »»resistanceresistance

    EN 1997EN 1997 EN 1998EN 1998 GeotechnicalGeotechnicaland and seismicseismic

    designdesign

    STRUCTURAL EUROCODESBrussels, 18-20 February 2008 – Dissemination of information workshop 4

    EUROCODESBackground and Applications

    EN 1997EN 1997--1 (2004)1 (2004) :: Part 1 Part 1 -- General rulesGeneral rules

    EN 1997EN 1997--2 (2007)2 (2007) :: Part 2 Part 2 -- Ground investigation Ground investigation and testingand testing

    Eurocode 7 – Geotechnical design

    Brussels, 18-20 February 2008 – Dissemination of information workshop 5

    EUROCODESBackground and Applications

    2. Contents of Eurocode 7 –Parts 1 & 2

    Brussels, 18-20 February 2008 – Dissemination of information workshop 6

    EUROCODESBackground and Applications Contents of Part 1 (EN 1997-1)

    Section 1 General

    Section 2 Basis of geotechnical design

    Section 3 Geotechnical data

    Section 4 Supervision of construction, monitoring and maintenance

    Section 5 Fill, dewatering, ground improvement and reinforcement

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 7

    EUROCODESBackground and Applications

    Section 6 Spread foundations

    Section 7 Pile foundations

    Section 8 Anchorages

    Section 9 Retaining structures

    Section 10 Hydraulic failure

    Section 11 Site stability

    Section 12 Embankments

    Contents of Part 1 (cntd)Brussels, 18-20 February 2008 – Dissemination of information workshop 8

    EUROCODESBackground and Applications Informative annexes

    Annexes D & E : Bearing capacity of foundations

    R/A' = c' × Nc × bc × sc × ic +

    q' × Nq × bq × sq × iq +

    0,5 × γ' × B '× Nγ × bγ × sγ × iγR /A' = σv0 + k × p*le

    Annex C Active earth pressure

    Annex C – Passive earth pressure

    Annex F : Settlement of foundations

    s = p × b × f / Em

    Brussels, 18-20 February 2008 – Dissemination of information workshop 9

    EUROCODESBackground and Applications

    Part 2 (EN 1997-2 ): Geotechnical design -Ground investigation and testing

    Laboratory and field tests :

    * essential requirements for the equipment and tests procedures

    * essential requirements for the reporting and the presentation of results

    * interpretation of test results and derived values

    They are NOT test standards see TC 341

    Brussels, 18-20 February 2008 – Dissemination of information workshop 10

    EUROCODESBackground and Applications Contents of Part 2 (EN 1997-2)

    Section 1 GeneralSection 2 Planning and reporting

    of ground investigationsSection 3 Drilling, sampling and

    gw measurementsSection 4 Field tests in soils and

    rocksSection 5 Laboratory tests on soils

    and rocksSection 6 Ground investigation

    report> Also a number of Informative annexesInformative annexes

    Brussels, 18-20 February 2008 – Dissemination of information workshop 11

    EUROCODESBackground and Applications

    3. Some aspects of Eurocode 7-1

    Characteristic values and design values

    ULS Design ApproachesULS Design Approaches

    SLS and deformations of structuresSLS and deformations of structures

    Brussels, 18-20 February 2008 – Dissemination of information workshop 12

    EUROCODESBackground and Applications

    Type of testF= field L= laboratory

    Correlations

    Test results and derived values

    1 2 3 4

    F 1 F 2 L 1 L 2

    C1

    Cautious selection

    Geotechnical model and characteristic value of geotechnical properties

    Design values of geotechnical properties

    Application of partial factors

    Information from other sources on the site, the

    soils and rocks and the projectEN 1997 -1

    EN 1997 -2

    C1 C2

    Geotechnical properties

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 13

    EUROCODESBackground and Applications

    Characteristic valueof geotechnical parameters

    P The characteristic valuecharacteristic value of a geotechnical parameter shall be selected as a cautious estimate of the value affecting the occurrence of the limit state.

    If statistical methods are used, the characteristic value should be derived such that the calculated probability of a worse value governing the occurrence of the limit state under consideration is not greater than 5%.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 14

    EUROCODESBackground and Applications

    Design value of a parameter : Xd = Xk / γM

    Design values of actions and resistancesfulfilling for STR/GEO ULS : Ed ≤ Rd

    Ed = E {γF.Fk } and Rd = R { Xk / γM }(= “at the source”, MFA)

    or Ed = γE.E { Fk } and Rd = R { Xk } / γR(RFA)

    Design values of geotechnical parameters

    Brussels, 18-20 February 2008 – Dissemination of information workshop 15

    EUROCODESBackground and Applications

    Ultimate limit states Ultimate limit states –– Eurocode 7Eurocode 7--11

    EQU : loss of equilibrium of the structureSTR : internal failure or excessive deformation

    of the structure or structural elementsGEO : failure or excessive deformation of the

    groundUPL : loss of equilibrium due to uplift by water

    pressure (buoyancy) or other vertical actionsHYD : hydraulic heave, internal erosion and

    piping caused by hydraulic gradients

    Brussels, 18-20 February 2008 – Dissemination of information workshop 16

    EUROCODESBackground and Applications

    J.A CalgaroJ.A CalgaroEEdd< < RRdd

    EN1990 EN1990 -- Ultimate limit states EQU and STR/GEOUltimate limit states EQU and STR/GEO

    Brussels, 18-20 February 2008 – Dissemination of information workshop 17

    EUROCODESBackground and Applications

    1,500

    1,351,00

    Set A1

    γ Qγ Q

    γ Gγ G

    Symbol

    VariableUnfavourableFavourable

    PermanentUnfavourableFavourable

    Action (γ F)

    1,300

    1,001,00

    Set A2

    1,251,00γc’Effective cohesion

    1,001,00

    1,00

    1,00

    Set M1

    1,25γϕ’Angle of shearing

    resistance

    1,40γcuUndrained shear

    strength

    γγ

    γqu

    Symbol

    1,00Weight density1,40Unconfined strength

    Set M2Soil parameter (γ M )

    A2 “+” M2 “+” R1Or A2 “+” M1 or M2“+” R4

    A1 “+” M1 “+” R1&1

    A1 “+” M1 “+” R22A1 or A2 “+” M2 “+” R3

    Combinations

    3

    Approach

    1,11,4

    Set R2

    1,001,00γRhSliding1,00

    Set R11,00γRvBearing Portance

    Symbol Set R3Resistance (γ R )γR for Spread

    foundations

    STR/GEO : persistent and transient situationsBrussels, 18-20 February 2008 – Dissemination of information workshop 18

    EUROCODESBackground and Applications

    STR/GEOSTR/GEO :: accidental situationsaccidental situations

    Actions : all values of Actions : all values of γγFF (and (and γγMM) = 1.0) = 1.0

    Resistances : Resistances : all values of all values of γγRR (and (and γγMM) depend ) depend

    on the particular accident on the particular accident

    Seismic situations:Seismic situations: see Eurocode 8-5

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 19

    EUROCODESBackground and Applications Ultimate limit states (UPL)

    P

    T

    Anchorage

    WT

    Anchored structure

    W

    u

    Former ground surface

    Sand

    Clay

    Gravel

    Clay

    Sand

    Clay

    Gravel

    b

    bottom of an excavation

    Sand Sand

    Sand

    Injected sand

    u

    Water tight surface

    slab below water level

    W T T

    u

    Water tight surface

    b buried hollow structure

    u

    σv

    W atertight surface lightweight embankment during flood

    Gdst;d + Qdst;d ≤ Gstb;d + RdExamples of situations where uplift might be critical

    Brussels, 18-20 February 2008 – Dissemination of information workshop 20

    EUROCODESBackground and Applications Ultimate limit states (HYD)

    Sand

    WaterHeave due to

    seepage of water

    Permeable subsoil

    piezometric level in the permeable subsoil

    low permeability soil

    Piping

    udst;d ≤ σstb;d

    Δudst;d ≤ σ´stb;d

    Example of situation where heave or piping might be critical

    Brussels, 18-20 February 2008 – Dissemination of information workshop 21

    EUROCODESBackground and Applications

    Ultimate limit states of static equilibrium Ultimate limit states of static equilibrium (EQU)(EQU) ::EEd,dstd,dst ≤≤ EEd,stbd,stb

