entanglement concentration protocol using linear optics

28
Entanglement concentration protocol using linear optics Anindita Banerjee CAPSS, Bose Institute Kolkata IPQI 2014 C ollaborators ollaborators: Chitra Shukla, Anirban Pathak

Upload: keely

Post on 13-Jan-2016

56 views

Category:

Documents


0 download

DESCRIPTION

Entanglement concentration protocol using linear optics. IPQI 2014. Anindita Banerjee CAPSS, Bose Institute Kolkata. C ollaborators : Chitra Shukla, Anirban Pathak. Outline. Introduction Motivation Linear optics Example:Purification using PBS ECP for CAT state - PowerPoint PPT Presentation

TRANSCRIPT

Entanglement concentration protocol

using linear optics

Anindita BanerjeeCAPSS, Bose Institute

Kolkata

IPQI 2014

Collaboratorsollaborators: Chitra Shukla, Anirban Pathak

IntroductionMotivationLinear opticsExample:Purification using PBS ECP for CAT stateECP for GHZ-like stateECP for Four qubit state ECP for n+1 qubit state of a particular formSingle qubit assisted ECP Transformation Efficiency

Outline

Applications of entanglement

TeleportationDense codingQuantum key distributionSecure direct communication

Entanglement

(require max entangled state between two parties)

IPQI 2014

The IDEA is that the two distant parties Alice and Bob are supplied with finite ensemble of pure states

from which they wish to extract the maximally entangled states (MESs).

Entanglement concentration transforms a pure non maximally entangled state into MES

Entanglement distillation transforms a mixed non maximally entangled state into MES

Distributed Qubits interact with the environment

Gets noisy due to storage processing and transmission

Mixed state Less entangled state

Problems!

IPQI 2014

Bell state: Bose et al., Zhao et al., Yamamoto et al., Sheng et al. , Sheng and Zhou, Gu et al., Deng

GHZ state: Chaudhury and Dhara [GHZ] and Zhou et al.[GHZ]

W state: Sheng et al.[W state], Ling-yan He

Cluster state: Chaudhury and Dhara [Cluster], Ting-Ting Xu et al. , Zhau et al.[Cluster]

ECP/EP

Motivation

IPQI 2014

Schmidt Projective method Bell state Bennet et al.

Entanglement swappingBell state

Bose et al.

POVM Bell state Gu et al.

QEDBell state

Romero et al.

Cross kerr nonlinearities

Bell stateW state

Zhaop et al. Sheng et al[W]

Linear optics

Bell state

Zhao et al.,

Yamamoto et al.,

Sheng et al. S.

Banyopadhyay

Bell stateZhao et al.,

[Experiment] Yamamoto et al

[Experiment]

IPQI 2014

Polarized Beam Splitter

Horizontally polarized photon is transmitted and Vertically polarized photon is reflected

I H1 >

I H4 >

I V1 > I V3 >

IPQI 2014

Purification of Bell state using PBS

a1 b1

a2 b2

Source pair

Target pair

NATURE |VOL 423 | 22 MAY 2003 417--421

IPQI 2014

Three ingredients involved

Local operation

Classical communication

Post selection

V. Vedral and M. B. Plenio

IPQI 2014

Entanglement Swapping

Bose et al.

1 2

3 4

Alice Bob

Bell measurement

IPQI 2014

ECP for partially entangled cat state

Bell and GHZ are special cases

IPQI 2014

ECP for partially entangled GHZ-like state

GHZ-like state

ψi ψ jand are orthogonal to each other And belong to bell state

example

IPQI 2014

General state

Applications

Non-maximally entangled (n + 1)-qubit state where and are arbitrary n-qubit states that are mutually orthogonal.

Ψ 0Ψ 0Ψ 0

Ψ 0Ψ 0Ψ 0

Why is it important?Bell stateGHZGHZ-likeCAT states

Bidirectional quantum teleportationHierarchical quantum communication schemes (HQIS),Hierarchical quantum secret sharing (HQSS)

IPQI 2014

F. Verstraete, J. Dehaene, B. De Moor and H. Verschelde, “Four qubits can be entangled in nine different ways”, Phys. Rev. A 65 (2002) 052112.L. Borsten, D. Dahanayake, M. J. Duff, A. Marrani and W. Rubens, “Four-qubit entanglement classification from string theory”, Phys. Rev. Lett. 105 (2010) 100507.

Four-qubits entangled statesThere exist nine failies of states corresponding to nine different ways of entangling four qubits.

