entropy stable schemes based on high order modal discontinuous galerkin formulations ·...

70
Entropy stable schemes based on high order modal discontinuous Galerkin formulations Jesse Chan with Lucas Wilcox (NPS), DCDR Fernandez, Mark Carpenter (NASA Langley) 1 Department of Computational and Applied Mathematics Finite Elements in Flow, Chicago, Illinois April 3, 2019 J. Chan (Rice CAAM) Entropy stable DG 4/3/19 1 / 21

Upload: others

Post on 10-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable schemes based on high order modaldiscontinuous Galerkin formulations

Jesse Chanwith Lucas Wilcox (NPS), DCDR Fernandez, Mark Carpenter (NASA Langley)

1Department of Computational and Applied Mathematics

Finite Elements in Flow, Chicago, IllinoisApril 3, 2019

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 1 / 21

Page 2: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

High order methods typically unstable for nonlinear PDEs

(a) Inviscid Burgers’ solution (b) 8th order DG

High order methods tend to blow up for under-resolved solutions(shocks, turbulence), sensitive to discretization.

Instability: quadrature error + loss of the discrete chain rule in space.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 2 / 21

Page 3: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

High order methods typically unstable for nonlinear PDEs

(a) Inviscid Burgers’ solution (b) 8th order DG

High order methods tend to blow up for under-resolved solutions(shocks, turbulence), sensitive to discretization.

Instability: quadrature error + loss of the discrete chain rule in space.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 2 / 21

Page 4: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

High order methods typically unstable for nonlinear PDEs

(a) Inviscid Burgers’ solution (b) 8th order DG

High order methods tend to blow up for under-resolved solutions(shocks, turbulence), sensitive to discretization.

Instability: quadrature error + loss of the discrete chain rule in space.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 2 / 21

Page 5: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

High order methods typically unstable for nonlinear PDEs

(a) Inviscid Burgers’ solution (b) 8th order DG

High order methods tend to blow up for under-resolved solutions(shocks, turbulence), sensitive to discretization.

Instability: quadrature error + loss of the discrete chain rule in space.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 2 / 21

Page 6: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stability for nonlinear problems uses the chain rule

Generalizes energy stability to nonlinear systems of conservation laws(Burgers’, shallow water, compressible Euler, MHD).

∂u∂t

+∂f (u)

∂x= 0 x ∈ [−1, 1].

Continuous entropy inequality: given a scalar convex entropy functionS(u) and “entropy potential” ψ(u),

∫ 1

−1vT

(∂u∂t

+∂f (u)

∂x

)= 0, v =

∂S

∂u

=⇒ ∂

∂t

∫ 1

−1S(u) +

(vT f (u)− ψ(u)

)∣∣∣1

−1≤ 0.

Proof of entropy inequality relies on chain rule, integration by parts.

Continuous entropy stability: Hughes et al. 1986, Zakerzadeh/May, Fernandez/Nguyen/Peraire, Williams, . . .

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 3 / 21

Page 7: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Talk outline

1 Entropy stable nodal DG and summation-by-parts

2 Entropy stable modal DG formulations

3 Numerical experimentsTriangular and tetrahedral meshesQuadrilateral and hexahedral meshesHybrid and non-conforming meshes

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 3 / 21

Page 8: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Talk outline

1 Entropy stable nodal DG and summation-by-parts

2 Entropy stable modal DG formulations

3 Numerical experimentsTriangular and tetrahedral meshesQuadrilateral and hexahedral meshesHybrid and non-conforming meshes

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 3 / 21

Page 9: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Nodal DG, summation-by-parts (SBP), flux differencing

Dij =@`j@x

x=xi

<latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit>

`j(x)<latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit>

uj<latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit>

Gauss-Lobatto nodes mimic integration by parts algebraically

Q = B −QT , Q = MD, M diagonal mass matrix.

Nodal “collocation” over a single element:

Mdudt

+ Qf (u) = 0 =⇒ M iidu i

dt+∑

j

Q ij f (u j ) = 0.

Let f S (u i ,u j ) = 12 (f (u i ) + f (u j )) = (F S )ij . Collocation equiv. to

M iidu i

dt+∑

j

Q ij 2f S (u i ,u j ) = 0 =⇒ Mdudt

+ 2 (Q F S ) 1 = 0.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 4 / 21

Page 10: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Nodal DG, summation-by-parts (SBP), flux differencing

Dij =@`j@x

x=xi

<latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit>

`j(x)<latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit>

uj<latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit>

Gauss-Lobatto nodes mimic integration by parts algebraically

Q = B −QT , Q = MD, M diagonal mass matrix.

Nodal “collocation” over a single element:

Mdudt

+ Qf (u) = 0 =⇒ M iidu i

dt+∑

j

Q ij f (u j ) = 0.

Let f S (u i ,u j ) = 12 (f (u i ) + f (u j )) = (F S )ij . Collocation equiv. to

M iidu i

dt+∑

j

Q ij 2f S (u i ,u j ) = 0 =⇒ Mdudt

+ 2 (Q F S ) 1 = 0.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 4 / 21

Page 11: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Nodal DG, summation-by-parts (SBP), flux differencing

Dij =@`j@x

x=xi

<latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit><latexit sha1_base64="O+6WcJKMcRYPKxd5rYDcVb7Kksc=">AAACVnicbVFNSxxBEO2dxK/1I6M5emmyBDwtMyKYiyAawaNCVgVnGXp6a3Zbu6eH7hrZpTO/yF/jLeo/yUHSsy4kqyloeLxXVbx6nZVSWIyix1bw4ePC4tLySnt1bX3jU7i5dWF1ZTj0uJbaXGXMghQF9FCghKvSAFOZhMvs9rjRL+/AWKGLHzgpoa/YsBC54Aw9lYYnSabc9zp14qamBzSRkGM3yQ3jLimZQcEkTUDK9Kb+S4zrxIjhCH+mbnwwTkWdhp2oG02LvgfxDHTIrM7S8Hcy0LxSUCCXzNrrOCqx75r9XELdTioLJeO3bAjXHhZMge276bk1/eqZAc218a9AOmX/nXBMWTtRme9UDEf2rdaQ/9UaBrWWds6Ay1TdnneE+be+E0VZIRT81VBeSYqaNhnTgTDAUU48YNwIfxPlI+YzRf8TbR9W/Daa9+BitxtH3fh8r3N4NIttmWyTL2SHxGSfHJJTckZ6hJN78kCeyHPrV+slWAiWXluD1mzmM5mrIPwD4wm4Cw==</latexit>

