eucentre european centre for training and research in earthquake engineering

39
EUCENTRE European Centre for Training and Research in Earthquake Engineering Analisi di Risposta Sismica Stocastiche Monodimensionali Carlo G. Lai, PhD ([email protected]) Università degli Studi di Pavia Istituto Universitario di Studi Superiori di Pavia Co-autori: Mirko Corigliano, PhD Heidy Sanchez, MSc Trieste, 8 Ottobre 2008

Upload: read

Post on 14-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

EUCENTRE European Centre for Training and Research in Earthquake Engineering. Università degli Studi di Pavia. Istituto Universitario di Studi Superiori di Pavia. Analisi di Risposta Sismica Stocastiche Monodimensionali Carlo G. Lai , PhD ( [email protected] ). Co-aut o r i : - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: EUCENTRE European Centre for Training and Research in Earthquake Engineering

EUCENTRE

European Centrefor Training and Research

in Earthquake Engineering

Analisi di Risposta Sismica Stocastiche Monodimensionali

Carlo G. Lai, PhD([email protected])

Universitàdegli Studi di Pavia

Istituto Universitariodi Studi Superiori

di Pavia

Co-autori:Mirko Corigliano, PhDHeidy Sanchez, MSc Trieste, 8 Ottobre

2008

Page 2: EUCENTRE European Centre for Training and Research in Earthquake Engineering

2/36

Outline

Motivation

A case study: PSHA at Kancheepuram, South India

Geotechnical site characterization and uncertainties

Stochastic site response analysis

Spectrum-compatible accelerograms

Final remarks

Page 3: EUCENTRE European Centre for Training and Research in Earthquake Engineering

3/36

Motivazione

Page 4: EUCENTRE European Centre for Training and Research in Earthquake Engineering

4/36

Motivazione

Per l’esecuzione di analisi dinamiche (strutturali o geotecniche) occorrono accelerogrammi da impiegare come input sui sistemi oggetto di analisi

1) Come ottenere gli accelerogrammi (naturali, artificiali, sintetici, ibridi…)2) Come gestire le variabilità dell’input e le sue incertezze

IMPORTANZA della variabilità della risposta rispetto all’input

Da BOORE, 2004, CAN SITE RESPONSE BE PREDICTED?

Page 5: EUCENTRE European Centre for Training and Research in Earthquake Engineering

5/36

Motivazione

ACCELEROGRAMMI ARTIFICIALI spettro-compatibili: generati da modelli iterativi di generazione e aggiustamento di segnali nel dominio della frequenza o del tempoElevato numero di cicli, eccessivo contenuto di energia, scarsa significatività fisicaProblemi quando si adattano a spettro probabilistico ottenuto con contributo sorgenti a distanze e magnitudo diverse“generare un accelerogramma compatibile con uno spettro probabilistico non è né ragionevole né realistico” [Naeim e Lew, 1995]

ACCELEROGRAMMI SINTETICI : generati tramite simulazione di sorgente e propagazione, con modelli più o meno complessi (da sorgente puntuale a sorgenti finite)Problemi di necessaria dettagliata conoscenza delle sorgenti, di calcolo e simulazione di certe componenti spettrali ad alta frequenza influenzate da caratteristiche dei materiali lungo percorso

ACCELEROGRAMMI REALI: registrazioni accelerometriche di terremotiSomiglianza del contesto sismotettonico, compatibilità e coerenza dei segnali (durata, PGA), compatibilità e coerenza dei parametri sismogenetici (Magnitudo, Distanza, Meccanismo di sorgente)Significatività delle caratteristiche del sito di registrazione

Page 6: EUCENTRE European Centre for Training and Research in Earthquake Engineering

6/36

Motivazione

• contenuto energetico e in frequenza (numero di cicli)

• durata in relazione ai parametri sismogenetici di scenario

• giusta correlazione temporale tra le componenti del moto H e V

• corrispondenza tra le fasi e non solo sulle ampiezze (spettrogrammi)

