ess 2012 peer review - electrode architectures for high ... 2012... · electrode architecture for...

1
Development of Electrode Architectures for High Energy Density Electrochemical Capacitors Majid Beidaghi 1 , Maria Lukatskaya 1 , Emilie Perre 2 , Ryan P. Maloney 2 , Yury Gogotsi 1 , Bruce Dunn 2 1 Department of Materials Science and Engineering and A.J. Drexel Nanotechnology InsItute, Drexel University, USA 2 Department of Materials Science and Engineering, University of California – Los Angeles, Los Angeles, CA, USA Introduc;on Experimental Results Conclusions Acknowledgements References 1 10 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.00 0.05 0.10 0.15 0.20 0.0 0.1 0.2 0.3 0.4 0.5 "Blocked Pore Distribution" = Before - After After hydrothermal synthesis dV/d (cc/nm/g) Pore diameter (nm) Before hydrothermal synthesis Without bonding agent – 100’s nm With bonding agent -10’s nm Smaller par;cles fill micro and mesoporosity of CarbideDerived Carbon (CDC) Phenylphosphonic Acid bonding agent dras;cally reduces metaloxide par;cle size The Nb 2 O 5 CDC composite electrodes demonstrate higher capaci;es at different scan rates compared to CDC alone. At a scan rate of 50 mV/s, with 1M LiClO 4 in acetonitrile electrolyte, the Nb 2 O 5 CDC composites (with various C:Nb raIos) display increased capaciIes compared with the CDC alone. Other aqueous and non aqueous electrolytes proved undesirable, either due to instability of the solvent at the required potenIals or lower ionic conducIviIes. Carbide Derived Carbon (CDC) has a high surface area due to small pores. The pore size is tailorable, from a few nanometers up to tens of nanometers wide, by controlling pyrolisis temperature. The size of the oxide parIcles must be tailored to match the pore size of the CDC. Too large parIcles will occlude the pores, prevenIng uIlizaIon of the CDC’s high surface area. Oxide parIcles tuned to fit within the small pores make effecIve use of the high surface area of the CDC (MeOx) ChlorinaIon temperature allows tailoring of carbon mesoporosity while maintaining macrostructure SiCNCDC TiCNanofelt CDC Nb 2 O 5 CDC Composite CDC nanofelts tested as fiberelectrodes outperform the power handling ability of carbon onions at intermediate scan rates (up to 2 V/s) Increasing the pyrolysis temperature increased the amount of mesopores in the resulIng CDC. CDC CDC CDC CDC with hierarchical pore structure (micropores & mesopores with mean pore size, 3–10 nm) and large BET surface area, up to 2400 m 2 g 1 , were synthesized by etching amorphous or crystalline polymerderived SiCN ceramics. Micropores form by etching Si atoms from the SiC phase, while mesopores derive from the eliminaIon of Si–N moieIes. The resulIng morphology (pore size, PSD, and SSA) strongly depends on pyrolysis temperature of the preceramic polymer, as well as on etching condiIons. Mechanically flexible TiCCDC nanofelts were developed through chlorinaIon of electrospun TiC nanofibrous felts. The TiCCDC nanofelts retained the morphological properIes of the precursor, while had substanIally higher values of SSA and pore volume. Nanoscale Nb 2 O 5 can be easily synthesized within the pores of CDC support. Capacitance measurements for the Nb 2 O 5 CDC material shows a high level of energy storage, significantly higher than CDC. 1. S.H. Yeon, P. Reddington, Y. Gogotsi, J. E. Fischer, C. Vakifahmetoglu and P. Colombo, Carbon, 2010, 48, 201210 2. V. Presser, L. Zhang, J. J. Niu, J. McDonough, C. Perez, H. Fong and Y. Gogotsi, Advanced Energy Materials, 2011, 1, 423430 3. Y. Gao, V. Presser, L. Zhang, J. J. Niu, J. K. McDonough, C. R. Pérez, H. Lin, H. Fong and Y. Gogotsi, Journal of Power Sources, 2012, 201, 368375 4. V. Presser, M. Heon and Y. Gogotsi, Advanced Func<onal Materials, 2011, 21, 810833 5. X. Wang, G. Li, Z. Chen, V. Augustyn, X. Ma, G. Wang, B. Dunn and Y. Lu, Advanced Energy Materials, 2011, 1, 10891093 6. J. W. Kim, V. Augustyn and B. Dunn, Advanced Energy Materials, 2012, 2, 141148 7. Y. Zhao, J. Li, C. Wu and L. Guan, Nanoscale Res Len, 2011, 6, 71 The principal goal of the present research is to create an electrode architecture for electrochemical capacitors (ECs) that possesses both the high specific power of carbon supercapacitors and the high specific energy of pseudocapacitive materials. The design and fabrication of these electrodes are based on the nanoscale deposition of transition metal oxides onto mesoporous carbon-based supports. Extraction of metals from carbides can generate a broad range of carbon nanostructures, which are known as Carbide-Derived Carbons (CDCs). The structures of CDCs as well as their pore size distribution depend on the crystal structure of the carbide precursor as well as process parameters including temperature, time and environment. Nanoscale transition metal oxides such as niobium oxide (Nb 2 O 5 ) can be easily synthesized on the CDC surface via an aqueous hydrothermal route. The oxide size can be tailored to match the CDC porosity, allowing for optimization of ionic and electronic transport within the electrode. A key feature with these architectures is that each component possesses interconnected mesoporosity to facilitate electrolyte access to both phases. -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -60 -40 -20 0 20 40 Current (A/g) Potential (V vs. Ag) CDC C/Nb=0.5 C/Nb=1 C/Nb=2 Nb 2 O 5 2 4 6 8 10 12 14 16 18 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 SiCN-CDC (pyrolyzed at 800 °C) SiCN-CDC (pyrolyzed at 1200 °C) dv(d) (cc/nm/g) Pore Width (nm) SiCN-CDC (pyrolyzed at 1400 °C) 0.01 0.1 1 10 0.0 0.2 0.4 0.6 0.8 1.0 C/C 0 Scan rate (V/s) CDC nano-felt (600 °C, film) CDC nano-felt (600 °C, powder) Carbon Onions (1800 °C, powder) Graphene (Stoller et al., Nano Letters, 2008) 0 100 200 300 400 500 0 200 400 600 800 1000 1200 Capacity (C/g) Scan rate (mV/s) CDC Nb 2 O 5 -CDC Nb 2 O 5 Nb 2 O 5 -CNT TEM 5 nm SEM SEM TEM TEM TiC Disordered carbon Disordered carbon Graphitic shell TiCCDC 2 µm 2 µm 5 nm 5 nm Cl 2 Cl 2 100 nm The authors gratefully acknowledge the support of the Department of Energy / Office of Electricity’s Energy Storage Program Future Work Scale up producIon of Nb 2 O 5 CDC composite powder Incorporate powder into coin cell devices OpImize coin cell electrode loading and morphology for enhanced specific energy and power 100 nm Carbide Powder Carbide Derived Carbon (CDC) Cl 2 2001200°C Nb 2 O 5 -CDC Composite H 2 200600°C Remove metals via chlorinaIon Anneal structure in flowing hydrogen Begin with a carbide precursor, such as SiCN, Ti 3 SiC 2 , or TiAlC 2 ResulIng Carbide Derived Carbon with tailored morphology Deposit metaloxide onto CDC Hydro thermal Synthesis 200°C 96 hours Ammonium niobate oxalate hydrate Phenylphsophonic acid Urea ResulIng Carbide Derived Carbon with metaloxide nanoparIcles for increased specific energy Electrode 1 Electrode 2 Separator + Electrolyte Microcavity Electrodes Swagelok cells Coincells 100 nm 100 nm

