epfl sti article figures

55
FromMarconitoMoore CircuitsandSystemsforCommunications  StillaChallenge?  Acknowledgeme nts: Prof. H. Meyr, M. Witte, F. Borlenghi (RWTH-Aachen)

Upload: nanoterach

Post on 05-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 1/54

FromMarconi

to

Moore

Circuitsand

Systems

for

Communications

 –

StillaChallenge?

 Acknowledgements: Prof. H. Meyr, M. Witte,

F. Borlenghi (RWTH-Aachen)

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 2/54

Guglielmo Marconi 

1897 : Wireless Telegraph Company 

1909 : Nobel Price in Physics 

2

 „It isdangerousto put limitsonwireless“ 

Source: Intel Corporation

GordonMoore

1968:CofoundedINTELCorporation

2005

:

Marconi

Society

Lifetime

AchievementAwardMoore‘slaw (1965/75) pacestheevolution

of integratedcircuitsuntiltoday

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 3/54

Marconi’sfirst wirelesstelegraph(1895)

3

Mechanicalcontinuouswave RF signalgenerator

Core of an early daysradio telegraph receiver

Electrochemical demodulatorfor voice ~1900

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 4/54

4

De Forest Audion radioreceiver from 1906

Texas Instruments firstsilicon transistor (1954)

First transistor radio:TI Regency TR-1 (1954)

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 5/54

5

Mobilesubscriptions

outrunfixedtelephone

subscriptions

Numberof fixedline

subscriptionsstarts

decreasing

Broadbandmobilesubscriptions

outrunfixedinternetsubscriptions

M.Witte,2010

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 6/54

Introduction:SomeHistory

ScalingLaws,Trends,andObservations

Arethere

still

challenges??

• SomeexampleswhyIthinkYES

TheEndof Moore’sLaw

• Thelimitof wirelessORmotivationforsomemorefancyresearch

6

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 7/54

7

Moore’sLaw

2xevery

24months

     2    x    e    v    e    r    y

     1     8    m    o    n    t     h    s

   E   d   h  o   l  m

   ’  s   L  a  w

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 8/54

Newmultiplexing

schemes

allow

to

allocate

more

bandwidthtoasingleuserforhigherpeakthroughput

Spectralefficiencyincreasesdueto

• Higherordermodulationschemes

• Spatialmultiplexing

8

GSM

•270kHz

•GMSK

EDGE

•270kHz

•8PSK

EEDGE

•2x270kHz

•32QAM

UMTS

•5MHz

•QPSK

HSPA

•5MHz

•16

QAM

HSPA+

•2x2MIMO

•64QAM

LTE

•4x4MIMO

•20MHz

LTEA

•8x8MIMO

•20100MHz

802.11

•DBPSK

•11MHz

802.11b

•CCK

•11MHz

802.11a/g

•64QAM

•20MHz

802.11n

•40MHz

•64QAM

•2x2MIMO

802.11n

•40MHz

•64QAM

•4x4MIMO

802.11ac

•80160MHz

•256QAM

•8x8MIMO

802.11

ad•1.7GHz

•16QAM

Morecomplex

receivers

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 9/54

Imbalancebetween

complexity

and

integration

density

Dataratedoublesevery18months

Algorithm

complexity

grows

(spectral

efficiency)

9

2x every24 months

2x every18 months

«Complexityof 

baseband

processing

outruns

technologycapabilities»

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 10/54

10

Moore´slaw:

2xevery

24

month

Basebandcomplexity

2xevery35month

   C  o  m  p   l  e  x   i   t  y   [   G

  a   t  e  e  q  u   i  v  a   l  e  n

   t  s   ]

Datacollectedby

M.Witte,2010

Some empirical data:evolution of baseband

complexity over time 

Year of publication1994 2010

1M

10M

100M

100k

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 11/54

11

Moore´slaw:

2xevery

24

month

Basebandcomplexity

2xevery35month

   C  o  m  p   l  e  x   i   t  y   [   G

  a   t  e  e  q  u   i  v  a   l  e  n

   t  s   ]

