entropy production and fluctuation phenomena in nonequilibrium

75
Entropy production and fluctuation phenomena  in nonequilibrium systems Haye Hinrichsen Faculty for Physics and Astronomy University of Würzburg, Germany Workshop on Large Fluctuations in Non-Equilibrium Systems MPIPKS Dresden, July 2011

Upload: others

Post on 26-Mar-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Entropy production and fluctuation phenomena in nonequilibrium

Entropy production and fluctuation phenomena in nonequilibrium systems

Haye HinrichsenFaculty for Physics and AstronomyUniversity of Würzburg, Germany

Workshop on Large Fluctuations in Non­Equilibrium SystemsMPIPKS Dresden, July 2011

Page 2: Entropy production and fluctuation phenomena in nonequilibrium

In collaboration with:

Andre Barato, ICTP, Trieste, ItalyUrna Basu, SAHA Institute, Kolkata, IndiaRaphael Chetrite, Lyon and CNRSChristian Gogolin, PotsdamPeter Janotta, WürzburgDavid Mukamel, Weizmann Insititute, Israel

Non-equilibrium Dynamics, Thermalization and Entropy ProductionH. Hinrichsen, C. Gogolin, and P. JanottaJ. Phys.: Conf. Ser. 297 012011 (2011)

Entropy production and fluctuation relations for a KPZ interfaceA. C. Barato, R. Chetrite, H. Hinrichsen, and D. MukamelJ. Stat. Mech.: Theor. Exp. P10008 (2010)

Page 3: Entropy production and fluctuation phenomena in nonequilibrium

Outline

1) Introduction to entropy production

2) Fluctuation theorem revisited

3) Entropy production and renormalization

Page 4: Entropy production and fluctuation phenomena in nonequilibrium

Nonequilibrium systemsNonequilibrium systems

T1 T2

μ1 μ2

Flow of heat

… typically driven systems

Flow of particles

Page 5: Entropy production and fluctuation phenomena in nonequilibrium

Environment

Nonequilibrium systemsNonequilibrium systems

System

Page 6: Entropy production and fluctuation phenomena in nonequilibrium

Environment

Nonequilibrium systemsNonequilibrium systems

System

drive

entropy

Page 7: Entropy production and fluctuation phenomena in nonequilibrium

Models of classical nonequilibrium systemsModels of classical nonequilibrium systems

Systementropy

Model

Page 8: Entropy production and fluctuation phenomena in nonequilibrium

Models of classical nonequilibrium systemsModels of classical nonequilibrium systems

Systementropy

Set of configurations Ωsys

(state space)

configurations c∈ sys

Model

Page 9: Entropy production and fluctuation phenomena in nonequilibrium

Models of classical nonequilibrium systemsModels of classical nonequilibrium systems

Systementropy

Model Irreversible dynamics byspontaneous transitions 

at ratecc ' wcc '

Ωsys

Page 10: Entropy production and fluctuation phenomena in nonequilibrium

Configurational entropy 

Environmental entropy            

Total entropy 

S sys t = −ln P c , t

S env t

S tot (t)=Ssys(t )+Senv(t )

EnvironmentSystem

drive

entropy

Page 11: Entropy production and fluctuation phenomena in nonequilibrium

Actual time evolution:

Sequence of transitions(stochastic path)

at times                        

Our partial knowledge:

Probability distribution P(c,t)evolving deterministicallyby the master equation.

c1c2c3 ...cN

t1 , t 2 , t3 , ... , t N

⟨Ssys(t)⟩ = −∑c∈Ωsys

P(c , t) ln P(c , t)

Ssys(t) = −ln P (c(t), t)

ddt

P (c , t) = ∑c '∈Ω

P(c ' , t)wc ' c−P (c ,t )w cc '

Configurational entropy 

Mean entropy

Entropy of the systemEntropy of the system

Page 12: Entropy production and fluctuation phenomena in nonequilibrium

⟨Ssys(t)⟩ = −∑c∈Ωsys

P(c , t) ln P(c , t)

