equatorial pacific gravity lineaments

50
This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/110665/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Mitchell, Neil C. and Davies, John Huw 2018. Equatorial Pacific gravity lineaments: interpretations with basement topography along seismic reflection lines. Marine Geophysical Research 39 (4) , pp. 551-565. 10.1007/s11001-018-9351-x file Publishers page: http://dx.doi.org/10.1007/s11001-018-9351-x <http://dx.doi.org/10.1007/s11001- 018-9351-x> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Upload: others

Post on 25-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Equatorial Pacific Gravity Lineaments

This is an Open Access document downloaded from ORCA, Cardiff University's institutional

repository: http://orca.cf.ac.uk/110665/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Mitchell, Neil C. and Davies, John Huw 2018. Equatorial Pacific gravity lineaments: interpretations

with basement topography along seismic reflection lines. Marine Geophysical Research 39 (4) , pp.

551-565. 10.1007/s11001-018-9351-x file

Publishers page: http://dx.doi.org/10.1007/s11001-018-9351-x <http://dx.doi.org/10.1007/s11001-

018-9351-x>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page

numbers may not be reflected in this version. For the definitive version of this publication, please

refer to the published source. You are advised to consult the publisher’s version if you wish to cite

this paper.

This version is being made available in accordance with publisher policies. See

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications

made available in ORCA are retained by the copyright holders.

Page 2: Equatorial Pacific Gravity Lineaments

1

EquatorialPacificgravitylineaments:interpretationswithbasement

topographyalongseismicreflectionlines

NeilC.Mitchell1andHuwDavies2

1SchoolofEarthandEnvironmentalSciences,UniversityofManchester,

WilliamsonBuilding,OxfordRoad,ManchesterM139PL,UK.

2SchoolofEarthandOceanSciences,CardiffUniversity,MainBuilding,Park

Place,CardiffCF103AT,UK.

Keywords:oceanicthermalsubsidence,oceanicplateisostasy,freeairgravity

anomalies,Pacificplatedeformation,mantledynamics

Thisisthegreenopen-accessversionofthisarticleaccepted14March2018for

publicationinMarineGeophysicalResearch.

Abstract

ThecentralequatorialPacificisinterestingforstudyingcluestouppermantle

processes,astheregionlackscomplicatingeffectsofcontinentalremnantsor

majorvolcanicplateaus.Inparticular,themostrecentlyproducedmapsofthe

Page 3: Equatorial Pacific Gravity Lineaments

2

free-airgravityfieldfromsatellitealtimetryshowingreaterdetailthepreviously

reportedlineamentswestoftheEastPacificRise(EPR)thatarealignedwith

platemotionoverthemantleandoriginallysuggestedtohaveformedfrom

mantleconvectionrolls.Incontrast,thegravityfield600kmorfartherwestof

theEPRrevealslineamentswithvariedorientations.Somearealsoparallelwith

platemotionoverthemantlebutothersaresub-parallelwithfracturezonesor

haveotherorientations.Thisregioniscoveredbypelagicsedimentsreaching

~500-600mthicknesssobathymetryisnotsousefulforseekingevidencefor

platedeformationacrossthelineaments.Weinsteadusedepthtobasement

fromthreeseismicreflectioncruises.Insomesegmentsoftheseseismicdata

crossingthelineaments,wefindthattheco-variationbetweengravityand

basementdepthisroughlycompatiblewithtypicaldensitiesofbasementrocks

(basalt,gabbroormantle),asexpectedforsomeexplanationsforthelineaments

(e.g.,mantleconvectionrolls,viscousasthenosphericinter-fingeringor

extensionaldeformation).However,someotherlineamentsareassociatedwith

majorchangesinbasementdepthwithonlysubtlechangesinthegravityfield,

suggestingtopographythatislocallysupportedbyvariedcrustalthickness.

Overall,themultiplegravitylineamentorientationssuggestthattheyhave

multipleorigins.Inparticular,weproposethatafurtherasthenosphericinter-

fingeringinstabilitymechanismcouldoccurfrompressurevariationsinthe

asthenospherearisingfromregionaltopographyandsuchamechanismmay

explainsomeobliquelyorientedgravitylineamentsthathavenootherobvious

origin.

Introduction

Page 4: Equatorial Pacific Gravity Lineaments

3

HaxbyandWeissel(1986)discoveredaseriesoflineamentsinthemarine

gravityfieldrecordedusingsatellitealtimetry,formingelongatedtroughsand

swellsof5-20mGalamplitudespaced~200kminthePacificandIndianOceans.

AsthelineamentsinthePacificOceanwereparalleltothepresentplate

movementoverEarth’smantleandcrossfracturezones("cross-grain"),they

wereinitiallyspeculatedtobecausedbyelongatedsmall-scaleconvectionrolls

intheasthenosphericmantle,whichwereexpectedtodevelopwithinthefirst

fewmillionyears(BuckandParmentier1986;HaxbyandWeissel1986).That

convectionwouldprovideverticalstressesthatinitiallydistorttheoverlying

lithosphere(Figure1a),creatingtopographythatbecomes"frozenin"bythe

coolingplate.Subsequently,otherauthorshavecharacterisedandcommented

ontheseandlargersimilarfeaturesinsatellitealtimetrydata(Baudryand

Kroenke1991;Cazenaveetal.1992;FleitoutandMoriceau1992;Maiaand

Diament1991;McAdooandSandwell1989;Sandwelletal.1995;Wesseletal.

1996)andtheconvectionmodelhasreceivedrenewedinterestmorerecently

(Ballmeretal.2009;Harmonetal.2006).

Otherexplanationsforthegravitylineamentshavebeenputforward.

WintererandSandwell(1987)suggestedthatextensionarisingfrom

lithosphericcooling(TurcotteandOxburgh1973)couldexplainen-echelon

volcanicridgesfoundwithinthePacificplatethatareparalleltothesegravity

lineaments,withthelithospheredeforminginaboudinagemanner(Figure1b).

Alternatively,extensioncouldarisefromfar-fieldstressescausedbyslabpull

associatedwiththePacificplate'ssubductionzones(DunbarandSandwell

1988).GoodwillieandParsons(1992)usedseparationsoffracturezonesat

differentlocationstoassessplateextensionintheSouthPacificabouttheEast

Page 5: Equatorial Pacific Gravity Lineaments

4

PacificRise(EPR),butruledoutsignificantextensionasexplaininglineaments

there,aconclusionsimilarlyreachedbyGansetal.(2003).Gansetal.(2003)

suggestedinsteadthatflexingofthelithospherecausedbyvariedcoolingrates

withdepth(Figure1c)couldexplainthegravitylineamentspacingsand

amplitudes.Cormieretal.(2011)presentedmultibeamdatashowingfaultsthat

supportthepossibilityofsuchextensionoftheCocosplate.

Toexplainacorrespondencebetweenslowseismicvelocitiesbeneath

seamountchainsofanareaofthesouthernEastPacificRise,Weeraratneetal.

(2007)andHolmesetal.(2007)suggestedthataviscousinter-fingeringcould

occurinasthenosphereaffectedbyanoff-axismantlethermalanomaly.

Essentially,buoyancyinasthenosphereoff-axiscausesittorisetowardstheaxis

beneaththedippinglithosphericlid.Fingersofthemobileasthenospheremay

explainvolcanicseamountchains(Figure1a)thatdonotagesystematicallyas

expectedoftraditionalmantlehotspotorigins(Ballmeretal.2009).

Oneofthemostrecentlyreleasedgridsofthemarinegravityfield

(Sandwelletal.2014)showninFigure2brevealsthelineamentsoriginally

identifiedbyHaxbyandWeissel(1986).Thegreaterresolutionofthisnewgrid

revealsafinerstructureimmediatelywestoftheEastPacificRisethaninthe

earlieraltimeterdata,withtroughsandswellsspacedascloselyas~20km.

Figure3c(describedlater)showsahigh-passfilteredversionofthegravitydata.

Init,thelineamentswestoftheEastPacificRisecanbeseengivingway

westwardsintoapatternoflineamentsthatismoreconfusedthoughwiththree

ormoredominantorientations(redarrowsannotatedA-F),whichwefocuson

here.

Page 6: Equatorial Pacific Gravity Lineaments

5

Inthisstudy,wetakeadvantageofinterpretedseismicreflectiondata

fromthreeresearchcruises(Bloomeretal.1995;DuboisandMitchell2012;

Eittreimetal.1994;Gnibidenkoetal.1990)andarecentcompilationofseafloor

spreadinganomalies(Barckhausenetal.2013)toevaluatetheextenttowhich

basementreliefvarieswithgravityanomaliesacrosstheselineaments,

supportingsomeoftheexplanationsforthelineamentsthathavebeenput

forward.ThemodelprofilesshowninFigure1suggestthat,astheuppersurface

oftheplateisamajordensitycontrast,itsdeformationbythevarious

mechanismsshouldleadtogravityanomaliesvaryingsympatheticallyby

amountsexpectedofbasementwithahighdensitytypicalofmantlerocks.This

assumesthatthecrusthasuniformthicknesssoitcontributesanearlyuniform

amounttothegravityfield.Inpractice,however,thecrustmayvaryinthickness,

inparticular,wherevolcanismhasbeenpromoted(e.g.,atlocationsmarked“v?”

inFigure1),hencethecomparisonisnotstraightforward.Aspartofthework,

wealsore-evaluatethePacifictectonicplatesubsidence.Previoussubsidence

studies(CrosbyandMcKenzie2009;ParsonsandSclater1977;Trehu1975)

havetendedtousegriddeddatasets(e.g.,sedimentthicknessfromseismic

reflectiondata(Divins2003;LudwigandHoutz1979;Whittakeretal.2013)),

whereerrorsmayhavebeenpossibleduetoincompletesamplingandreflective

cherthorizons(Mitchell1998).Thenewresultsallowustoverifythoseearlier

subsidenceratesandlocatewheretheseabedliesaboveorbelowthosetrends.

