enhancing linear system theory with an pendulum...

18
Enhancing Linear System Theory Curriculum with an Inverted Pendulum Robot Brian Howard General Electric Dr. Linda Bushnell University of Washington, EE 7/2/2015 1

Upload: others

Post on 09-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Enhancing Linear System Theory Curriculum with an Inverted

Pendulum Robot

Brian HowardGeneral Electric

Dr. Linda BushnellUniversity of Washington, EE

7/2/2015 1

Topics• Motivation• LST Course Structure• MinSeg Robot• Lessons Learned• Conclusion

27/2/2015

• LST of today similar to that of 50 years ago.• Applications, though, are so much broader:

– Driverless cars– Financial models– Electric grid– Drones

• Provide a platform and environment that lets students apply and extend theory.

7/2/2015 3

Why enhance LST?

• Lecture component includes:– Block diagrams, modelling, and system properties– Causal and LTI systems– State space and transfer function relationships– Lyapunov and BIBO stability– Controllability and observability– Closed loop control, estimators, and observers

• Class (PMP) was enhanced by adding:– Matlab/Simulink projects to practice the theory– Work on the robot to apply control theory to a specific platform– Balancing of robot was bonus for the course.

7/2/2015 4

LST Structure

7/2/2015 5

Physical system (“Plant”) Model

MinSeg model development

Improved engagement:• Parameters can be hard to measure.  • This naturally leads to questions about accuracy, uncertainty, 

and how the parameters impact controller performance.

7/2/2015 6

MinSeg Model

α

, α

∗ 0. 1. 0. 0.62.1 44.6 0. 2120. 0. 0. 1.6.10 10.2 0. 485

090.0020.6

1 0 0 00 1 0 00 0 1 00 0 0 1

0000

State-space

Model Behavior

• Eigenvalues (Unstable):

• Controllability (System is controllable):

• Observability (System is observable).

7/2/2015 7

rank rank0.00 90.0 47700 2.53 1090.0 47700 2.53 10 1.34 100.00 20.6 10900 5.77 1020.6 10900 5.77 10 3.06 10

4,

rank rank

1.00 0.00 0.00 0.000.00 1.00 0.00 0.00… … … …

1.90x10 2.86 10 0.00 1.36 10

4,

LQR Feedback Controller• An LQR (Linear‐Quadratic Regulator) controller applies gains to all the state variables:

7/2/2015 8

MinSeg with LQR impulse responseLQR Feedback Controller

7/2/2015 9

, 93.0864 18.0634 9.93776 52.6578

Feedback Controller DevelopmentP Controller

• Begin with proportional, “P” feedback.  Block diagram and modified transfer function:

• With Matlab a gain of  is found.  

7/2/2015 10

P Controller Response

• Response of the model and the MinSeg robot:

7/2/2015 11

Pend

ulum

ang

le, α

PI Feedback Controller• Add integral, “I” control:

• Gain of  and  .

• This is a problem:  Excessive control effort.

7/2/2015 12

PI controller impulse response

• Lowered required response time and found more realistic gains:

7/2/2015 13

Pend

ulum

ang

le, α

Slow ripple

About those wheels...PID Feedback Controller

• Added differential gain,  , to eliminate ripple and wheels need controller:

7/2/2015 14

PID + P controller impulse response

• Found  and  ,adjusted  , and added gain to achieve desired response:

7/2/2015 15

Pend

ulum

ang

le, α

Summary

7/2/2015 16

• Class– Enhanced engagement– Robot improved understanding of concepts (pole placement, observers)

• Lab– Expanded learning (complimentary filter design)– Introduced additional depth to control theory (Motor controls and ultrasonic distance sensor)

Conclusion

7/2/2015 17

• Successful experiment!

• Next steps:– Explore Kalman filtering–Apply lab structure to other topics

Questions?

7/2/2015 18

‐URL goes here‐