enzymekinetics and mechanism enzyme kinetics and mechanism karen cao, edward lee, jennifer liu, dea...

33
Enzyme Enzyme Kinetics Kinetics and Mechanism and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran, Jason Stickel, Laura Tiedemann, Lindsay Vendetta, Kurt Weiberth, Caitlin Williams http:// biomechanics.ecs.uma ss.edu/HHPAJX/ hhpajx5.gif

Upload: daniella-patrick

Post on 18-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

EnzymeEnzyme Kinetics Kinetics and Mechanismand Mechanism

Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila

Railkar, Jyotsna Ramachanadran, Jason Stickel, Laura Tiedemann,

Lindsay Vendetta, Kurt Weiberth, Caitlin Williams

•http://biomechanics.ecs.umass.edu/HHPAJX/hhpajx5.gif

Page 2: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

What is an enzyme?• Catalyzes a

chemical reaction by lowering activation energy

• Affected by temperature and pH

• Essential within human body

Chasin, Lawrence & Mowshowitz, Deborah. (2006, September). Lec. 6.   Biol C2005/F2401 Columbia University. New York, NY. Retrieved on 8 August, 2007 from http://www.columbia.edu/cu/biology/courses/c2005/purves6/figure06-14.jpg

Page 3: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Examples of Enzymes

Enzyme Nonenzymatic t1/2 knon (s-1) kcat

(s-1)Rate enhancement (kcat/knon)

OMP decarboxylase

78 000 000 years 2.8 x 10-16 39 1.4 x 1017

Staphylococcal nuclease

130 000 years 1.7 x 10-13 95 5.6 x 1014

Adenosine deaminase

120 years 1.8 x 10-10 370 2.1 x 1012

AMP nucleosidase

69 000 years 1.0 x 10-11 60 6.0 x 1012

Cytidine deaminase

69 years 3.2 x 10-10 299 1.2 x 1012

CITATION

Page 4: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Enzymes

• Active Site- the specific portion of an enzyme that attaches to the substrate

• Substrate- the reactant on which an enzyme works Campbell, N. A. & Reece

J. B. (2005). Biology. pp. 123

Page 5: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Adenosine Deaminase (ADA)

• T cell development• Neurotransmission• Blood flow• Platelet

aggregation• Regulates

adenosine levels

Adenosine Deaminase 1VFL.png. (2007). Wikipedia. Retrieved August 1, 2007 from http://en.wikipedia.org/wiki/Image:Adenosine_deaminase_1VFL.png

Page 6: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Adenosine

• Critical nucleoside• Backbone of various biological

structuresAdenosine triphosphate (ATP)Cellular receptors (G-proteins)

• Prevents tissue damage during hypoxia, ischemia, and seizure activity

Page 7: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Adenosine to Inosine

ON

OHHO

N

N N

N

CH2OH

NH2 O

CH2OH

N

N N

NH

ON

OHHO

H2O

NH3

Adenosine Inosine

Page 8: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

ADA Complications• Severe Combined

Immunodeficiency Syndrome (SCIDS)

• Lymphoma• Hemolytic Anemia

Cavazzana-Calvo, M. & Hacein-Bey, S. Gene Therapy: Bursting the Bubble of SCIDS. (2001). University of Arizone. Retrieved August 1, 2007 from http://student.biology.arizona.edu/honors2000/group08/images/babybubble.jpg

“A T Cell killing a cancer cell.” (2007). T-cells. Retrieved August 3, 2007 from http://www.sciencemuseum.org.uk/on-line/lifecycle/116.asp

Page 9: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

How ADA catalyzes

Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278.

Page 10: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

How ADA catalyzes

Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278.

Page 11: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

How ADA catalyzes

Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278.

Page 12: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

How ADA catalyzes

Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278.

Page 13: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

How ADA catalyzes

Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278.

Page 14: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Purpose• Begin attempts to identify

the functional group which protonates the amine leaving group

• pH dependence of two substratesAdenosine6-Chloroadenosine

?

Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278.

gselee
Is hisitidine the correct basic amino acid?
Page 15: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

N

NN

N

NH2

O

OHOH

HH

HH

HO

N

NN

N

Cl

O

OHOH

HH

HH

HO

Adenosine 6-Chloroadenosine

Adenosine 6-Chloroadenosine

Page 16: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Overview of experiment

• Determine rates of reaction of both adenosine and 6-chloroadenosine at varying concentrations and pHs.

• Calculate and compare rate constants to establish which reaction is more sensitive to pH

Page 17: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Why This Works

• At higher pHs, the solution will neutralize the acidic side chain before it can protonate the NH2

• 6-Chloroadenosine does not need a proton to continue with reaction

• Therefore, 6-Chloroadenosine will be less dependent on pH and show higher reaction rates.

The Science Company. (2007). Toward Understanding pH. Retrieved 7 August, 2007 from www.sciencecompany.com/iages/phscale.gif

Page 18: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Projected k2 Graphs

Case 1: pH dependence comes from the protonation of the amine group

Case 2: pH dependence comes from the protonation of the 1N or denaturation of the protein

6-ChloroadenosineAdenosine

Page 19: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Materials• Adenosine solution• Adenosine deaminase• 6-Chloroadenosine• Buffers of varying pH

• Distilled Water• Micropipettes• Microcentrifuge

tubes• Spectrophotometer

Micropipette. (2007). Biokits.com. Retrieved 8 August, 2007 from http://www.biokits.com

DU® 530 Life Science UV/Visible Spectrophotometers. (2007). Retrieved

8 August from http://www.biocompare.com

Page 20: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Procedure

• Use varying concentrations of adenosine solution and 6-chloroadenosine solution at each pH

• Add adenosine deaminase• Run sample through spectrophotometer for

duration of reaction to analyze rate of reaction– Beer’s Law: Abs. concentration

• Compress data and compare reaction rates of adenosine deaminase and 6-chloroadenosine

gskweibert
Page 21: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Absorbance vs. Time of 60 microM 6-Chloroadenosine at pH 8.9 y = -5.12E-05x + 4.38E-01

R2 = 9.92E-01

0.4050.41

0.4150.42

0.4250.43

0.4350.44

0 100 200 300 400 500 600 700

Time (sec.)