Dataandmethods

Seismicreflectiondata

Page 7: Equatorial Pacific Gravity Lineaments

6

SeismicreflectiondatawereobtainedduringtheAMAT03cruiseofRV

Revellein2004,whichwasasite-surveycruiseforIODPExpedition320/321.

Recordingsweremadewitha4-channelstreamertowedat~10knotsbetween

sitesandwitha48-channelstreamertowedat~6knotsatthedrillsites.The

seismicsourcecomprisedtwo150cubicinchgenerator-injector(GI)guns.A

segmentofthedataisshowninFigure4,illustratingthetypicalvisibilityofthe

basementreflection.Thefulldatasetistoolargetopresenthere,thoughseveral

imagesofthedatacovering>1000kmwereshownbyTominagaetal.(2011)

andDuboisandMitchell(2012),andthefulldatasetcanbeobtainedfromthe

UTIGAcademicSeismicDataPortal(http://www.ig.utexas.edu/sdc/).

TherecordedseismicdatawereinterpretedasdescribedbyDuboisand

Mitchell(2012)(alsoseeMitchellandDubois(2014)),includingthebasement

reflectiontwo-waytime,whichisplottedagainstshiptracksinFigure5.To

computeaccuratelythedepthofthebasementbelowtheseabedfromthe

intervaltwo-waytimet,allowanceneedstobemadeforvariationsofseismic

velocitywithsedimentdepthbecauseofcompactionanddiagenesisinthese

sediments(carbonateooze).Mayeretal.(1985)estimatedinsituvelocityfrom

loggedcorevelocitydatafromthecentralequatorialPacific,correctingmainly

forlossofconfiningpressure.Thevelocityvariationwithdepth(~1500ms-1at

thesurfaceto>2000ms-1below400metresbelowseafloor(mbsf))was

approximatedwithalineartrend,V=V0+Bz,wherezisdepthbelowseabed,and

coefficientsV0andBfoundbyleast-squaresregression(V0=1479ms-1;B=

1.0286s-1).Thefollowingequationderivedbyintegrationwasusedhereto

estimatez:

Page 8: Equatorial Pacific Gravity Lineaments

7

(1)

Equation(1)wasusedtocalculatebasementdepthfromthetwo-waytimedata

derivedfromtheAMAT03seismicreflectiondataandtheVenture-1dataof

Bloomeretal.(1995).

AsdescribedbyEittreimetal.(1994),theRVAkademikSelskiydatawere

collectedwitha24-channel,2400-mstreamerwithairgunarraysof23or46L

andmostlyshotwith24-foldalongthelinemarkedinFigure2.Afterprocessing,

thedatarevealedMoho,crustalandbasementreflections.Theseabedand

basementreflectiontwo-waytimesinterpretedbyEittreimetal.(1994)were

digitizedandconvertedtodepthusingasedimentvelocityof1540ms-1typical

ofODPSite1219measurements(Lyleetal.2002)andawatervelocityof1500m

s-1.Eittreimetal.(1994)alsoidentifiedflat-lyingMohoreflectionsandmodestly

dippingreflectionsinthelowercrust.Two-waytimesfrombasementtothe

Mohoreflectionswereconvertedtodepthwithasimplifiedoceanicvelocity

structureofanuppercrustofconstant2.5kmthicknesswithvelocity(Vp)of5

kms-1overlyingagabbro-dominatedlowercrustofvariedthicknessandvelocity

of7kms-1(MutterandMutter1993).Asegmentofthereflectioninterpretations

areshowninFigure6.

Magneticanomalyidentifications

Magneticanomalieshavebeenre-evaluatedinthisregionbyBarckhausen

etal.(2013),exploitingthegreatercoverageprovidedbyrecentresearchvessel

transits.Onesetoftransitsinvolvedavectormagnetometer,whichaided

anomalyidentificationsinthislowfieldareanearthemagneticequator.The

z =V0

BeBt/2

−1( )

Page 9: Equatorial Pacific Gravity Lineaments

8

densityofidentifications(redcrossesinFigure2a)wassignificantlyimproved

comparedwithpreviousstudies.

Crustalagescorrespondingwiththeirmagneticanomalyidentifications

andsomeoftheirisochronsaroundfracturezonesweregriddedusingasurface-

fittingprogram(SmithandWessel1990).Figure2ashowsagecontoursderived

fromthatgrid.Thegridwasthensampledalongtheseismicsurveytracksto

obtaincrustalageateachseismicmeasurement.(CrustalagecontoursinFigure

2adonotperfectlyhonourtheisochronsofBarckhausenetal.(2013)overthe

wholearea,butthegridwasconstructedtomatchfaithfullyisochronswhere

theyunderlietheseismicshiptracks.)FortheAkademikSelskiydata,crustal

agesweresimilarlyassignedusingtheisochronsofBarckhausenetal.(2013)

and,wheretheywerenotavailable(<14Maand>76Ma),fromtheagegridof

Mülleretal.(2008).

Subsidencetrends

BasementdepthsderivedfromtheAMAT03,Venture-1andAkademik

Selskiycruiseswerecorrectedforisostaticsedimentloadingusingasediment

wetbulkdensityof1.4gcm-3(acolumn-averageofIODPcoremeasurements

(Lyleetal.2002;Pälikeetal.2010))andamantledensityof3.3gcm-3.Those

correcteddepthsareshowninFigures7and8versusthesquarerootofseafloor

age.Simpleleast-squaresregressionsofthedatawasusedtofindthe

subsidencerates,withthatinFigure8calculatedfromdatarestrictedtoless

than8Ma1/2wherebasementdepthsbreakfromthesubsidencetrend.

BasementelevationresidualsabouttheregressionlinesofFigures7and8are

Page 10: Equatorial Pacific Gravity Lineaments

9

shownalong-trackinFigures5and3(theseareresidualelevationsratherthan

residualdepthsaspositivevalueslieabovetheregressionline).

Gravityanomalies

Freeairgravityanomalieswerederivedfromsatellitealtimeter

measurements(SandwellandSmith1997).ThedatashowninFigure2bare

fromversion23ofthefree-airanomalygridavailablefrom

http://topex.ucsd.edu/.AccordingtoSandwelletal.(2014),thisversionhasan

averageaccuracyof~2mGalindeepwater,withmostoftheimprovementover

earlierversionsinthe12-40kmwavelengthbandandimprovedresolutionof

featurestoassmallas6km.

ForcrustthatislocallyAirysupported,variationsinbasement

topographyhavelittleeffectonthefree-airgravityfieldbecausetopographyis

supportedbythickenedcrustoflowerdensitythantheunderlyingmantle(i.e.,

theincreasedgravitationalattractionfromtheelevatedtopographyisalmost

balancedbythereducedattractionfromthegreatercrustalrootwhichdisplaces

densemantlerocks).However,short-wavelengthtopographycanbesupported

bytherigidityofthelithospheresoitcanaffectthegravityfield.Free-air

anomaliesthatarehigh-passfilteredthereforereflectcrustaldensityand

topographyvariations,whereaslow-passfilteredanomaliesshouldreflect

potentialdeepermantlesources(non-Airysupportedtopography).Relevantto

thefilterlength-scalerequired,accordingtoCochran(1979),theelastic

thicknessofthelithosphereis2-6kmabouttheEastPacificRise.Modellingby

Smith(1998)suggeststhatlittleeffectofcrustalvariationsappearinthegravity

fieldforspatialscaleslargerthan200kmfortheseelasticthicknesses.The

Page 11: Equatorial Pacific Gravity Lineaments

10

gravityfield(Figure2b)wasthereforeconvolvedwithacosine-taperedweight

of400kmfullwidth(WesselandSmith1991),whichcontainsmostweightover

200kmdistance.TheresultinFigure3awassubtractedfromthefield(Figure2)

toproducethehigh-passfilteredgravityfieldinFigure3b.Thus,Figure3ais

intendedtorepresentdeeper(mantle)sources,whereasFigure3bshould

representmainlylateralvariationsinbasementtopography,orcrustaldensities

andthickness.

LinesegmentsV1,A2,A4andA7locatedinFigure2arunalongcrustal

isochrons,soanyeffectoflithosphericthermalsubsidenceshouldbeuniform

alongthem.Fordiscussionofvariationsofgravitywithbasementstructure,

Figure9showscrosssectionsofbasementandseabedtopographyalongwith

theunfilteredfree-airanomalysampledfromthegridprovidedbySandwelletal.

(2014).

Thefree-airanomaliesshowninFigure9areaffectedbythesediment-

waterdensitycontrastattheseabedaswellasthebasementanddeeper

contraststhatweareprimarilyinterestedin.Toreducetheeffectoftheseabed

contrast,Bouguergravityanomalieswerecalculatedbyaddingthefollowing

quantitytothefree-airgravityanomalies:

Δg=2πGΔρh (2)

whereGisthegravitationalconstant(6.6726X10-11m3kg-1s-2),Δρisthe

densitycontrastbetweenseabedsedimentsandseawaterandhiswaterdepth.