• corrispondenza con gli scenari (sismotettonica) di interesse al sito

SCELTA TIPOLOGIA DEGLI ACCELEROGRAMMI

Gli accelerogrammi REALI sono preferibili rispetto a quelli ARTIFICIALI in quanto rappresentano in modo più realistico le caratteristiche dello scuotimento per quanto riguarda:

Page 7: EUCENTRE European Centre for Training and Research in Earthquake Engineering

7/36

Motivazione

CRITERI DI SELEZIONE DEGLI ACCELEROGRAMMI NATURALI

SELEZIONE SULLA BASE DI PARAMETRI DEL SEGNALEPGA, spettro di risposta.Durata

SELEZIONE SULLA BASE DI PARAMETRI SISMOLOGICIQuando è disponibile una valutazione specifica di pericolosità (dettaglio sulle zone sismogenetiche, i relativi tassi, le leggi di attenuazione)

Combinazione dei due criteri

+Valutazione soggettiva della qualità delle registrazioni

Page 8: EUCENTRE European Centre for Training and Research in Earthquake Engineering

8/36

Motivazione

SELEZIONE con CRITERI geofisici

Quando è disponibile uno studio specifico di pericolosità, è possibile impiegare come criterio di selezione l’affinità dei relativi parametri sismologici

STUDIO DETERMINISTICO (DSHA)Il terremoto di scenario è completamente specificato (Magnitudo, Distanza), ed è il riferimento per la selezione degli accelerogrammi

STUDIO PROBABILISTICO (PSHA)Lo spettro uniforme probabilistico è costruito integrando i contributi di diverse magnitudo e distanze. Occorre quindi procedere alla disaggregazione e determinare lo scenario dominante (M-R,eps).

Tuttavia diverse parti dello spettro sono dominate da scenari diversiLa disaggregazione per la PGA non garantisce una adeguata rappresentatività per le ordinate a lungo periodo.

Page 9: EUCENTRE European Centre for Training and Research in Earthquake Engineering

9/36

Motivazione

amplificazione topografica

amplificazione litostratigrafica

ipocentro

raggi sismici

amplificazione topografica

amplificazione litostratigrafica

ipocentro

raggi sismici

Input sismico e risposta sismica locale

Valutazione risposta sismica locale è un passo importante, che segue definizione input sismico per sito rigido in quanto definisce la variazione che parametri di scuotimento possono subire per effetto di variazioni delle caratteristiche meccaniche e litostratigrafiche strati più superficiali, e di irregolarità topografiche e morfologiche locali.

Page 10: EUCENTRE European Centre for Training and Research in Earthquake Engineering

10/36

Caso Studio:Sito Archeologico di

Kancheepuram, India

Page 11: EUCENTRE European Centre for Training and Research in Earthquake Engineering

11/36

A case study

Kanchipuram

Location:-12.83○N , 79.70○E (60 kms from Chennai) (100 kms from Pondicheery) (220 kms from Bangalore),

Chennai

Pondicherry

Bangalore

Historical Important:

- Notably several big temples

- Located on the Palar river,

- A capital city of Kancipuram district

Page 12: EUCENTRE European Centre for Training and Research in Earthquake Engineering

12/36

A case study

Ekambareswara Temple - Tallest Gopuram (60meters) Built in 1509 A.D

Kailasanatha Temple built in the early 8th century

Varadaraja Perumal Temple

Page 13: EUCENTRE European Centre for Training and Research in Earthquake Engineering

13/36

Probabilistic Seismic Hazard Assessment

Page 14: EUCENTRE European Centre for Training and Research in Earthquake Engineering

14/36

Area of study

The CRISIS 2007, Ordaz et al., 2007, was be used in this study to perform the Probabilistic Seismic Hazard Analysis (PSHA) with the Cornell-McGuire approach.

The earthquake probability of occurrence was modeled as a Poissonian process.

Three Seismic source zones were defined for this preliminary study based on seismicity and lineaments

Two attenuation equations were used, Ranghu Kanth and Iyengar (2007) and Abrahamson and Silva (1997).