Upload: others

Post on 16-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Development  of  Electrode  Architectures  for  High  Energy  Density  Electrochemical  Capacitors  

    Majid  Beidaghi1,  Maria  Lukatskaya1,  Emilie  Perre2,  Ryan  P.  Maloney2,  Yury  Gogotsi1,  Bruce  Dunn2  1  Department  of  Materials  Science  and  Engineering  and  A.J.  Drexel  Nanotechnology  InsItute,  Drexel  University,  USA  

    2Department  of  Materials  Science  and  Engineering,  University  of  California  –  Los  Angeles,  Los  Angeles,  CA,  USA    

    Introduc;on  

    Experimental  

    Results   Conclusions  

    Acknowledgements  

    References  

    1 100.00.1

    0.20.3

    0.4

    0.50.6

    0.70.00

    0.05

    0.10

    0.15

    0.200.0

    0.1

    0.2

    0.3

    0.4

    0.5

    "Blocked Pore Distribution"= Before - After

    After hydrothermalsynthesis

    dV/d

    (cc/

    nm/g

    )

    Pore diameter (nm)

    Before hydrothermal synthesis

    Without bonding agent – 100’s nm

    With bonding agent -10’s nm

    Smaller  par;cles  fill  micro-‐  and  mesoporosity  of  Carbide-‐Derived  

    Carbon  (CDC)  

    Phenylphosphonic  Acid  bonding  agent  dras;cally  reduces  metal-‐oxide  par;cle  size  

    The  Nb2O5-‐CDC  composite  electrodes  demonstrate  higher  capaci;es  at  different  scan  rates  compared  to  

    CDC  alone.  

