equations of physics

12
Copyright © 2007 The Open University WEB 96146 9 S207 STANDARD EQUATIONS AND CONSTANTS This complete list of constants, mathematical formulae and physics equations is included for reference. It may be useful as an aid to your memory but please bear in mind that many of the entries will not be needed in this examination.

Upload: singlefemalelawyer

Post on 09-Nov-2015

224 views

Category:

Documents


1 download

DESCRIPTION

List of Physics Equations

TRANSCRIPT

  • Copyright 2007 The Open University WEB 96146 9

    S207

    STANDARD EQUATIONS AND

    CONSTANTS

    This complete list of constants, mathematical formulae and physics

    equations is included for reference. It may be useful as an aid to your

    memory but please bear in mind that many of the entries will not be

    needed in this examination.

  • 2Useful constants

    magnitude of the acceleration

    due to gravity on Earth g = 9.81 m s2

    Newtons universal

    gravitational constant G = 6.673 1011 N m2 kg2

    Avogadros constant Nm = 6.022 1023 mol1

    Boltzmanns constant k = 1.381 1023 J K1

    molar gas constant R = 8.314 J K1 mol1

    permittivity of free space 0 = 8.854 1012 C2 N1 m2

    1/40 = 8.988 109 N m2 C2

    permeability of free space 0 = 4 107 T m A1

    speed of light in vacuum c = 2.998 108 m s1

    Plancks constant h = 6.626 1034 J s

    " = h/2 = 1.055 1034 J s

    Rydberg constant R = 1.097 107 m1

    Bohr radius a0 = 5.292 1011 m

    atomic mass unit amu (or u) = 1.6605 1027 kg

    charge of proton e = 1.602 1019 C

    charge of electron e = 1.602 1019 C

    electron rest mass me = 9.109 1031 kg

    charge to mass ratio of

    the electron e/me = 1.759 1011 C kg1

    proton rest mass mp = 1.673 1027 kg

    neutron rest mass mn = 1.675 1027 kg

    radius of the Earth 6.378 106 m

    mass of the Earth 5.977 1024 kg

    mass of the Moon 7.35 1022 kg

    mass of the Sun 1.99 1030 kg

    average radius of Earth orbit 1.50 1011 m

    average radius of Moon orbit 3.84 108 m

  • 3Mathematical formulae

    2 4

    2

    b b acx

    a

    =

    2 rad = 360

    sin( 2 ) sin( ) + =

    cos( 2 ) cos( ) + =

    sin( ) sin( ) =

    cos( ) cos( ) =

    2 2sin ( ) cos ( ) 1 + =

    sin( )tan( )

    cos( )

    =

    a b = ab cos

    a b = axbx + ayby + azbz

    a b = (aybz azby, azbx axbz, axby aybx)

    |a b | = ab sin

    If d

    dt=

    v

    v , then v(t) = v0 e t

    ex ey = ex+y

    (ex)y = exy

    ex = 1/ex

    logeex = x

    1

    N

    i i

    i

    x p x

    =

    =

    sphere surface area = 4r2

    sphere volume = 34

    3

    r

    Derivatives

    [A, n, k and are constants; x, y and z are

    functions of t]

    xd

    d

    x

    t

    A 0

    tn ntn1

    sin( t) cos( t)

    cos( t) sin( t)

    ekt kekt

    Ayd

    d

    yA

    t

    y + zd d

    d d

    y z

    t t+

  • 4Book 2 Describing motion

    x xs t= v ( constant)

    x=v

    1 2

    2x x xs u t a t= +

    x x xu a t= +v

    2 2 2x x x x

    u a s= +v

    1

    2( )

    x x xs u t= +v

    t= +u av

    1 2

    2t t= +s u a

    arcs R =

    d 2 rad

    dt T

    = =

    2 rr

    T

    = =v

    2

    2a rr

    = = =v

    v

    22 f

    T

    = =

    ( ) sin( )x t A t = +

    2

    2

    2

    d ( )( )

    d

    x tx t

    t

    =

    2 2

    2 21

    x y

    a b+ =

    2 21

    e a ba

    =

    2

    3

    TK

    a=

  • 5Book 3 Predicting motion

    F = ma

    W = mg

    1 2

    212

    Gm m

    r

    =F r

    Fmax = staticN

    F = slideN

    F = 6Rv

    2

    2m

    F mrr

    = =

    v

    Fx = ksx

    s

    22

    mT

    k

    = =

    22

    lT

    g

    = =

    1 2trans 2E m= v

    W = F s

    Egrav = mgh

    1 2str s2

    E k x=

    1 2grav

    Gm mE

    r

    =

    potd

    dx

    EF

    x

    =

    P = d

    d

    W

    t = F v

    x(t) = (A0 et /) sin( t + )