`j(x)<latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit><latexit sha1_base64="gsyhmLvLv9igWffaOpk7mD48C3A=">AAACGHicbVC7SgNBFJ2Nr7i+opY2g0GITdgVQcugjWUE85BkCbOT2WTMPJaZWTEs+Qo70X+xE1s7f8XK2WQLk3jgwuGce+HcE8aMauN5305hZXVtfaO46W5t7+zulfYPmlomCpMGlkyqdog0YVSQhqGGkXasCOIhI61wdJ35rUeiNJXizoxjEnA0EDSiGBkr3XcJY72HytNpr1T2qt4UcJn4OSmDHPVe6afblzjhRBjMkNYd34tNkCJlKGZk4nYTTWKER2hAOpYKxIkO0mngCTyxSh9GUtkRBk7Vvxcp4lqPeWg3OTJDvehl4r9ephgpmZ4LkIZ84s4nMtFlkFIRJ4YIPAsUJQwaCbOWYJ8qgg0bW4KwovYniIdIIWxsl64ty1+sZpk0z6q+V/Vvz8u1q7y2IjgCx6ACfHABauAG1EEDYMDBM3gFb86L8+58OJ+z1YKT3xyCOThfv2nToJE=</latexit>

uj<latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit><latexit sha1_base64="KSFynNoiNQLXIPsd+u54CYZixqM=">AAACFHicbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCaQttKJPppB07jzAzEUrIN7gT/Rd34ta9v+LKSZuFbT1w4XDOvXDuiRJGtfG8b6eytr6xuVXddnd29/YPaodHbS1ThUmAJZOqGyFNGBUkMNQw0k0UQTxipBNNbgu/80SUplI8mGlCQo5GgsYUI2OlIEvzweOgVvca3gxwlfglqYMSrUHtpz+UOOVEGMyQ1j3fS0yYIWUoZiR3+6kmCcITNCI9SwXiRIfZLGwOz6wyhLFUdoSBM/XvRYa41lMe2U2OzFgve4X4r1coRkqmFwJkEc/dxUQmvg4zKpLUEIHngeKUQSNh0RAcUkWwYVNLEFbU/gTxGCmEje3RtWX5y9WskvZFw/ca/v1lvXlT1lYFJ+AUnAMfXIEmuAMtEAAMKHgGr+DNeXHenQ/nc75accqbY7AA5+sXMpifdA==</latexit>

Gauss-Lobatto nodes mimic integration by parts algebraically

Q = B −QT , Q = MD, M diagonal mass matrix.

Nodal “collocation” over a single element:

Mdudt

+ Qf (u) = 0 =⇒ M iidu i

dt+∑

j

Q ij f (u j ) = 0.

Let f S (u i ,u j ) = 12 (f (u i ) + f (u j )) = (F S )ij . Collocation equiv. to

M iidu i

dt+∑

j

Q ij 2f S (u i ,u j ) = 0 =⇒ Mdudt

+ 2 (Q F S ) 1 = 0.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 4 / 21

Page 12: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+ 2 (Q F S ) 1 = 0

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

vT Mdudt

+ vT((

Q −QT) F S

)1 + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 13: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1

︸ ︷︷ ︸SBP property

+ (B F S ) 1 = 0

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

vT Mdudt

+ vT((

Q −QT) F S

)1 + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 14: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf (u)︸ ︷︷ ︸

(FS )ii =f (u i ) + diagonal B

= 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

vT Mdudt

+ vT((

Q −QT) F S

)1 + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 15: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf ∗

︸︷︷︸Numerical flux

= 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

vT Mdudt

+ vT((

Q −QT) F S

)1 + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 16: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf ∗ = 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

vT Mdudt

+ vT((

Q −QT) F S

)1 + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 17: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf ∗ = 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

vT Mdudt

+ vT((

Q −QT) F S

)1 + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 18: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf ∗ = 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

vT Mdudt

+ vT((

Q −QT) F S

)1 + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 19: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf ∗ = 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

1T MdS(u)

dt+∑

ij

Q ij (v i − v j )T f S (u i ,u j ) + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 20: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf ∗ = 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

1T MdS(u)

dt+∑

ij

Q ij (ψ(u i )− ψ(u j )) + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 21: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf ∗ = 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

1T MdS(u)

dt+ψT Q1− 1T Qψ + vT Bf ∗ = 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 22: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Entropy stable schemes: a brief derivation

DG: derive local formulation (one element) with interface flux f ∗

Mdudt

+((

Q −QT) F S

)1 + Bf ∗ = 0.

Trick: use Tadmor’s entropy conservative numerical flux for f S , f ∗

f S (u,u) = f (u), (consistency)

f S (u, v) = f S (v ,u), (symmetry)

(vL − vR)T f S (uL,uR) = ψL − ψR , (conservation).

Proof of entropy conservation: multiply by vT

1T MdS(u)

dt+ 1T B

(vT f ∗ −ψ

)= 0.

Tadmor, Eitan (1987), Gassner, Winters, and Kopriva (2016).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 5 / 21

Page 23: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Benefits of entropy stability (conservation)

(a) Entropy conservative flux, T = .3 (b) Entropy conservative flux, T = .7

Figure: Compressible Euler shock vortex interaction: 200× 100 degree N = 4elements, 4th order explicit RK time-stepping, no limiters or artificial viscosity.

Jiang, Shu (1998). Efficient Implementation of Weighted ENO Schemes.

Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Machnumber ideal MHD and compressible Euler simulations.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 6 / 21

Page 24: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Benefits of entropy stability (conservation)

(a) Local Lax-Friedrichs flux, T = .3 (b) Local Lax-Friedrichs flux, T = .7

Figure: Compressible Euler shock vortex interaction: 200× 100 degree N = 4elements, 4th order explicit RK time-stepping, no limiters or artificial viscosity.

Jiang, Shu (1998). Efficient Implementation of Weighted ENO Schemes.

Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Machnumber ideal MHD and compressible Euler simulations.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 6 / 21

Page 25: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Benefits of entropy stability (conservation)

(a) Matrix dissipation flux, T = .3 (b) Matrix dissipation flux, T = .7

Figure: Compressible Euler shock vortex interaction: 200× 100 degree N = 4elements, 4th order explicit RK time-stepping, no limiters or artificial viscosity.

Jiang, Shu (1998). Efficient Implementation of Weighted ENO Schemes.

Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Machnumber ideal MHD and compressible Euler simulations.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 6 / 21

Page 26: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable nodal DG and summation-by-parts

Benefits of entropy stability (conservation)

(a) Matrix dissipation flux, T = .3 (b) Matrix dissipation flux, T = .7

Figure: Compressible Euler shock vortex interaction: 200× 100 degree N = 4elements, 4th order explicit RK time-stepping, no limiters or artificial viscosity.

Jiang, Shu (1998). Efficient Implementation of Weighted ENO Schemes.

Chandrashekar (2013). Kinetic energy preserving and entropy stable FV schemes for compressible Euler and NS equations.

Winters, Derigs, Gassner, and Walch (2017). A uniquely defined entropy stable matrix dissipation operator for high Machnumber ideal MHD and compressible Euler simulations.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 6 / 21

Page 27: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

Talk outline

1 Entropy stable nodal DG and summation-by-parts

2 Entropy stable modal DG formulations

3 Numerical experimentsTriangular and tetrahedral meshesQuadrilateral and hexahedral meshesHybrid and non-conforming meshes