IPQI 2014

Four-qubit entangled states

IPQI 2014

IPQI 2014

IPQI 2014

Sigle qubit assisted ECP for general state

IPQI 2014

Optical circuit using linear optics Bell measurement

Bell states

Further, the CNOT can be implemented using optical circuits implemented by J. L. O’Brien et al. Thus in general ECPs proposed here can be realized optically. These ECPs may be practically realized using NMR as Bell measurement ispossible in NMR based technologies.

IPQI 2014

Two alternative ECPs for quantum states

ECP1 ECP2

and need not be real and should be real

Requires Bell measurement

and particle swapping

Single measurent

IPQI 2014

Entanglement transformation efficiency

is the amount of entanglement in the initial partially entangled state is the amount of entanglement of the state after concentration.

E0

Ec

Ambiguity is the amount of entanglement of the state to be concentrated ORis the amount of entanglement of the entire initial state.

E0

be the total initial entanglementE0

higher efficiency of single photon assisted ECPs over Bell-type state assisted ECPs

IPQI 2014

Yu and Song established that any good measure MA-B of bi-partite entanglement can be generalized to multipartite systems, by considering bipartite partitions of the multipartite system. Yu andSong defined a simple measure of tripartite entanglement as

where Mi-jk is a measure of entanglement between subsystem i and subsystem jk.

Sheng et al. (von Neumann entropy ) as a measure of entanglement,But von Neumann entropy is a good measure of entanglement for bipartite systems only.

How to find for an ECP that is designed for multipartite case? Interestingly, the problem is equivalent to provide a quantitative measure of multiparite entanglement.

Let us choose tangle as a measure of entanglement.

IPQI 2014

Thus Sabın and Garca-Alcaine’s measure of tripartite entanglement

For the single qubit assisted protocolFor the Bell measurement protocol

IPQI 2014

References• C. Shukla, A. Pathak and R. Srikanth, “Beyond the Goldenberg-Vaidman protocol: Secure and efficient quantum communication using arbitrary orthogonal, multi-particle quantum states”, IJQI 10 (2012) 1241009.

• C. H. Bennett, H. J. Bernstein, S. Popescu and B. Schumacher, “Concentrating partial entanglement by local operations”, Phys. Rev. A 53 (1996) 2046.

• C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels”, Phys. Rev. Lett. 76 (1996) 722.

• S. Bose, V. Vedral and P. L. Knight, “Purification via entanglement swapping and conserved entanglement”, Phys. Rev. A 60 (1999) 194.

• Z. Zhao, J. W. Pan and M. S. Zhan, “Practical scheme for entanglement concentration”, Phys. Rev. A 64 (2001) 014301.

• T. Yamamoto et al., “Concentration and purification scheme for two partially entangled photon pairs”, Phys. Rev. A 64 (2001) 012304.

• Y.-B. Sheng, L. Zhou, S.-M. Zhao and B.-Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs”, Phys. Rev. A 85 (2012) 012307.

• Y.-B. Sheng and L. Zhou, “Quantum entanglement concentration based on nonlinear optics for quantum communications” Entropy 15 (2013) 1776.

• Y.-J. Gu, W.-D. Li and G.-C. Guo, “Protocol and quantum circuits for realizing deterministic entanglement concentration”, Phys. Rev. A 73 (2006) 022321.

• F.-G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements”, ' Phys. Rev. A 85 (2012) 022311.

• Y.-B. Sheng, L. Zhou and S.-M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states”, Phys. Rev. A 85 (2012) 042302.

• L.-y. He, C. Cao and C. Wang, “Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system”, Opt. Commun. 298–299 (2013) 260.

• B. S. Choudhury and A. Dhara, “A three-qubit state entanglement concentration protocol assisted by two-qubit systems”, Int. J. Theor. Phys. 52 (2013) 3965.

• L. Zhou, “Efficient entanglement concentration for arbitrary less-entangled N-atom state”, Int. J. Theor. Phys. (2014) DOI 10.1007/s10773-013-1974-8.

• B. S. Choudhury and A. Dhara, “An entanglement concentration protocol for cluster states”, Quant. Inf. Process. 12 (2013) 2577.

• T.-T. Xu, W. Xiong and L. Ye, “An efficient scheme for entanglement concentration of arbitrary four-photon states”, Int. J. Theor. Phys. 52 (2013) 2981.