    2 total stored energy

    average energy loss per oscillationQ

    =

    0

    2 2 20

    /

    ( ) ( / )

    F mA

    b m 2=

    +

    p = mv

    d

    dt=

    pF

    = r F

    v = r

    d

    dt=

    2i i

    i

    I m r=

    1 2rot 2

    E I=

    1 12 2kin CMCM2 2

    E M I = +v

    W =

    P =

    l = r p

    L = I

    =d

    dt

    L

  • 6Book 4 Classical physics of matter

    (number density)M

    mV

    = =

    FP

    A

    =

    3m r m10 kgM M N m

    = =

    1 d

    d

    V

    V T =

    1 d

    d

    V

    V P =

    PV nRT NkT= =

    2 2

    f fU nRT NkT= =

    3trans 2

    E kT =

    p = A eE /kT

    2 2( ) exp( /2 )f B m kT= v v v

    3 / 2

    42

    mB

    kT

    =

    mp

    2kT

    m=v

    8kT

    m =

    v

    rms

    3kT

    m=v

    /( ) e E kTg E C E =

    3 / 22 1

    CkT

    =

    1mp 2

    E kT=

    32

    E kT =

    tot

    2

    fE kT =

    W = PV

    U = Q + W

    QC

    T=

    2V

    fC nR=

    P VC C nR= +

    21

    P

    V

    C

    C f = = +

    PV = I

    PV A =

    revQ

    ST

    =

    2 2

    2 1 e e

    1 1

    log logV PP V

    S S C CP V

    = +

    S = k logeW

    c

    h h

    1W T

    Q T = =

    c c

    h c

    Q T

    W T T = =

    AP P g z= +

    ( ) (0)exp( / )P z P z =

    kT

    mg =

    2 1

    1 2

    A

    A=

    v

    v

    1 2

    2constantP gh + + =v

    F Ax

    =

    v

    0 0LRe

    =

    v

  • 7Book 5 Static fields and potentials

    1 2grav 2

    Gm m

    r= F r

    1 2

    el 20

    1

    4

    q q

    r=

    F r

    Fgrav (on m at r) = mg(r)

    Fel (on q at r) = qe(r)

    20

    ( )4

    Q

    r

    =

    r re

    1 2grav

    Gm mE

    r=

    1 2

    el

    04

    q qE

    r=

    Eel (with q at r) = qV(r)

    0

    1( )

    4

    QV

    r

    =

    r

    d ( )

    dx

    V

    x=

    r

    E

    qC

    V=

    C = r 0A

    d

    2 2

    el2 2 2

    qV CV qE

    C= = =

    d

    d

    qi

    t=

    i neA= v

    R| |

    | |

    VR

    i=

    LR

    A

    =

    V iR=

    eff i

    i

    R R=

    =i iRR

    11

    eff

    2

    2V

    P iV i RR

    = = =

    EMFV V ir=

    /0 e

    tq q =

    /0 e

    ti i =

    = RC

    Fm = q [v B(r)]

    0( )2

    iB r

    r

    =

    0

    centre2

    NiB

    R

    =

    NiB

    l

    0=

    F = q[e(r) + v B(r)]