Ssys(t) = −ln P (c(t), t)Configurational entropy 

Mean entropy

Entropy of the systemEntropy of the system

Change of conf. entropy  S sys(t) = −P (c (t), t)P (c (t), t)

−∑j

δ(t−t j) lnP (c j , t )

P (c j−1 , t )

⟨ Ssys(t)⟩ = − ∑c , c '∈Ωsys

P (c ,t )wc→c ' lnP (c ,t )P(c ' , t)

Change of mean entropy

Page 13: Entropy production and fluctuation phenomena in nonequilibrium

Configurational entropy 

Environmental entropy            

Total entropy 

S sys t = −ln P c , t

S env t

S tot (t)=Ssys(t )+Senv(t )

EnvironmentSystem

drive

entropy

??

Page 14: Entropy production and fluctuation phenomena in nonequilibrium

Senv(t) = ∑j

δ(t−t j) lnωc j−1→ c j

ωc j→c j−1

Andrieux and Gaspard, J. Chem. Phys. 2004U. Seifert, PRL 2005

Commonly accepted formula for theCommonly accepted formula for theenvironmental entropyenvironmental entropy

Where does it come from?

Page 15: Entropy production and fluctuation phenomena in nonequilibrium

1976

Page 16: Entropy production and fluctuation phenomena in nonequilibrium
Page 17: Entropy production and fluctuation phenomena in nonequilibrium

X 1 X 2 X N

Page 18: Entropy production and fluctuation phenomena in nonequilibrium

P(c , t)

[X i](t )

probability

concentration

Page 19: Entropy production and fluctuation phenomena in nonequilibrium

Schnakenberg: The master equation

is mapped to a fictitious chemical system evolving according to the law of mass action (= mean field equation)

Fictitious chemical systemFictitious chemical system

ddt

P(c , t) = ∑c '∈Ω

(P(c ' , t)wc '→c−P(c , t)wc→c ')

Isothermal / isochroric   → minimize F.

Page 20: Entropy production and fluctuation phenomena in nonequilibrium

Extent of reactionExtent of reaction = average number of forward reactions c→c' minus backward reactions c'→c.

Brief summary of Schnakenbergs argument (1)Brief summary of Schnakenbergs argument (1)

Thermodynamic fluxThermodynamic flux Conjugate thermodynamic forceConjugate thermodynamic force

Extent of reaction Extent of reaction ξξcc′cc′

Chemical a nityffiChemical a nityffi

Page 21: Entropy production and fluctuation phenomena in nonequilibrium

Compare

with

 → Chemical affinity is chemical potential difference

With  and   

we arrive at:

Brief summary of Schnakenbergs argument (2)Brief summary of Schnakenbergs argument (2)

F = ∑cc '

Acc '˙ξcc ' = −∑

cc '

A cc '˙N cc '

Page 22: Entropy production and fluctuation phenomena in nonequilibrium

Brief summary of Schnakenbergs argument (3)Brief summary of Schnakenbergs argument (3)

In the stationary state                             we have  

With                           . Hence                             turns intoF=∑cc '

Acc '˙ξcc '

E,T constant

Page 23: Entropy production and fluctuation phenomena in nonequilibrium

Brief summary of Schnakenbergs argument (4)Brief summary of Schnakenbergs argument (4)

S=−kB∑c , c '

ξc , c ' ln[X c ' ]wc '→c

[X c ]wc→c '

S = −kB∑c , c '

ξc , c ' ln[X c ' ]

[X c]− kB∑

c , c '

ξc , c ' lnwc '→c

wc→c '

Page 24: Entropy production and fluctuation phenomena in nonequilibrium

Brief summary of Schnakenbergs argument (4)Brief summary of Schnakenbergs argument (4)

⟨ Ssys(t)⟩ = − ∑c , c '∈Ωsys

P (c ,t )wc→c ' lnP(c ' , t)P (c ,t )

⟨ Stot ⟩ = ⟨ S sys⟩ + ⟨ Senv⟩

S=−kB∑c , c '

ξc , c ' ln[X c ' ]wc '→c

[X c ]wc→c '

S = −kB∑c , c '

ξc , c ' ln[X c ' ]