    Ultimate limit states of resistance Ultimate limit states of resistance (STR/GEO)(STR/GEO) ::EEdd ≤≤ RRdd

    Ultimate limit state of uplift Ultimate limit state of uplift (UPL)(UPL) ::GGdst;ddst;d + Q+ Qdst;ddst;d ≤≤ GGstb;dstb;d + R+ Rdd

    Ultimate limit state of hydraulic failure Ultimate limit state of hydraulic failure (HYD)(HYD) ::uudst;ddst;d ≤≤ σσstb;d stb;d or Sor Sdst;ddst;d ≤≤ GG´́stb;dstb;d

    Verifications of ULSVerifications of ULSBrussels, 18-20 February 2008 – Dissemination of information workshop 22

    EUROCODESBackground and Applications

    EN1990 EN1990 -- Serviceability limit states SLSServiceability limit states SLS

    Verifications :Verifications :

    CCdd = = limiting design value of the relevant limiting design value of the relevant serviceability criterionserviceability criterion

    EEdd = = design value of the effects of actions design value of the effects of actions specified in the serviceability criterion, determined specified in the serviceability criterion, determined on the basis of the relevant combinationon the basis of the relevant combination

    all all γγFF and and γγMM = 1.0= 1.0

    EEdd ≤≤ CCdd

    Brussels, 18-20 February 2008 – Dissemination of information workshop 23

    EUROCODESBackground and Applications

    settlement s, differential settlement δs, rotation θ and angular strain α

    relative deflection Δ and deflection ratio Δ/L

    ω and relative rotation (angular distortion) β

    (after Burland and Wroth, 1975)

    smax

    δ s

    max

    Movements and deformations of structuresMovements and deformations of structuresBrussels, 18-20 February 2008 – Dissemination of information workshop 24

    EUROCODESBackground and Applications Conclusions

    - a tool to help European geotechnical engineers speak the same language

    - a necessary tool for the dialogue between geotechnical engineers and structural engineers

    Eurocode 7Eurocode 7 helps promoting research

    - it stimulates questions on present geotechnical practice from ground investigation to design models

    Eurocode 7 :Eurocode 7 :

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 25

    EUROCODESBackground and Applications

    and to really conclude :

    It should be considered that knowledge of the ground conditions depends on the extent and quality of the geotechnical investigations. Such knowledge and the control of workmanship are usually more significant to fulfilling the fundamental requirements than is precision in the calculation models and partial factors.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 26

    EUROCODESBackground and Applications

    Thank you for your attention !

  • SECTION 2: BASIS OF GEOTECHNICAL DESIGN

    B. Schuppener

    Bundesanstalt für Wasserbau

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 1

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    EN 1997 Eurocode: Geotechnical design

    Section 2: Basis of geotechnical design

    Dr.-Ing. Bernd Schuppener,Federal Waterways Engineering and Research Institute,Karlsruhe, Germany

    Brussels, 18-20 February 2008 – Dissemination of information workshop 2

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.1 Design requirements 2.2 Design situations2.3 Durability2.4 Geotechnical design by calculation2.5 Design by prescriptive methods 2.6 Load tests 2.7 The Observational Method2.8 The Geotechnical Design Report

    Annex A + B

    2 Basis of geotechnical design

    Brussels, 18-20 February 2008 – Dissemination of information workshop 3

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (1)P For each geotechnical design situation it shall beverified that no relevant limit state, as defined in EN 1990:2002, is exceeded.

    2.1 Design requirementslimit states

    (4) Limit states should be verified by one or a combination of the following:• use of calculations as described in 2.4;• adoption of prescriptive measures, as described in 2.5;• experimental models and load tests, as described in 2.6;• an observational method, as described in 2.7.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 4

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (8)P In order to establish minimum requirements • for the extent and content of geotechnical investigations,• calculations and • construction control checks, the complexity of each geotechnical design shall beidentified together with the associated risks.

    (10) To establish geotechnical design requirements,three Geotechnical Categories, 1, 2 and 3, may beintroduced.

    2.1 Design requirementsGeotechnical Categories

    Brussels, 18-20 February 2008 – Dissemination of information workshop 5

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (14) Geotechnical Category 1 should only includesmall and relatively simple structures:• for which it is possible to ensure that the fundamental

    requirements will be satisfied on the basis ofexperience and qualitative geotechnical investigations;

    • with negligible risk.

    2.1 Design requirementsGeotechnical Categories

    (9) For structures and earthworks of low geotechnicalcomplexity and risk, such as defined above, simplifieddesign procedures may be applied.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 6

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (17) Geotechnical Category 2 should include conventional types of structure and foundation with no exceptional risk or difficult soil or loading conditions.

    (18) Designs for structures in Geotechnical Category 2 should normally include quantitative geotechnical data and analysis to ensure that the fundamental requirements are satisfied.

    (19) Routine procedures for field and laboratory testing and for design and execution may be used for Geotechnical Category 2 designs.

    2.1 Design requirementsGeotechnical Categories

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 7

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (20) Geotechnical Category 3 should include structures or parts of structures, which fall outside the limits of Geotechnical Categories 1 and 2.(21) Geotechnical Category 3 should normally include alternative provisions and rules to those in this standard.NOTE Geotechnical Category 3 includes the following examples:• very large or unusual structures;• structures involving abnormal risks, or unusual or exceptionally

    difficult ground or loading conditions;• structures in highly seismic areas;• structures in areas of probable site instability or persistent ground

    movements that require separate investigation or special measures.

    2.1 Design requirementsGeotechnical Categories

    Brussels, 18-20 February 2008 – Dissemination of information workshop 8

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (1)P Both short-term and long-term design situationsshall be considered.

    2.2 Design Situations (EN 1997-1)

    Brussels, 18-20 February 2008 – Dissemination of information workshop 9

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (1)P At the geotechnical design stage, thesignificance of environmental conditions shall beassessed in relation to durability and to enableprovisions to be made for the protection oradequate resistance of the materials.

    2.3 Durability

    Brussels, 18-20 February 2008 – Dissemination of information workshop 10

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (1)P The selection of characteristic values for geotech-nical parameters shall be based on results and derived values from laboratory and field tests, complemented by well-established experience.

    2.4 Geotechnical design by calculation2.4.5.2 Characteristic values of geotechnical parameters

    (2)P The characteristic value of a geotechnical parameter shall be selected as a cautious estimate of the value affecting the occurrence of the limit state.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 11

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    4)P The selection of characteristic values for geotechnical parameters shall take account of the following:• ...• the type and number of samples;• the extent of the zone of ground governing the

    behaviour of the geotechnical structure at the limit state being considered;

    • the ability of the geotechnical structure to transfer loads from weak to strong zones in the ground. …..

    2.4 Geotechnical design by calculation2.4.5.2 Characteristic values of geotechnical parameters

    Brussels, 18-20 February 2008 – Dissemination of information workshop 12

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (10) If statistical methods are employed in the selection of characteristic values for ground properties, such methods should differentiate between local and regional sampling and should allow the use of a priori knowledge of comparable ground properties.(11) If statistical methods are used, the characteristic value should be derived such that the calculated probability of a worse value governing the occurrence of the limit state under consideration is not greater than 5%.NOTE In this respect, a cautious estimate of the mean value is aselection of the mean value of the limited set of geotechnical parameter values, with a confidence level of 95%; where local failure is concerned, a cautious estimate of the low value is a 5% fractile.

    2.4 Geotechnical design by calculation2.4.5.2 Characteristic values of geotechnical parameters

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 13

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Slope failure in a cut

    cu = 68 MN/m²

    cu = 73 MN/m²

    cu = 65 MN/m²

    cu = 71 MN/m²

    cu = 60 MN/m²

    cu = 55 MN/m²

    cu = 50 MN/m²

    cu = 62 MN/m²

    cu = 76 MN/m²

    cu = 64 MN/m²

    cu = 75 MN/m²

    Selection of characteristic values:

    Brussels, 18-20 February 2008 – Dissemination of information workshop 14

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    cu = 68 MN/m²

    cu = 73 MN/m²

    cu = 65 MN/m²

    cu = 71 MN/m²

    cu = 60 MN/m²

    cu = 55 MN/m²

    cu = 50 MN/m²

    cu = 62 MN/m²

    cu = 76 MN/m²

    cu = 64 MN/m²

    cu = 75 MN/m²

    Selection of characteristic values:

    Brussels, 18-20 February 2008 – Dissemination of information workshop 15

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Determination of the characteristic value Xk by statisticalmethods:

    Xk = Xmean (1 - kn Vx)

    whereXmean arithmetical mean value of the parameter values;Vx the coefficient of variationkn statistical coefficient which depends on the number

    n of test results, the level of confidence and a priori knowledge about the coefficient of variation (case ”Vx unknown” or ”Vx known”).

