enhanced power factor in nanocomposite chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1...

26
Enhanced Power Factor in Nanocomposite Chalcogenides J. Martin, A. Datta, H. Kirby, A. Popescu, L.M. Woods, N. Crane and G.S. Nolas Department of Physics, University of South Florida Tampa, Florida, USA 2009 DOE Thermoelectric Applications Workshop USAMRMC Marlow Industries

Upload: others

Post on 27-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Enhanced Power Factor in Nanocomposite Chalcogenides

J. Martin, A. Datta, H. Kirby, A. Popescu, L.M. Woods, N. Crane and G.S. Nolas

Department of Physics, University of South FloridaTampa, Florida, USA

2009 DOE Thermoelectric Applications Workshop

USAMRMC Marlow Industries

Page 2: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

How can we increase ZT?

Thus far two approacheshave shown the greatestpromise:1. Phonon-Glass

Electron-Crystal (G. Slack)

2.

Low Dimensional Materials (M. Dresselhaus)

T.M. Tritt and M.A. Subramanian, MRS Bulletin 31, 188 (March 2006)

T2

ZT

Page 3: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

TE Enhancement : Nanostructured Materialso Multilayered Structures

first proposed in 1987A

o One dimensional quantum wiresB

o Bi2

Te3

/Sb2

Te3

supperlattice: ZT=2.4C

o Quantum dot supperlattice: ZT =1.6D

o Metal-based supperlatticesE

A T.E. Whall, Proc. First Eur. Conf. on Therm., D.M. Rowe (Peter Peregrinus Lt., London, 1987)

B L.D. Hicks & M.S. Dresselhaus, PRB 47, 16631 (1993)

C R. Venkatasubramanian et al, Nature 413,597 (2001)

D O.L. Lazarenkova & A.A. Balandin, PRB 66,245319 (2002)

E D. Vashaee and A. Shakouri, PRL 92, 106103 (2004)

o Agm

Pbm

SbTem+2

with nanoscale PbTe2: κ

reductiono Nanostructured SiGe bulk alloys3: κ

reductiono Nanostructured Bi2

Te3

bulk alloys4: κ

reductiono Nanocrystalline CoSb3

5: κ

reductiono PbTe with Pb nanoprecipitates6 : S increaseo PbTe nanocomposites7, 8: S increaseo PbTe ‘dimensional’

nanocomposites9, 10: S increase

1 K.F. Hsu et al, Science 303, 818 (2004)2 G. Joshi et al, Nano Lett. 8, 4670 (2008)3 M.S. Toprak et al, Adv. Func. Mat. 14, 1189 (2004)4

B. Poudel et al, Science 320, 634 (2008)5

X. Ji, T.M. Tritt et al, Phys. Stat. Sol. RRL 1, 229 (2009)6 J.P. Heremans et al, JAP 98, 063703 (2005)7 J.P. Heremans et al, Phys. Rev. B 70, 115334 (2004)8 K. Kishimoto et al, JAP 92, 2544 (2002)9 J. Martin et al, Appl. Phys. Lett. 90, 222112 (2007)10 J. Martin et al, Phys. Rev. B 79, 115311 (2009)

Page 4: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Expectations:•

Reduced thermal conductivity?•

Enhanced thermopower?•

Increased ZT?•

Cheap, self-assembly method

‘Dimensional’

Nanocomposites

First Steps: • Synthesis of high yield nanocrystals• Densify into nanocomposites• Measure transport properties

Macro-grains Nano-grains

Page 5: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

PbS, PbSe and PbTe•

NaCl-like FCC lattice structure•

Relatively low thermal conductivity•

Direct-gap semiconductor at the L-point of the Brillouin zone

Bandgap between conduction and valence bands:PbS > PbTe > PbSe

Lattice parameter:PbS < PbSe < PbTe

Bulk Property PbS PbSe PbTe

Lattice Parameter (Å) 5.94 6.12 6.46

Eg at 77 K (meV) 307 168 215

Lead Chalcogenides

PbTe energy bandstructure

X. Gao and M.S. Daw, Phys Rev B 77, 033103 (2008)

g

t

t

l

l EEEmk

mk /

222

*

22

*

22

Page 6: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Scalable!