    C

    1

    2

    q Bf

    m

    | |=

    perpC

    mR

    q B

    | |=

    | |

    v

    H

    iV B

    nqt=

    Fm = l[i B(r)]

    mF Bil=

    0 1 2

    2

    F i i

    l d

    =

    iAB =

  • 8Book 6 Dynamic fields and waves

    cosAB =

    ind

    d ( )( )

    d

    tV t

    t

    | | =

    ind

    d ( )( )

    d

    i tV t L

    t| | =

    2ANL

    l

    =

    1 2mag 2

    E Li=

    bat

    d ( )( )

    d

    i tV L i t R

    t =

    ( )bat /( ) 1 e Rt LV

    i tR

    =

    Vmax

    = imaxL

    max

    max

    iV

    C=

    1

    LC =

    1

    2

    d ( )( )

    d

    i tV t M

    t| | =

    1 2N N AM

    l

    =

    2

    2 1

    1

    ( ) ( )N

    V t V tN

    | | = | |

    sin( )y A kx t=

    2k

    =

    2

    T

    =

    fk

    = =v

    TF

    =v

    obs emf fV

    =

    v

    v

    obs em

    Vf f

    =

    v

    v

    ( , ) 2 cos( )sin( )y x t A t kx=

    2L n

    =

    c f =

    1 2

    2 1

    sin

    sin

    i n

    r n= =

    v

    v

    1 2

    crit

    2 1

    sinn

    in

    = =

    v

    v

    sinn

    n d =

    sinw

    =

    1 1 1

    u f+ =

    v

    m

    u

    =

    v

    P = 1/f

    Ptotal = P1 + P2 + P3 +

    IM

    OB

    M

    =

    o

    e

    fM

    f=

    light-gathering power =

    2

    o

    p

    D

    D

    maximum light-gathering power

    =

    22

    o o

    e e

    D f

    D f

    =

    exposure = It

    -number f

    FD

    =

    (Continued overleaf)

  • 90

    2 21 /

    TT

    V c

    =

    02

    21

    LL

    V

    c

    =

    ( )x x Vt =

    2( / )t t Vx c =

    2

    2

    1

    1V

    c

    =

    21

    x

    x

    x

    V

    V

    c

    =

    v

    v

    v

    2 21

    m

    c

    =

    p

    v

    v

    2 2

    d d

    d d 1

    m

    t t c

    = =

    pF

    v

    v

    2

    tot2 21

    mcE

    c

    =

    v

    Emass = mc2

    2

    2trans

    2 21

    mcE mc

    c

    =

    v

    2 2 2 2 4totE p c m c= +

    E = cp

  • 10

    Book 7 Quantum physics: an introduction

    E = hf

    1 2e max2

    m hf = v

    mevr = n"

    1

    2n

    EE

    n

    | |=

    dB

    h

    p =

    2x

    x p "

    2E t

    "

    ( )2

    tot pot2 2

    d 2( ) 0

    d

    mE E x

    x

    + =

    "

    2 2

    kin2

    kE

    m=

    "

    p = "k

    2 2

    tot28

    n hE

    mD=

    2

    2 2 2tot 1 2 32

    ( )8

    hE n n n

    mD= + +

    P = | (x1) |2x

    P = |1(r) |2V = |1(r) |2 4r2r

    4e

    tot2 2 2 2

    0

    1 13.6eV

    8

    m eE

    n h n

    = =

    ( 1)L l l= + "

    Lz = ml"

    ( 1)S s s= + "

    Sz = ms"

  • 11

    Book 8 Quantum physics of matter

    3/ 2

    /2 1( ) e E kTN

    G E EkT

    =

    ( )D E B E=

    3

    3 2

    3

    2(2 )

    LB m

    h

    =

    B ( )

    1( )

    e 1E kTF E

    =

    B

    1( )

    e 1E kTF E =

    FF ( )

    1( )

    e 1E E kTF E

    =

    +

    Dp(E) = CE2

    2p /

    1( )

    e 1E kTG E CE=

    C = 8V/h3c3

    N = 2.4C(kT)3

    4

    4( )15

    U C kT

    =

    3

    UP

    V=

    m

    m

    zNn

    V=

    e( )D E B E=

    3 2e

    3

    4(2 )

    VB m

    h

    =

    Fe ( ) /

    1( )

    e 1E E kTG E B E

    = +

    2 32

    F

    e

    3

    8

    h nE

    m

    =

    3F5

    U NE=

    2F5

    P nE=

    d

    d

    NN

    t=

    N(t) = N0 exp(t)

    [END OF BOOKLET]