    2.4 Geotechnical design by calculation2.4.5.2 Characteristic values of geotechnical parameters

    Brussels, 18-20 February 2008 – Dissemination of information workshop 16

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Xk(local)

    Number n of test results

    *

    **

    *

    * *

    *

    *

    **

    *

    *

    Value of parameter

    Normal distribution through tests results

    Mean of test results Xmean

    Xmean kn,mean Vx

    XmeanXk(mean)

    sxsx

    Xmean kn,fractile Vx

    2.4 Geotechnical design by calculation2.4.5.2 Characteristic values of geotechnical parameters

    Brussels, 18-20 February 2008 – Dissemination of information workshop 17

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4 Geotechnical design by calculation2.4.5.2 Characteristic values of geotechnical parameters

    Determination of characteristic values proposedby Schneider (1999):

    Xk = Xmean - 0.5 sx

    Brussels, 18-20 February 2008 – Dissemination of information workshop 18

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Example: results of triaxial tests used for the selection of the characteristic values using statistical methods (Vx unknown)

    Borehole / test Statistical result

    c’[kPa]

    ’[°]

    tan ’[-]

    BH 1/1 3 31 0,601 BH 1/2 4 30 0,577 BH 2/1 1 35 0,700 BH 2/2 7 28 0,532

    Mean value c´mean = 3.75 (tan ´)mean = 0.603 Standard deviation sc = 2.50 s = 0.071

    Coefficient of variation Vc = 0.667 Vtan = 0.118

    2.4 Geotechnical design by calculation2.4.5.2 Characteristic values of geotechnical parameters

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 19

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Table: summary of the statistical evaluation of the example

    Characteristic values of shear parameter

    Basis and method of statistical evaluation

    ´k [°] c´k [kPa]

    ’ and c’ of 4 tests for the case “Vx unknown”

    27.5 0.8

    ’ and c’ of 4 tests for the case “Vx known”

    29.0 2.5

    Schneider (1999) 29.5 2.5

    2.4 Geotechnical design by calculation2.4.5.2 Characteristic values of geotechnical parameters

    Brussels, 18-20 February 2008 – Dissemination of information workshop 20

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (1)P The definition of actions shall be taken from EN 1990:2002. The values of actions shall be taken from EN 1991, where relevant.

    Section 1 of EN 1997-1:1.5.2.1 Geotechnical actionAction transmitted to the structure by the ground, fill standing water or groundwater.

    2.4 Geotechnical design by calculation2.4.2 Actions

    Brussels, 18-20 February 2008 – Dissemination of information workshop 21

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    NOTE (to (9)P) Unfavourable (or destabilising) and favourable (or stabilising) permanent actions may in some situations be considered as coming from a single source. If they are considered so, a single partial factor may be applied to the sum of these actions or to the sum of their effects.

    2.4 Geotechnical design by calculation2.4.2 Actions

    Brussels, 18-20 February 2008 – Dissemination of information workshop 22

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4 Geotechnical design by calculation2.4.2 Actions

    Wtop

    Wbottom

    Wd,dst = (Wbottom - Wtop) dst

    Wd = Wbottom dst - Wtop stb

    Brussels, 18-20 February 2008 – Dissemination of information workshop 23

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    • characteristic values• geotechnical parameter• actions

    • design values• geotechnical ultimate limit states• design approaches DA1, DA2 and DA 3• serviceability limit states

    2.4 Geotechnical design by calculation

    Brussels, 18-20 February 2008 – Dissemination of information workshop 24

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4.6.1 Design values of actions(2)P The design value of an action (Fd) shall either be assessed directly or shall be derived from representative values Frep using the following equation:

    Fd = F Frep (2.1a)with

    Frep = Fk (2.1b)where F is the partial factor on geotechnical actions or effects of geotechnical actions and is a combination factor.

    (3)P Appropriate values of shall be taken from EN 1990:2002.

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 25

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4.6.1 Design values of actions(2)P The design value of an action (Fd) shall either be assessed directly or shall be derived from representative values Frep using the following equation:

    Fd = F Frep (2.1a)with

    Frep = Fk (2.1b)where F is the partial factor on geotechnical actions or effects of geotechnical actions and is a combination factor.

    (4)P The partial factor F for persistent and transient situations defined in Annex A shall be used in equation (2.1a).

    Brussels, 18-20 February 2008 – Dissemination of information workshop 26

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4.6.1 Design values of actions

    00Favourable

    1,31,5QUnfavourableVariable

    1,01,0Favourable

    1,01,35GUnfavourablePermanent

    A2A1

    SetSymbolAction

    Table A.3: Partial factors on actions ( F) or the effects of actions ( E)

    NOTE The values to be ascribed to G and Q for use in a country may be found in its National annex to EN 1990. The recommended values for buildings in EN 1990:2002 for the two sets A1 and A2 are given in Table A.3.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 27

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4.6.2 Design values of geotechnicalparameters

    (1)P Design values of geotechnical parameters (Xd) shall either be derived from characteristic values using the following equation:

    Xd = Xk / M (2.2)or shall be assessed directly.(2)P The partial factor M for persistent and transient situations defined in Annex A shall be used in equation (2.2).

    Brussels, 18-20 February 2008 – Dissemination of information workshop 28

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4.6.2 Design values of geotechnicalparameters

    Table A.4 - Partial factors for soil parameters ( M)

    Set

    Soil parameter Symbol M1 M2

    Shearing resistance 1 1,0 1,25

    Effective cohesion c 1,0 1,25

    Undrained strength cu 1,0 1,4

    Unconfined strength qu 1,0 1,4

    Unit weight density 1,0 1,0

    Brussels, 18-20 February 2008 – Dissemination of information workshop 29

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (1)P Where relevant, it shall be verified that the following limit states are not exceeded:

    • …………..• failure or excessive deformation of the ground, in which the

    strength of soil or rock is significant in providing resistance (GEO);

    • loss of equilibrium of the structure or the ground due to uplift by water pressure (buoyancy) or other vertical actions (UPL);

    • hydraulic heave, internal erosion and piping in the ground caused by hydraulic gradients (HYD).

    2.4.7 Ultimate limit states2.4.7.1 General

    Brussels, 18-20 February 2008 – Dissemination of information workshop 30

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (1)P When considering a limit state of rupture or excessive deformation of a structural element or section of the ground (STR and GEO), it shall be verified that:

    Ed Rd (2.5)

    Ed : the design value of the effects of all the actions;Rd : the design value of the corresponding resistance

    of the ground and/or structure.