• S.-Y. Zhao, J. Liu, L. Zhou and Y.-B. Sheng, “Two-step entanglement concentration for arbitrary electronic cluster state”, Quant. Inf. Process. 12 (2013) 3633.

• L. Zhou, Y.-B. Sheng, W.-W. Cheng, L.-Y. Gong and S.-M. Zhao, “Efficient entanglement concentration for arbitrary less-entangled NOON states”, Quant. Inf. Process. 12 (2013) 1307.

• Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater”, Phys. Rev. Lett. 90 (2003) 207901.

• T. Yamamoto, M. Koashi, S. K. Ozdemir and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs”, Nature 421 (2003) 343.

• W. {\rm D\ddot{u}r} , G. Vidal and J. I. Cirac, “Three qubits can be entangled in two ways”, Phys. Rev. A 62 (2000) 062314.

• A. Banerjee, K. Patel and A. Pathak, “Comment on quantum teleportation via GHZ-like state”, Int. J. Theor. Phys. 50 (2011) 507.

• C. Shukla, V. Kothari, A. Banerjee and A. Pathak, “On the group-theoretic structure of a class of quantum dialogue protocols”, PLA 377 (2013) 518.

• K. Yang, L. Huang, W. Yang and F. Song, “Quantum teleportation via GHZ-like state”, Int. J. Theor. Phys. 48 (2009) 516.

• F. Verstraete, J. Dehaene, B. De Moor and H. Verschelde, “Four qubits can be entangled in nine different ways”, Phys. Rev. A 65 (2002) 052112.

• O. Chterental and D. Z. Djokovic, “Normal forms and tensor ranks of pure states of four qubits”, arxiv:quant-ph/0612184.

• L. Borsten, D. Dahanayake, M. J. Duff, A. Marrani and W. Rubens, “Four-qubit entanglement classification from string theory”, Phys. Rev. Lett. 105 (2010) 100507.

• Z. Zhao, J. W. Pan and M. S. Zhan, “Practical scheme for enatnglement concentration”, Phys. Rev. A 64 (2001) 014301.

• J. L. Romero, L. Roa, J. C. Retamal and C. Saavedra, “Entanglement purification in cavity QED using local operations”, Phys. Rev. A 65 (2002) 052319.

• J. R. Samal, M. Gupta, P. K. Panigrahi and A. Kumar, “Non-destructive discrimination of Bell states by NMR using a single ancilla qubit”, J. Phys. B 43 (2010) 095508.

• C. Shukla, A. Banerjee and A. Pathak, “Bidirectional controlled teleportation by using 5-Qubit states: A generalized view”, Int. J. Theor. Phys. 52 (2013) 3790.

• C. Shukla and A. Pathak, “Hierarchical quantum communication”, Phys. Lett. A 377 (2013) 1337.

• B. Pradhan, P. Agrawal and A. K. Pati, “Teleportation and superdense coding with genuine quadripartite entangled states”, arxiv:0705.1917v1 [quant-ph].

• S.-W. Lee and H. Jeong, “Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement”, arxiv:1304.1214 [quant-ph].

• S.-H. Xiang, et al. “Concentration scheme for partially entangled photon states via entanglement reflector and no Bell-state analysis”, Opt. Commun. 284 (2011) 2402.

• J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate”, Nature 426 (2003) 264.C.

• Sabın and G. Garca-Alcaine, “A classification of entanglement in three-qubit systems”, Eur. Phys. J. D 48 (2008) 435.

• C. Eltschka, A. Osterloh, J. Siewert and A. Uhlmann, “Three-tangle for mixtures of generalized GHZ and generalized W states”, New Journal of Physics 10 (2008) 043014

• .W. K. Wootters, “The rebit three-tangle and its relation to two-qubit entanglement”, arxiv:1402.2219v1 [quant-ph].

• C-s. Yu, H.-s. Song, “Free entanglement measure of multiparticle quantum states”, Phys. Lett. A 330 (2004) 377.

• V. Coffman, J. Kundu and W. K. Wootters, “Distributed Entanglement”, Phys. Rev. A 61 (2000) 052306.

• P. Rungta, V. Buzek, C. M. Caves, M. Hillery and G. J. Milburn, “Universal state inversion and concurrence in arbitrary dimensions”, Phys. Rev. A 64 (2001) 042315.

• V. Vedral and M. B. Plenio, “Entanglement measures and purifcation procedures”, Phys. Rev. A 57 (1998) 1619.

Thank youThank you