Datacollectedby

M.Witte,2010

Some empirical data:evolution of baseband

complexity over time 

Year of publication1994 2010

1M

10M

100M

100k

Numberof Transistorsrequiredfor

integrationgrows

less

rapidly

than

“complexity”

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 12/54

Technologyscaling

reduces

both

area

and

delay

Example

12

180 45

Feature size [nm]

   #   G  a   t  e  s   /  m

  m   2

   O  p .   f  r  e  q  u  e

  n  c  y

180 45

Feature size [nm]

180 45

Feature size [nm]

   G  o  p  s   /  s   /  m  m

   2 Some saturation

around 65-45nm

180nm 90nm 45nm

Clock freq. 100MHz 200MHz 400MHz

16x16 Mult+

overhead(50/50)20kum2 5kum2 1.25kum2

5Gops/s/mm2 40Gops/s/mm2 320Gops/s/mm2

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 13/54

13

2000

• Liuetal.

• 112mm2

• 250nm

2004

• Uvieghara etal.

• 46mm2

• 130nm

2006

• Luftner etal.

• 43mm2

• 90nm

2009

• Shirasaki etal.

• 66mm2

• 45nm

2G 2.5G 3.5G3G

Someexamples

of 

digital

cellular

ASICs

from

ISSCC

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 14/54

Cellularmodems

require

multi

standard support

Neverthelessthenumberof discretemodemcomponents

decreasesrapidly

14

0

5

10

15

94 97 00 03 06

     C    o    m    p    o    n    e    n    t

    s

Source: Dr. H. Eul,Keynote at 2010VLSI Conference

•Reduces cost (PCB, packaging, andmanufacturing

•More space for battery and display

GSMEDGEWCDMAHSPA+LTELTE-A

3G (WCDMA/HSPA)

2G (GSM/EDGE)

Legacy supportguarantees

coverage

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 15/54

Integrationof 

application

and

modem

functionality

• Additionalairinterfaces,connectivityoptions,andstorage

• 3DGraphicsandVideo

• Powerfulapplicationprocessors

15

     C    o    m    m    u    n     i    c    a     t     i    o    n

     A    p    p     l     i    c    a     t     i    o    n

Ito et al.; ISSCC 2007

3GPPModemcovers

40%of thechiparea

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 16/54

Powerconsumption

and

energy

efficiency

16

Energy efficiency

Data download

Power consumption

Standby/voice

Determinedbyleakage

andstandbyactivity

Determinedbyactive

powerconsumption

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 17/54

Powerconsumption

and

energy

efficiency

17

Energy efficiency

Data download

Power consumption

Standby/voice

Determinedbyleakage

andstandbyactivity

Determinedbyactive

powerconsumption

J. Ayers, et al..,”An Ultralow-Power Receiver for Wireless Sensor Networks,” JSSC 2010

P. Petrus, et al., ” An Integrated Draft 802.11n CompliantMIMO Baseband and MAC Processor,“ ISSCC 2007 

Simple OOK radio for sensor nodes

0.18 nJ/bit (complete transceiver)

Technology: 0.18 um Technology: 0.18 um

802.11n WLAN transceiver

3 nJ/bit (digital PHY/MAC only)

Highspectralefficiencycomesatthecostof poorenergy

efficiency

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 18/54

18

OFF Standby Voice Data

Useful datatraffic

Power

Verypoor Poor OK Good

Energy efficiency

                  

                    

                   

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 19/54

19

OFF Standby Voice Data

Useful datatraffic

Power

Verypoor Poor OK Good

Energy efficiency

                  

                    

                   

Leakageandstandbycurrentsdominateas

• DSPbecomesmoreenergyefficient

• Workloaddecreases(e.g.,standby)

Challenge:EnergyProportionality

Usehighenergywhen

needto“workhard”Lowenergywhen“doing

little”is“goodenough”