[X c]− kB∑

c , c '

ξc , c ' lnwc '→c

wc→c '

Page 25: Entropy production and fluctuation phenomena in nonequilibrium

Brief summary of Schnakenbergs argument (4)Brief summary of Schnakenbergs argument (4)

⟨ Stot ⟩ = ⟨ S sys⟩ + ⟨ Senv⟩

⟨ Senv(t)⟩ = ∑c , c '∈Ωsys

P(c , t)wc→c ' lnwc→c '

wc '→c

S=−kB∑c , c '

ξc , c ' ln[X c ' ]wc '→c

[X c ]wc→c '

S = −kB∑c , c '

ξc , c ' ln[X c ' ]

[X c]− kB∑

c , c '

ξc , c ' lnwc '→c

wc→c '

⟨ Ssys(t)⟩ = − ∑c , c '∈Ωsys

P (c ,t )wc→c ' lnP(c ' , t)P (c ,t )

Page 26: Entropy production and fluctuation phenomena in nonequilibrium

Environmental entropy productionEnvironmental entropy production

⟨ Senv(t) ⟩ = ∑c ,c '∈Ωsys

P(c , t )wc ,→c ' lnwc→c '

wc '→ c

Senv(t) = ∑j

δ(t−t j) lnwc j−1→ c j

wc j→c j−1

Important consequence:

Irreversible transitions do not exist.In Nature, there are no „absorbing states“.

Page 27: Entropy production and fluctuation phenomena in nonequilibrium

totTotal state space

sysSystem state space

EnvironmentSystem

drive

Explaining entropy productionExplaining entropy productionin terms of microstatesin terms of microstates

Page 28: Entropy production and fluctuation phenomena in nonequilibrium

Simplest example:Simplest example:

Stochastic clock in a stationary state

Page 29: Entropy production and fluctuation phenomena in nonequilibrium

Counting the number of cycles, we may think of a linear chain of transitions

Page 30: Entropy production and fluctuation phenomena in nonequilibrium

Each configuration corresponds to a certain number of configurations of the environment.

Page 31: Entropy production and fluctuation phenomena in nonequilibrium

Assume equal rates among all transitions

Page 32: Entropy production and fluctuation phenomena in nonequilibrium

Subsystem is driven by an entropic force.

wcc '

wc 'c

=N c ' N c

Page 33: Entropy production and fluctuation phenomena in nonequilibrium

Environmental entropy production 

wcc '

wc 'c

=N env c '

N env c S env = −ln N env c '

ln N envc

S env = lnwcc '

wc 'c

Page 34: Entropy production and fluctuation phenomena in nonequilibrium

Senv(t) = ∑j

δ(t−t j) lnωc j−1→ c j

ωc j→ c j−1

Question

Under which conditions is this formula correct?

Page 35: Entropy production and fluctuation phenomena in nonequilibrium

  Answer:Answer:

●  The formula is correct if the environment The formula is correct if the environment       equilibrates instantaneouslyequilibrates instantaneously after each transition. after each transition.

●  In realistic systems this is not necessarily true.In realistic systems this is not necessarily true.

●  The formula could provide an upper bound in the   The formula could provide an upper bound in the     long­time limit (ongoing research)long­time limit (ongoing research)

Senv(t) = ∑j

δ(t−t j) lnωc j−1→ c j

ωc j→ c j−1

Question:Question: Under which conditions is Under which conditions is this formula correct? this formula correct?

Page 36: Entropy production and fluctuation phenomena in nonequilibrium

// Example: biased random walkconst double p=0.3;int x=0; double S_env=0;...if (rnd()<p)

{x++;S_env += ln(p)/ln(1­p)}

else{x­­;S_env ­= ln(p)/ln(1­p);}

Environmental entropy production is easily accessible in numerical simulations.