Theformulaaccountsforthegravitationalattractionofalayerofmaterialof

infiniteextentandhenceweuseitassumingthatthetopographyoftheseabedis

slowlyvaryinglaterally.ThegridofBougueranomalieswasfilteredwitha400

kmfilterasdescribedearlierforthefree-airanomaliesandtheresultingresidual

Page 12: Equatorial Pacific Gravity Lineaments

11

anomalies(effectivelyhigh-passfiltered)weresampledalongthesurveylines,

producingtheresultsshownbytheredlinesinFigure9.Becausethedensity

contrastbetweensedimentsandseawaterissmall(only0.4gcm-3basedon

averagesedimentdensityof1.4gcm-3(Lyleetal.2002;Pälikeetal.2010)),the

correctionismodestbutitproducesanimprovement.E.g.,FAAdeclinesbyafew

mGalonaveragealongprofileA2inFigure9abutthisislargelycausedbythe

topographyoftheequatorialsedimentsanditseffectislargelyremovedinthe

Bougueranomalyshown.

ThebathymetrygridofRyanetal.(2009)wasusedforh.Thegridhas

variedresolutiondependingonthedistributionofthetracksofcruises

contributingbathymetry,althoughthemultibeamdatafromboththeAMAT03

andVenture-1cruiseshavebeenincorporatedinthegrid,soresolutionis

adequatefortheBouguercorrectionalongthoselines.Resolutionispoorer

alongtheRVAkademikSelskiyline.Bougueranomaliescomputedusingdepths

derivedfromtheseismicdatadifferedfromthosecomputedwiththeRyanetal.

(2009)gridwitharoot-mean-square(RMS)differenceof2.3mGal.Itwas

thereforedecidedtousetheformerBougueranomaliesforcomparisonwiththe

basementvariations.High-passfilteredanomaliesshownbytheredlinein

Figure6werecomputedbyfittinga5th-orderpolynomialofBougueranomaly

versuslongitudeandcalculatingresidualsrelativetothatpolynomial.

Tohelpassessmentofanyco-variationbetweenBougueranomaliesand

basementelevations,thesedataforeachlineareshowninFigure10(admittance

plots),usingtheresidualelevationsaboutthesubsidencetrendsforbasement

elevation(Figures7and8).Inthesegraphs,Bougueranomaliesareshownafter

removingthe400-km-filteredfield,buttheelevationshavenotbeensimilarly

Page 13: Equatorial Pacific Gravity Lineaments

12

high-passfiltered.InthecaseoftheAkademicSilskiyline,datawererestrictedto

113˚Wto145˚WtoavoidinfluenceofsomefeaturesneartheEPRvisiblein

Figure2bandtheLineIslandsSwelltothewest.Datafromthetwosegmentsof

apparentlyco-varyingbasementelevationandBougueranomaliesmarkedby

horizontalgreylinesinFigure6areshownwithredandbluecolourinthispanel

(seefigurecaptionfordetails).

Inadmittanceplotsconstructedasdescribedabove,weexpectchangesin

basementelevationwithassociatedcrustalthicknessvariations(localAiry

isostaticsupport)toformhorizontaltrends.Ontheotherhand,deflectionsof

basementcausedbymechanismssuchasshowninFigure1shouldleadtoalocal

correlationofBougueranomalywithbasementelevationandthegradientofthe

correlationtrendshouldcorrespondwithadensitycontrastofmantlerockswith

thesediments,ifthecrusthasuniformthicknessandthereforecontributeslittle

(alsonotethattheBouguercorrectionineffectreplacedwaterwithsedimentin

termsofitseffectonthegravityfield,hencethecontrastiswithsediment).If

topographyofthebasementissupportedbytherigidityofthelithosphere(e.g.,

becauseofoff-axisemplacementofseamountsorfaulting),othercorrelationsare

possibleandhenceweprovidemodeltrendsinFigure10forgabbroandbasalt

lithologies(3.0and2.7gcm-3)aswellasmantlelithologies(3.3gcm-3).

Complicatingsomewhattheinterpretation,thelong-wavelengthvariationin

basementelevationcausedpotentiallybylarge-scalemantleconvection(Crosby

andMcKenzie2009;Crosbyetal.2006)willspreadoutthedatagenerally

paralleltothehorizontalaxis(anygravityeffecthavingbeenremovedbythe

high-passfiltering).However,thisspreadingoutofthedataisusefulasithelps

visibilityoftrendsduetobasementreliefinsmallersegmentsofthedata.

Page 14: Equatorial Pacific Gravity Lineaments

13

Inordertoconfirmtheseismicallyderivedstructure,whilealsoproviding

atestfortheapproachofprovidingcalculationsusingtheBouguerslabformula,

modelfree-airanomalies(greenlineinFigure6)werecalculatedforthe

AkademikSelskiylinewhereMohodepthsareavailablebyaddingthegravity

contributions(usingequation(2))ofthewatercolumn,sedimentandcrustusing

densitiesof1.0,1.4,3.0and3.3gcm-3forwater,sediment,crustandmantle,

respectively.Thesomewhatlarge3.0gcm-3wasusedforthecrustgiventhat

crustalseismiclayer3(gabbro)dominatesvariationsinseismicestimatesof

crustalthickness(MutterandMutter1993),whereastheseismiclayer2ismore

uniformandthereforevariationsinlayer2thicknessshouldhavelessaffecton

gravityfieldvariationsthanvariationsinthegabbroiclayerthickness.Minshull

etal.(1998)derivedsimilardensitiesof~3.0gcm-3forloweroceaniccrust

usingtheir~7kms-1velocitiesfromseismicrefractionexperimentsanda

relationofChristensenandShaw(1970),whichMinshulletal.(1998)suggested

wasaccuratetowithinafewpercent.Asthedeepermantledensitystructureis

unknownhere,theresultingmodelwassimplyde-trendedandthenre-trended

tothegradientoftheobservedfree-airanomalies.Theresultingmodelanddata

havearoot-meansquaredifferenceof2.3mGal,whichissimilartothe~2mGal

accuracyofthegravitygrid(Sandwelletal.2014).Thesmalldiscrepancycould

partlyarisefrominadequatemodellingofthecrustaldensities(e.g.,seamounts

mayhavealowerdensity(Mitchell2001))and/orfromtheBouguerslab

formulaapproach,whichdoesnotaccountwellfortopographicreliefandcrustal

structureawayfromeachpointofcalculationalongtheprofile.

Page 15: Equatorial Pacific Gravity Lineaments

14

Resultsandinterpretation

Inthefollowing,wefirstcharacterizethelarge-scalesystematicvariations

beforeexaminingthevariabilityduetothegravitylineamentsandother(e.g.,

volcanicstructures)superimposedonthosemajortrends.

Subsidencetrend

ThesubsidencerateobtainedfromtheAMAT03andVenture-1data

(Figure7)is313mm.y.-1/2,whichissimilartothatofMartyandCazenave

(1989)whofound329mm.y.-1/2fortheequatorialPacific(theircorridor26).It

isalsosimilartotheglobalaveragerateof323-336mm.y.-1/2ofKorenagaand

Korenaga(2008),tothe307mm.y.-1/2NorthPacificrateofHillierandWatts

(2005)andtothe320mm.y.-1/2averagerateforthePacificofCrosbyand

McKenzie(2009).Thelatterisperhapssurprising,asCrosbyandMcKenzie

(2009)selecteddepthswheretheycoincidedwithfreeairanomalymagnitudes

lessthan5mGal,toreduceeffectsofmantleupwellinganddownwellingontheir

subsidencerates.TheAMAT03seismiclinescrossabroadgravitylow(114˚to

123˚W)butencroachongravityhighsinthewestandeastendsoftheanalysed

region(Figure3a),soanyeffectofdownwellingmaybefortuitously

compensatedbyupwellingstoleaveasimilarsubsidencetrendasCrosbyand

McKenzie(2009)found.

ThesubsidenceratederivedfromtheAkademikSelskiydatasetwas343m

m.y.-1/2,whichissomewhatmorerapidthanthepreviousestimatesoutlined

above.Thisisperhapssurprisingifweexpectadynamiceffectassociatedwith

thelong-wavelengthfree-airanomaliesinFigure3,asthedatasetspans~30

mGalfroma-20mGallowintheeasttonearly+10mGalinthewest.Iftheeast

Page 16: Equatorial Pacific Gravity Lineaments

15

ofthelineweredynamicallydepressedbymantledownwelling,whilethewestof

thelinewereelevatedbyupwellingneartheLineIslandsswell,areduced

apparentsubsidenceratemightbeexpected.

Weinitiallycalculated2σuncertaintiesforourregressionsusing

standardmethods(Taylor1982)andobtainedvaluesof2and4mm.y.-1/2for

Figures7and8.Thesevaluesaremuchsmallerthanfortheothersubsidence

ratesquotedabove,whoseuncertaintieswerereportedtobe61m.y.-1/2(Marty

andCazenave1989),22-23mm.y.-1/2(KorenagaandKorenaga2008),21-29m

m.y.-1/2(HillierandWatts2005)and30mm.y.-1/2(ParsonsandSclater1977).

Oursmallnominaluncertaintiesarisefromthelargenumbersofdata

contributingtotheregressions.However,adjacentdepthvaluesalongsurvey

linesobtainedbydigitisingtheseismicdataarenotstrictlyspeaking

independentofeachotherbecauseofthefinitelength-scalesofabyssalhillsand

otherfeatures(Goff1992).Furthermore,theseismiclinesseverelyunder-

samplebasementacrosstheregion.Hence,trueuncertaintieswillbelarger.

