epnm-2012 energometall inc. st.petersburg, russia v.s.vakin explosive welding of steels with al-mg...

20
EPNM-2012 Energometall Inc. St.Petersburg, Russia V.S.Vakin Explosive Welding of Steels with Al-Mg and Ti Alloys: Comparative Analysis Сравнительный анализ сварки алюминиево- магниевых и титановых сплавов и сталей Биметалл и металлопрокат для ® Bimetal and metal products for mechanical engineering

Upload: hilary-atkins

Post on 17-Jan-2016

223 views

Category:

Documents


0 download

TRANSCRIPT

EPNM-2012Energometall Inc.

St.Petersburg, RussiaV.S.Vakin

Explosive Welding of Steels with Al-Mg and Ti Alloys: Comparative Analysis

Сравнительный анализ сварки алюминиево-магниевых и титановых сплавов и сталей

Биметалл и металлопрокат для®

Bimetal and metal products for mechanical engineering

Previous Conclusions

1. In case of direct joining of AlMg6, bonding strength of this joint is achieved due to an intermetalic interlayer, and high homogeneity of such joint depends on thickness of this interlayer.

2. In case of direct joining of AlMg6 covered with pure Aluminum, bonding strength of this joint is achieved due to this covering layer, which is presented in a tempered condition.

3. The difficulty in obtaining of a joint of AlMg6 with carbon or stainless steel is explained by a considerable difference in heating temperatures of each layer and by a considerable difference in the speed rate of heat transfer between the layers.

4. In order to obtain an appropriate bond of AlMg6 and steel on a sufficient area, it is necessary to use an interlayer which should be a ductile material of the sufficient heat conductivity.

5. Practical value of the direct joint of AlMg6 and steel for the wide industrial application is not evident.

Results

Parameters

Tear test of cladding layer for combination AISI321+AlMg6

Statistics

F, at distruction pointFmax

Fmax F, at distruction point

PreloadTesting rate

Shear test of bi-metal for combination AISI321+AlMg6

Parameters

PreloadTesting rate

Results

F, at distruction pointFmax

Fmax F, at distruction point

Statistics

Localization of Intermetallics in the Peripheral Part of Bi-metal Plate AlMg6-Steel

Локализация интерметаллидов в периферийной части биметаллического листа AlMg6-сталь

Formation of Local cracks in the Peripheral Part of Bi-metal Plate AlMg6-Steel

Образование локальных трещин в периферийной части биметаллического листа AlMg6-сталь

Increase of Local Cracks in the Peripheral Part of Bi-metal Plate AlMg6-Steel

Укрупнение локальных трещин в периферийной части биметаллического листа AlMg6-сталь

Characteristics for Titanium alloy grade PT-3V (ПТ-3В)

Fe C Si V N Ti Al Zr O H Impurity

max   0.25

max   0.1

max   0.12

1.2 - 2.5max   0.04

91.39 - 95

3.5 - 5max  

0.3max   0.15

max   0.006

other 0.3

Chemical composition in % for grade PT-3V ( ПТ-3В )

Mechanical properties under Т=20oС for grade  PT-3V   (ПТ-3В)

Assortment Dimension Direct. sв sT d5 y KCU Heat

treatment

- mm - MPa MPa % % kJ / m2 -

Plate , GOST

23755-79 11 - 26   835-880   10 22-25 600 Annealing

Tear test of cladding layer for combination Titanium PT3V + 09G2S

Испытания на отрыв плакирующего слоя PT3V + 09G2S

Fmax F, at distruction

pointNr MPa MPa

1 316 315

2 185 185

3 242 235

4 277 266

5 250 250

Series Fmax F, at distruction

point

n=5 MPa MPa

x 254 250

s 48,3 47,3

n 19,03 18,91

Statistics

Results

Shear test of cladding layer for combination Titanium PT3V + 09G2S

Испытания на срез биметалла Titanium PT3V + 09G2S

Fмакс F при разрушении

Nr MPa MPa

1 513 -

2 478 -

3 510 -

4 457 89,2

5 506 488

6 434 408

Serie Fмакс F при разрушении

n = 6 MPa MPa

x 483 329

s 32,2 211

6,66 64,25

PT3V-Steel

Gr.1-Steel

ВТ1-0 –Steel («PROMETEI»)