Whenever the configuration changes, simply add  lnwc→c '

wc '→c

p1-p

Page 37: Entropy production and fluctuation phenomena in nonequilibrium

Ssys(t ) = −P (c (t ), t)P (c (t ), t)

−∑j

δ(t−t j) lnP(c j , t)

P(c j−1 , t)

Senv(t) = ∑j

δ(t−t j) lnωc j→ c j+1

ωc j+1→ c j

Stot (t ) = −P (c (t ), t)P (c (t ), t)

−∑j

δ(t−t j) lnP (c j , t)wc j−1→c j

P (c j−1 , t)wc j→c j−1

No entropy production in the stationary state       Detailed balance↔

Page 38: Entropy production and fluctuation phenomena in nonequilibrium

Two equivalent definitions of detailed balance:Two equivalent definitions of detailed balance:

Probability currents in the stationary state cancel 

pairwise:

∀ c ,c '∈ :

P cwcc ' = P c ' wc 'c

For each closed stochastic path                                    

the product of all rates along this path is equal to the product of 

the rates in reverse direction

wc1c2wc2c3

...wcN−1cNwcNc1

=

wcNcN−1wcN−1cN−2

...wc2c1wc1cN

c1 c2 ...cN c1

●   does not rely on P(c)●   difficult to prove●   easy to disprove

●   requires knowledge of P(c)●   easy to prove 

Page 39: Entropy production and fluctuation phenomena in nonequilibrium

2. Fluctuation theorem revisited

Page 40: Entropy production and fluctuation phenomena in nonequilibrium

t

Stot(t)

t

ΔStot(t)

Second law: 

but it fluctuates ­ sometimes even in opposite direction

⟨ S tot ⟩ ≥0

Page 41: Entropy production and fluctuation phenomena in nonequilibrium

t

Stot(t)

t

ΔStot(t)

P(ΔStot)

ΔStot

Page 42: Entropy production and fluctuation phenomena in nonequilibrium

t

Stot(t)

t

ΔStot(t)

P(ΔStot)

ΔStot

P S tot

P − S tot= e S tot

Fluctuation theorem:

Page 43: Entropy production and fluctuation phenomena in nonequilibrium

To prove the fluctuation theorem, 

1)   prove it for a single transition c↔c'

2)   show that it will hold for any sequence       of transitions

YAP ­ yet another proofYAP ­ yet another proofof the fluctuation relationof the fluctuation relation

P (Δ Stot)

P(−ΔS tot)= eΔ S tot

Page 44: Entropy production and fluctuation phenomena in nonequilibrium

c c'

First step:Consider a single transition c↔c'

Page 45: Entropy production and fluctuation phenomena in nonequilibrium

P(ΔStot)

ΔStot

First step:Consider a single transition c↔c'

c c'

Page 46: Entropy production and fluctuation phenomena in nonequilibrium

P(ΔStot)

ΔStot

S tot = lnP cwcc '

P c ' wc 'c

P S tot ∝ P c wcc '

P − S tot ∝ P c ' wc 'c

P S tot

P − S tot = exp S tot

c c'

Fluctuation theorem holds trivially !

Page 47: Entropy production and fluctuation phenomena in nonequilibrium

Second step: Show that the FR holds for any sequence.

 Prove invariance under → convolution:

f x = f −x e x

g x =g −x e x

f∗g x = ∫ f ( y)g(x− y)dy

= ∫ f (− y)e y g(−x+ y)ex− y

= ex∫ f (−y)g( y−x)dy

= ex∫ f ( y)g(− y−x)dy = ex(f∗g)(−x)

Page 48: Entropy production and fluctuation phenomena in nonequilibrium

Fluctuation relation

­ holds exactly for the total entropy

­ holds approximately for the environmental entropyproduction in a non­equilibrium steady state in

the long time limit

P(Δ Senv)

P(−Δ Senv)≈ exp(Δ Senv)

P S tot

P − S tot= exp S tot

Distribution itself is system­dependent

Page 49: Entropy production and fluctuation phenomena in nonequilibrium

3. Entropy production and renormalization

Page 50: Entropy production and fluctuation phenomena in nonequilibrium

Arrow can be interpreted as ' time'

Contact process:

A → 2A2A → AA → 0

Example: Directed percolation (DP)Example: Directed percolation (DP)

Bonds openwith probability p

Toy model for epidemic spreading

Page 51: Entropy production and fluctuation phenomena in nonequilibrium

Absorbing states         Infinite entropy production↔

Page 52: Entropy production and fluctuation phenomena in nonequilibrium

Renormalization scheme for DP by logical ORRenormalization scheme for DP by logical OR

Page 53: Entropy production and fluctuation phenomena in nonequilibrium

Let               be the probability to find adjacent blocks of size mat time t in the bit pattern p.