However,theseissueshighlightproblemswiththeearliersubsidenceratesalso,

astheauthorshaveusedinterpolateddatasetswheretheunderlyingvariations

(e.g.,sedimentthickness)werenotmeasuredcontinuouslyandtherewasno

allowancemadeapparentlyforthestrongaveragingofsomedatathatoccurs

duringgridding.Wethereforesuggestthatuncertaintiesofsubsidencetrends

arenotsowellconstrainedinoursandintheotherstudies.Thesignificanceof

differencesinsubsidenceratesbetweenregionsmayinturnbedifficultto

assess.

Residualelevations

Page 17: Equatorial Pacific Gravity Lineaments

16

Theresidualelevationsofbasementcorrectedforsedimentloadingderivedfrom

theseismicdatahavesimilarmagnitudesandvarywithasimilarspatialpattern

tothoseofCrosbyetal.(2006),asshowninFigure11.Largerpositivereliefis

evidentalonglineV1andgenerallylargeramplitudesoccuralonglinesA2-A7

duetothenewdataresolvingseamountsandotherelevatedfeatures.

Relationsbetweenbasementelevationsandgravityanomalies

BasementelevationsvaryingsympatheticallywithBougueranomalies

Insomesegments,thebasementrisesandfallssympatheticallywiththe

Bougueranomalies,aswouldbeexpectedfromsomeoftheoriginsofthegravity

lineaments(Figure1).ThiscanbeseeninlineA2(Figure9a),wherelocal

gravityhighs"a"-"e"mimicbasementhighs.Thecorrespondingadmittanceplot

forthisline(seefiltereddatainredinFigure10)containstrendsthatgenerally

havelowergraph-gradientsthanthetrendsexpectedwiththevariousbasement

densities,althoughtheanomaliesinFigure9aaresmallinextentsothismaybe

duetoupwardcontinuationeffects.

ThegraphforprofileA3inFigure10containsvariedtrendsthatcouldbe

compatiblewithbasementdensitiessmallerthan2.7tolargerthan3.3gcm-3

(i.e.,largegravityvariationsoccurinFigure9bwithmodestvariationsin

basementelevation).InFigure9a,profileA4mostlydoesnotshowsympathetic

behaviour,althoughanomaly"a"andthefurtheranomalyimmediatelysouthof

italongthatlinedoshowsympatheticvariations.Intheadmittanceplot(Figure

10)sometrendsforA4arenearlyparalleltotheexpectedtrends.

Page 18: Equatorial Pacific Gravity Lineaments

17

ThegraphforprofilesA5andA6inFigure10mostlyshowstrendsthat

areequaltoorshallowerthanthe2.7gcm-3trend.ThatforA7ismoreconfused,

thoughtheprofileinFigure9asuggestssomesympatheticvariation.

TheAkademikSelskiydataalsocontaintwosegmentswherethereare

basement-Bouguercorrelations(marked"c"and"d"inFigure6andhighlighted

bygreybars).ThecorrespondinggraphinFigure10containsdatasegments

withtheexpectedgradientsforbasementdensities.

BasementtopographywithlittleornoBougueranomalyvariation

Inafewsegmentsofthedata,wefindbasementelevatedbyafew

hundredmetresormorecoincidingwithsubduedgravityanomalies.For

example,at"c"inprofileA5-A6(Figure9b),thereisabasementhighofafew

100mwithtwoextremelocalhighs(seamounts)thatisassociatedwithaweak

Bouguerhighofonly~4mGal.At1˚NinprofileA3,asimilarlyextremereliefis

associatedwithagravitylow.At5˚NinprofileA7,abasementhighof>500mis

accompaniedbynegligibleBougueranomaly.

Thesefeaturesaremostlikelycausedbythickenedcrustunderlying

seamountsorgroupsofseamounts.Figure12ashowsseamountsoccurringin

bathymetrycollectedwithmultibeamsonarsinthenortherlypartsofprofiles

A4-A7.IntheAkademikSelskiydata,localbasementhighsEH1andEH2arealso

associatedwithsubduedBougueranomalies(Figure6).TheMohoimaged

seismicallybeneathEH1appearstobe500-1000mdeeperthanareasafew

degreesoflongitudeeithersideofthehigh.Thereislessclearlylocaldeepening

oftheMohobeneathEH2,thoughtheMohoisnoticeablyshallowerunderthe

adjacentlowEL2.(Althoughanexplanationisunclear,EH2interestingly

Page 19: Equatorial Pacific Gravity Lineaments

18

coincideswiththechangeinPacificplatemotionindicatedbythebendofthe

Hawaiian-Emperorseamountchain(ClagueandDalrymple1987).)

InlineA4(Figure9a),thebasementdeclinesby~300moncrossingthe

GalapagosFZoveradistanceof~200km,buttheBougueranomaliesarelittle

changed.ThisformsatransitiontoanimportantlowL2inresidualelevation

thatis~300-400kmacross(Figure3a).Wemodelledthechangeinfree-air

anomalygoingoverthisfracturezone(arrowinFigure9aforA4)usingthe

gravityslabformula(equation(2))withtwodifferentassumptions.Themean

basementdepth,bathymetryandfree-airgravityanomalywerefirstcalculated

foreachof-1˚to0˚andfor1.5˚to2.5˚N.

First,weassumedthebasementvariationislocallycompensatedby

crustalthicknessvariations.Thedifferenceinaveragedbasementelevation

betweenthetwoareasis311m.IfthatwereAirycompensated,thecrustis

predictedtothinby2383mfrom0.5˚Sto2˚NasillustratedinFigure13.This

valuewasderivedusingasimpleisostaticcalculationusingmantle,crustaland

waterdensities(ρm,ρc,ρw)of3.3,3.0and1.0gcm-3.Thegabbroiclayerwas

assumedtodominatecrustalthicknessvariationssoanearlyconstant2.5km

thicklayer2(MutterandMutter1993)doesnotcontributetotheisostatic

calculationandweuseagabbroic3.0gcm-3densityforthecrustasexplained

earlier.Sedimentisostaticeffectswereignored.Withtheseassumptions,the

changeinMohodepthΔMispredictedfromthechangeinbasementdepthΔBto

be

ΔM=ΔB(ρc-ρw)/(ρm-ρc) (3)

ThegreenbarinFigure9ashowstheexpectedfreeairanomaly(free-air

anomalyat0.5˚Spluschange)computedusingthegravityslabformulafromthe

Page 20: Equatorial Pacific Gravity Lineaments

19

changesinseabed,basementandMohodensityinterfaces(a1.6gcm-3density

wasassumedforthesediments(MayerandTheyer1985)).Thepredicted

anomalyisnotmuchdifferentfromthefree-airanomalyintheSandwelletal.

(2014)grid(bluecircleat2˚NinFigure9a).

Second,ifthebasementdepthchangeinsteadariseswithoutchangein

crustalthickness(topographynotlocallycompensated),theeffectongravityis

shownbytheredbarinFigure9a(free-airanomalyat0.5˚Spluschange).This

calculationinvolvedapplyingthegravityslabformulatothechangeinseabed

andbasementdensityinterfaces,applyingamantle3.3gcm-3densitytothe

basementchangeasthegravityeffectofthecrustwouldbeuniforminthiscase.

Thismodelclearlydoesaworsejobofpredictingthefree-airgravityvariations.

Thereappearsthereforetobeasignificantthinningofthecrustby~2km

crossingtheGalapagosFZnorthwards.

Discussion

Large-scalevariations

Atthelargerscale(Figure3a),theresidualelevationscorrelatepoorly

withtheregionalfree-airgravityanomalies.Forexample,aresidualelevation

highEH1liesoverthelowestfree-airanomalies(<20mGal),whereasthelowest

residualelevationEL2isfarfromthegravitylow.Crustalthicknessvariations

alsoaffectbasementelevations,soanalysisoflong-wavelengthresidual

elevationsalsorequiresacorrectionforcrustalthickness(Hoggardetal.2016;

Hoggardetal.2017).

WethereforederivedaresidualelevationfortheAkademikSilskiydata

insteadusingthesameglobalsubsidencerateof324mm.y.-0.5ofHoggardetal.

Page 21: Equatorial Pacific Gravity Lineaments

20

(2017)andwiththeirprocedure.Basementdepthswerecorrectedforthe

effectsofcrustalthicknessvariationsusingcrustalandasthenosphericmantle

densitiesof3.0and3.3gcm-3.Theresultsoffsettoazeromeanareshownby

thepinklineinFigure6.Althoughclosertothelarge-scalevariationobservedin

thefree-airanomalies,thisprofilestilldoesnotreproducethelowinthose

anomalies.Whatevercausestheregionalgravitylow,itisapparentlynotso

straightforwardlylinkedheretoasurfaceelevationchange.

Wehaveearlierhighlightedthe~400kmextentofdepressedresidual

elevationL2alonglineA4andthatitappearstocorrespondwithcrustthatis~2

kmthinnerthantothesouthoftheGalapagosFZ.Suchachangeissimilartothe

fullvariabilityofcrustalthicknessescompiledbyChen(1992)frompost-1970

seismicrefractiondata.Thisisanunusuallylargeareaofthinnedcrustcreated

atafast-spreadingridge.Ifthecrustsouthofthefracturezonehasathickness

moretypicalofaveragecrust(~7km(MutterandMutter1993)),thatnorthof

thefracturezonehas5kmthickcrust.Ifthisweretohavebeencreatedbyan

areaofmantlethatisunusuallycold,modellingsuggeststhetemperature

anomalycouldbe~25-30˚(BrownandWhite1994;Suetal.1994).Sucha

localisedmantletemperatureanomalywithanabruptsouthernboundaryseems

unlikely,however.Wesuggestthiswascreatedbyabodyofmantlethathad

beendepletedbyapriormeltingevent,e.g.,lithosphericmantleearlierrecycled

intothemantleatasubductionzone.