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 20/54

S. Kunie, et al., ” Low power architecture and designtechniques for mobile handset LSI Medity M2,“ ASP-DAC, 2008

176 9550 250

500

0

200

400

600

800

Tx Rx

RF BB PA

45nm >40%of thedigitaldiecovered

bybaseband

signal

processing

RX:Basebandconsumesmostof thetotalpower

285 360345

540300

0

500

1000

Tx Rx

RF BB PAS. G. Sankaran, et al., ” Design and Implementationof a CMOS 802.11n SoC,“ Comm. Magazine 2009 

>70%areacoveredby

basebandsignal

processing

DSPconsumessignificantpowercomparedtoRF(especiallyRX)

130nm

Letscheck

two

examples

2x2MIMOWLAN(IEEE802.11n)

3GPPHandsetASIC/MPSoC

20

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 21/54

21

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 22/54

22

MIMO:Transmit

multiple

data

streams

concurrentlyinsamefrequencyband

Usedinalmostallimportantstandards

Taskof theMIMOdetector:

Separationof multiplexeddatastreams

Choiceof theMIMOdetectorhassignificant

impactonperformance

OptimumMIMOdetection:

Straightforwardsolution:Checkallcandidates

Numberof candidates:exponentialin

spectralefficiency

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 23/54

2002:4stream

MIMO

over

UMTS

Spectralefficiency8bits/s/Hz

Examine256candidates

4million

times

per

second

23

Source: Bell Labs Wireless Research, Holmdel, NJ

2002 : MIMO over UMTS with1 Mbps for 31 users (8 bits/s/Hz)

2009:MIMOWLAN

Spectralefficiency24bits/s/Hz

Examine

2

24

candidates

40milliontimespersecond

2009 : MIMO WLAN 600 Mbps(24 bits/s/Hz)

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 24/54

Spheredecoding

Maptheproblemtoatreesearch

Usebranchandboundstrategy

forcomplexity

reduction

STSspheredecodingprovides

softinformationforchanneldecoder

24

2007 : STS Soft-outputsphere-decodingwith 10-40 Mbit/s

250nm2mm2

71M nodes/s

Requires

completelynew

architectures

Treesearchisverydifferent

fromtypical

DSP

algorithms

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 25/54

Spheredecoding

Maptheproblemtoatreesearch

Usebranchandboundstrategy

forcomplexity

reduction

STSspheredecodingprovides

softinformationforchanneldecoder

25

2007 : STS Soft-outputsphere-decodingwith 10-40 Mbit/s

250nm2mm2

71M nodes/s

Requires

completelynew

architectures

Treesearchisverydifferent

fromtypical

DSP

algorithms

2mm

2mm

25mm2

Nearoptimumperformance@600Mbps

4parallelinstances

workatat320MHz

1.28Gnodes/s

802.11n

Technology shrink &architecture optimization

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 26/54

Exchangereliability

information

between

MIMO

detector

andchanneldecoder

Convergetooptimumsolutioninmultipleiterations

Iterationsrequiresoftin

softoutMIMOdetection,

whichis

even

more

complex

ComplexityforN iterations

increasesatleastNfold

26

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 27/54

3GPP2007:

Extension

of 

2G

system

GSM

/

EDGEtowardhigherdatarates

Highermodulationorder(16QAMand32QAM)

1.2xhighersymbolrate

Bandwidthremains

unaltered

Optimumreceiver:Maximumlikelihood

sequenceestimation(MLSE)

Complexitygrowsexponentiallyin

spectral

efficiency

and

channel

length

27

modulation order / alphabet size

branches

2 4 8 16 324

64

1024

65k

1000k

GSM

EDGE

EvolvedEDGE

Strongneed  for equalization

Impractical evenina32nm process

32QAM Tx-signal(Evolved EDGE)