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 6 / 21

Page 28: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

Modal formulations: general bases and quadrature

Pq<latexit sha1_base64="M6iN+MPRAXQEgoNS3CorX2L0Du8=">AAACF3icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4A2lMl00g6dycSZiVBCfsKd6L+4E7cu/RVXTtosbOuBC4dz7oVzTxBzpo3rfjultfWNza3ydmVnd2//oHp41NYyUYS2iORSdQOsKWcRbRlmOO3GimIRcNoJJre533miSjMZPZhpTH2BRxELGcHGSt1+INJmNngcVGtu3Z0BrRKvIDUo0BxUf/pDSRJBI0M41rrnubHxU6wMI5xmlX6iaYzJBI9oz9IIC6r9dJY3Q2dWGaJQKjuRQTP170WKhdZTEdhNgc1YL3u5+K+XK0ZKrhcCpIHIKouJTHjtpyyKE0MjMg8UJhwZifKS0JApSgyfWoKJYvYnRMZYYWJslRVblrdczSppX9Q9t+7dX9YaN0VtZTiBUzgHD66gAXfQhBYQ4PAMr/DmvDjvzofzOV8tOcXNMSzA+foFajagnw==</latexit><latexit sha1_base64="M6iN+MPRAXQEgoNS3CorX2L0Du8=">AAACF3icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4A2lMl00g6dycSZiVBCfsKd6L+4E7cu/RVXTtosbOuBC4dz7oVzTxBzpo3rfjultfWNza3ydmVnd2//oHp41NYyUYS2iORSdQOsKWcRbRlmOO3GimIRcNoJJre533miSjMZPZhpTH2BRxELGcHGSt1+INJmNngcVGtu3Z0BrRKvIDUo0BxUf/pDSRJBI0M41rrnubHxU6wMI5xmlX6iaYzJBI9oz9IIC6r9dJY3Q2dWGaJQKjuRQTP170WKhdZTEdhNgc1YL3u5+K+XK0ZKrhcCpIHIKouJTHjtpyyKE0MjMg8UJhwZifKS0JApSgyfWoKJYvYnRMZYYWJslRVblrdczSppX9Q9t+7dX9YaN0VtZTiBUzgHD66gAXfQhBYQ4PAMr/DmvDjvzofzOV8tOcXNMSzA+foFajagnw==</latexit><latexit sha1_base64="M6iN+MPRAXQEgoNS3CorX2L0Du8=">AAACF3icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4A2lMl00g6dycSZiVBCfsKd6L+4E7cu/RVXTtosbOuBC4dz7oVzTxBzpo3rfjultfWNza3ydmVnd2//oHp41NYyUYS2iORSdQOsKWcRbRlmOO3GimIRcNoJJre533miSjMZPZhpTH2BRxELGcHGSt1+INJmNngcVGtu3Z0BrRKvIDUo0BxUf/pDSRJBI0M41rrnubHxU6wMI5xmlX6iaYzJBI9oz9IIC6r9dJY3Q2dWGaJQKjuRQTP170WKhdZTEdhNgc1YL3u5+K+XK0ZKrhcCpIHIKouJTHjtpyyKE0MjMg8UJhwZifKS0JApSgyfWoKJYvYnRMZYYWJslRVblrdczSppX9Q9t+7dX9YaN0VtZTiBUzgHD66gAXfQhBYQ4PAMr/DmvDjvzofzOV8tOcXNMSzA+foFajagnw==</latexit><latexit sha1_base64="M6iN+MPRAXQEgoNS3CorX2L0Du8=">AAACF3icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4A2lMl00g6dycSZiVBCfsKd6L+4E7cu/RVXTtosbOuBC4dz7oVzTxBzpo3rfjultfWNza3ydmVnd2//oHp41NYyUYS2iORSdQOsKWcRbRlmOO3GimIRcNoJJre533miSjMZPZhpTH2BRxELGcHGSt1+INJmNngcVGtu3Z0BrRKvIDUo0BxUf/pDSRJBI0M41rrnubHxU6wMI5xmlX6iaYzJBI9oz9IIC6r9dJY3Q2dWGaJQKjuRQTP170WKhdZTEdhNgc1YL3u5+K+XK0ZKrhcCpIHIKouJTHjtpyyKE0MjMg8UJhwZifKS0JApSgyfWoKJYvYnRMZYYWJslRVblrdczSppX9Q9t+7dX9YaN0VtZTiBUzgHD66gAXfQhBYQ4PAMr/DmvDjvzofzOV8tOcXNMSzA+foFajagnw==</latexit>

Vq<latexit sha1_base64="vk7v79r9prc9vx0R5r+I5tKYHh8=">AAACF3icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4A2lMl00g6dycSZiVBCfsKd6L+4E7cu/RVXTtosbOuBC4dz7oVzTxBzpo3rfjultfWNza3ydmVnd2//oHp41NYyUYS2iORSdQOsKWcRbRlmOO3GimIRcNoJJre533miSjMZPZhpTH2BRxELGcHGSt1+INJ2NngcVGtu3Z0BrRKvIDUo0BxUf/pDSRJBI0M41rrnubHxU6wMI5xmlX6iaYzJBI9oz9IIC6r9dJY3Q2dWGaJQKjuRQTP170WKhdZTEdhNgc1YL3u5+K+XK0ZKrhcCpIHIKouJTHjtpyyKE0MjMg8UJhwZifKS0JApSgyfWoKJYvYnRMZYYWJslRVblrdczSppX9Q9t+7dX9YaN0VtZTiBUzgHD66gAXfQhBYQ4PAMr/DmvDjvzofzOV8tOcXNMSzA+foFdFCgpQ==</latexit><latexit sha1_base64="vk7v79r9prc9vx0R5r+I5tKYHh8=">AAACF3icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4A2lMl00g6dycSZiVBCfsKd6L+4E7cu/RVXTtosbOuBC4dz7oVzTxBzpo3rfjultfWNza3ydmVnd2//oHp41NYyUYS2iORSdQOsKWcRbRlmOO3GimIRcNoJJre533miSjMZPZhpTH2BRxELGcHGSt1+INJ2NngcVGtu3Z0BrRKvIDUo0BxUf/pDSRJBI0M41rrnubHxU6wMI5xmlX6iaYzJBI9oz9IIC6r9dJY3Q2dWGaJQKjuRQTP170WKhdZTEdhNgc1YL3u5+K+XK0ZKrhcCpIHIKouJTHjtpyyKE0MjMg8UJhwZifKS0JApSgyfWoKJYvYnRMZYYWJslRVblrdczSppX9Q9t+7dX9YaN0VtZTiBUzgHD66gAXfQhBYQ4PAMr/DmvDjvzofzOV8tOcXNMSzA+foFdFCgpQ==</latexit><latexit sha1_base64="vk7v79r9prc9vx0R5r+I5tKYHh8=">AAACF3icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4A2lMl00g6dycSZiVBCfsKd6L+4E7cu/RVXTtosbOuBC4dz7oVzTxBzpo3rfjultfWNza3ydmVnd2//oHp41NYyUYS2iORSdQOsKWcRbRlmOO3GimIRcNoJJre533miSjMZPZhpTH2BRxELGcHGSt1+INJ2NngcVGtu3Z0BrRKvIDUo0BxUf/pDSRJBI0M41rrnubHxU6wMI5xmlX6iaYzJBI9oz9IIC6r9dJY3Q2dWGaJQKjuRQTP170WKhdZTEdhNgc1YL3u5+K+XK0ZKrhcCpIHIKouJTHjtpyyKE0MjMg8UJhwZifKS0JApSgyfWoKJYvYnRMZYYWJslRVblrdczSppX9Q9t+7dX9YaN0VtZTiBUzgHD66gAXfQhBYQ4PAMr/DmvDjvzofzOV8tOcXNMSzA+foFdFCgpQ==</latexit><latexit sha1_base64="vk7v79r9prc9vx0R5r+I5tKYHh8=">AAACF3icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4A2lMl00g6dycSZiVBCfsKd6L+4E7cu/RVXTtosbOuBC4dz7oVzTxBzpo3rfjultfWNza3ydmVnd2//oHp41NYyUYS2iORSdQOsKWcRbRlmOO3GimIRcNoJJre533miSjMZPZhpTH2BRxELGcHGSt1+INJ2NngcVGtu3Z0BrRKvIDUo0BxUf/pDSRJBI0M41rrnubHxU6wMI5xmlX6iaYzJBI9oz9IIC6r9dJY3Q2dWGaJQKjuRQTP170WKhdZTEdhNgc1YL3u5+K+XK0ZKrhcCpIHIKouJTHjtpyyKE0MjMg8UJhwZifKS0JApSgyfWoKJYvYnRMZYYWJslRVblrdczSppX9Q9t+7dX9YaN0VtZTiBUzgHD66gAXfQhBYQ4PAMr/DmvDjvzofzOV8tOcXNMSzA+foFdFCgpQ==</latexit>