Finer-scalevariations

Thegraphsdescribedabove(Figures6,9,10)suggestthatthelineaments

observedinthegravityfield(Figure3c)couldpotentiallyhavearisenfroma

Page 22: Equatorial Pacific Gravity Lineaments

21

localdeformationoftheplate,suchasbythemechanismsillustratedinFigure1.

Althoughtheapparentdensitiesarenotresolvedsufficientlywelltoaddress

theirformationmechanisms,someaspectsofthespatialpatternmadebythe

lineamentsinFigure3csupportsomemechanismsoverothers.

Eastof"F"inFigure3c,lineamentsarefinelyspacedandorientedWNW,

parallelwiththerecentmotionofthePacificplateoverthemantle(Figure3b).

Mantlesmall-scaleconvectionlikelytakesafewmillionyearstoinitiate(Buck

1985),sotheirinitiationinFigure3cveryclosetotheEPR(within20km?)

suggestsanotherorigin.Theseareprobablycrustalstructures(e.g.,seamount

chains)createdabovemeltinganomaliesthatarefixedinthemantle(Fleitout

andMoriceau1992).Thefinest20kmscaleoftheselineamentsequalsthe

spacingofP-wavevelocityanomaliessuggestiveofmantleupwellingsinalarge-

scaleseismicrefractionexperimentontheEPRbetweentheClippertonand

Siqueirosfracturezones(Toomeyetal.2007).

Immediatelywestofthere,lineamentsareorientedN060˚E(parallelwith

arrowmarkedby"F"inFigure3c)andhaveawiderspacing(>100km).These

lineamentsareshorter(upto~500km)thanothersinFigure3c.Astheylie

obliquetoflowlinedirections(Figure3b),theirorientationsareincompatible

withsmall-scaleconvection(BuckandParmentier1986;HaxbyandWeissel

1986)orwithplatecontraction,whichisexpectedtooccurparalleltotheridge

(Cormieretal.2011;DunbarandSandwell1988;Gansetal.2003;Wintererand

Sandwell1987).Giventheproximityoftheareaofelevatedtopographyand

seamountsoverthewestwardextensionoftheSiqueirosFZ(Figure2a),we

speculatethatthestaticcomponentofpressureintheasthenosphereherecould

beaffectedbythistopographyandtheasthenospheremobilisedinamanner

Page 23: Equatorial Pacific Gravity Lineaments

22

somewhatlikelowercrustalchannelsproposedoncontinents(Beaumontetal.

2004;ClarkandRoyden2000;Roydenetal.1997).Theasthenospheremaythen

havebeenaffectedbyviscousinter-fingeringassuggestedbyWeeraratneetal.

(2007),thoughherearisingfromtopographicpotentialenergyratherthanthe

buoyancyfromoff-axishottermantlethattheyhadsuggested.

Theelevationdifferencedrivingsuchaninter-fingeringmovement

betweentheelevatedregionandthat~500kmtothesouthisroughly200-500

m(Figure2a)sotheexcesslithostaticpressureintheasthenospherewouldbe4-

10MPa(200-500mtimes2000kgm-3times10ms-2).Thisissmallcompared

withthelithostaticpressuredrivinglowercrustalflowinmountainregionswith

elevationdifferencesofmanykilometresandwithcrustalrockscontrastingin

densitywithairratherthanwater(e.g.,100MPaforthe4kmaltitudeofthe

TibetanPlateau).However,thedepth-extentofweakrheologyformingany

potentialasthenosphericchannelcouldbe~50-100kmorlargerbasedon

seismicvelocityprofiles(Harmonetal.2011;Maggietal.2006;Weeraratneetal.

2007),comparedwith<30kmforlowercrustalchannels(Beaumontetal.2004).

Buck(1985)assumedanasthenosphereviscosityof1018Pas,comparedwith

lowerviscositiesof1018-1019Passuggestedtooccurinthecrustalchannels

(Beaumontetal.2004;ClarkandRoyden2000).Furthermore,thevolumeof

asthenospheremovedtodeformtheplatebyuptoafew100matmost(Figure

9)wouldbelessthanthatelevatingorogensbykilometres.

Somelineamentswithtrend"C"inFigure3c,whichparallelfracture

zones,mayhavearisenfromspreadingcentreprocesses.Fromtheabove

interpretationoftheresidualelevationsinlineA4andtheapparentcontinuation

ofelevationlowstolineA3totheeastandpossiblypartsofA6tothewest

Page 24: Equatorial Pacific Gravity Lineaments

23

(Figure3b),thesemayaccompaniedlong-livedprocessesthatledtothinnerthan

normalcrustforseveralmillionyears,perhapsaslongas10m.y.(Figure2a).

Furtherlineamentswiththisorientationcanbeobservedinthisspreading

corridortothewest(144˚-135˚W)andsouthoftheClippertonFZ.

ThoselineamentsinFigure3cappeartobecross-cutbylineamentswith

orientation"A",whichlieparalleltothemotionofthePacificplateforthepast

20m.y.orlonger(seeflowlineinFigure3b).Thelineamentmarked"A"appears

tocontinuetotheEastPacificRise,whereithasafinerstructure,presumablyin

partduetotheshallowwaterdepth(smallerupwardcontinuationeffect).

FurtherlineamentsbeneaththeAkademikSilskiyline("B"inFigure3c)are

orientedclockwiseofthoseat"A",butareparallelwiththedirectionofmotionof

thePacificplatepriorto30Ma(Figure3b).Giventhiscorrespondence,small-

scaleconvectionmayexplainbothsetsoftheselineaments(Buckand

Parmentier1986;HaxbyandWeissel1986).Alternativeexplanationsinvolving

crustalconstructionattheEastPacificRisemodifiedbymeltinganomaliesthat

arefixedinthehotspotreferenceframe(FleitoutandMoriceau1992)seemtobe

ruledoutinthisareabytheircontinuationacrossfracturezonesandother

structureswherecrustalthicknessisreduced.

Returningtothepossibilityofextensioncausingthesefeatures,

unfortunatelywehavefoundtheseismicreflectionrecordsarenotadequateto

resolvethis,despitesedimentupto600mthickinplaces(MitchellandLyle

2005;Mitchelletal.2003).Asthesedimentispelagic,itcommonlydrapesthe

underlyingbasement(DuboisandMitchell2012;MitchellandHuthnance2013;

Tominagaetal.2011),makingfaultorfolddisplacementsdifficulttoseparate

fromdepositionalgeometry.Faultscanalsoarisebecauseofdifferential

Page 25: Equatorial Pacific Gravity Lineaments

24

compaction.Nevertheless,pelagicdrapingmeansthattheseabedrelief

commonlyappearsasanattenuatedversionoftheunderlyingbasementrelief

(Figure4).AsshowninFigure12,multibeamsonardatafromthisareaclearly

showtheabyssalhillsoriginallycreatedattheEastPacificRise.Atfracture

zones(suchastheGalapagosFZinFigure12b),therecanbetransversefeatures,

butotherwisewehaveobservednoclearevidenceforfaultscrossingtheabyssal

hillsherethatwouldariseifthegravitylineamentswerecausedbyplate

extension(Cormieretal.2011;DunbarandSandwell1988;Gansetal.2003;

WintererandSandwell1987).

Furtherlineament"E"(Figure3c)isneitherparalleltoadjacentfracture

zones,nortoflowlinedirections.Thisfeatureis~1000kmlong.Somesimilarly

orientedfeatureslienorthoftheClippertonFZalso.Iflithospherewasweak

alongthefracturezone,itisunclearhowfeature"F"couldhaveformedby

extensionwiththisobliqueorientation.Byelimination,aviscousinter-fingering

mechanism(Weeraratneetal.2007)seemstheonlyviableexplanationforthese

lineamentdirectionsatpresent.

Insummary,thediversityoflineamentorientationsisdifficulttoexplain

byanysinglemechanism(Figurer1).Itseemslikelythatmultipleprocesses

havecreatedthegravitylineamentshere,ofwhichwefavourspreadingcentre

processes,small-scaleconvection,viscousinter-fingeringandmeltinganomalies

thatarefixedinthemantlereferenceframe.ThePacificplatechangedabsolute

velocityfrom~0.5˚/m.y.priorto30Mato~0.9˚/m.y.after30Ma(Wesseland

Kroenke2008),thoughneitherthisnorthechangesindirectionofmotion

markedinFigure3bappeartocorrelatewithanyofthesechangesinlineament

Page 26: Equatorial Pacific Gravity Lineaments

25

style.Furtherprogressontheseissueswouldbenefitfromfurtherdeep-seismic

datacapableofmappingtheMoho.