Page 15: EUCENTRE European Centre for Training and Research in Earthquake Engineering

15/36

PSHA

The Horizontal component UHS of Kancheepuram

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0Period (s)

Sa

(g)

T = 95 years

T = 475 years

T = 975 years

T = 2,475 years

DBE, BIS 1893 (2002) Rock site

MCE, BIS 1893 (2002) Rock site

Comparison made between code design spectra and the UHS computed for different return periods (95,475,975,2475 years)

Page 16: EUCENTRE European Centre for Training and Research in Earthquake Engineering

16/36

Geotechnical Site Characterization

Page 17: EUCENTRE European Centre for Training and Research in Earthquake Engineering

17/36

Geotechnical site characterization

Two different types of test were performed using the same experimental set‑up.

The data for MASW and REMI tests was acquired using a linear array of vertical geophones .

10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

offset [m]

time

[s]

wavenumber[rad/m]

freq

uenc

y [H

z]

0 1 2 30

100

200

300

400

0 20 40 60 80 100200

250

300

350

400

frequency [Hz]

phas

e ve

loci

ty [m

/s]

wavenumber[rad/m]

freq

uenc

y [H

z]

0 1 2 30

100

200

300

400

Array location

Page 18: EUCENTRE European Centre for Training and Research in Earthquake Engineering

18/36

Geotechnical site characterization

Boreholes location

In order to identify the lithology at the site, five boreholes were excavated ranging from 10 to 20m in depth.

The HVSR technique was used as an effective tool to identify the natural frequency of the sites in order to see if there were large impedance contrast with the underlying bedrock.

Water tank

Road

Broken Mantap

Pallava Gopuram

Abandon Gopuram

Gate

RoadG1

G2

G3G4

G7G6

G5

G10G11

G12

G13

G15G18

G16

G17 G19

G20

G21G22

G8G9

3.0m

Basava place

Road

12.0m

Main Temple

plant

plant

1.6m

6.0m36.0

m45.0

m

G14

3.0m

3.0m

22.5m

19.0m

40.5m

1.6m

3.1m

G23

MainGopuram

G24

9.14m

G25

6.48m

G26

13.0m

G27

5.15m

G28

Page 19: EUCENTRE European Centre for Training and Research in Earthquake Engineering

19/36

Geotechnical site characterization

Shear Wave Velocity Profiles

0

2

4

6

8

10

12

14

16

18

20

100 250 400 550 700

0

2

4

6

8

10

12

14

16

18

20

100 200 300 400 500

0

2

4

6

8

10

12

14

16

18

20

100 200 300 400 500

0

2

4

6

8

10

12

14

16

18

20

200 300 400 500

Main Temple

Line 3

Line 4

Line 5

Nakamura Test

A shear wave velocity profile was computed for each array. This was done without the constrains of the thickness of the layers obtained from the boreholes. From the Nakamura points test it

can be seen that change in frequency is very small, thus the profile under the temple can be consider as a 1D.

Page 20: EUCENTRE European Centre for Training and Research in Earthquake Engineering

20/36

Geotechnical site characterization

Dark brown sandy soil

Sandy/ Silty Clay

Clayey/Silty fine to coarse sand

Stiff/ cemented clay

Fine to coarse sand

Silty very fine sand

Fine to coarse sand with stones

Clayey silty sand

Fine to medium silty sand

w/stones

LITHOLOGY

Dark brown sandy soil

Sandy/ Silty Clay

Clayey/Silty fine to coarse sand

Stiff/ cemented clay

Fine to coarse sand

Silty very fine sand

Fine to coarse sand with stones

Clayey silty sand

Fine to medium silty sand

w/stones

LITHOLOGY

Page 21: EUCENTRE European Centre for Training and Research in Earthquake Engineering

21/36

Geotechnical site characterization

Temple

In order to create a model of the soil conditions and to determine the layer constrains at the site a series of profiles were interpolated using the information from the boreholes