Vf<latexit sha1_base64="p0bmPWdeSKkDa8bbKVHGp5cR2oA=">AAACF3icbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCfUAbymQ6aYfOZMLMjVBCfsKd6L+4E7cu/RVXTtosbPXAhcM598K5J0wEN+B5X05lbX1jc6u67e7s7u0f1A6POkalmrI2VULpXkgMEzxmbeAgWC/RjMhQsG44vS387iPThqv4AWYJCyQZxzzilICVeoNQZp18GA1rda/hzYH/Er8kdVSiNax9D0aKppLFQAUxpu97CQQZ0cCpYLk7SA1LCJ2SMetbGhPJTJDN8+b4zCojHCltJwY8V39fZEQaM5Oh3ZQEJmbVK8R/vUIBpYRZCpCFMneXE0F0HWQ8TlJgMV0EilKBQeGiJDzimlEQM0sI1dz+hOmEaELBVunasvzVav6SzkXD9xr+/WW9eVPWVkUn6BSdIx9doSa6Qy3URhQJ9IRe0Kvz7Lw5787HYrXilDfHaAnO5w9h7KCa</latexit><latexit sha1_base64="p0bmPWdeSKkDa8bbKVHGp5cR2oA=">AAACF3icbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCfUAbymQ6aYfOZMLMjVBCfsKd6L+4E7cu/RVXTtosbPXAhcM598K5J0wEN+B5X05lbX1jc6u67e7s7u0f1A6POkalmrI2VULpXkgMEzxmbeAgWC/RjMhQsG44vS387iPThqv4AWYJCyQZxzzilICVeoNQZp18GA1rda/hzYH/Er8kdVSiNax9D0aKppLFQAUxpu97CQQZ0cCpYLk7SA1LCJ2SMetbGhPJTJDN8+b4zCojHCltJwY8V39fZEQaM5Oh3ZQEJmbVK8R/vUIBpYRZCpCFMneXE0F0HWQ8TlJgMV0EilKBQeGiJDzimlEQM0sI1dz+hOmEaELBVunasvzVav6SzkXD9xr+/WW9eVPWVkUn6BSdIx9doSa6Qy3URhQJ9IRe0Kvz7Lw5787HYrXilDfHaAnO5w9h7KCa</latexit><latexit sha1_base64="p0bmPWdeSKkDa8bbKVHGp5cR2oA=">AAACF3icbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCfUAbymQ6aYfOZMLMjVBCfsKd6L+4E7cu/RVXTtosbPXAhcM598K5J0wEN+B5X05lbX1jc6u67e7s7u0f1A6POkalmrI2VULpXkgMEzxmbeAgWC/RjMhQsG44vS387iPThqv4AWYJCyQZxzzilICVeoNQZp18GA1rda/hzYH/Er8kdVSiNax9D0aKppLFQAUxpu97CQQZ0cCpYLk7SA1LCJ2SMetbGhPJTJDN8+b4zCojHCltJwY8V39fZEQaM5Oh3ZQEJmbVK8R/vUIBpYRZCpCFMneXE0F0HWQ8TlJgMV0EilKBQeGiJDzimlEQM0sI1dz+hOmEaELBVunasvzVav6SzkXD9xr+/WW9eVPWVkUn6BSdIx9doSa6Qy3URhQJ9IRe0Kvz7Lw5787HYrXilDfHaAnO5w9h7KCa</latexit><latexit sha1_base64="p0bmPWdeSKkDa8bbKVHGp5cR2oA=">AAACF3icbVDLSsNAFJ3UV42vqks3g0VwVRIRdFl047KCfUAbymQ6aYfOZMLMjVBCfsKd6L+4E7cu/RVXTtosbPXAhcM598K5J0wEN+B5X05lbX1jc6u67e7s7u0f1A6POkalmrI2VULpXkgMEzxmbeAgWC/RjMhQsG44vS387iPThqv4AWYJCyQZxzzilICVeoNQZp18GA1rda/hzYH/Er8kdVSiNax9D0aKppLFQAUxpu97CQQZ0cCpYLk7SA1LCJ2SMetbGhPJTJDN8+b4zCojHCltJwY8V39fZEQaM5Oh3ZQEJmbVK8R/vUIBpYRZCpCFMneXE0F0HWQ8TlJgMV0EilKBQeGiJDzimlEQM0sI1dz+hOmEaELBVunasvzVav6SzkXD9xr+/WW9eVPWVkUn6BSdIx9doSa6Qy3URhQJ9IRe0Kvz7Lw5787HYrXilDfHaAnO5w9h7KCa</latexit>

Polynomials<latexit sha1_base64="1JRBtnCCtjInuu6C54C+SCKgYj0=">AAACGnicbVDLSsNAFJ34rPFVdekmWARXJelGl0U3LivYB7ShTKaTdug8wsyNEEI/w53ov7gTt278FVdO2ixs64ELh3PuhXNPlHBmwPe/nY3Nre2d3cqeu39weHRcPTntGJVqQttEcaV7ETaUM0nbwIDTXqIpFhGn3Wh6V/jdJ6oNU/IRsoSGAo8lixnBYKV+S/FMKsEwN8Nqza/7c3jrJChJDZVoDas/g5EiqaASCMfG9AM/gTDHGhjhdOYOUkMTTKZ4TPuWSiyoCfN55Jl3aZWRFyttR4I3V/9e5FgYk4nIbgoME7PqFeK/XqGAUtwsBcgjMXOXE0F8E+ZMJilQSRaB4pR7oLyiJ2/ENCXAM0sw0cz+5JEJ1piAbdO1ZQWr1ayTTqMe+PXgoVFr3pa1VdA5ukBXKEDXqInuUQu1EUEKPaNX9Oa8OO/Oh/O5WN1wypsztATn6xcc86IP</latexit><latexit sha1_base64="1JRBtnCCtjInuu6C54C+SCKgYj0=">AAACGnicbVDLSsNAFJ34rPFVdekmWARXJelGl0U3LivYB7ShTKaTdug8wsyNEEI/w53ov7gTt278FVdO2ixs64ELh3PuhXNPlHBmwPe/nY3Nre2d3cqeu39weHRcPTntGJVqQttEcaV7ETaUM0nbwIDTXqIpFhGn3Wh6V/jdJ6oNU/IRsoSGAo8lixnBYKV+S/FMKsEwN8Nqza/7c3jrJChJDZVoDas/g5EiqaASCMfG9AM/gTDHGhjhdOYOUkMTTKZ4TPuWSiyoCfN55Jl3aZWRFyttR4I3V/9e5FgYk4nIbgoME7PqFeK/XqGAUtwsBcgjMXOXE0F8E+ZMJilQSRaB4pR7oLyiJ2/ENCXAM0sw0cz+5JEJ1piAbdO1ZQWr1ayTTqMe+PXgoVFr3pa1VdA5ukBXKEDXqInuUQu1EUEKPaNX9Oa8OO/Oh/O5WN1wypsztATn6xcc86IP</latexit><latexit sha1_base64="1JRBtnCCtjInuu6C54C+SCKgYj0=">AAACGnicbVDLSsNAFJ34rPFVdekmWARXJelGl0U3LivYB7ShTKaTdug8wsyNEEI/w53ov7gTt278FVdO2ixs64ELh3PuhXNPlHBmwPe/nY3Nre2d3cqeu39weHRcPTntGJVqQttEcaV7ETaUM0nbwIDTXqIpFhGn3Wh6V/jdJ6oNU/IRsoSGAo8lixnBYKV+S/FMKsEwN8Nqza/7c3jrJChJDZVoDas/g5EiqaASCMfG9AM/gTDHGhjhdOYOUkMTTKZ4TPuWSiyoCfN55Jl3aZWRFyttR4I3V/9e5FgYk4nIbgoME7PqFeK/XqGAUtwsBcgjMXOXE0F8E+ZMJilQSRaB4pR7oLyiJ2/ENCXAM0sw0cz+5JEJ1piAbdO1ZQWr1ayTTqMe+PXgoVFr3pa1VdA5ukBXKEDXqInuUQu1EUEKPaNX9Oa8OO/Oh/O5WN1wypsztATn6xcc86IP</latexit><latexit sha1_base64="1JRBtnCCtjInuu6C54C+SCKgYj0=">AAACGnicbVDLSsNAFJ34rPFVdekmWARXJelGl0U3LivYB7ShTKaTdug8wsyNEEI/w53ov7gTt278FVdO2ixs64ELh3PuhXNPlHBmwPe/nY3Nre2d3cqeu39weHRcPTntGJVqQttEcaV7ETaUM0nbwIDTXqIpFhGn3Wh6V/jdJ6oNU/IRsoSGAo8lixnBYKV+S/FMKsEwN8Nqza/7c3jrJChJDZVoDas/g5EiqaASCMfG9AM/gTDHGhjhdOYOUkMTTKZ4TPuWSiyoCfN55Jl3aZWRFyttR4I3V/9e5FgYk4nIbgoME7PqFeK/XqGAUtwsBcgjMXOXE0F8E+ZMJilQSRaB4pR7oLyiJ2/ENCXAM0sw0cz+5JEJ1piAbdO1ZQWr1ayTTqMe+PXgoVFr3pa1VdA5ukBXKEDXqInuUQu1EUEKPaNX9Oa8OO/Oh/O5WN1wypsztATn6xcc86IP</latexit>