Conclusions

Pelagicsedimentsupto600mthickobscurebasementintheequatorial

Pacific,preventingasimplecomparisonofthegravityfieldwithbathymetry

data.Depthsofbasementwerethereforederivedfromthesethreeseismic

reflectiondatasetsthatcrossthisregionandcombinedwithre-evaluated

seafloorspreadingmagneticanomalies(Barckhausenetal.2013).After

correctionforsedimentisostaticloading,thesedepthsrevealasimpleplate-

coolingtrendwithasubsidencerateof313mm.y.-1/2southoftheClippertonFZ

(AMAT03andVenture-1datases)and343mm.y.-1/2immediatelynorthofit

(AkademikSelskiydataset).Theseratesarebroadlyconsistentwithresultsof

previousstudiesofthisareathathadbeenbasedoninterpolateddatasets.

Bougueranomalieswerecomputedfromfree-airgravityanomaliesusing

theslabformulatocorrectfortheseabeddensitycontrast.Theresulting

anomaliesinsomeplacesdonotvarywithbasementtopography,suggesting

areasofcrustalthicknessvariation,suchasaroundseamounts.Inotherareas,

however,basementtopographyvariesinasimilarwaytothatnotedfrom

bathymetrydatasetselsewhereovergravitylineaments,forminglowrelief(100s

ofm)swellsover~100kmorsmallerlength-scales.Bouguergravityanomalies

varyoverthesefeatureswithanapparentbasementdensitythatvaries,but

includes2.7-3.3gcm-3densitiesexpectedofbasalttomantlelithologies.

ThegravitylineamentsintheequatorialPacifichaveremarkablyvaried

orientations.SomeareorientedparalleltoPacificplateflow-lines,changing

Page 27: Equatorial Pacific Gravity Lineaments

26

directionnorthoftheClippertonFZ,asexpectedfromthedifferentplate

directionpriorto30Maifamechanismsuchassmall-scaleconvectionformed

them.However,otherlineamentsareorientedwithdirectionsthatarenot

explainablebyplatemotion,sotheyrequireothermechanismstobeconsidered,

suchasviscousinter-fingeringintheasthenosphere.Despitethethicksediment,

thefine-scaleabyssalhillmorphologyiscommonlyobservedbecausethe

sedimentispelagicandtendstodrapetheunderlyingbasement.Wenotethat

thereareveryfewindicationsoffaultscrossingtheabyssalhillsthatmightbe

expectedifthegravitylineamentswereproducedbyextension.

Ourdetailedinvestigationhashighlightedanarea~400kmacrosswhere

residualbasementelevationsareunusuallydepressed.FromasimpleAiry

isostaticargument,oceaniccrustinthisareais~2kmthinnerthanoutsidethe

area.WesuggestthatthisthincrustwascreatedattheEPRforaperiodwhen

theridgeoverlaydepletedmantle.

Acknowledgements

NathalieDuboisinterpretedtheseismicreflectiondatafromRVRevellecruise

AMAT03andkindlymadeherinterpretationsavailabletous.UdoBarckhausen

providedthemagneticanomalyidentificationsandadviceontheisochron

mapping.SteveEittreimprovidedapapercopyoftheseismicdatasummarized

inEittreimetal.(1994).ThefreeairanomalygridwasprovidedbyDavid

SandwellandothersoftheScrippsSatelliteGeodesygroup.TheLamontgroup

providedthebathymetricgrids(Ryanetal.2009).Figureswerecreatedwiththe

GMTsoftwaresystem(WesselandSmith1991).TheRevelledataacquisitionat

seaandseismicinterpretationwassupportedinpartbyNaturalEnvironment

Page 28: Equatorial Pacific Gravity Lineaments

27

ResearchCouncilgrantNE/C508985/2.WethanktheeditorRogerUrgelesand

threeanonymousreviewersforinsightfulandusefulcommentsthatsignificantly

improvedthisarticle.

References

BallmerMD,HunenJv,ItoG,BiancoTA,TackleyPJ(2009)Intraplatevolcanism

withcomplexage-distancepatterns:Acaseforsmall-scalesublithospheric

convection.Geochem.Geophys.Geosys.10:articleQ06015,

doi:06010.01029/02009GC002386

BarckhausenU,BaggeM,WilsonDS(2013)Seafloorspreadinganomaliesand

crustalagesoftheClarion-ClippertonZone.Mar.Geophys.Res.34:79-88

BaudryN,KroenkeL(1991)Intermediate-wavelength(400-600km),South

Pacificgeoidalundulations:theirrelationshiptolinearvolcanicchains.Earth

PlanetSci.Lett.102:430-443

BeaumontC,JamiesonRA,NguyenMH,MedvedevS(2004)Crustalchannel

flows:1.Numericalmodelswithapplicationstothetectonicsofthe

Himalayan-Tibetanorogen.J.Geophys.Res.109:articleB06406,

doi:06410.01029/02003JB002809

BloomerSF,MayerLA,MooreTC(1995)Seismicstratigraphyoftheeastern

equatorialPacificOcean:Paleoceanographicimplications.In:PisiasNG,Mayer

LA,JanecekTR,Palmer-JulsonA,vanAndelTH(eds)ProceedingsoftheOcean

DrillingProgram,ScientificResults,Vol.138.OceanDrillingProgram,College

Station,TX,pp537-553

BrownJW,WhiteRS(1994)Variationwithspreadingrateofoceaniccrustal

Page 29: Equatorial Pacific Gravity Lineaments

28

thicknessandgeochemistry.EarthPanet.Sci.Lett.121:435-449

BuckWR(1985)Whendoessmall-scaleconvectionbeginbeneathoceanic

lithosphere?Nature313:775-777

BuckWR,ParmentierEM(1986)Convectionbeneathyoungoceaniclithosphere:

Implicationsforthermalstructureandgravity.J.Geophys.Res.91:1961-1974

CazenaveA,HouryS,LagoB,DominhK(1992)GEOSAT-derivedgeoidanomalies

atmediumwavelength.J.Geophys.Res.97:7081-7096

ChenYJ(1992)Oceaniccrustalthicknessversusspreadingrate.Geophys.Res.

Lett.19:753-756

ChristensenNI,ShawGH(1970)ElasticityofmaficrocksfromtheMid-Atlantic

Ridge.GeophysicalJ.Roy.lAstr.Soc.20:271-284

ClagueDA,DalrympleGB(1987)GeologicevolutionoftheHawaiianEmperor

volcanicchain.In:DeckerRW,WrightTL,StaufferPH(eds)Volcanismin

Hawaii,U.S.Geol.Surv.Prof.Paper1350.U.S.GeologicalSurvey,pp85-100

ClarkMK,RoydenLH(2000)Topographicooze:Buildingtheeasternmarginof

Tibetbylowercrustalflow.Geology28:703-706

CochranJ,R.(1979)Ananalysisofisostasyintheworldsoceans2.Mid-ocean

ridgecrests.J.Geophys.Res.84(B9):4713-4729

CormierMH,GasKD,WilsonDS(2011)GravitylineamentsoftheCocosPlate:

Evidenceforathermalcontractioncrackorigin.Geochem.Geophys.Geosys.

12:articleQ07007,doi:07010.01029/02011GC003573

CrosbyAG,McKenzieD(2009)Ananalysisofyoungoceandepth,gravityand

globalresidualtopography.Geophys.J.Int.178:1198-1219

CrosbyAG,McKenzieD,SclaterJG(2006)Therelationshipbetweendepth,age

andgravityintheoceans.Geophys.J.Int.166:553-573

Page 30: Equatorial Pacific Gravity Lineaments

29

DivinsDL(2003)TotalSedimentThicknessoftheWorld'sOceans&Marginal

Seas.In:CenterNNGD(ed),Boulder,CO

DuboisN,MitchellNC(2012)Large-scalesedimentredistributiononthe

equatorialPacificseafloor.Deep-SeaRes.I.69:51-61

DunbarJ,SandwellDT(1988)Aboudinagemodelforcross-grainlineations

(abstract).EosTrans.AGU,69:1429

EittreimSL,GnibidenkoHS,HelsleyCE,SliterR,MannD,RagozinN(1994)

OceaniccrustalthicknessandseismiccharacteralongacentralPacific

transect.J.Geophys.Res.99:3139-3145

FleitoutL,MoriceauC(1992)Short-wavelengthgeoid,bathymetryandthe

convectivepatternbeneaththePacificOcean.GeophysJ.Int.110:6-28

GansKD,WilsonDS,MacdonaldKC(2003)PacificPlategravitylineaments:

Diffuseextensionorthermalcontraction?Geochem.Geophys.Geosys.

4(article1074,doi:10.1029/2002GC000465)

GnibidenkoHS,EittreimSL,HelsleyCE,McClellanP,RyanHF(1990)TheCentral

PacificTransect;cruisereportoftheresearchvesselAkademikSelskiy.U.S.

Geol.Surv.Open-FileRept90-532:1-13

GoffJA(1992)QuantativeCharactersticsofAbyssalHillMorphologyalongflow

lineintheAtlanticOcean.JournalofGeophysicalResearch97(B6):9183-9202

GoodwillieAM,ParsonsB(1992)Placingboundsonlithosphericdeformationin

thecentralPacificocean.Earth.Planet.Sci.Letts.111:123-139

HarmonN,ForsythDW,ScheirerDS(2006)Analysisofgravityandtopography

intheGLIMPSEstudyregion:IsostaticcompensationandupliftoftheSojourn

andHotuMatuaRidgesystems.J.Geophys.Res.111:articleB11406,

doi:11410.11029/12005JB004071

Page 31: Equatorial Pacific Gravity Lineaments

30

HarmonN,ForsythDW,WeeraratneDS,YangY,WebbSC(2011)Mantle

heterogeneityandoffaxisvolcanismonyoungPacificlithosphere.Earth

Panet.Sci.Lett.311:306-315

HaxbyWF,WeisselJF(1986)Evidenceforsmall-scalemantleconvectionfrom

Seasataltimeterdata.J.Geophys.Res.91:3507-3520

HillierJK,WattsAB(2005)RelationshipbetweendepthandageintheNorth

PacificOcean.J.Geophys.Res.110:articleB02405,

doi:02410.01029/02004JB003406

HoggardMJ,WhiteN,Al-AttarD(2016)Globaldynamictopographyobservations

reveallimitedinfluenceoflarge-scalemantleflow.Nat.Geosci.9:456-463

HoggardMJ,WinterbourneJ,CzarnotaK,WhiteN(2017)Oceanicresidualdepth

measurements,theplatecoolingmodel,andglobaldynamictopography.J.