Page 22: EUCENTRE European Centre for Training and Research in Earthquake Engineering

22/36

Geotechnical site characterization

Page 23: EUCENTRE European Centre for Training and Research in Earthquake Engineering

23/36

Geotechnical site characterization

Shear wave velocity profile BH-1

0

2

4

6

8

10

12

14

16

18

20

0.00 100.00 200.00 300.00 400.00 500.00

Shear wave velocity m/s

Dept

h (m

)

BH1 (Otho & Goto)

MASW line 1

Shear wave velocity profile BH-2

0

2

4

6

8

10

12

14

16

18

20

0.00 100.00 200.00 300.00 400.00 500.00

Shear wave velocity (m/s)

BH1 (Otho & Goto)

MASW

Shear wave velocity profile BH-4

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00

Shear wave velocity (m/s)

Depth

(m)

BH1 (Otho & Goto)

MASW

MASW 10 layers

Comparison of shear wave velocity profile computed with MASW and the Otha & Goto (1978) relationship using the borehole information.

Page 24: EUCENTRE European Centre for Training and Research in Earthquake Engineering

24/36

Geotechnical site characterization

Layer # Thickness Vs Thickness range

Vs range

1 1 m 100m/s 1 m 100 m/s 2 2.5 m 200 m/s 2-3 m 180-220 m/s 3 11 m 260 m/s 9-13 m 240-280 m/s 4 - 500 m/s - 400-600 m/s

Shear wave velocity profile

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

50 100 150 200 250 300 350 400 450 500 550

Shear wave velocity (m/ s)

The final shear wave velocity profile was determined using both the MASW and the constrains of the thickness layer obtained with the boreholes.

This profile will be changed within a variation range during the Montecarlo simulation.

Page 25: EUCENTRE European Centre for Training and Research in Earthquake Engineering

25/36

1D Stochastic Site Response Analysis

Page 26: EUCENTRE European Centre for Training and Research in Earthquake Engineering

26/36

1D stochastic site response analysis

Deterministic: a deterministic study is not adequate, because, there are several sources of uncertainties in the geotechnical model. For instance it does not allow to include the range of variations of Vs and thickness of layers and their influence on site response.

Stochastic: in the present study the analyses were performed by considering the uncertainty of model parameters by means of more than 10,000 Monte Carlo simulations.

• Opportunity to assess the sensitivity of the results to the uncertainty of model parameters;

• Opportunity to identify which are the parameters whose uncertainty contribute the most to the uncertainty of the response need to define response functions.

• Opportunity to optimize the budget for geotechnical site characterization based on two points above.

STOCHASTIC SITE RESPONSE ANALYSIS

Page 27: EUCENTRE European Centre for Training and Research in Earthquake Engineering

27/36

1D stochastic site response analysis

Horizontal UHS from PSHA

Different return periods

Spectra CompatibleInput record for the soil

profile.Set of 7 records

Definition 1D Model*Thickness of the layers*Vs for each layer*Density of each material

*Degradation curve for eachmaterial

*Damping curve for each material

Site Response AnalysisShake91

All simulations saved

Processing of the ResultsAnd Statistic study

Spectra CompatibleInput record for the structure.Set of 7 records

Definition of the

distribution of the

parameters

Monte Carlo Simulation

Horizontal UHS from PSHA

Different return periods

Spectra CompatibleInput record for the soil

profile.Set of 7 records

Definition 1D Model*Thickness of the layers*Vs for each layer*Density of each material

*Degradation curve for eachmaterial

*Damping curve for each material

Site Response AnalysisShake91

All simulations saved

Processing of the ResultsAnd Statistic study

Spectra CompatibleInput record for the structure.Set of 7 records

Definition of the

distribution of the

parameters

Monte Carlo Simulation

Page 28: EUCENTRE European Centre for Training and Research in Earthquake Engineering

28/36

1D stochastic site response analysis

50 100 150 200 250 300 350 400

0

5

10

15

20

25

30

35

40

Vs [m/s]

Depth

[m]

Once the distribution of the parameters is defined, the sampling technique known as Ipercubo Latino is used.