Example:

         

P101(5)

000101001010000001011010110

1     1    0    1    1

Pp(m)(t )

Page 54: Entropy production and fluctuation phenomena in nonequilibrium

Let               be the probability to find adjacent blocks of size mat time t in the bit pattern p.

Example:

In a critical DP process                increases with timewhile all other decrease with time.

                                   saturates as 

P101(5)

000101001010000001011010110

1     1    0    1    1

Pp(m)(t )

P000(m) (t )

S p(m)(t) :=

P p(m)(t)

1−P000(m)(t)

t→∞

Page 55: Entropy production and fluctuation phenomena in nonequilibrium

Perform two limits:Perform two limits:

1. Take time  

2. Take block size  

Observation: These quantities are universal.

S p(m) := lim

t→∞S p(m)(t) =

Pp(m)(t)

1−P000(m)(t )

t→∞

m→∞

S p* := lim

m→∞S p(m)

Page 56: Entropy production and fluctuation phenomena in nonequilibrium

t→∞

Page 57: Entropy production and fluctuation phenomena in nonequilibrium

m→∞

Page 58: Entropy production and fluctuation phenomena in nonequilibrium

Useful for:

● Verification whether a given model belongs to DP● Definition of a „clean“ contact process

Number of bits Number of univ. quantities

2 2

3 5

4 9

5 17

Page 59: Entropy production and fluctuation phenomena in nonequilibrium

space

time

Page 60: Entropy production and fluctuation phenomena in nonequilibrium

space

time

Page 61: Entropy production and fluctuation phenomena in nonequilibrium

space

time

Page 62: Entropy production and fluctuation phenomena in nonequilibrium

space

time

Page 63: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

Page 64: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

Page 65: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

Page 66: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

Page 67: Entropy production and fluctuation phenomena in nonequilibrium

space

time

0 1 →

1 0 →

w100

w111

Effective transition rates  wp in the coarse­grained dynamics

Page 68: Entropy production and fluctuation phenomena in nonequilibrium

There are

● Reversible transitions 110   111↔

● Irreversible transitions 010   000↔

● Impossible transitions 000   010→

The allowed transitions are expected to decreasewith increasing block size.

Example: Effective 3­bit ratesExample: Effective 3­bit rates

Page 69: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit ratesExample: Effective 3­bit rates

m=4

m=32

t→∞

Page 70: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit ratesExample: Effective 3­bit rates

Page 71: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit ratesExample: Effective 3­bit rates

Observation:

1.   The irreversible rates decrease faster than       the reversible rates with increasing block size.

w prev∼m−2 , w p

irr∼m−2.6

Page 72: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit Example: Effective 3­bit currentscurrents

Page 73: Entropy production and fluctuation phenomena in nonequilibrium

Example: Effective 3­bit Example: Effective 3­bit currentscurrents

m→∞

Page 74: Entropy production and fluctuation phenomena in nonequilibrium

Observation:Observation:

1.   The irreversible currents decrease faster than       the reversible currents with increasing block size.

2.  The reversible currents approach each other     as if they would satisfy detailed balance     in the limit  

J prev∼m−2 , J p

irr∼m−2.6

m→∞

Page 75: Entropy production and fluctuation phenomena in nonequilibrium

Summary

●   The commonly accepted formula for environmental     entropy production holds only if the environment    equilibrates instantaneously.

●  The fluctuation theorem is a property that it is invariant   under convolution.

● It is very difficult (although not impossible) to find other    physical quantities which obey the fluctuation theorem.

● Directed percolation has infinite entropy production.  Under block renormalization, however, the currents of   irreversible transitions vanish faster while reversible transitions  seem to approach detailed balance.