    2.4.7.3 Verification of resistance for GEO and STR

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 31

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Load and Resistance Factor ApproachRd Ed

    Rk( ´k, c´k) / R Ek( ´k, c´k) E

    Rk: characteristic values of ground resistanceR: partial factor for the ground resistance

    Ek: characteristic value of the effect of actionE: partial factor for the effect of action or the

    action´k,c´k: characteristic values of the shear parameter

    Brussels, 18-20 February 2008 – Dissemination of information workshop 32

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Design values of shear parameter

    ´k, c´k characteristic value of shear parameter´d, c´d design values of the shear parameter

    partial factor for the angle of shearing resistance

    c partial factor for the cohesion intercept

    tan ´d = (tan ´k) / c´d = c´k / c

    Brussels, 18-20 February 2008 – Dissemination of information workshop 33

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Material Factor Approach

    Rd( ´d, c´d) Ed( ´d, c´d)

    Rd: design value of the ground resistance Ed design value of the effects of actions of the

    ground´d design value of the angle of shearing

    resistancec´d design value of the cohesion intercept

    Brussels, 18-20 February 2008 – Dissemination of information workshop 34

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Gk

    EQ

    Qk

    EG

    qk

    Rv = (V, H, M, ´, c´)

    Example for the three Design Approaches of EN 1997-1

    Rv,d VdV, H, M

    Brussels, 18-20 February 2008 – Dissemination of information workshop 35

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Action or effects of actions Design Approach structure ground

    Resistanceground

    1

    2222 G = 1.35; G,inf = 1.00; Q = 1.50 R;e = R;v = 1.40R;h = 1.10

    332 G = 1.35; G,inf=1.00Q = 1.50

    = c = 1.25

    2.4.7.3 Verification of resistance for GEO and STR

    Brussels, 18-20 February 2008 – Dissemination of information workshop 36

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Action or effects of actionsDesignApproach Structure Ground

    Resistanceground

    Comb. 1 G = 1.35; G,inf = 1.00; Q = 1.50 = c = 1.01

    Comb. 2 G = 1.00; Q = 1.30 = c = 1.25

    2 G = 1.35; G,inf = 1.00; Q = 1.50 R;e = R;v = 1.40 R;h = 1.10

    3 G = 1.35; G,inf=1.00Q = 1.50

    = c = 1.25

    2.4.7.3 Verification of resistance for GEO and STRDesign Approach 1

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 37

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4.7.3 Verification of resistance for GEO and STRDesign Approach 1

    Gd = G Gk = 1.35 Gk

    Qd = Q Qk = 1.50 Qk

    EG,d= G EG( ´d,c´d)=1.35 EG( ´k,c´k)

    EQ,d = EQ( ´k, c´k, qd)

    qd = Q qk = 1.50 qk

    Rv,d = Rv(Vd, Hd, Md, ´d, c´d)

    ´ = c = 1.0´d = ´k, c´d = c´k

    ´ = c = 1.0´d = ´k, c´d = c´k

    Combination 1

    Gd = G Gk = 1.00 Gk

    Qd = Q Qk = 1.30 Qk

    EG,d = G EG( ´d, c´d) = 1.00 EG( ´d, c´d)

    qd = Q qk = 1.30 qk

    tan ´d = tan ´k/ ´ = tan ´k/1.25c´d = c´k / c = c´k / 1.25

    tan ´d = tan ´k/ ´ = tan ´k/1.25c´d = c´k / c = c´k / 1.25

    EQ,d = EQ( ´d, c´d, qd)

    Rv,d = Rv (Vd, Hd, Md, ´d, c´d)

    Combination 2

    Rv,d Vd

    Vd, Hd, MdVd, Hd, Md Vd, Hd, MdVd, Hd, Md

    Brussels, 18-20 February 2008 – Dissemination of information workshop 38

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Action or effects of actionsDesignApproach Structure Ground

    Resistanceground

    Comb. 1 G = 1.35; G,inf = 1.00; Q = 1.50 = c = 1.01

    Comb. 2 G = 1.0; Q = 1.30 = c = 1.25

    2 G = 1.35; G,inf = 1.00; Q = 1.50 R;e = R;v = 1.40 R;h = 1.10

    3 G = 1.35; G,inf=1.00Q = 1.50

    = c = 1.25

    2.4.7.3 Verification of resistance for GEO and STRDesign Approach 2

    Brussels, 18-20 February 2008 – Dissemination of information workshop 39

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Gd = G Gk = 1.35 Gk

    Qd = Q Qk = 1.50 Qk

    EG,d= G EG( ´d, c´d)=1.35 EG( ´k,c´k)EQ,d = EQ( ´d, c´d, qd)

    qd = Q qk = 1.50 qk

    Rv,k = F(Md, Vd, Hd, ´d, c´d)

    Rv,d Vd

    ´ = c = 1.00´d = ´k, c´d = c´k

    ´ = c = 1.00´d = ´k, c´d = c´k

    2.4.7.3 Verification of resistance for GEO and STRDesign Approach 2

    DA 2

    Vd, Hd, MdVd, Hd, Md

    Rv,d = Rv,k / Rv= Rv,k /1.40

    Gk

    Qk

    EQ,k = EQ( ´k, c´k, qk)

    qk

    Rv,k= (Mk, Vk, Hk, ´k, c´k)

    Vd = G VG,k + Q VQ,kVd = 1.35 VG,k + 1.50 VQ,k

    EG,k = EG( ´k, c´k)

    = c = 1.0´d = ´k, c´d = c´k

    = c = 1.0´d = ´k, c´d = c´k

    DA 2*

    Vk, Hk, MkVk, Hk, Mk

    Rv,d = Rv,k= / Rv = Rv,k/1.40

    Brussels, 18-20 February 2008 – Dissemination of information workshop 40

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Action or effects of actionsDesignApproach Structure Ground

    Resistanceground

    Comb. 1 G = 1.35; G,inf = 1.00; Q = 1.50 = c = 1.01

    Comb. 2 G = 1.0; Q = 1.30 = c = 1.25

    2 G = 1.35; G,inf = 1.00; Q = 1.50 R;e = R;v = 1.40 R;h = 1.10

    3 G = 1.35; G,inf=1.00Q = 1.50

    = c = 1.25

    2.4.7.3 Verification of resistance for GEO and STRDesign Approach 3

    Brussels, 18-20 February 2008 – Dissemination of information workshop 41

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Gd = G Gk = 1.35 Gk

    Qd = Q Qk = 1.50 Qk

    EQ,d = EQ( ´d, c´d, qd)

    qd = Q qk = 1.30 qk

    Rv,d = (Vd, Hd, ´d, c´d)

    Vd = VG,d + VQ,d

    EG,d = G EG( ´d,c´d) = 1.00 EG( ´d,c´d)

    tan ´d = tan ´k/ ´ = tan ´k/1.25c´d= c´k/ c = c´k / 1.25

    tan ´d = tan ´k/ ´ = tan ´k/1.25c´d= c´k/ c = c´k / 1.25

    2.4.7.3 Verification of resistance for GEO and STRDesign Approach 3

    Rv,d Vd

    Brussels, 18-20 February 2008 – Dissemination of information workshop 42

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.4.8 Serviceability limit states(1)P Verification for serviceability limit states in the ground or in a structural section, element or connection, shall either require that:

    Ed Cd, (2.10)or be done through the method given in 2.4.8 (4).Ed: effects of the actions e.g. deformations, differential

    settlements, vibrations etc.Cd: limiting values(2) Values of partial factors for serviceability limit states should normally be taken equal to 1,0.(5)P …… This limiting value shall be agreed during the design of the supported structure

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 43

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    (2) The maximum acceptable relative rotations for open framed structures, infilled frames and load bearing or continuous brick walls are unlikely to be the same but are likely to range from about 1/2000 to about 1/300, to prevent the occurrence of a serviceability limit state in the structure. A maximum relative rotation of 1/500 is acceptable for many structures. The relative rotation likely to cause an ultimate limit state is about 1/150.

    Annex H(informative)

    Limiting values of structural deformation and foundation movement

    Brussels, 18-20 February 2008 – Dissemination of information workshop 44

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.7 Observational method(1) When prediction of geotechnical behaviour is difficult, it can be appropriate to apply the approach known as "the observational method", in which the design is reviewed during construction.

    (2)P The following requirements shall be met before construction is started:• acceptable limits of behaviour shall be established;• the range of possible behaviour shall be assessed and

    it shall be shown that there is an acceptable probabilitythat the actual behaviour will be within the acceptablelimits;

    Brussels, 18-20 February 2008 – Dissemination of information workshop 45

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    • a plan of monitoring shall be devised, which will reveal whether the actual behaviour lies within the acceptablelimits. The monitoring shall make this clear at asufficiently early stage, and with sufficiently shortintervals to allow contingency actions to be undertakensuccessfully;

    • the response time of the instruments and the procedures for analysing the results shall be sufficiently rapid inrelation to the possible evolution of the system;

    • a plan of contingency actions shall be devised, which may be adopted if the monitoring reveals behaviouroutside acceptable limits.

    2.7 Observational method

    Brussels, 18-20 February 2008 – Dissemination of information workshop 46

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    2.8 Geotechnical Design Report(1)P The assumptions, data, methods of calculation and results of the verification of safety and serviceability shall be recorded in the Geotechnical Design Report.