Thickness & Vs are changed according to the variability range defined at the beginning from site test data.

Vs profilesadopted

Page 29: EUCENTRE European Centre for Training and Research in Earthquake Engineering

29/36

1D stochastic site response analysis

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

Period [s]

Spe

ctra

l acc

el.

[m/s

2 ]

MEAN OF 7 SPECTRA

Horizontal UHS 475

DCI,BIS(1893) 2002 ROCK SITE

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Period [s]

Spe

ctra

l acc

el.

[m/s

2 ]

Spectra compatible input records for 475 return period

PGA = 0.12 g

The seismic input plays a decisive role on the response, and due to its high variability is not possible to ignore it. To take it into account, for every simulation an acceleration records is taken randomly from the selected set of 7 spectra compatible records.

Page 30: EUCENTRE European Centre for Training and Research in Earthquake Engineering

30/36

1D stochastic site response analysis

DATI DISPONIBILI f (M,R) | roccia

European Strong Motion Database

PEER

DATI DISPONIBILI f (M,R) | roccia

European Strong Motion Database

PEER

• coppie (M, R) su siti “rigidi”

• stesso regime tettonico

(da Dall’Ara et al., 2006)

Page 31: EUCENTRE European Centre for Training and Research in Earthquake Engineering

31/36

1D stochastic site response analysis

Combinazioni di n elementi r a r(disposizioni senza considerare ordinamento)

Con 60 accelerogrammi, 7 a 7 circa 109 combinazioni

POSSIBILI COMBINAZIONI

Selezione manuale:Procedura ‘trial and error’: osservazione degli spettri e confronto con spettro obiettivo, scelta di accelerogrammi e calcolo della media, aggiunta di nuovi accelerogrammi e sostituzione, fino a raggiungimento di buon adattamento

Selezione con pre-elaborazione automatica:Individuazione automatica dei gruppi con scarto minimoScelta manuale tra i gruppi migliori

Page 32: EUCENTRE European Centre for Training and Research in Earthquake Engineering

32/36

1D stochastic site response analysis

PRE-ELABORAZIONE AUTOMATICAEstrazione di accelerogrammi dall’insieme di accelerogrammi più ampio (solo accelerogrammi con Magnitudo <=6 : una delle magnitudo tra ML, MS, MW, Mb)

Estrazione casuale di un gruppo. Scalatura. Media. Calcolo scarti. (scarto neg. max e medio)

Distribuzione Scarto negativo massimo (2.000.000 di gruppi da 7)

(da Dall’Ara et al., 2006)

Page 33: EUCENTRE European Centre for Training and Research in Earthquake Engineering

33/36

1D stochastic site response analysis

0 5 10 15 20 25 30-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5Accelaration on the surface

Time[s]

A [

g]

Every time that Shake91 is called, an input record is chosen randomly from the set of 7 spectra-compatible acceleration records and it is then propagated through the model that was generated randomly according to the uncertainty of Vs profile and thickness model.

The amplification of the signal due to site conditions can then be evaluated considering the uncertainty of the properties of the site profile.

All the accelerations obtained after propagation through a soil profile are used to compute the mean acceleration spectrum at the free surface.

Page 34: EUCENTRE European Centre for Training and Research in Earthquake Engineering

34/36

1D stochastic site response analysis

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

Acceleration Spectra

Period [s]

Sa (

g)

Mean Spectra

All simulations

The mean spectrum is computed to assess the mean amplification function. Associated to the mean spectrum it is also computed the uncertainty associated to this parameter. Therefore, there is a range of percentiles values to estimate site response.

Page 35: EUCENTRE European Centre for Training and Research in Earthquake Engineering

35/36

1D stochastic site response analysis

0 0.5 1 1.5 2 2.5 3 3.5 40

0.1

0.2

0.3

0.4

0.5

0.6

Acceleration Spectra

Period [s]

Sa

(g)

Horizontal UHS 475 years

Mean Spectra (soil)

Rock

PGA=0.19 g

PGA=0.12 g

The spectrum obtained at rock site is compared with the mean spectra of all the simulations. As expected the site conditions amplify the response. PGA after propagation is 63 % higher. The peak accelerations are shifted to longer periods.