    At  a  scan  rate  of  50  mV/s,  with  1M  LiClO4  in  acetonitrile  electrolyte,  the  Nb2O5-‐CDC  composites  (with  various  C:Nb  raIos)  display  increased  capaciIes  compared  with  the  CDC  alone.    Other  aqueous  and  non-‐aqueous  electrolytes  proved  undesirable,  either  due  to  instability  of  the  solvent  at  the  required  potenIals  or  lower  ionic  conducIviIes.  

    Carbide  Derived  Carbon  (CDC)  has  a  high  surface  area  due  to  small  pores.  The  pore  size  is  tailorable,  from  a  few  nanometers  up  to  tens  of  nanometers  wide,  by  controlling  pyrolisis  temperature.  

    The  size  of  the  oxide  parIcles  must  be  tailored  to  match  the  pore  size  of  the  CDC.  Too  large  parIcles  will  occlude  the  pores,  prevenIng  uIlizaIon  of  the  CDC’s  high  surface  area.  

    Oxide  parIcles  tuned  to  fit  within  the  small  pores  make  effecIve  use  of  the  high  surface  area  of  the  CDC  

    (MeOx)  

    ChlorinaIon  temperature  allows  tailoring  of  carbon  mesoporosity  while  

    maintaining  macrostructure  

    SiCN-‐CDC   TiC-‐Nanofelt  CDC  

    Nb2O5-‐CDC  Composite  

    CDC  nanofelts  tested  as  fiber-‐electrodes  outperform  the  power  handling  ability  of  carbon  onions  at  intermediate  scan  rates  (up  to  2  V/s)  Increasing  the  pyrolysis  temperature  increased  the  amount  of  mesopores  in  

    the  resulIng  CDC.  

    CDC  

    CDC  

    CDC  

    •  CDC   with   hierarchical   pore   structure   (micropores   &  mesopores   with  mean   pore   size,   3–10   nm)   and   large  BET  surface  area,  up  to  2400  m2  g-‐1,  were  synthesized  by   etching   amorphous   or   crystalline   polymer-‐derived  SiCN  ceramics.  

    •  Micropores   form   by   etching   Si   atoms   from   the   SiC  phase,  while  mesopores  derive  from  the  eliminaIon  of  Si–N   moieIes.   The   resulIng   morphology   (pore   size,  PSD,   and   SSA)   strongly   depends   on   pyrolysis  temperature  of   the  preceramic  polymer,  as  well  as  on  etching  condiIons.    

    •  Mechanically   flexible   TiC-‐CDC   nano-‐felts   were  developed   through   chlorinaIon   of   electrospun   TiC  nano-‐fibrous  felts.  The  TiC-‐CDC  nano-‐felts  retained  the  morphological   properIes   of   the   precursor,   while   had  substanIally  higher  values  of  SSA  and  pore  volume.    

    •  Nanoscale  Nb2O5   can   be   easily   synthesized  within   the  pores  of  CDC  support.  

    •  Capacitance  measurements  for  the  Nb2O5-‐CDC  material  shows   a   high   level   of   energy   storage,   significantly  higher  than  CDC.  

    1.  S.-‐H.  Yeon,  P.  Reddington,  Y.  Gogotsi,  J.  E.  Fischer,  C.  Vakifahmetoglu  and  P.  Colombo,  Carbon,  2010,  48,  201-‐210  

    2.  V.  Presser,  L.  Zhang,  J.  J.  Niu,  J.  McDonough,  C.  Perez,  H.  Fong  and  Y.  Gogotsi,  Advanced  Energy  Materials,  2011,  1,  423-‐430  

    3.  Y.  Gao,  V.  Presser,  L.  Zhang,  J.  J.  Niu,  J.  K.  McDonough,  C.  R.  Pérez,  H.  Lin,  H.  Fong  and  Y.  Gogotsi,  Journal  of  Power  Sources,  2012,  201,  368-‐375  

    4.  V.  Presser,  M.  Heon  and  Y.  Gogotsi,  Advanced  Func