Geophys.Res.122:2328-2372

HolmesRC,WebbSC,ForsythDW(2007)Crustalstructurebeneaththegravity

lineationsintheGravityLineations,IntraplateMelting,PetrologicandSeismic

Expedition(GLIMPSE)studyareafromseismicrefractiondata.J.Geophs.Res.

112:articleB07316,doi:07310.01029/02006JB004685

KorenagaT,KorenagaJ(2008)Subsidenceofnormaloceaniclithosphere,

apparentthermalexpansivity,andseafloorflattening.EarthPlanet.Sci.Lett.

268:41-51

LudwigWJ,HoutzRE(1979)IsopachmapofthesedimentsinthePacificOcean

Basin,colormapwithtext.In:Am.Assoc.Pet.Geol.,Tulsa,OK

LyleMW,WilsonPA,et_al.(2002)Leg199preliminaryreport,Paleogene

EquatorialTransect,23October-16December2001.OceanDrillingProgram,

CollegeStation,TX

Page 32: Equatorial Pacific Gravity Lineaments

31

MaggiA,DebayleE,PriestleyK,BarruolG(2006)Multimodesurfacewaveform

tomographyofthePacificOcean:acloserlookatthelithosphericcooling

signature.Geophys.J.Int.166:1384-1397

MaiaM,DiamentM(1991)Ananalysisofthealtimetricgeoidinvarious

wavebandsintheCentralPacificOcean:constraintsontheorigin

ofintraplatefeatures.Tectonophys.190:133-153

MartyJC,CazenaveA(1989)Regionalvariationsinsubsidencerateofoceanic

plates:aglobalanalysis.EarthPlanet.Sci.Lett.94:301-315

MayerL,TheyerF(1985)Init.Repts.DSDP,85.U.S.Govt.PrintingOffice,

Washington

MayerLA,ShipleyTH,TheyerF,WilkensRH,WintererEL(1985)Seismic

modelingandpaleoceanographyatDeepSeaDrillingProjectSite574.In:

MayerL,TheyerF,al.e(eds)Init.Repts.DSDP.U.S.Govt.PrintingOffice,

Washington,DC,pp947-970

McAdooDC,SandwellDT(1989)Onthesourceofcross-grainlineationsinthe

centralPacificgravityfield.J.Geophys.Res.94:9341-9352

MinshullTA,BruguierNJ,BrozenaJM(1998)Ridge-plumeinteractionsormantle

heterogeneitynearAscensionIsland?Geology26:115-118

MitchellNC(1998)ModelingCenozoicsedimentationinthecentralequatorial

Pacificandimplicationsfortruepolarwander.J.Geophys.Res.103:17749-

17766

MitchellNC(2001)Thetransitionfromcirculartostellateformsofsubmarine

volcanoes.J.Geophys.Res.106:1987-2003

MitchellNC,DuboisN(2014)EvaluatingCenozoicequatorialsediment

depositionanomaliesforpotentialpaleoceanographicandPacificplate

Page 33: Equatorial Pacific Gravity Lineaments

32

motionapplications.MarineGeophysicalResearch35:1-20

MitchellNC,HuthnanceJM(2013)Geomorphologicalandgeochemicalevidence

(230Thanomalies)forcross-equatorialcurrentsinthecentralPacific.Deep-

SeaRes.I.78:24-41

MitchellNC,LyleMW(2005)PatchydepositsofCenozoicpelagicsedimentsin

thecentralPacific.Geology33:49-52

MitchellNC,LyleMW,KnappenbergerMB,LibertyLM(2003)TheLower

MiocenetoPresentstratigraphyoftheequatorialPacificsedimentbulgeand

carbonatedissolutionanomalies.Paleoceanography18:DOI:

10.1029/2002PA000828

MüllerRD,SdroliasM,GainaC,RoestWR(2008)Age,spreadingrates,and

spreadingasymmetryoftheworld'soceancrust.Geochem.Geophys.Geosyst.,

9:paperQ04006,doi:04010.01029/02007GC001743

MutterCZ,MutterJC(1993)Variationsinthicknessoflayer3dominateoceanic

crustalstructure.EarthPlanat.Sci.Lett.117:295-317

PälikeH,LyleM,NishiH,RaffiI,GamageK,KlausA,

the_Expedition_320/321_Scientists(2010)ProceedingsoftheIntegrated

OceanDrillingProgram,Volume320/321.IntegratedOceanDrill.Program,

CollegeStation,Tex.,doi:10.2204/iodp.proc.320321.320101.322010

ParsonsB,SclaterJG(1977)Ananalysisofthevariationofoceanfloor

bathymetryandheatflowwithage.J.Geophys.Res.82:803-827

RoydenLH,BurchfielBC,KingRW,WangE,ChenZ,ShenF,LiuY(1997)Surface

deformationandlowercrustalflowineasternTibet.Science276:788-790

RyanWBF,CarbotteSM,CoplanJO,O'HaraS,MelkonianA,ArkoR,WiesselRA,

FerriniV,GoodwillieA,NitscheF,BonczkowskiJ,ZemskyR(2009)Global

Page 34: Equatorial Pacific Gravity Lineaments

33

multi-resolutiontopographysynthesis.Geochem.Geophys.Geosys.10:Paper

Q03014

SandwellD,MüllerRD,SmithWHF,GarciaE,FrancisR(2014)Newglobal

marinegravitymodelfromCryoSat-2andJason-1revealsburiedtectonic

structure.Science346:65-67

SandwellDT,SmithWHF(1997)MarinegravityanomalyfromGeosatandERS-1

satellitealtimetry.J.Geophys.Res.102:10039-10054

SandwellDT,WintererEL,MammerickxJ,DuncanRA,LynchMA,LevittDA,

JohnsonCL(1995)EvidencefordiffuseextensionofthePacificplatefrom

Pukapukaridgesandcross-graingravitylineations.J.Geophys.Res.

100:15087-15099

SmithWHF(1998)Seafloortectonicfabricfromsatellitealtimetry.Annual

ReviewsinEarthandPlanetarySciences26:697-738

SmithWHF,WesselP(1990)Griddingwithcontinuouscurvaturesplinesin

tension.Geophysics55(3):293-305

SuW,MutterCZ,MutterJC,BuckWR(1994)Sometheoreticalpredictionsonthe

relationshipsbetweenspreadingrate,mantletemperature,andcrustal

thickness.J.Geophys.Res.99:3215-3227

TaylorJR(1982)Anintroductiontoerroranalysis,Thestudyofuncertaintiesin

physicalmeasurements.OxfordUniversityPress,MillValley,California,p270

TominagaM,LyleM,MitchellNC(2011)Seismicinterpretationofpelagic

sedimentationregimesinthe18–53MaeasternequatorialPacific:Basin-scale

sedimentationandinfillingofabyssalvalleys.Geochem.Geophys.Geosys.

12:PaperQ03004,doi:03010.01029/02010GC003347

ToomeyDR,JousselinD,DunnRA,WilcockWSD,DetrickRS(2007)Skewof

Page 35: Equatorial Pacific Gravity Lineaments

34

mantleupwellingbeneaththeEastPacificRisegovernssegmentation.Nature

446:409-414

TrehuAM(1975)Depthversusage:Aperspectiveonmid-oceanrises.Earth

Planet.Sci.Lettr.77:287-304

TurcotteDL,OxburghER(1973)Mid-platetectonics.Nature244:337-339

WeeraratneDS,ForsythDW,YangY,WebbSC(2007)Rayleighwavetomography

beneathintraplatevolcanicridgesintheSouthPacific.J.Geophys.Res.

112:articleB06303,doi:06310.01029/02006JB004403

WesselP,KroenkeLW(2008)Pacificabsoluteplatemotionsince145Ma:An

assessmentofthefixedhotspothypothesis.J.Geophys.Res.113:Paper

B06101,doi:06110.01029/02007JB005499

WesselP,KroenkeLW,BercoviciD(1996)PacificPlatemotionandundulations

ingeoidandbathymetry.EarthPlanet.Sci.Letts.140:53-66

WesselP,SmithWHF(1991)Freesoftwarehelpsmapanddisplaydata.Eos,

Transactions,AmericanGeophysicalUnion72:441

WhittakerJM,GoncharovA,WilliamsSE,MüllerRD,LeitchenkovG(2013)Global

sedimentthicknessdatasetupdatedfortheAustralian-AntarcticSouthern

Ocean.Geochem.Geophys.Geosys.14:doi:10.1002/ggge.20181

WintererEL,SandwellDT(1987)Evidencefromen-echeloncross-grainridges

fortensionalcracksinthePacificplate.Nature329:534-537

Figures:

Page 36: Equatorial Pacific Gravity Lineaments

35

Figure1.Someexplanationsforthegravitylineaments.(a)Verticalstresses

(arrows)causedbysmall-scaleconvection(BuckandParmentier1986;Haxby

andWeissel1986)orviscousinter-fingeringintheasthenosphere(Holmesetal.