Page 36: EUCENTRE European Centre for Training and Research in Earthquake Engineering

36/36

Spectrum-compatible accelerograms

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

1.2

1.4Acceleration Spectra

Period [s]

Sa

[g]

Mean Spectra 7 records

x1x2

x3

x4

x5x6

x7

0 0.5 1 1.5 2 2.5 3 3.5 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7Acceleration Spectra

Period [s]

Sa

(g)

Mean Spectra simulations

Mean Spectra 7 records

A set of 7 spectrum-compatible input records is selected using as reference the mean spectrum at the free-surface. This is done to provide seismic input to carry out dynamic analyses of a given structure considering the amplification due to site conditions.

It can be seen how the mean spectrum of the 7 selected accelerograms is in excellent agreement with the mean spectrum computed after stochastic site response analysis.

Page 37: EUCENTRE European Centre for Training and Research in Earthquake Engineering

37/36

Spectrum-compatible accelerograms

0 2 4 6 8 10 12 14 16 18 20-0.4

-0.2

0

0.2

A[g

]Spectral Compatible Input Records

0 2 4 6 8 10 12 14 16 18 20-0.4

-0.2

0

0.2

A[g

]

0 2 4 6 8 10 12 14 16 18 20-0.4

-0.2

0

0.2

A[g

]

0 2 4 6 8 10 12 14 16 18 20-0.4

-0.2

0

0.2

A[g

]

0 2 4 6 8 10 12 14 16 18 20-0.4

-0.2

0

0.2

A[g

]

0 5 10 15 20 25 30 35 40-0.4

-0.2

0

0.2

A[g

]

0 2 4 6 8 10 12 14 16 18 20-0.4

-0.2

0

0.2

A[g

]

These input records are going to be used to estimate the

behavior of the structure considering site amplifications

Page 38: EUCENTRE European Centre for Training and Research in Earthquake Engineering

38/36

Considerazioni finali

Valutazione risposta sismica locale passo importante nella definizione input sismico che segue lo studio di base con riferimento alle condizioni di sito rigido.

Aspetto peculiare simulazioni numeriche della risposta sismica locale sono gli effetti prodotti sui risultati da incertezza parametri del modello e input sismico di riferimento.

Qualità e completezza dati raccolti per definizione modello litostratigrafico condiziona fortemente affidabilità risultati. Bontà caratterizzazione geotecnica può essere valutata in funzione del contributo da essa fornito nel ridurre incertezze risposta sismica locale.

Anche incertezza input sismico di riferimento utilizzato nelle analisi concorre in modo significativo a determinare il grado di affidabilità delle simulazioni numeriche ed è di fondamentale importanza tenerne conto come rimarcato recentemente da Boore (2004).

L’incertezza e affidabilità risultati analisi di risposta sismica locale può essere attraverso procedure di tipo stocastico. Esse consentono di valutare sensitività dei risultati all’incertezza dei parametri del modello e a quella dell’input sismico di riferimento.

Procedura applicata ad un sito archeologico in India per valutare affidabilità risultati ottenuti dalle analisi di risposta sismica locale in funzione incertezza dei dati in ingresso. Scopo ultimo è la definizione dell’input sismico per le analisi dinamiche di un tempio.

Page 39: EUCENTRE European Centre for Training and Research in Earthquake Engineering

39/36

EUCENTRE

European Centrefor Training and Research

in Earthquake Engineering

Analisi di Risposta Sismica Stocastiche Monodimensionali

Carlo G. Lai, PhD([email protected])

Universitàdegli Studi di Pavia

Istituto Universitariodi Studi Superiori

di Pavia

Co-autori:Mirko Corigliano, PhDHeidy Sanchez, MSc Trieste, 8 Ottobre

2008