Volumequadrature

<latexit sha1_base64="9WuroOZhGCUuVYo31qW/weMcZks=">AAACQHicbVDLSgMxFM34rOOr6tLNYBFc1Rk3uiy6cVnBPqBTSiZz2wYzyZjcEcrQz/Br3Il+hH/gTtx2ZfoQbOuBwOGcc8O9J0oFN+j7H87K6tr6xmZhy93e2d3bLx4c1o3KNIMaU0LpZkQNCC6hhhwFNFMNNIkENKKHm7HfeAJtuJL3OEihndCe5F3OKFqpUzwPI+hxmTOQCHro1pXIEghD9zGjsaaYaXBDkPFvoFMs+WV/Am+ZBDNSIjNUO8VRGCtm/5TIBDWmFfgptnOqkTMBQzfMDKSUPdAetCyVNAHTzieHDb1Tq8ReV2n7JHoT9e9EThNjBklkkwnFvln0xuK/3lhBpYSZWyCPkqE7vxF2r9o5l2mGINl0oW4mPFTeuE0v5hoYioEllGlub/JYn2rKbFfGtWUFi9Usk/pFOfDLwd1FqXI9q61AjskJOSMBuSQVckuqpEYYeSYv5I28O6/Op/PlfE+jK85s5ojMwRn9AJV7sYM=</latexit><latexit sha1_base64="9WuroOZhGCUuVYo31qW/weMcZks=">AAACQHicbVDLSgMxFM34rOOr6tLNYBFc1Rk3uiy6cVnBPqBTSiZz2wYzyZjcEcrQz/Br3Il+hH/gTtx2ZfoQbOuBwOGcc8O9J0oFN+j7H87K6tr6xmZhy93e2d3bLx4c1o3KNIMaU0LpZkQNCC6hhhwFNFMNNIkENKKHm7HfeAJtuJL3OEihndCe5F3OKFqpUzwPI+hxmTOQCHro1pXIEghD9zGjsaaYaXBDkPFvoFMs+WV/Am+ZBDNSIjNUO8VRGCtm/5TIBDWmFfgptnOqkTMBQzfMDKSUPdAetCyVNAHTzieHDb1Tq8ReV2n7JHoT9e9EThNjBklkkwnFvln0xuK/3lhBpYSZWyCPkqE7vxF2r9o5l2mGINl0oW4mPFTeuE0v5hoYioEllGlub/JYn2rKbFfGtWUFi9Usk/pFOfDLwd1FqXI9q61AjskJOSMBuSQVckuqpEYYeSYv5I28O6/Op/PlfE+jK85s5ojMwRn9AJV7sYM=</latexit><latexit sha1_base64="9WuroOZhGCUuVYo31qW/weMcZks=">AAACQHicbVDLSgMxFM34rOOr6tLNYBFc1Rk3uiy6cVnBPqBTSiZz2wYzyZjcEcrQz/Br3Il+hH/gTtx2ZfoQbOuBwOGcc8O9J0oFN+j7H87K6tr6xmZhy93e2d3bLx4c1o3KNIMaU0LpZkQNCC6hhhwFNFMNNIkENKKHm7HfeAJtuJL3OEihndCe5F3OKFqpUzwPI+hxmTOQCHro1pXIEghD9zGjsaaYaXBDkPFvoFMs+WV/Am+ZBDNSIjNUO8VRGCtm/5TIBDWmFfgptnOqkTMBQzfMDKSUPdAetCyVNAHTzieHDb1Tq8ReV2n7JHoT9e9EThNjBklkkwnFvln0xuK/3lhBpYSZWyCPkqE7vxF2r9o5l2mGINl0oW4mPFTeuE0v5hoYioEllGlub/JYn2rKbFfGtWUFi9Usk/pFOfDLwd1FqXI9q61AjskJOSMBuSQVckuqpEYYeSYv5I28O6/Op/PlfE+jK85s5ojMwRn9AJV7sYM=</latexit><latexit sha1_base64="9WuroOZhGCUuVYo31qW/weMcZks=">AAACQHicbVDLSgMxFM34rOOr6tLNYBFc1Rk3uiy6cVnBPqBTSiZz2wYzyZjcEcrQz/Br3Il+hH/gTtx2ZfoQbOuBwOGcc8O9J0oFN+j7H87K6tr6xmZhy93e2d3bLx4c1o3KNIMaU0LpZkQNCC6hhhwFNFMNNIkENKKHm7HfeAJtuJL3OEihndCe5F3OKFqpUzwPI+hxmTOQCHro1pXIEghD9zGjsaaYaXBDkPFvoFMs+WV/Am+ZBDNSIjNUO8VRGCtm/5TIBDWmFfgptnOqkTMBQzfMDKSUPdAetCyVNAHTzieHDb1Tq8ReV2n7JHoT9e9EThNjBklkkwnFvln0xuK/3lhBpYSZWyCPkqE7vxF2r9o5l2mGINl0oW4mPFTeuE0v5hoYioEllGlub/JYn2rKbFfGtWUFi9Usk/pFOfDLwd1FqXI9q61AjskJOSMBuSQVckuqpEYYeSYv5I28O6/Op/PlfE+jK85s5ojMwRn9AJV7sYM=</latexit>