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 28/54

Solution:channel

shortening

with

decision

feedback

sequence

estimation

Ordersof magnitude

complexityreduction

28

channelestimation

inputbuffer

coefficientscomputation

FIR filter

pre-filtering channel equalizer channel decoder

Viterbidecoder

turbodecoder

decoder

inputmemory

DFSE withadaptive numberof trellis states:

8 (GMSK)8 (8PSK)

16 (16QAM)32 (32QAM)

sharedmemory

130nm

Complexity exceedsDSP capabilitiesevenwithadvanced  processnodes

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 29/54

Solution:channel

shortening

with

decision

feedback

sequence

estimation

Ordersof magnitude

complexityreduction

29

channelestimation

inputbuffer

coefficientscomputation

FIR filter

pre-filtering channel equalizer channel decoder

Viterbidecoder

turbodecoder

decoder

inputmemory

DFSE withadaptive numberof trellis states:

8 (GMSK)8 (8PSK)

16 (16QAM)32 (32QAM)

sharedmemory

130nm

Complexity exceedsDSP capabilitiesevenwithadvanced  processnodes

Averg. power at VDD=1.2V

EDGE (8PSK, CC) 6.8mWE-EDGE (16QAM, TC) 11.2mW

E-EDGE (32QAM, TC) 19.9mW

Dedicated ASIC solution[Benkeser et al., ISSCC2010]

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 30/54

Example:Low

Density

Parity

Check

Decoder

1962:inventedbyR.G.Gallager

• PerformanceclosetotheShannonlimit(onparwithTurbocodes)

• Initiallyconsideredtocomplexforeconomicimplementation

1999:

re

discovered

by

MacKay

and

Neal• VLSItechnologyallowedfortheimplementationof LDPCcodes

Today:LDPC

codes

are

optional

or

mandatory

in

almost

all

relevantstandards

30

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 31/54

Iterativemessage

passing

Largenumberof identicalcomputationalunits,operating

inparallel exploitsresourcesavailablefromscaling

Differentstandardsuse

differentcodes

Differentcodesrequired

withineachstandard

Computationaleffort

acrossstandards

spans

3ordersof magnitude

Computationaleffortperbitremainsalmostconstant

31

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 32/54

Referencedesign:

LDPC

decoder

for

IEEE

802.11n

208MHzclockfrequency

780Mbpsthroughput

3.4mm2 siliconarea

Workload~50100GOps

32

3.9 nJ/bit

2.3W @ 600Mbps

180nm

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 33/54

Referencedesign:

LDPC

decoder

for

IEEE

802.11n

208MHzclockfrequency

780Mbpsthroughput

3.4mm2 siliconarea

Workload~50100GOps

Max.throughput almost

doubles withhalf siliconarea

Canwedostillbetter??

33

3.9 nJ/bit2.3W @ 600Mbps

180nm

600 pJ/bit360mW @ 600Mbps

90nm

6.4x better

energy efficiency

Constant

throughput

Technologyscalingprovidessignificantenergysavings

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 34/54

VoltageFrequency

Scaling:

make

things

worse

to

make

them

better

Designacircuitthatworksfasterthanplanned(e.g.,byreplication)

• Whenrunningatthesamespeedandvoltage,energyefficiencybecomesworse

Utilizethefactthat

• Reducevoltageuntilit justmeetsthedelayconstraint

34

 /N

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 35/54

VoltageFrequency

Scaling:

make

things

worse

to

make

them

better

Designacircuitthatworksfasterthanplanned(e.g.,byreplication)

• Whenrunningatthesamespeedandvoltage,energyefficiencybecomesworse

Utilizethefactthat

• Reducevoltageuntilit justmeetsthedelayconstraint

35

 /N

1/N

better

energy

efficiency

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 36/54

VoltageFrequency

Scaling:

make

things

worse

to

make

them

better

Designacircuitthatworksfasterthanplanned(e.g.,byreplication)