Macrostructure of a Single Wave of Combination PT3V-SteelМикроструктура единичной волны соединения PT3V-сталь

Zones with Intermetallics Inside of a Single Wave of Combination PT3V-SteelЗоны интерметаллидов внутри единичной волны соединения PT3V-сталь

Project 1

Project: Project 1Owner: INCASite: Site of Interest 1

Sample: Sample 1Type: DefaultID:

Processing option : All elements(Normalised)Number of iterations = 3

Standards : Fe Ka Fe_20kVV Ka V_20kVTi Ka Ti_20kVZr La Zr_20kVAl Ka y_20kV

Label : WD Data 49

Acquistion conditions : kV = 20.0Tilt = 0.0 degs Azimuth = 0.0 degs Elevation = 30.0 degsEffective take off angle = 30.0 degs

Element k Ratio Weight% Weight% Intensity Atomic%Sigma Corrn.

Fe Ka 0.21159 27.232 0.218 0.8815 23.293V Ka 0.01365 1.562 0.077 0.9918 1.465Ti Ka 0.57568 65.702 0.218 0.9940 65.522Zr La 0.00013 0.020 0.052 0.7261 0.010Al Ka 0.02121 5.484 0.065 0.4388 9.710Totals 100.000

Project 1

Project: Project 1Owner: INCASite: Site of Interest 1

Sample: Sample 2Type: DefaultID:

Processing option : All elements(Normalised)Number of iterations = 2 Standards : Fe Ka Fe_20kVV Ka V_20kVTi Ka Ti_20kVZr La Zr_20kVAl Ka y_20kV

Label : WD Data 50

Acquistion conditions : kV = 20.0Tilt = 0.0 degs Azimuth = 0.0 degs Elevation = 30.0 degsEffective take off angle = 30.0 degs

Element k Ratio Weight% Weight% Intensity Atomic %Sigma Corrn.

Fe Ka 0.70822 75.363 0.185 0.9577 71.754V Ka 0.00563 0.542 0.046 1.0572 0.566Ti Ka 0.23200 22.962 0.172 1.0296 25.489Zr La 0.00019 0.030 0.033 0.6569 0.017Al Ka 0.00382 1.103 0.032 0.3534 2.173Totals 100.000

Project 1

Project: Project 1Owner: INCASite: Site of Interest 1

Sample: Sample 3Type: DefaultID:

Processing option : All elements(Normalised) Number of iterations = 2 Standards :  Fe Ka Fe_20kVV Ka V_20kVTi Ka Ti_20kVZr La Zr_20kVAl Ka y_20kV

Label : WD Data 51

Acquistion conditions : kV = 20.0Tilt = 0.0 degs Azimuth = 0.0 degs Elevation = 30.0 degsEffective take off angle = 30.0 degs

Element k Ratio Weight% Weight% Intensity Atomic%Sigma Corrn.

Fe Ka 0.67021 71.807 0.200 0.9516 68.066V Ka 0.00616 0.598 0.048 1.0508 0.621Ti Ka 0.26760 26.580 0.188 1.0265 29.375Zr La 0.00026 0.039 0.048 0.6635 0.023Al Ka 0.00343 0.976 0.030 0.3580 1.914Totals 100.000

Model of Deformational Heating-up of Cladding and Base Plates at the Point of Contact

Модель деформационного разогрева плакирующего и базового листов в зоне контакта

k hg = Factor of deformational heat generation

k hg =Rm / ρ ( kJ/kg) Rm - tensile strength ρ - density

NO COMMENT