Surfacequadrature

<latexit sha1_base64="EMtxRK1oBQf3JfiixkW9fxdmUmI=">AAACQXicbVDLSsNAFJ34Nr6qLt0Ei+CqJG50WXTjUtFWoQnlZnJTByczcWYilJDf8Gvcif6Dn+BOXOrG6UOw1QsXDueeA+eeOOdMG99/dWZm5+YXFpeW3ZXVtfWN2uZWW8tCUWxRyaW6jkEjZwJbhhmO17lCyGKOV/HtyeB+dY9KMykuTT/HKIOeYCmjYCzVrflhjD0mSorCoKrci0KlQDEM3bsCEgWmUOiGKJIfRbdW9xv+cLy/IBiDOhnPWbf2GSaSFpm1Uw5adwI/N1EJyjDKsXLDQmMO9BZ62LFQQIY6KoefVd6eZRIvlcquMN6Q/e0oIdO6n8VWmYG50dO3AfnvbcAYKbmeCFDGWeVOJjLpUVQykRcGBR0FSgvuGekN6vQSppAa3rcAqGL2J4/egAJqu9KuLSuYruYvaB80Ar8RnB/Um8fj2pbIDtkl+yQgh6RJTskZaRFKHsgjeSYvzpPz5rw7HyPpjDP2bJOJcb6+AVLwsd4=</latexit><latexit sha1_base64="EMtxRK1oBQf3JfiixkW9fxdmUmI=">AAACQXicbVDLSsNAFJ34Nr6qLt0Ei+CqJG50WXTjUtFWoQnlZnJTByczcWYilJDf8Gvcif6Dn+BOXOrG6UOw1QsXDueeA+eeOOdMG99/dWZm5+YXFpeW3ZXVtfWN2uZWW8tCUWxRyaW6jkEjZwJbhhmO17lCyGKOV/HtyeB+dY9KMykuTT/HKIOeYCmjYCzVrflhjD0mSorCoKrci0KlQDEM3bsCEgWmUOiGKJIfRbdW9xv+cLy/IBiDOhnPWbf2GSaSFpm1Uw5adwI/N1EJyjDKsXLDQmMO9BZ62LFQQIY6KoefVd6eZRIvlcquMN6Q/e0oIdO6n8VWmYG50dO3AfnvbcAYKbmeCFDGWeVOJjLpUVQykRcGBR0FSgvuGekN6vQSppAa3rcAqGL2J4/egAJqu9KuLSuYruYvaB80Ar8RnB/Um8fj2pbIDtkl+yQgh6RJTskZaRFKHsgjeSYvzpPz5rw7HyPpjDP2bJOJcb6+AVLwsd4=</latexit><latexit sha1_base64="EMtxRK1oBQf3JfiixkW9fxdmUmI=">AAACQXicbVDLSsNAFJ34Nr6qLt0Ei+CqJG50WXTjUtFWoQnlZnJTByczcWYilJDf8Gvcif6Dn+BOXOrG6UOw1QsXDueeA+eeOOdMG99/dWZm5+YXFpeW3ZXVtfWN2uZWW8tCUWxRyaW6jkEjZwJbhhmO17lCyGKOV/HtyeB+dY9KMykuTT/HKIOeYCmjYCzVrflhjD0mSorCoKrci0KlQDEM3bsCEgWmUOiGKJIfRbdW9xv+cLy/IBiDOhnPWbf2GSaSFpm1Uw5adwI/N1EJyjDKsXLDQmMO9BZ62LFQQIY6KoefVd6eZRIvlcquMN6Q/e0oIdO6n8VWmYG50dO3AfnvbcAYKbmeCFDGWeVOJjLpUVQykRcGBR0FSgvuGekN6vQSppAa3rcAqGL2J4/egAJqu9KuLSuYruYvaB80Ar8RnB/Um8fj2pbIDtkl+yQgh6RJTskZaRFKHsgjeSYvzpPz5rw7HyPpjDP2bJOJcb6+AVLwsd4=</latexit><latexit sha1_base64="EMtxRK1oBQf3JfiixkW9fxdmUmI=">AAACQXicbVDLSsNAFJ34Nr6qLt0Ei+CqJG50WXTjUtFWoQnlZnJTByczcWYilJDf8Gvcif6Dn+BOXOrG6UOw1QsXDueeA+eeOOdMG99/dWZm5+YXFpeW3ZXVtfWN2uZWW8tCUWxRyaW6jkEjZwJbhhmO17lCyGKOV/HtyeB+dY9KMykuTT/HKIOeYCmjYCzVrflhjD0mSorCoKrci0KlQDEM3bsCEgWmUOiGKJIfRbdW9xv+cLy/IBiDOhnPWbf2GSaSFpm1Uw5adwI/N1EJyjDKsXLDQmMO9BZ62LFQQIY6KoefVd6eZRIvlcquMN6Q/e0oIdO6n8VWmYG50dO3AfnvbcAYKbmeCFDGWeVOJjLpUVQykRcGBR0FSgvuGekN6vQSppAa3rcAqGL2J4/egAJqu9KuLSuYruYvaB80Ar8RnB/Um8fj2pbIDtkl+yQgh6RJTskZaRFKHsgjeSYvzpPz5rw7HyPpjDP2bJOJcb6+AVLwsd4=</latexit>

Assume degree 2N volume + surface quadratures (xqi ,w

qi ), (x f

i ,wfi ),

and basis functions φi (x). Define interpolation and weight matrices

(V q)ij = φj (xqi ), (V f )ij = φj (x f

i ),

W = diag (wq) , W f = diag(w f).

Discretize PN : L2 → PN , yields a quadrature-based projection matrix

(PNu, v) = (u, v) ∀v ∈ PN =⇒ Pq = M−1V Tq W .

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 7 / 21

Page 29: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

Quadrature-based “finite difference” matrices

Matrix D iq: evaluates ith derivative of L2 projection PN at xq.

D iq = V qD iPq, D i exactly differentiates polynomials.

Generalized summation-by-parts: let Q i = WD iq and E = V f Pq

Q i + Q iT = ET B iE , B i = W f diag (ni )

=⇒∫

D

∂PNu

∂xiv +

Du∂PNv

∂xi=

∂D(PNu) (PNv)ni .

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 8 / 21

Page 30: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

Problems with generalized SBP on multiple elements

Coupling between quadrature nodes on neighboring elements.

Re-deriving the local DG formulation with GSBP operators:

Mdudt

+ 2 (Q F S ) 1 = 0.

The presence of the interpolation matrix E increases inter-elementcoupling, complicates imposition of BCs.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 9 / 21

Page 31: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

Problems with generalized SBP on multiple elements

Coupling between quadrature nodes on neighboring elements.

Re-deriving the local DG formulation with GSBP operators:

Mdudt

+((

Q −QT) F S

)1 +

((ET BE

) F S

)1 = 0.

The presence of the interpolation matrix E increases inter-elementcoupling, complicates imposition of BCs.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 9 / 21

Page 32: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

Problems with generalized SBP on multiple elements

Coupling between quadrature nodes on neighboring elements.

Re-deriving the local DG formulation with GSBP operators:

Mdudt

+((

Q −QT) F S

)1 +

((ET BE

) F S

)1 = 0.

The presence of the interpolation matrix E increases inter-elementcoupling, complicates imposition of BCs.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 9 / 21

Page 33: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

A “decoupled” SBP operator

Goal: SBP property without E in the boundary terms

QN =

[Q − 1

2ET BE 1

2ET B

−12BE 1

2B

],

If Q + QT = ET BE , then the block matrix QN satisfies

QN + QNT =

[0

B

]∼∫ 1

−1

∂PNu

∂xv + u

∂PNv

∂x= uv |1−1 .

QN approximates f ∂g∂x by u using data at x = [xvol, x face]

Mu =

[V q

V f

]T

diag (f ) QNg , f i , g i = f (x i ), g(x i ).

Reduces to traditional SBP operator under appropriate quadrature.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 10 / 21

Page 34: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

Entropy stable schemes using decoupled SBP operators

Replace SBP operator with decoupled SBP operator

Mdudt

+((

Q −QT) F S

)1 + Bf ∗ = 0.

F S is the matrix of flux evaluations between solution values at bothvolume and face nodes using entropy projection:

(F S )ij = f S (u i , u j ) , u = evaluate u (PNv(u)) .

Semi-discrete scheme is verifiably entropy conservative for inexactquadrature! Add appropriate interface dissipation (e.g. Lax-Friedrichs,HLLC) for entropy stability.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.

