estimation of the gas flaring emissions using sentinel-3a‘s ......application to viirs on-board...

27
Estimation of the gas flaring emissions using Sentinel-3A‘s SLSTR Alexandre Caseiro Johannes W. Kaiser Berit Gehrke Max-Planck-Institute for Chemistry Mainz Gernot Rücker Joachim Tiemann David Leimbach Zebris GbR Munich contact: [email protected] photo from esa.int

Upload: others

Post on 03-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Estimation of the gas flaring emissions using

    Sentinel-3A‘s SLSTR Alexandre Caseiro Johannes W. Kaiser Berit Gehrke Max-Planck-Institute for Chemistry Mainz

    Gernot Rücker Joachim Tiemann David Leimbach Zebris GbR Munich

    contact: [email protected]

    photo from esa.int

  • Motivation: Monitor hot spots

    Detect Hot spots: volcanoes, gas flares, vegetation fires, industry, etc. Using an adapted Nightfire algorithm

    and the S3 SLSTR instrument (based on work using VIIRS by C. Elvidge/NOAA).

    - 2 -

    Elevated gas flares in Kuwait, National Geographic 1969

    Ground gas flare in Nigeria, Anejionu et al.,

    2014

    Steel mill, photo from Columbia.edu

    Portugal forest fires 2017,

    photo by Thomas Cabral

  • Instrumentation and concept

    - 3 -

    S5 S6 S7/F1 S8/F2 S9

    Hot spot at night = elevated value in the SWIR.

    We use the S5 channel for detection. We use the radiances of all the IR bands at the detected hot spots to perform a dual Planck curve fitting

    SLSTR = Sea and Land Surface Temperature Radiometer

    IR bands: SWIR = S5: 1.61 μm + S6: 2.25 μm MIR = S7: 3.7 μm + F1: 3.7 μm TIR = S8: 10.85 μm + F2: 10.85 μm + S9 12 μm

  • Retrieval principle

    - 4 -

    Fit of observations = Planck curve of background (S8&S9) + Planck curve of hot source (S5) Retrieved parameters: • Temperature of background • Area of hot source • Temperature of hot source • 1-σ uncertainties

    Radiative Power: RPGF = σSB × TGF4 × AGF

    Based on C. Elvidge et al. (2013, 2016), application to VIIRS on-board Suomi NPP

  • - 5 -

    Hot spot detections in 2017

    noise

    South Atlantic anomaly

    Vegetation fires

    Industry

    Gas flaring

    Volcanoes

    Hot spot examples:

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

  • - 6 -

    How to discriminate between hot spots?

    noise

    South Atlantic anomaly Vegetation fires

    Industry Gas flaring

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    cooler hotter

    transient

    persistent

    Volcanoes

  • - 7 -

    How to discriminate between hot spots?

    noise

    South Atlantic anomaly Vegetation fires

    Industry Gas flaring

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    cooler hotter

    transient

    persistent

    Volcanoes

    Persistence

  • - 8 -

    Persistent detections

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    Persistent hot spots: Gas flaring Industry Volcanoes

  • - 9 -

    How to discriminate between hot spots?

    noise

    South Atlantic anomaly Vegetation fires

    Industry Gas flaring

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    cooler hotter

    transient

    persistent

    Volcanoes

    Temperature

  • - 10 -

    Persistent detections – temperatures

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    Bi-modal Temperature distribution

    Industry, volcanoes Gas flares

  • 1 full year of SLSTR night time observations

    - 11 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

  • Retrieval examples - Most favourable case: S5 + S6 + MIR (25%)

    - 12 -

  • - 13 -

    Retrieval examples - Most favourable case: S5 + S6 + MIR (25%)

  • - 14 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    Retrieval examples - Most common case: S5 + S6 (67%)

  • Retrieval examples - Most common case: S5 + S6 (67%)

    - 15 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

  • - 16 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    Retrieval examples: S5 + MIR (3%)

  • Retrieval examples: S5 + MIR (3%)

    - 17 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

  • - 18 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    Retrieval examples: S5 only (5%)

  • Retrieval examples: S5 only (5%)

    - 19 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

  • 1 full year of SLSTR night time observations

    - 20 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

  • - 21 -

    Comparison with VIIRS Nightfire

    - General good agreement globally - Differences in the number of hot spots for some regions: Mid West, China, NW Canada, …

    Both datasets: ~6000 locations

    SLSTR, this work

    VIIRS Nightfire “flares only” (C. Elvidge, NOAA)

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

  • - 22 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    Comparison with VIIRS Nightfire

    We detect larger flares

    We detect smaller flares

    Closer look at a region where gas flaring is preponderant: Persian Gulf

  • Google Earth image of a very large flare in Venezuela

  • - 24 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    Activity and Emissions

    Activity = volume of gas flared, in BCM (billion cubic meters) Using a calibration adapted from Elvidge et al., 2016:

    We estimate a global flaring activity of 156 BCM for 2017 (this compares well with Elvidge et al., 2016: 143 BCM in 2012)

    Emissions of Black Carbon = applying published emission factors (Klimont et al., 2017): Linear range between: 0.57 g.m-3 : representative of efficient flaring (~2600K) 1.60 g.m-3 : representative of inefficient flaring (~1300K)

    We estimate a global BC emission of 149 Gg for 2017 (this is lower than Klimont et al., 2017: 210 Gg in 2010)

  • - 25 -

    Summary

    • Algorithm for retrieving temperature, size and FRP of night-time fires from SLSTR

    developed (paper submitted to Remote Sensing: https://www.preprints.org/manuscript/201805.0020/v2)

    • 12 months of observations processed and validated against VIIRS and TET-1 • We derived a global consumption of associated gas by flares of 156 BCM,

    corresponding to a global emission of 149 Gg of BC.

    • New product applicable for gas flare emission calculation, e.g. in CAMS-GFAS

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

  • - 26 -

    Thank you!

    • Paper in Remote Sensing – revisions submitted

    • If you want to use the dataset please contact [email protected]

    • http://www.mpic.de/en/research/atmospheric-chemistry/ag-kaiser.html

    Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    For 2017, from SLSTR:

    156 BCM flared gas 149 Gg Black Carbon emitted

    mailto:[email protected]

  • - 27 - Monitoring of hot spots – Symposium "Neue Perspektiven der Erdbeobachtung" – Köln, Juni 2018

    Retrieval examples - Most favourable case:

    S5 + S6 + MIR (25%)