Requirement: High Yield Nanocrystal Synthesis

Page 7: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Size & Shape Selectivity

Densification

200 nm

200 nm

PbTe nanocrystals within the bulk matrix

SPS

PbTe Nanocomposites

J. Martin, G. S. Nolas, W. Zhang, and L. Chen, Appl. Phys. 90, 222112 (2007)J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009)

Page 8: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Spark Plasma SinteringPressure

PressureDiffusion

Page 9: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

TeO2

impurityPbTeO3

impurity

PbTe Ag-doped

PbTe

Powder and Polycrystalline XRD

Pre-SPS

J. Martin, G. S. Nolas, W. Zhang, and L. Chen, Appl. Phys. 90, 222112 (2007)J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009)

Page 10: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Specimen D (%) (m-cm) S (V/K) (W-m-1K-1) p (cm-3) S2 (W/K2cm) Pb:TePbTe-I 94 24.9 328 2.2 9.5 x 1017 4.3 49.91 : 50.09PbTe-II 95 12.6 324 2.5 1.5 x 1018 8.3 50.42 : 49.58

B-I 97 37 325 - 8.0 x 1017 2.9 -B-II 97 19 250 - 9.5 x 1017 3.3 -

@ 300 K

Bulk

PbTe Nanocomposites

J. Martin, G. S. Nolas, W. Zhang, and L. Chen, Appl. Phys. 90, 222112 (2007)

Page 11: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

PbTe Nanocomposites

Ag-doped

“undoped”

@ 300 K

Ag-doped

Specimen D (%) (m-cm) S (V/K) (W-m-1K-1 p (cm-3) S2 (W/K2cm) Pb:Te

PbTe-I 94 24.9 328 2.2 9.5 x 1017 4.3 49.91 : 50.09PbTe-II 95 12.6 324 2.5 1.5 x 1018 8.3 50.42 : 49.58PbTe-III 95 3.9 198 2.8 5.1 x 1018 10.0 -PbTe-IV 94 2.9 207 2.7 6.2 x 1018 14.8 -

J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009)

Page 12: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Carrier Concentration (cm-3)

1018 1019

Seeb

eck

Coe

ffici

ent ( V

/K)

100

200

300

400

Carrier Concentration (cm-3)1018 1019

Pow

er F

acto

r ( W

/cm

K2 )

2

4

6

8

10

12

14

16

Thermopower Enhancement in Nanocomposites

red PbTe Nanocomposites ,

Bulk PbTeA.J. Crocker et al., Brit. J. Appl. Phys.

18, 563 (1967)H. Kirby, J. Martin, L. Chen, and G.S. Nolas, Proc. Mater. Res. Soc. 1166 (2009)

Room Temperature

Page 13: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

EB q2Nt

2

8o p

W 2oEB

q2p

1 2

eff Lq1

2m * kT

1 2

exp EB

kT

Density of trapping states:

Width of space-charge region:

C. H. Seager, J. Appl. Phys.

52, 3960 (1981)O. Vigil-Galan, J. Appl. Phys. 90, 3427 (2001)J. Y. W. Seto, J. Appl. Phys.