• Whenrunningatthesamespeedandvoltage,energyefficiencybecomesworse

Utilizethefactthat

• Reducevoltageuntilit justmeetsthedelayconstraint

36

 /N

1/N

better

energy

efficiency

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 37/54

37

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 38/54

Productiontest

is

needed

Identifychipswith

productiondefects

Classifyfunctional

dies

accordingtothespeed

theycanreach

Microprocessors:functionaldiessoldat

differentpricesdependingontheirspeed

CommunicationASICs:

need

to

run

at

apredefined

fixed

clock

speed

• Slowdiesmustbediscarded

• Fastdiesdonotexploitbetterperformance

38

     M    a    n    u     f    a    c     t    u    r     i    n    g

P r  o

 d  u c  t  i   on

 t   e s  t  

Yield target

>95%

Speed binningimproves yield

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 39/54

path delay

   #

    o   f   o

   c   c   u   r   a   n   c   e   s

VDD=nominal

VDD=low

target delay

target delay

VoltageScaling

Quadraticpowersavings

x Increasesmeandelaymaking

circuitsslower

x Increasesalsodelayvariance

makinghardertomeettargetperformance

ConventionalSolution

Overdesign:assumepessimistic

guardbands(timing,voltage)

x Higherpowerconsumptionon

average

x Limitthereturnsperformance,power)fromtechnologyscaling

39

130nm 90nm 65nm 45nm 32nm

Supply voltage approaches thethreshold voltage

More

dies

may

fail

to

meettargetperformance

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 40/54

40

6 bits

4 streams

108 tones every 3.6 ms

48 tones every 4 sm1 stream

1 bit

6 Mbps

600 MbpsMIMOdetector

Channeldecoder

arrival rate(bandwidth & CP length) bits/tone

PHYthroughput

MIMOdetector

Channeldecoder

SNR

(distance)

ErrorrateThroughput

(rate)

Rate adaptation is routinely used to deal with constantly varying channel conditions

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 41/54

41

6 bits

4 streams

108 tones every 3.6 ms

48 tones every 4 sm1 stream

1 bit

6 Mbps

600 MbpsMIMOdetector

Channeldecoder

arrival rate(bandwidth & CP length) bits/tone

PHYthroughput

MIMOdetector

Channeldecoder

SNR

(distance)

ErrorrateThroughput

(rate) Put thisscalability toservice for better energy efficiency and 

toleranceagainst  processvariations

Rate adaptation is routinely used to deal with constantly varying channel conditions

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 42/54

42

Iterativereceivers

/decoders:

data

passesmultipletimesthroughthe

samealgorithm

Performance

improves

with

each

iteratrion

Deminishing returns afterfew iterations

Achieve same rate only ata shorter distance

Achievable rate decreases

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 43/54

43

Iterativereceivers

/decoders:

data

passesmultipletimesthroughthe

samealgorithm

Performance

improves

with

each

iteratrion

Deminishing returns afterfew iterations

Achieve same rate only ata shorter distance

Achievable rate decreases

Yield improvement:exploit scalability toretain functionality under  process

variations

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 44/54

Basebandprocessor

is

comprised

of 

logic

and

memory(onchipandsometimesoff chip)

PredictionfromITRSroadmap:

Primaryconcern:embedded(small mediumsize)

memories

in

DSP

blocks Occupyasignificantpercentageof thearea

Consumeasignificantshareof thepower

Memoriesaretheprimarysourceof failure(yieldloss)

44

Memorybecomes

dominantissue

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 45/54

Manufacturingcircuits(memories)thatareactually

functionalandrobustbecomesincreasinglydifficult

45

Denserandlargermemoriesaremoresusceptibletoradiation

Processvariationleadstostaticerrorsanddysfunctionalcells

Reduced

noise

margins

and

supply

noise

induce

errors

in

weak

cells

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 46/54

Faulttolerant

by

design:

Channelfading(randomfluctuationof 

signalstrength)

Unknown(noisy)channelparameters

Thermalnoise

and

interference

Systemlevelmechanismstorestore

reliablebehavior:

Forwarderrorcorrectioncoding

Automaticrepeatrequest

Applicationlevelfaulttolerance

(e.g.,

video

over

UDP)