Ab

so

rba

nc

e

Absorbance vs. Time of 50 microM Adenosine at pH 8.9

y = -5.75E-04x + 7.01E-01

R2 = 1.00E+00

0.61000.62000.63000.64000.65000.66000.67000.68000.69000.70000.7100

0 20 40 60 80 100 120 140 160

Time (sec.)

Ab

so

rba

nc

e

Page 22: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Michaelis-Menten Kinetics

tEkv ][2max

1

21

k

kkKM

][

][max

sk

svv

mo

Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007.) Biochemistry. (6th ed.) New York: W.H. Freeman and Company.

Page 23: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Michaelis-Menten Chart for 6-Chloroadenosine at pH 8.9

0.00E+00

2.00E-09

4.00E-09

6.00E-09

8.00E-09

1.00E-08

1.20E-08

1.40E-08

1.60E-08

1.80E-08

2.00E-08

0 20 40 60 80 100 120

[S]

Vo

Michaelis-Menten Chart for Adenosine at pH 8.9

0

0.00000001

0.00000002

0.00000003

0.00000004

0.00000005

0.00000006

0.00000007

0.00000008

10

.00

[S]

Vo

Page 24: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Double Reciprocal Plot

maxmax

1

][

11

VSV

K

vM

o

y = m • x + b

Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007.) Biochemistry. (6th ed.) New York: W.H. Freeman and Company.

Page 25: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Double Reciprocal Chart forAdenosine at pH 8.9

y = 4.58E+08x + 3.11E+06R2 = 9.88E-01

0

10000000

20000000

30000000

40000000

50000000

60000000

0 0.02 0.04 0.06 0.08 0.1 0.12

1/[S]

1/V

o

Double Reciprocal Chart for6-Chloroadenosine at pH 8.9

y = 3.64E+09x + 3.11E+07

R2 = 9.84E-01

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

0.00 0.05 0.10 0.15 0.20 0.25

1/[S]

1/V

o

Page 26: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

pH k2(Ad) pH k2(Cl-Ad)

7.3 68.3 7.3 0.26

8.4 30.6 8.4 0.319

8.9 4.62 8.9 0.77

9.4 1.63 9.4 <0.08

pH vs. k2 for Adenosine and

6-Cl-Adenosine

0

20

40

60

80

7 7.5 8 8.5 9 9.5 10pH

Adenosi

ne k

2

0

0.2

0.4

0.6

0.8

6-C

l-A

denosi

ne k

2

Adenosine 6-chloroadenosine

Page 27: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Conclusions

2 preliminary conclusionsAdenosine is more pH sensitive than 6-

chloroadenosineImportance of acidic side chains and

protonation of amine group in pH dependence

Page 28: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Further Testing

• Determinations of more k₂ valuesTest adenosine and 6-Cl-adenosine at

more pH’s and more concentrations

• Testing of individual amino acid groups within enzymeReplacement of amino acid groups via

mutagenesis

Page 29: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Applications

• Comprehension of underlying ADA catalysis mechanism allows for more effective ADA inhibitors

• Major medical implicationsSCIDSLymphomasMetabolic disorders

Page 30: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Thank You

• Prudential and other sponsors• Dr. Miyamoto• Dr. Steven Surace• Dr. Paul Victor Quinn, Sr.• Myrna Papier• Dr. Adam Cassano• Jen Cowell

Page 31: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Questions? Comments? Concerns?

•Email us at

[email protected]

Page 32: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Sources1. Campbell, N. A. & Reece J. B. (2005). Biology. 1232. Adenosine Deaminase 1VFL.png. (2007). Wikipedia. Retrieved

August 1, 2007 from http://en.wikipedia.org/wiki/Image:Adenosine_deaminase_1VFL.png

3. “A T Cell killing a cancer cell.” (2007). T-cells. Retrieved August 3, 2007 from http://www.sciencemuseum.org.uk/on-line/lifecycle/116.asp

4. Cavazzana-Calvo, M. & Hacein-Bey, S. Gene Therapy: Bursting the Bubble of SCIDS. (2001). University of Arizone. Retrieved August 1, 2007 from http://student.biology.arizona.edu/honors2000/group08/images/babybubble.jpg

5. Wilson, D. K. et. al. Atomic Structure of Adenosine Deaminase Complexed with a Transition-State Analog: Understanding Catalysis and Immunodeficiency Mutations. (1991.) Science 252 (5010). 1278.

6. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007.) Biochemistry. (6th ed.) New York: W.H. Freeman and Company.

Page 33: EnzymeKinetics and Mechanism Enzyme Kinetics and Mechanism Karen Cao, Edward Lee, Jennifer Liu, Dea Yong Park, Sharmila Railkar, Jyotsna Ramachanadran,

Sources• Catalysis. http://www.columbia.edu/cu/biology/courses/c2005/purves6/figure06-14.jpg

• http://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Adenosine_deaminase_1VFL.png/593px-Adenosine_deaminase_1VFL.png

• Slide 1 http://biomechanics.ecs.umass.edu/HHPAJX/hhpajx5.gif