Parsani et al. (2016), Entropy Stable Staggered Grid Discontinuous Spectral Collocation Methods

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 11 / 21

Page 35: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Entropy stable modal DG formulations

Entropy stable schemes using decoupled SBP operators

Replace SBP operator with decoupled SBP operator

Mdudt

+

[V q

V f

]T ((QN −QT

N

) F S

)1 + Bf ∗ = 0.

F S is the matrix of flux evaluations between solution values at bothvolume and face nodes using entropy projection:

(F S )ij = f S (u i , u j ) , u = evaluate u (PNv(u)) .

Semi-discrete scheme is verifiably entropy conservative for inexactquadrature! Add appropriate interface dissipation (e.g. Lax-Friedrichs,HLLC) for entropy stability.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.

Parsani et al. (2016), Entropy Stable Staggered Grid Discontinuous Spectral Collocation Methods

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 11 / 21

Page 36: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Triangular and tetrahedral meshes

Talk outline

1 Entropy stable nodal DG and summation-by-parts

2 Entropy stable modal DG formulations

3 Numerical experimentsTriangular and tetrahedral meshesQuadrilateral and hexahedral meshesHybrid and non-conforming meshes

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 11 / 21

Page 37: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Triangular and tetrahedral meshes

Talk outline

1 Entropy stable nodal DG and summation-by-parts

2 Entropy stable modal DG formulations

3 Numerical experimentsTriangular and tetrahedral meshesQuadrilateral and hexahedral meshesHybrid and non-conforming meshes

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 11 / 21

Page 38: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Triangular and tetrahedral meshes

Smooth isentropic vortex and curved meshes in 2D/3D

(a) 2D triangular mesh (b) 3D tetrahedral mesh

“Split” form of derivatives on curved elements for entropy stability.

J∂u

∂xi=

d∑

j=1

J∂xj

∂xi

∂u

∂xj=

1

2

d∑

j=1

(J∂xj

∂xi

∂u

∂xj+

∂xj

(J∂xj

∂xiu

)).

Discrete geometric conservation law (GCL) now a necessary condition.

Visbal and Gaitonde (2002). On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes.

Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 12 / 21

Page 39: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Triangular and tetrahedral meshes

Smooth isentropic vortex and curved meshes in 2D/3D

10−0.5 100

10−5

10−3

10−1N = 2

3

N = 3

4

N = 4

5

Mesh size h

L2

erro

r

Affine

Curved

(c) 2D results

100 100.5

10−3

10−1

N = 2

3

N = 3

4

N = 4

5

Mesh size h

Affine

Curved

(d) 3D results

L2 errors for 2D/3D isentropic vortex at T = 5 on affine, curved meshes.

Visbal and Gaitonde (2002). On the Use of Higher-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes.

Chan, Hewett, and Warburton (2016). Weight-adjusted discontinuous Galerkin methods: curvilinear meshes.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 12 / 21

Page 40: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Triangular and tetrahedral meshes

Inviscid Taylor-Green vortex

Figure: Isocontours of z-vorticity for Taylor-Green at t = 0, 10 seconds.

Simple turbulence-like behavior (generation of small scales).

Inviscid Taylor-Green: tests robustness w.r.t. under-resolved solutions.

https://how4.cenaero.be/content/bs1-dns-taylor-green-vortex-re1600.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 13 / 21

Page 41: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Triangular and tetrahedral meshes

Inviscid Taylor-Green vortex: robust w.r.t. under-resolution

0 5 10 15 20-.002

.002

.006

.01

.014

Time t

−∂κ∂

t

Affine

Curved

Gassner et al.

Kinetic energy dissipation rate −∂κ∂t for N = 3, h = π/8,CFL = .25 (tet meshes).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 14 / 21

Page 42: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Talk outline

1 Entropy stable nodal DG and summation-by-parts

2 Entropy stable modal DG formulations

3 Numerical experimentsTriangular and tetrahedral meshesQuadrilateral and hexahedral meshesHybrid and non-conforming meshes

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 14 / 21

Page 43: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Entropy stable Gauss collocation: main steps

[A B−BT C

]

︸ ︷︷ ︸Q i

N

[F vv

S F vfS

F fvS Fff

S

]

︸ ︷︷ ︸FS

1

Advantage of hexahedra vs. tetrahedra: tensor product structure.

(N + 1)-point Gauss quadrature reduces to a collocation scheme.

Reduces computational costs from O(N6) to O(N4) in 3D.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 15 / 21

Page 44: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Entropy stable Gauss collocation: main steps

[A B−BT C

]

︸ ︷︷ ︸Q i

N

[F vv

S F vfS

F fvS Fff

S

]

︸ ︷︷ ︸FS

1

Advantage of hexahedra vs. tetrahedra: tensor product structure.

(N + 1)-point Gauss quadrature reduces to a collocation scheme.

Reduces computational costs from O(N6) to O(N4) in 3D.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 15 / 21

Page 45: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Entropy stable Gauss collocation: main steps

[A B−BT C

]

︸ ︷︷ ︸Q i

N

[F vv

S F vfS

F fvS Fff

S

]

︸ ︷︷ ︸FS

1

Advantage of hexahedra vs. tetrahedra: tensor product structure.

(N + 1)-point Gauss quadrature reduces to a collocation scheme.

Reduces computational costs from O(N6) to O(N4) in 3D.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 15 / 21

Page 46: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Entropy stable Gauss collocation: main steps

[A B−BT C

]

︸ ︷︷ ︸Q i

N

[F vv

S F vfS

F fvS Fff

S

]

︸ ︷︷ ︸FS

1

Advantage of hexahedra vs. tetrahedra: tensor product structure.

(N + 1)-point Gauss quadrature reduces to a collocation scheme.

Reduces computational costs from O(N6) to O(N4) in 3D.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 15 / 21

Page 47: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes

10−1.5 10−110−10

10−5

100

Mesh size hL

2er

rors

Lobatto

Gauss

Figure: L2 errors for the 2D isentropic vortex at time T = 5 for degreeN = 2, . . . , 7 Lobatto and Gauss collocation schemes (similar behavior in 3D).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 16 / 21

Page 48: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes

10−1.5 10−110−10

10−5

100

Mesh size hL

2er

rors

Lobatto

Gauss

Figure: L2 errors for the 2D isentropic vortex at time T = 5 for degreeN = 2, . . . , 7 Lobatto and Gauss collocation schemes (similar behavior in 3D).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 16 / 21

Page 49: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes

10−1.5 10−110−10

10−5

100

Mesh size hL

2er

rors

Lobatto

Gauss

Figure: L2 errors for the 2D isentropic vortex at time T = 5 for degreeN = 2, . . . , 7 Lobatto and Gauss collocation schemes (similar behavior in 3D).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 16 / 21

Page 50: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Quadrilateral and hexahedral meshes

Gauss quadrature improves errors on curved meshes

10−1.5 10−110−10

10−5

100

Mesh size hL

2er

rors

Lobatto

Gauss

Figure: L2 errors for the 2D isentropic vortex at time T = 5 for degreeN = 2, . . . , 7 Lobatto and Gauss collocation schemes (similar behavior in 3D).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 16 / 21

Page 51: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Talk outline

1 Entropy stable nodal DG and summation-by-parts

2 Entropy stable modal DG formulations

3 Numerical experimentsTriangular and tetrahedral meshesQuadrilateral and hexahedral meshesHybrid and non-conforming meshes

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 16 / 21

Page 52: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Mixed quadrilateral-triangle meshes

(a) No SBP (tri. under-integrated) (b) No SBP (quad. under-integrated)

GSBP property lost if surface quadrature insufficiently accurate.

Skew-symmetric formulation remains entropy stable under “weak”GSBP property, relaxed requirements on quadrature accuracy.