2007;Weeraratneetal.2007)deformthelithosphere.(b)Extensionleadsto

boudinageofthelithosphere(WintererandSandwell1987).(c)Thermal

contractionincreaseswithdepthintheplate,creatingatorquethatbucklesthe

lithosphere(Cormieretal.2011;Gansetal.2003).Volcanicedifices("V?")can

beemplacedatlocationsofextensionlyinginbasementvalleysin(b)and(c)but

athighsoverlyinghotasthenospherein(a).

Page 37: Equatorial Pacific Gravity Lineaments

36

a:

b:

Figure2.(a)BathymetryofthecentralequatorialPacific(Ryanetal.2009)

alongwith(whitelines)shiptracksforcruisesAMAT03(RVRevelle)and

Venture1(RVWashington)and(greyline)RVAkademikSelskiy.Tracksare

showninboldwhereseismicdatawereinterpreted.BoldannotationV1andA1

toA7locatesegmentsofthetracksreferredtointhetext.Redcrossesare

magneticanomalylocationsofBarckhausenetal.(2013)andsolidblack

contoursarecrustalagesevery1m.y.derivedfromthem(boldcontoursevery

Page 38: Equatorial Pacific Gravity Lineaments

37

10m.y.).SmallsolidcirclesalongtheEastPacificRiselocatesampledaxial

depthsshowninFigure7.Opencirclesrepresentscientificdrillingsites."FZ"

represents"fracturezone".(b)Free-airgravityanomaliesofthecentral

equatorialPacificderivedfromsatellitealtimetrymeasurements(Sandwelletal.

2014)(theirversion23).

Page 39: Equatorial Pacific Gravity Lineaments

38

Figure3.(a)Free-airgravityanomaliesofFigure2bfilteredwitha400-kmwide

cosine-weightedfilter(WesselandSmith1991)highlightinganomalieswitha

likelydeep(mantle)source.Alsoshownalongtheshiptrackshereandin(b)

withthecolourscalelowerrightareresidualelevationsrepresentingthe

Page 40: Equatorial Pacific Gravity Lineaments

39

deviationsofthebasementelevations(correctedforsedimentisostaticloading)

fromtheregressionsinFigures7and8.(b)High-passfree-airanomalies

obtainedbysubtractingthefilteredanomaliesin(a)fromtheanomaliesin

Figure2b,effectivelyrepresentinganomaliesmorelikelyarisingfrombasement

andseabedtopographyandcrustaldensityvariations(anomalyscaleasin(a)).

Dashedanddottedlinesareflow-linereconstructionsfromapointat110˚W,3˚S

usingtheWK08-GandWK08-AmodelsofWesselandKroenke(2008),with

every10m.y.markedwithclosedcircles.(c)As(b)thoughshownwithhigh

contrasttohighlighttrends.FAA<-5mGalisshownblack,FAA>5mGalinwhite

and-5mGal<FAA<5mGalinmid-grey.Greenlinesshowseismiccruisetracks.

Redarrowsannotated"A"-"F"indicatedifferentlineamenttrendsinthismap

thatarediscussedinthetext.

Figure4.ExampleofAMAT03seismicreflectiondatawithbasementmarked

(whitearrows).SurveylineismarkedinFigure2a.

Page 41: Equatorial Pacific Gravity Lineaments

40

Figure5.Interpretedseabedandbasementreflectiontwo-waytimesfrom

RevellecruiseAMAT03(DuboisandMitchell2012).Foreachline,reflection

timesareplottedwithfixeddirections,asindicatedbytheopenarrows,andwith

thescaleshownbythe1000msscalebar(aftersubtractinga5000msoffset).

Basementisinbold.Alsoshownalongtheshiptrackswiththecolourscale

shownupper-rightareresidualelevationrepresentingthedeviationofthe

basementelevation(correctedforsedimentisostaticloading)fromthe

regressioninFigure7.

Page 42: Equatorial Pacific Gravity Lineaments

41

Figure6.Inlowerpanel,depthsofseabed(lightline),basement(boldline)and

Moho(crosssymbols)reflectionsalongtheAkademikSelskiyline(Figure2a)are

shown,alongwithcrustalthickness(greyline,scaletoright).Crustalagesgiven

alongthebaseofthegrapharefromMülleretal.(2008).Middlepanelshows

(blueline)free-airgravityanomalies(FAA)derivedfromsatellitealtimetry

measurements(Sandwelletal.2014)and(greenline)modelanomaliesderived

usingthegravityslabformula.Inupperpanel,redlineshowsBouguer

anomalieswithlongwavelengthvariationsremoved.Blacklineshowsresidual

elevationsrelativetothesubsidencetrendinFigure8,whilepinklineshows

Page 43: Equatorial Pacific Gravity Lineaments

42

residualelevationscalculatedallowingforcrustalthicknessvariationsas

Hoggardetal.(2017).EH1,EH2,EL1andEL2arehighsandlowsinresidual

elevationsmentionedinthemaintext.Greybarshighlighttwosegmentswith

somewhatstraightforwardcorrelationsbetweenBouguerandresidualelevation.

Figure7.Depthofbasementversussquarerootofcrustalageforthedatain

Figure5,withagesbasedonidentificationsofBarckhausenetal.(2013).Points

representindividualseismichorizonpicksandredcirclesrepresenttheir

averagescomputedevery0.5m.y.1/2.Dashedlineisasimpleleast-squares

regressionthroughthefullseismicdataset(notaverages).AnnotationL1,L2

andH1-H4representareasofresidualelevationlowsandhighsreferredtointhe

text.BluedotsatzeroageareEPRdepthssampledfromthebathymetrydataas

Page 44: Equatorial Pacific Gravity Lineaments

43

showninFigure2aandgreencircleistheiraverage.TheseEPRdepthswerenot

usedintheregressionbutareshowntohighlighttheoffsetatzeroage.

Figure8.SubsidencetrendofbasementdepthintheRVAkademikSelskiy

seismicreflectiondata(Eittreimetal.1994)locatedinFigure2a.Crustalage

wasderivedfromtheisochronsofBarckhausen(2013)andglobalagegridof

Mülleretal.(2008)(theirversion3.6).Dashedredlineisleastsquares

regressionfittedtothedataovertherangeshown.

Page 45: Equatorial Pacific Gravity Lineaments

44

a:

b:

Page 46: Equatorial Pacific Gravity Lineaments

45

Figure9.Profilesofseabedandbasementelevation(blacklines)andfree-air

gravityanomaly(FAA,blue)andhigh-passfilteredBouguergravityanomaly

(red)locatedinFigure2a:(a)paralleltocrustalisochronsand(b)crossing

isochrons.FinedarkredlineshowsthoseBougueranomaliessmoothedwitha

50-kmwidecosine-taperedfilter.Annotation"a",etc.,refertoFAApeaks

discussedinthetext.IngraphforA4,bluesolidcirclesrepresentaveragedFAA

for-1˚to0˚and1.5˚to2.5˚N.Inthatgraph,horizontalbarsareFAApredictedat

1.5˚to2.5˚Nfromthechangeinbathymetryandbasementfrom-1˚to0˚forAiry

compensatedtopography(green)andtopographynotlocallysupported(red).

Page 47: Equatorial Pacific Gravity Lineaments

46

Figure10.Variationinhigh-passfilteredBougueranomalywithbasement

residualelevationforthevariousseismiclines(markedinupper-leftofeach

Page 48: Equatorial Pacific Gravity Lineaments

47

panel)."A.Silskiy"representstheRVAkademikSilskiyline.Overlaininredfor

V1-A7arethedatashownaftera50-kmcosine-taperedfilterwasappliedto

removeshortwavelengthfluctuations.AlldatafortheAkedemikSilskiydata

havethisfilterapplied.Redandblueinthatpanelshowdatacorrespondingto

theextentsofthetwogreybarsinFigure6.Threelinesinupper-leftpaneland

reproducedinotherpanelsshowthetrendstobeexpectedifgravity-elevation

changeswereduetoasingleinterfacebetweensediment(1.5gcm-3)andthe

densityshown.

Figure11.Residualelevationsderivedherefromtheseismicreflectiondatasets

comparedwiththoseofCrosbyetal.(2006).

Page 49: Equatorial Pacific Gravity Lineaments

48

Figure12.Examplesofbathymetrydatafrommultibeamsonarsincorporatedin

theRyanetal.(2009)dataset(mapscreatedusingtheGeoMapAppdata

browsingtool(www.geomapapp.org)).(a)AreaadjacenttoClippertonFZ

Page 50: Equatorial Pacific Gravity Lineaments

49

includingnorthernpartsoflinesA4-A7showingregionofsmallseamounts.(b)

SouthernareaencompassingtheGalapagosFZwithfewseamounts.Inboth

panelscoloursfromdarkbluetowhitecorrespondto4800to3800mdepths

andilluminationisfromN80˚W.Multibeamdatalieabouttracksmarkedwith

solidblacklines,whereasotherlower-resolutionbathymetryineachmapwas

derivedfromsatellitealtimetryorsparsesingle-beamecho-sounderdata(Ryan

etal.2009).

Figure13.IllustrationoftheestimatedchangeinMohodepthresultingfrom

localcompensationofthechangeinbasementdepthoncrossingtheGalapagos

FractureZonealonglineA4inFigure9a.