    (2) The level of detail of the Geotechnical Design Reports will vary greatly, depending on the typeof design. For simple designs, a single sheet may be sufficient.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 47

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Information to be verified during construction.Notes on maintenance and monitoring.

    Concrete cas on un-softened glacial till with cu 60 kPa (pocketpenetrometer)

    Calculations (or index calculations)Characteristic load 60 kN/m.Local experience plus Local Building Regulations (ref ……..) indicates working bearing pressure of 100 kPa acceptable. Therefore adopt footings 0.6 m wide, minimum depth 0.5 m (Building Regs) but depth varies to reach cu 60 kPa – test on site.

    Description of site surroundings:Formerly agricultural land.Gently sloping (4°)

    Assumed stratigraphy used in design with properties:Topsoil and very weathered glacial till up to 1 m thick, overlyingfirm to stiff glacial till (cu 60 kPa on pocket penetrometer).

    Codes and standards used (level of acceptable risk)Eurocode 7Local building regs

    Section through structure showing actions:Report used:Ground Investigation report (give ref. date)Factual:

    Bloggs Investigations Ltd report ABC/123 dated 21 Feb 95Interpretation:

    Ditto

    Approved by: Date ……………

    Checked by: Date ……………

    Made by: Date ……………

    Sheet no of ………Job No.Job TitleNew start housing development

    Structure Reference:Strip foundations

    2.8 Geotechnical Design ReportBrussels, 18-20 February 2008 – Dissemination of information workshop 48

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    SummarySection 2: Basis of geotechnical design:

    • introduces Geotechnical Categories as options,• describes geotechnical design situations• defines characteristic values of

    • geotechnical actions and• the selection of ground parameter

    • defines geotechnical ultimate limit states• defines three Design Approaches as options and• introduces the Observational Method as an

    equivalent geotechnical design method

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 49

    EUROCODESBackground and Applications

    EN 1997-1: Section 2: Basis of geotechnical design

    Thank you

  • SECTION 3 GEOTECHNICAL DATA AND 6 SPREAD FOUNDATIONS

    T. Orr

    Trinity College Dublin

  • ����������������������������������������������������������

    �������������������������������

    ������������ �������!����" #���������

    � !!"�����#�$�"

    %�#����&�'����#���#������%�#����(�%����$����$������

    $� %���&'&'������������������������

    �������

    ������������������������������������������

    ����������������������������������������������������������

    �������������������������������

    � ������!

    �������(���� ������!

    ) �� �*�������

    ���������������������������������������������������������� &

    �������������������������������

    � ������!����% �%� +

    ) *����#������ !!"���������������#������'����#���#������$������������������� � �,��������-� �� �*����������������������������� �� �*������ �������� ��

    ) *�������#�����������������,� �������������������#����$�����������������������#���������#�$�����������$������������������������ ��-� �

    ) %�#����&'����#���#���������+�$�����,��������-������������.� ������� �������,����#���#��$���

    � ��� %���������,����#���#������������

    � *���� � ���������,����#���#�������������

    ) /��������$��� ������.���#������������-���������/ ������� � ������ � �,����,����#���#�����������+�������$�����-������������� � ������*��� �������%�� �

    ) /������������$��0���.���#�,�+�������-������������� ��%����* �%�� ���,����#���#��������������������$��$���������������

    ����������������������������������������������������������� 0

    �������������������������������

    ) �� �*�����1�% ��������

    ) *����������#����� -���2����� ���������� �2 3 ��� ���$� ���� ���+����,�������������+�$������#����$���#��#�����,���,����$���������$��&1��$&1

    ) 2��+���������������������+����,���������,�+��.� 0� ��,���2��+����,������� � �����+����,������� ����������+����,������

    ) 3�-������������,�+��������� ��������,����$��+����,���������)������1�% ��������� ����

    ���������������������������������������������������������� 4

    �������������������������������

    ��

    ������ � �,�����0�, � ��4�� ��

    ) *�����#�$������+��+�$��� � �,������* �� ����%�� ���,����#���#��������������������$������������� ���� ����������#����$���$��#��������,���*� ���

    ������ ��5���������1��06

    ) *��-������� �����,������������$+�����������,�##�������������#��$���������$��������� �� �*�������, � ��%�� �5�1�1�����������������������#���������#������#����������,����$6�101&��$!'!

    ) *��� ������� ����������##���������$���,������������$����������*��� �������%�� ���#��������������������,����#���#�����������+���������#���,����##�����#���������������10141

    ) *���*������ ��������������� ������, � ��%�� ���������,����������#��������#����#�������#+�����101"1&1&

    ����������������������������������������������������������� (

    �������������������������������

    �*��� �������4�� ��-��,�5 ��� ��4�� �

    5 ��� ��4�� �!����"7�+���$��.� !!"��7������101&�!'!��$� !!"� $ ���� �����

    3������������$������������#���������������,����$����#�������������������������������������#����

    ���#�����

    *���������$#����#�������$����$�����������������������

    *������������#�����������������#�������������������������������8������������������#���������$$���,�#��$�����������������+����

    %���#����������+���������������1,1������#�������+����������,���

    ) �� �*�����0�, � ��4�� �9��������$���$���,�#��#��������

    7�����������������,����#���#�����������+���������,�##������.)*���#��$������� �������,����$)2����#��������������� �����������#����

    �*��� �������0�, � ��4��

    !�����7�+���$��� !!"��7�����1041

  • ���������������������������������������������������������� "

    �������������������������������

    �%��������-�) �� �*�����0�, � ��

    ) *��-���������/ ������� � ������+�������,������$��#��������������,�+���������������,������#�������!'!.� 7����#�������#���������$��#������� :��,��$������� ���������$�;� ��,�����#����#����� %�������������,��� %������������� 9��������$��������������#�������� 2�������������$#������$�����������������������$��#�� '����#���#��������������������$�����.

    � 72*� %2*� ��##�������+���������

    ) %��������+�������������������������$����������+�#��������������������/��*����$���������� � �

    ) �������?������,� ������ @�����$������$��?������,�����2@) ����������% �������������� � %�����������������������������,��������#������##�������

    ����������������������������������������������������������

    �������������������������������

    �����������&�,������

    ��

    0��

    (��

    ���

    ���

    ��

    �14 14 14 &

    ����$�������$��5�6

    ����,�������,��������5�2�6

    �&�

    �&�

    8����������������$��������������������� � ����$���#����������$�����+���*����� � ������������������,������ ��*� �����������,�������5>=%6���;#����+�����������5%=%61A��#�� ������* ���/��*��&����$��&�

    �����������������������������������������������������������

    �������������������������������

    ����������5�� �

    ) �8����/���,�-������������������$ �$B3$) �-�����������������-��� ������������,��������$�����;#��$���

    ���+/� ���� ����������$�������$���,�) A��#����,�� ����������,��������#�������������#���,�����������

    ��� ���/����������������,��������������������$������������������������#���������#������������������������$���,����#��#��������

    ) *��$���,�������,��������#����#�����#�������,����� ��� ��������� ���/������+������#��+�����$������������9

    ) ��$��#����$���������� ���$������ �#��$������

    647�6:57�

    ;�;.

    ��

    �4

    04�

    �:

    �������������1

  • ���������������������������������������������������������� &

    �������������������������������

    � ����5 �*��

    ��� ���5 �*��) 7��������� ��� ���2����-��� �*���,������ 17��#������������$�������$����#����������������������������#��������+���,�$��1,1� ������,��������#���$�����>=%� %���������#��#����������%=%

    1���� ���5 �*��) >���,#����������;������#���$����$�������������������������������+�������#�����������������%=%���$������������������-�������������������������

    ) �;�����.#����$����,�&����#��+������������#���������$�$��#�����������������������������,��������#������,����$�������������#����#�������#����������,��������������$���+�#�����������$��,���7���$�����$7��$������� ������$7��$������

    �&�#��#�������

    ����������������������������������������������������������� (

    �������������������������������

    ������ ������������

    ) � ����8�����������$�����$$���,�������,��������#����>��=%$���,���-��������4��A�������-��-��� ���"�1!� D

    �&1(� 1

    �������������.�� ����;���*�-��������� ���������������.�B��'C�,

    � ����������*�!