46, 5247 (1975)

PbTe Nanocomposites

Specimen (m-cm) p (cm-3) EB (meV) Nt (cm-2) W (nm) L (nm)PbTe I 24.9 9.5 x 1017 60 1.0 x 1013 54 316PbTe II 12.6 1.5 x 1018 60 1.3 x 1013 43 396PbTe III 3.9 5.1 x 1018 60 2.4 x 1013 23 376PbTe IV 2.9 6.2 x 1018 60 2.6 x 1013 21 416

EB

= 0.06 eV

@ 300 K

Page 14: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Model : Granular Nanocomposites

Goal

-

describe electrical conductivity and Seebeck coefficient-

understand the role of grain interface scattering

0

*

2 )()()(32 dE

EEfEEgE

me

0

0

2

)()()(

)()()(1

dEEEfEEgE

dEEEfEEgE

eTS

e –

electron chargem*

-

effective massT

temperature –

chemical potential

(E) –

relaxation rateg(E)

total density of states (DOS)f(E)

energy distribution functiondiffusive, quasi-equilibrium transport, S –

derived using linear response theory

A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 305302 (2009)

Page 15: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Scattering Mechanisms

2/122/3*

2

3

4

)2(1

8)(

EDmTk

vhEB

Lpha

2/11

0122/1*2/1

2

)(2)( E

TkemhE

Bpho

2/3

12

22/1*

42 21ln)2(16

)( EE

Em

NeZE

m

iimp

Scattering due to acoustic phonons

Scattering due to optical phonons

Scattering due to ionized impurities

n n EE )(

1)(

1

mass densityvL

longitudinal speed of soundD

deformation potential constantNi

concentration of impurities-

dielectric constants,0

Interface grain barriers

vEb /)( */2 mEv

1 )(1)())(1)((

n

n

ETLETnLETET

Infinite number of barriers: Eb

barrier heightw

barrier widthL

distance between the barriersT(E)

quantum mechanical transmission through one barrier

Page 16: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Comparison: Experiment and Theory

comp ρ

(g/cm3) vL (m/s) D (eV) m*/m0 ε∞-1-ε0-1

PbTe 8.16 1730 5 –

15 0.16 0.0022

A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 305302 (2009)

Page 17: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

TE Transport Properties:The role of Carrier Concentration

Higher concentration results increases &in more transport carriers

S decreases.

Page 18: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Grain Boundary Height

Higher Eb

more carriers are scattered decreases & S increases

Lower Eb

carrier energy larger than barrier increases & S decreases

Page 19: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Grain Boundary Width

Larger w –

smaller transmission probability T(E)

increases & S decreases

decreases & S increases

Smaller w –

larger transmission probability T(E)

Page 20: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Distance (L)

Between Barriers

Smaller L –

more frequent carrier/interface scattering

Larger L –

less frequent carrier/interface scattering

decreases & S increases

increases & S decreases

Page 21: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

S2σ

for PbTe granular nanocomposites

A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 305302 (2009)

Page 22: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

CoSb3

for PbTe granular nanocomposites

L.M. Woods, A. Popescu, J. Martin, and G.S. Nolas, Proc. Mater. Rec. Soc. 1166

(2009)

Page 23: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Device manufacturing: Self Assembly

Capillary Self-Assembly

Page 24: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Challenge of Self Assembly: Rate & Yield

Goal: Develop predictive models of self assembly process rate and yield to facilitate design of high rate and yield

processes at industrial scales.

Assembly yield depend on process and design parameters.

0

0.25

0.5

0.75

1

1.E+00 1.E+02 1.E+04 1.E+06

Number of Series Parts

Frac

tion

of F

unct

iona

l A

ssem

blie

s

R =1

R = 2

R = 3

Ass

embl

y Y

ield

N. Crane, P. Mishra, J. Murray, G.S. Nolas, J. Electronic Mater 38, 1252 (2009)

Page 25: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering

Acknowledgements

Lidong

ChenShanghai Institute of Ceramics, China

Jim Salvador & Jihui

YangGeneral Motors Co. Inc., USA

Page 26: Enhanced Power Factor in Nanocomposite Chalcogenides · 2009. 10. 28. · 1 2 * 1/ 2 2 2 4. 2 ln 1 16 (2 ) ( ) E E E m Z e N. m i imp Scattering due to acoustic phonons. Scattering