46

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 47/54

47

ProposedParadigm

Relaxyieldrequirement(forinherentlyresilientsystems)

Selldieswithlimitedamountof defects(brokenmemorycells)

ConventionalParadigm

100%reliability,

accept

area

&

poweroverheadSellonlydefectfreedies

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 48/54

Conventionalyield

definition

Acceptingonlychipswithnodefects

ProposedyielddefinitionY(Nf )forsystemswithinherenthardwareerror

resilience

Chipswith

at

most

Nf  faulty

memory

cells

pass

inspection

48

Accepting more defects means

Higher yield, and/or

Lower voltage & power

What is the impact on system-

level metrics (throughput) ?

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 49/54

Example :Communication

system with bit

interleaved

coded modulation (BICM)

HSPDA.WiMAX,3GPPLTE,GSM,WLAN,…

49

Interleaver memory:stores

reliability information of thereceived data bits

Faultmodel

:de

interleaver

built

from

unreliablememory(5%BER)

Binarysymmetric channel

Randomized error locations

0 5 10 15 200

1

2

3

4

5

6

7

8

SNR [dB]

   M  a  x .

   A  c   h   i  e  v  a   b   l  e   R  a   t  e   [   b  p  c  u   ]

Collaboration with TU-Vienna (Matz, Novak)

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 50/54

Example :Communication

system with bit

interleaved

coded modulation (BICM)

HSPDA.WiMAX,3GPPLTE,GSM,WLAN,…

50

Interleaver memory:stores

reliability information of thereceived data bits

Faultmodel

:de

interleaver

built

from

unreliablememory(5%BER)

Binarysymmetric channel

Randomized error locations

0 5 10 15 200

1

2

3

4

5

6

7

8

SNR [dB]

   M  a  x .

   A  c   h   i  e  v  a   b   l  e   R  a   t  e   [   b  p  c  u   ]

Unreliablecircuit behavior canbeincorporated intothe performanceanalysisof communicationsystems

Collaboration with TU-Vienna (Matz, Novak)

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 51/54

51

Explorethe

resilience

limits of 

wirelesscommunication systems to

hardwaredefects

Simulation

of 

complete

HSPA+

system,witherrorinjection(in

HARQ memory)

Inject

‘CircuitErrors’

Forvariousdefectrates(Nf )

creatememoryinstances

withrandomfaultlocations

   T  r  a  n  s  m   i   t   t  e  r

HSPA+ System LLR StorageHARQ memory:

Bitflipsatrandomlocations

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 52/54

52

20errors(Nf =0.01%,200kbLLRstorage)

(Almost)same

throughput

as

for

defect

free

hardware

2’000errors(Nf =1%)

Achieverequiredthroughput(butclearpenaltyw.r.t.defectfreehardware)

Powerreductionbyallowinglowvoltages(~200mVless)

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 53/54

NewAlgorithmsandArchitecturesforBypassingthe

ExponentialComplexityAssociatedwithSpectralEfficiency

ImprovingEnergyEfficiency(nJ/bit)andAchieving

EnergyProportionality

in

Communications

ExploitingSystem

Level

Error

Tolerance

to

Cope

with

the

Issuesof DeppSubmicronIntegration

53

7/31/2019 EPFL STI Article Figures

http://slidepdf.com/reader/full/epfl-sti-article-figures 54/54

54

Signalprocessing algorithms:MIMOdetection,sparsechannel estimation,equalization,

CSADCs

for spectrum sensing

Systemdesignand test (prototypeimplementations):MIMO,visible light communication,

communication over plastic optical fibers,GSM/Evolved EDGE,TDSCDMA

VLSI

circuits

for

communications:

circuit

techniques

for

low

power

and

ultra

high

speed

signalprocessing,faulttolerantsignalprocessingfordeepsubmicronVLSI,VLSIfor

embeddedsystems

[email protected]

http://tcl.epfl.ch/