    7��#�

  • ���������������������������������������������������������� !

    �������������������������������

    �% ����6������-��- �2�D�6�E

    �6��B���>����=%$���,���-��������4��A�������-��-��� ���"�1(� D

    �&1(� 1

    ��.�� ����;���*�-��������� �����������������.�B��'C�,

    � ����������*�!

    7��#�=%$���,���-��������4��A�������-��-��� ���!410D

    �&1�

    ��!�� ����;���*�-��������� ������������������!�B�.'.�,

    ���������������������������������������������������������� &

    �������������������������������

    �&��� ���

    ) 7��#�������������������,�H��� �� �������2�, �*����B����-�

  • ���������������������������������������������������������� 4

    �������������������������������

    �����������

    ) � ������!���+�$�������-������������������� �����7� %������������ � ��������-� �� �*���������������,������������,����#���#��$���,����#���

    ) � ������"���+�$�����,�� * ���% �-�, +������������������ ����$���,��������$����$������

    ) *��� ��� ���������$����$�������� 3�������2�� 8��� ���.� 7����$���������+��������������� 7����$������>=%��$%=%� 7����$������$�����$��$��$�����$#��$������5���������+���6� ������,������������#��������������$�������$��������#��� *�����������������.

    � ���#��������������$����#����5�����������+�������6� ���#��$�����������������5�#����������������#��6

    ) %��#��% ����-�������-��- �2���>=%$���,���� � ���2���+ ��������$������������$�������$�����$���,��������������������������#����$����������$���#��&��� 8��� , ������������������-���������� ����������#��������#�����+��������$��������,�8

    ) /���#�����$�$>=%���������#��������$����$�����#�$�"������������#����,�����$�����$���,������-�����,�� ���&�������� ������

    ����������������������������������������������������������� (

    �������������������������������

    $*���#��$*���#��

  • SECTION 7 PILE FOUNDATIONS

    R. Frank Ecole Nationale des Ponts et Chaussées

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 1

    Background and ApplicationsEUROCODES

    Design of pile foundations following Eurocode 7-Section 7

    Workshop “Eurocodes: background and applications”

    Brussels, 18-20 Februray 2008

    Roger FRANK, Professor

    Ecole nationale des ponts et chaussées, Paris

    Brussels, 18-20 February 2008 – Dissemination of information workshop 2

    EUROCODESBackground and Applications Contents of Part 1 (EN 1997-1)

    Section 1 GeneralSection 2 Basis of geotechnical designSection 3 Geotechnical dataSection 4 Supervision of construction, monitoring and maintenanceSection 5 Fill, dewatering, ground improvement and reinforcementSection 6 Spread foundationsSection 7 Pile foundationsSection 8 Anchorages Section 9 Retaining structuresSection 10 Hydraulic failureSection 11 Site stabilitySection 12 Embankments

    Brussels, 18-20 February 2008 – Dissemination of information workshop 3

    EUROCODESBackground and Applications

    EN 1997-1: E A sample semi-empirical method for bearing

    resistance estimationH Limiting foundation movements and structural

    deformation

    EN 1997-2:D.7 Example of a method to determine the

    compressive resistance of a single pile (CPT)D.6 Example of a correlation between

    compressive resistance of a single pile and cone penetration resistance

    E.3 Example of a method to calculate the compressive resistance of a single pile (PMT)

    Informative annexesInformative annexesBrussels, 18-20 February 2008 – Dissemination of information workshop 4

    EUROCODESBackground and Applications Section 7 of EN 1997-1

    •• Pile load testsPile load tests

    •• Axially loaded pilesAxially loaded piles

    -- ULS compressive or tensile resistance ULS compressive or tensile resistance ((‘‘bearing capacitybearing capacity’’))

    -- Vertical displacements of pile foundations: Vertical displacements of pile foundations: serviceability of the supported structureserviceability of the supported structure

    •• Transversely loaded pilesTransversely loaded piles

    •• Structural design of pilesStructural design of piles

    Brussels, 18-20 February 2008 – Dissemination of information workshop 5

    EUROCODESBackground and Applications Specificity of pile foundations

    Need to take into account the actions due to ground displacement :

    - downdrag (negative skin friction)- heave - transverse loading

    ********************* the design values of the strength and stiffness of the

    moving ground should usually be upper values* the ground displacement is treated as an action and an

    interaction analysis is carried out, or

    * an upper bound of the force transmited by the ground is introduced as the design action.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 6

    EUROCODESBackground and Applications General

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 7

    EUROCODESBackground and Applications Pile load tests

    Brussels, 18-20 February 2008 – Dissemination of information workshop 8

    EUROCODESBackground and Applications

    Brussels, 18-20 February 2008 – Dissemination of information workshop 9

    EUROCODESBackground and Applications Axially loaded piles

    Brussels, 18-20 February 2008 – Dissemination of information workshop 10

    EUROCODESBackground and Applications

    ULS Compressive or tensile ULS Compressive or tensile resistance of piles (bearing resistance of piles (bearing

    capacity)capacity)

    Brussels, 18-20 February 2008 – Dissemination of information workshop 11

    EUROCODESBackground and Applications

    ULS - From static load test results

    7.6.2.2 Ultimate compressive resistance from static load tests

    (8)P For structures, which do not exhibit capacity to transfer loads from "weak" piles to "strong" piles, as a minimum, the following equation shall be satisfied:

    ( ) ( )⎭⎬⎫

    ⎩⎨⎧

    =2

    minmc;

    1

    meanmc;kc; ;Min ξξ

    RRR (7.2)

    where ξ1 and ξ2 are correlation factors related to the number of piles tested and are applied to the mean (Rc;m) mean and the lowest (Rc;m )min of Rc;m respectively.

    NOTE The values of the correlation factors may be set by the National annex. The recommended values are given in Table A.9.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 12

    EUROCODESBackground and Applications

    Characteristic resistance from measured resistances

    Table A.9 - Correlation factors ξ to derive characteristic values from static pile load tests (n - number of tested piles)

    ξ for n = 1 2 3 4 ≥ 5

    ξ1 1,40 1,30 1,20 1,10 1,00

    ξ2 1,40 1,20 1,05 1,00 1,00

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 13

    EUROCODESBackground and Applications

    ULS – From ground test results : ‘Model pile’ method

    7.6.2.3 Ultimate compressive resistance from ground test results

    (5)P The characteristic values Rb;k and Rs;k shall either be determined by:

    ( ) ( ) ( )⎭⎬⎫

    ⎩⎨⎧

    ==+

    =+=4

    mincalc;

    3

    meancalc;calc;cals;calb;ks;kb;kc; ;Min ξξξξ

    RRRRRRRR (7.8)

    where ξ3 and ξ4 are correlation factors that depend on the number of profiles of tests, n, and are applied respectively: to the mean values (Rc;cal )mean = (Rb;cal + Rs;cal)mean = (Rb;cal)mean + (Rs;cal)meanand to the lowest values (Rc;cal )min = (Rb;cal + Rs;cal)min,

    NOTE The values of the correlation factors may be set by the National annex. The recommended values are given in Table A.10.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 14

    EUROCODESBackground and Applications

    Table A.10 - Correlation factors ξ to derive characteristic values from ground test results (n - the number of profiles of tests)

    ξ for n = 1 2 3 4 5 7 10

    ξ3 1,40 1,35 1,33 1,31 1,29 1,27 1,25

    ξ4 1,40 1,27 1,23 1,20 1,15 1,12 1,08

    Characteristic resistance from calculated resistances

    Brussels, 18-20 February 2008 – Dissemination of information workshop 15

    EUROCODESBackground and Applications

    ULS – From ground test results : ‘Alternative’ method

    7.6.2.3 Ultimate compressive resistance from ground test results

    (8) The characteristic values may be obtained by calculating:

    Rb;k = Ab qb;k and ∑ ⋅=i

    iis qAR k;s;s;;k (7.9)

    where qb;k and qs;i;k are characteristic values of base resistance and shaft friction in the various strata, obtained from values of ground parameters.