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 17 / 21

Page 53: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Numerical results: mixed triangle-quadrilateral meshes

(a) Coarse hybrid mesh

10−1 10−0.5

10−4

10−2

100

Mesh size h

Lobatto-Lobatto

Lobatto-Gauss

Gauss-Gauss

(b) L2 errors for N = 1, 2, 3, 4

The skew-symmetric formulation guarantees entropy stability for allcombinations of Lobatto and Gauss volume and surface quadratures.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 18 / 21

Page 54: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Non-conforming interfaces

(a) Conforming surfacequadrature nodes

(b) Non-conformingsurface nodes

Volume/surface nodes interact through f S (u i ,u j ) and interpolation.

Fix: weakly couple conforming+non-conforming faces using a mortar.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 19 / 21

Page 55: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Numerical results: non-conforming meshes

(a) Coarse non-conforming mesh

10−1 100

10−4

10−2

100N = 1N = 2N = 3N = 4

Mesh size hL

2er

rors

Lobatto

Gauss

(b) Sub-optimal rates if under-integrated

The skew-symmetric formulation guarantees entropy stability for bothLobatto and Gauss quadratures, but Gauss is more accurate.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 20 / 21

Page 56: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Summary and future work

Entropy stable high order “modal” DG: flexibility in choosing basisand quadrature, improved accuracy on curved meshes.

Current work: ROMs, strong shocks, positivity preservation.

This work is supported by DMS-1719818 and DMS-1712639.

Thank you! Questions?

Chan (2019). Skew-symmetric entropy stable modal discontinuous Galerkin formulations.

Chan, Del Rey Fernandez, Carpenter (2018). Efficient entropy stable Gauss collocation methods.

Chan, Wilcox (2018). On discretely entropy stable weight-adjusted DG methods: curvilinear meshes.

Chan (2018). On discretely entropy conservative and entropy stable discontinuous Galerkin methods.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 57: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Additional slides

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 58: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Decoupled SBP operators add boundary corrections

−1 0 1−2

0

2 GSBP

Decoupled

Exact

(a) Derivative approximations

0 5 10 1510−4

10−2

100

GSBP

Decoupled

(b) L2 error w.r.t. degree N

Equivalent to a variational problem for a polynomial u(x) ≈ f ∂g∂x .

∫ 1

−1u(x)v(x) =

∫ 1

−1f∂PNg

∂xv + (g − PNg)

(fv + PN(fv))

2

∣∣∣∣1

−1

.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 59: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Flux differencing: recovering split formulations

Entropy conservative flux for Burgers’ equation

fS (uL, uR) =1

6

(u2

L + uLuR + u2R

).

Flux differencing: let uL = u(x), uR = u(y)

∂f (u)

∂x=⇒ 2

∂fS (u(x), u(y))

∂x

∣∣∣∣y=x

Recovering the Burgers’ split formulation

fS (u(x), u(y)) =1

6

(u(x)2 + u(x)u(y) + u(y)2

)

2∂fS (u(x), u(y))

∂x

∣∣∣∣y=x

=1

3

∂u2

∂x+

1

3u∂u

∂x+

1

3u2

∂1

∂x.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 60: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Flux differencing: recovering split formulations

Entropy conservative flux for Burgers’ equation

fS (uL, uR) =1

6

(u2

L + uLuR + u2R

).

Flux differencing: let uL = u(x), uR = u(y)

∂f (u)

∂x=⇒ 2

∂fS (u(x), u(y))

∂x

∣∣∣∣y=x

Recovering the Burgers’ split formulation

fS (u(x), u(y)) =1

6

(u(x)2 + u(x)u(y) + u(y)2

)

2∂fS (u(x), u(y))

∂x

∣∣∣∣y=x

=1

3

∂u2

∂x+

1

3u∂u

∂x+

1

3u2

∂1

∂x.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 61: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

1D compressible Euler equations

Inexact Gauss-Legendre-Lobatto (GLL) vs Gauss (GQ) quadratures.

Entropy conservative (EC) and dissipative Lax-Friedrichs (LF) fluxes.

No additional stabilization, filtering, or limiting.

10−2 10−110−11

10−6

10−1N = 1

N = 2N = 3

N = 4N = 5

Mesh size h

GLL

GQ-(N + 2)

(c) Entropy conservative flux

10−2 10−110−11

10−6

10−1

N = 1

N = 2

N = 3

N = 4

N = 5

Mesh size h

GLL

GQ-(N + 2)

(d) With Lax-Friedrichs penalization

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 62: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Conservation of entropy: semi-discrete vs. fully discrete

∆S(u) = |S(u(x , t))− S(u(x , 0))| → 0 as as ∆t → 0.

(a) ∆S(u) for various ∆t (b) ρ(x), u(x) (N = 4,K = 16)

Solution and change in entropy ∆S(u) for entropy conservative (EC) andLax-Friedrichs (LF) fluxes (using GQ-(N + 2) quadrature).

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 63: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

1D sine-shock interaction

(N + 2)-point Gauss needs a smaller CFL (.05 vs .125) for stability.

N = 4,K = 40,CFL = .05, (N + 1) point Lobatto quadrature.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 64: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

1D sine-shock interaction

(N + 2)-point Gauss needs a smaller CFL (.05 vs .125) for stability.

N = 4,K = 40,CFL = .05, (N + 2) point Gauss quadrature.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 65: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Loss of control with the entropy projection

For (N + 1)-Lobatto quadrature, u = u (PNv) = u at nodal points.

For (N + 2)-Gauss, discrepancy between v(u) and L2 projection.

Still need positivity of thermodynamic quantities for stability!

(c) v3(x), (PNv3) (x) (d) ρ(x), ρ ((PNv) (x))

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 66: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Over-integration is ineffective without L2 projection

(e) (N + 1) points (f) (N + 4) points

Figure: Numerical results for the Sod shock tube for N = 4 and K = 32 elements.Over-integrating by increasing the number of quadrature points does not improvesolution quality.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 67: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

2D Riemann problem

Uniform 64× 64 mesh: N = 3, CFL .125, Lax-Friedrichs stabilization.

No limiting or artificial viscosity required to maintain stability!

Periodic on larger domain (“natural” boundary conditions unstable).

(a) Ω = [−1, 1]2 (b) Ω = [−.5, .5]2, 32 × 32 elements

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 68: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Non-conforming interfaces and SBP mortars

Define appropriate interpolation operators Em, Em betweenconforming and non-conforming (mortar) nodes.

Modify the skew-symmetric formulation as follows:

Mdudt

+d∑

i=1

[V q

V f

]T [Q i −QTi ET B i

−B iE

]+ ET B i f ∗

i = 0.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 69: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Non-conforming interfaces and SBP mortars

Define appropriate interpolation operators Em, Em betweenconforming and non-conforming (mortar) nodes.

Modify the skew-symmetric formulation as follows:

Mdudt

+d∑

i=1

V q

V f

V m

TQ i −QT

i ET B i

−B iE B i Em

−B iEm

+ V m

T B i f ∗i = 0.

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21

Page 70: Entropy stable schemes based on high order modal discontinuous Galerkin formulations · 2020-05-11 · Entropy stable schemes based on high order modal discontinuous Galerkin formulations

Numerical experiments Hybrid and non-conforming meshes

Non-conforming interfaces and SBP mortars

Define appropriate interpolation operators Em, Em betweenconforming and non-conforming (mortar) nodes.

Rewrite as modification of numerical flux.

f∗i = Emf ∗

i +(Em F sm

S

)1− Em (Em Fms

S ) 1

J. Chan (Rice CAAM) Entropy stable DG 4/3/19 21 / 21