    NOTE If this alternative procedure is applied, the values of the partial factors γb and γs recommended in Annex A may need to be corrected by a model factor larger than 1,0. The value of the model factor may be set by the National annex.

    Brussels, 18-20 February 2008 – Dissemination of information workshop 16

    EUROCODESBackground and Applications

    ULS ULS -- Permanent and transient Permanent and transient design situations design situations -- Load factorsLoad factors

    Brussels, 18-20 February 2008 – Dissemination of information workshop 17

    EUROCODESBackground and Applications

    ULS ULS -- Permanent and transient Permanent and transient design situations design situations -- Resistance factorsResistance factors

    Brussels, 18-20 February 2008 – Dissemination of information workshop 18

    EUROCODESBackground and Applications

    CharacteristicCharacteristic value :value :RRkk = R / = R / ξ ξ where R = where R = γγRdRdRRcalcal or R = Ror R = Rmm (1)(1)

    DesignDesign value :value :RRdd = R= Rkk//γγtt oror RRdd = R= Rbkbk//γγbb + R+ Rsksk//γγss (2)(2)

    Applied Applied compression/tensioncompression/tension loadload ::FFdd = = γγFFFFkk (3)(3)

    General conditionGeneral condition for ULS being :for ULS being :FFdd ≤≤ RRdd (4) (4)

    equations (1) to (4) lead to :equations (1) to (4) lead to :

    FFkk ≤≤ R / R / γγFF..γγtt..ξξ = R / FS= R / FS (5)(5)

    Design resistanceDesign resistance

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 19

    EUROCODESBackground and Applications

    Piles in compression :Piles in compression :

    Piles in tension :Piles in tension :

    Piles in groupPiles in groupBrussels, 18-20 February 2008 – Dissemination of information workshop 20

    EUROCODESBackground and Applications

    Brussels, 18-20 February 2008 – Dissemination of information workshop 21

    EUROCODESBackground and Applications

    Vertical displacements of pile foundations (serviceability of supported structure)

    Vertical displacements under SLS conditions must be assessed and checked against limiting value : * Piles in compression- downdrag must be taken into account - settlement due to group action must be taken into account* Piles in tension- check upward displacements in the same manner

    Brussels, 18-20 February 2008 – Dissemination of information workshop 22

    EUROCODESBackground and Applications

    0

    20

    40

    60

    80

    100

    120

    0 1 2 3 4 5 6 7

    Pile Load (MN)

    Settl

    emen

    t (m

    m)

    Load Test 2

    Pile Load Test Results Load Settlement Settlement (MN) Pile 1(mm) Pile 2 (mm) 0 0 0 0.5 2.1 1.2 1.0 3.6 2.1 1.5 5.0 2.9 2.0 6.2 4.1 3.0 10.0 7.0 4.0 18.0 14.0 5.0 40.0 26.0 5.6 63.0 40.0 6.0 100.0 56.0 6.4 80.0

    Load Test 1

    Example from pile load test results (Orr, 2005)

    driven piles B = 0.40 m D = 15.0 m allowable settlement is 10 mm loads : Gloads : Gkk = 20,000 kN and Q= 20,000 kN and Qkk = 5,000 kN= 5,000 kN

    Brussels, 18-20 February 2008 – Dissemination of information workshop 23

    EUROCODESBackground and Applications Results

    From Table, for n = 2 pile load tests : for n = 2 pile load tests : ξ1 = 1.30 and ξ2 = 1.20

    Rk = Min{5.3/1.30; 5.0/1.20} = Min{4.08; 4.17} = 4.08

    DA 1DA 1--2 : F2 : Fdd = 26.5 MN and R= 26.5 MN and Rdd = 3.14 MN.= 3.14 MN.9 piles are needed (neglecting group effects)9 piles are needed (neglecting group effects)&&DA1DA1--1 : F1 : Fdd = 34.5 MN and R= 34.5 MN and Rdd = 4.08= 4.089 piles are also needed (neglecting group effects)9 piles are also needed (neglecting group effects)

    DA 2 : FDA 2 : Fd d = 34.5 MN and R= 34.5 MN and Rdd = 3.71 MN= 3.71 MN10 piles are needed (neglecting group effects).10 piles are needed (neglecting group effects).

    Brussels, 18-20 February 2008 – Dissemination of information workshop 24

    EUROCODESBackground and Applications SLS – Serviceability check

    * Gk + Qk = 25 MN

    * load per pile : through analysis of the 2 load curves for s < 10 mm

    * Same analysis as for ULS (ξ1 = 1.30 and ξ2 = 1.20)

    leads to Rk = Min{3.25/1.30; 3.0/1.20} = 2.5 MN

    * thus, 10 piles are needed (neglecting group effects)

  • Brussels, 18-20 February 2008 – Dissemination of information workshop 25

    EUROCODESBackground and Applications Transversely loaded piles

    Adequate safety against failure (ULS)Ftr ≤ Rtr

    One of the following failure mechanisms should be considered :

    - short piles : rotation or translation as a rigid body

    - for long slender piles : bending failure of the pile with local yielding and displacement of the soil near the top of the pile

    Brussels, 18-20 February 2008 – Dissemination of information workshop 26

    EUROCODESBackground and Applications

    Transverse resistance Rtr :

    * from head transverse displacement pile load test

    * from ground tests results and pile strength parameters

    The theory of beams with subgrade reaction moduli can be used

    Brussels, 18-20 February 2008 – Dissemination of information workshop 27

    EUROCODESBackground and Applications Transverse displacement

    The following must be taken intoaccount:- non linear soil : E(ε)- flexural stiffness of the piles : EI- fixity conditions (connections)- group effect- load reversals and cyclic loading

    Brussels, 18-20 February 2008 – Dissemination of information workshop 28

    EUROCODESBackground and Applications Conclusions

    * importance of static pile load tests* an innovative approach to pile capacity

    taking account of number of load tests or number of soil profiles

    * need of assessing serviceability of structures through displacement calculations

    Designing pile foundations with Eurocode 7 :Designing pile foundations with Eurocode 7 :

    Brussels, 18-20 February 2008 – Dissemination of information workshop 29

    EUROCODESBackground and Applications

    Thank you for your attention !

  • SECTION 8 ANCHORAGES SECTION 9 RETAINING STRUCTURES

    B. Simpson

    Arup

  • 1

    Brussels, 18-20 February 2008 – Dissemination of information workshop 1

    EUROCODESBackground and Applications EN1997-1: Anchorages and Retaining structures

    EN 1997-1 Eurocode 7Section 8 – AnchoragesSection 9 – Retaining structures

    Brian SimpsonArup Geotechnics

    2 ©

    EN 1997-1 Geotechnical design – General Rules BP106.9

    BP111.5 BP112.6 BP124-T1.311 General2 Basis of geotechnical design3 Geotechnical data4 Supervision of construction, monitoring and maintenance5 Fill, dewatering, ground improvement and reinforcement6 Spread foundations7 Pile foundations8 Anchorages9 Retaining structures10 Hydraulic failure11 Overall stability12 Embankments

    Appendices A to J

    3 ©

    8 AnchoragesBP124-F3.6

    8.1 General

    8.2 Limit states

    8.3 Design situations and actions

    8.4 Design and construction considerations

    8.5 Ultimate limit state design

    8.6 Serviceability limit state design

    8.7 Suitability tests

    8.8 Acceptance tests

    8.9 Supervision and monitoring

    4 ©

    5 © 6 ©

  • 2

    7 © 8 ©

    9 © 10 ©

    8 Anchorages

    • Section depends on EN1537 - Execution of special geotechnical work - Ground anchors

    • Not fully compatible with EN1537. Further work on this is underway.

    • BS8081 being retained for the time being.

    11 ©

    EN1537:1999

    12 ©

    EN1537:1999Execution of special geotechnical work - Ground anchors

  • 3

    13 ©

    EN1537:1999 Execution of special geotechnical work - Ground anchors- provides details of test procedures (creep load etc)

    14 ©

    Partial factors in anchor design

    15 ©

    Partial factors in anchor designBrussels, 18-20 February 2008 – Dissemination of information workshop 16

    EUROCODESBackground and Applications EN1997-1: Anchorages and Retaining structures

    EN 1997-1 Eurocode 7Section 8 – AnchoragesSection 9 – Retaining structures

    Brian SimpsonArup Geotechnics

    Brussels, 18-20 February 2008 – Dissemination of information workshop 17

    EUROCODESBackground and Applications EN1997-1: Anchorages and Retaining structures

    EN 1997-1 Eurocode 7

    Section 9 – Retaining structures

    Fundamentals – Design Approaches

    Main points in the code text

    Examples:Comparisons with previous (UK) practiceComparison between Design Approaches

    Lessons from the Dublin Workshop

    Brussels, 18-20 February 2008 – Dissemination of information workshop 18

    EUROCODESBackground and Applications EN1997-1: Anchorages and Retaining structures

    EN 1997-1 Eurocode 7

    Section 9 – Retaining structures

    Fundamentals – Design Approaches

    Main points in the code text

    Examples:Comparisons with previous (UK) practiceComparison between Design Approaches

    Lessons from the Dublin Workshop

  • 4

    19 ©

    Genting Highlands BP87.59 BP106.30 BP111.22 BP112.43 BP119.43 BP124-F3.9 BP130.33 BP145a.8 Genting Highlands BP87.60 BP106.31 BP111.23 BP112.44 BP119.44 BP124-F3.10 BP130.34 BP145a.9

    21 ©

    FOS > 1 for characteristic soil strengthsBP87.61 BP106.32 BP111.24 BP112.45

    BP119.45 BP124-F3.11 BP130.35 BP145a.10

    - but not big enough

    22 ©

    The slope and retaining wall are all part of the same

    problem. BP87.62 BP106.33 BP111.25 BP112.46BP119.46 BP124-F3.12 BP130.36 BP145a.11

    Structure and soil must be designed together - consistently.

    23 ©

    Approaches to ULS design –The merits of

    Design Approach 1 in Eurocode 7Brian SimpsonArup Geotechnics BP145a.1

    ISGSR2007 - First International Symposium on Geotechnical Safety and Risk Brussels, 18-20 February 2008 – Dissemination of information workshop 24

    EUROCODESBackground and Applications EN1997-1: Anchorages and Retaining structures

    EN 1997-1 Eurocode 7

    Section 9 – Retaining structures

    Fundamentals – Design Approaches

    Main points in the code text

    Examples:Comparisons with previous (UK) practiceComparison between Design Approaches

    Lessons from the Dublin Workshop

  • 5

    25 ©

    EN 1997-1 Geotechnical design – General Rules BP106.9 BP111.5 BP112.6 BP124-T1.31

    1 General2 Basis of geotechnical design3 Geotechnical data4 Supervision of construction, monitoring and maintenance5 Fill, dewatering, ground improvement and reinforcement6 Spread foundations7 Pile foundations8 Anchorages9 Retaining structures10 Hydraulic failure11 Overall stability12 Embankments

    Appendices A to J

    26 ©

    9 Retaining structures

    9.1 General9.2 Limit states9.3 Actions, geometrical data and design situations 9.4 Design and construction considerations 9.5 Determination of earth pressures 9.6 Water pressures 9.7 Ultimate limit state design 9.8 Serviceability limit state design

    27 ©

    9.2 Limit states

    28 ©

    9.2 Limit states

    29 ©

    9.3.2 Geometrical data

    30 ©

    9.3.2 Geometrical data

    100%

    10%

    100%

    10%

  • 6

    31 ©

    9.4 Design and construction considerations

    32 ©

    9.4 Design and construction considerations

    33 ©

    9.4.2 Drainage systems

    34 ©

    9.5 Determination of earth pressures

    35 ©

    9.5 Determination of earth pressures

    36 ©

    9.5.3 Limiting values of earth pressure

    Annex C also provides charts and formulae for the active and passive limit values of earth pressure.

  • 7

    37 ©

    Annex C Sample procedures to determine limit values of earth pressures on vertical walls

    • Based on Caquot and Kerisel (and Absi?).

    • No values for adverse wall friction, which can lead to larger Ka and much smaller Kp.

    38 ©

    Wall friction

    Adverse wall friction may be caused by loads on the wall from structures above, inclined ground anchors, etc.

    39 ©

    C.2 Numerical procedure for obtaining passive pressures

    • Also provides Ka

    • Programmable formulae (though not simple)

    • Incorporated in some software (eg Oasys FREW, STAWAL)

    • Precise source not known (to me), but same values as Lancellotta, R (2002) Analytical solution of passive earth pressure. Géotechnique 52, 8 617-619.

    • Covers range of adverse wall friction.

    • Slightly more conservative than Caquot & Kerisel when φ and δ/φ large – but more correct?

    40 ©

    Ka, Kp charts in Simpson & Driscoll

    41 ©

    Comparison with Caquot & Kerisel

    Kp(C&K) / Kp(EC7) %

    Ka(C&K) / Ka(EC7) %

    42 ©

    9.7 Ultimate limit state design

  • 8

    43 ©

    9.7.2 Overall stability

    44 ©

    9.7.3 Foundation failure of gravity walls

    45 ©

    9.7.4 Rotational failure of embedded walls

    46 ©

    9.7.5 Vertical failure of embedded walls

    47 ©

    9.7.6 Structural design of retaining structures

    48 ©

    9.7.6 Structural design of retaining structures

  • 9

    49 ©

    9.7.7 Failure by pull-out of anchorages

    50 ©

    9.8 Serviceability limit state design

    51 ©

    9.8.2 DisplacementsBrussels, 18-20 February 2008 – Dissemination of information workshop 52

    EUROCODESBackground and Applications EN1997-1: Anchorages and Retaining structures

    EN 1997-1 Eurocode 7

    Section 9 – Retaining structures

    Fundamentals – Design Approaches

    Main points in the code text

    Examples:Comparisons with previous (UK) practiceComparison between Design Approaches

    Lessons from the Dublin Workshop

    53 ©

    8m propped wall BP87.71 BP111.33 BP112.49 8m propped wall - data BP78.26 BP111.34BP112.50 BP119.50 BP124-F3.15

    CASE: DA1

    -1 DA1

    -2 EC7 SLS

    Unplanned overdig (m) 0.5 0.5 0 Dig level: Stage 1 -8.5 -8.5 -2.5 Stage 2 -8.0 Characteristic φ' ( ) 24 24 24 γ (or M) on tan φ' 1 1.25 1 Design φ' 24 19.6 24 δ'/φ' active 1 1 1 δ'/φ' passive 1 1 1 Ka 0.34 0.42 0.34Factor on Ka 1 1 1 Design Ka 0.34 0.42 0.34Kp 4.0 2.9 4.0 Factor on Kp 1 1 1 Design Kp Excd. side Retd. side

    4.0 2.9 4.0 1.0

    γQ 1 1.3 1

  • 10

    8m propped wall - length and BM BP78.28BP111.35 BP112.51 BP119.51 BP124-F3.16

    CASE: DA1

    -1 DA1

    -2 EC7 SLS

    Unplanned overdig (m) 0.5 0.5 0 Design φ' 24 19.6 24 Design Ka 0.34 0.42 0.34Design Kp Excd. side Retd. side

    4.0 2.9 4.0 1.0

    γQ 1 1.3 1 Computer program STW STW F Data file PROP11 PROP1 BCAP3AWall length (m) 15.1

    * 17.9

    * 17.8 **

    Max bending moment (kNm/m)

    1097 1519 -236 +682

    Factor on bending moment 1.35 1 1 ULS design bending moment (kNm/m)

    1481 1519 -236 +682

    * Computed ** Assumed

    Redistribution of earth pressure BP87.75 BP111.36 BP112.52BP119.52 BP124-F3.17

    57 ©

    Compare CIRIA 104 BP87.2 BP111.54 BP112.54 BP119.53 BP124-F3.18

    58 ©

    10kPa (13kPa)

    0

    -8m (-8.5m)

    φ′ = 24° (19.6°)

    59 ©

    xbca

    p5-F

    eb07

    c E

    vent

    3 R

    un 3

    Inc

    rem

    ent 1

    11:

    28 2

    1-02

    -07

    : Ben

    ding

    mom

    ent

    -20.

    00-1

    6.00

    -12.

    00-8

    .000

    -4.0

    00.0

    y coo

    rdin

    ate

    (x =