enhanced bioremediation (ek of in · 2019. 11. 14. · • patent application filed by geosyntec...

14
Evan Cox Geosyntec Consultants, Inc. FullScale ElectrokineticEnhanced Bioremediation (EKBIO) of PCE DNAPL Source Area in Clay Till www.vertexenvironmental.ca SMART Remediation Toronto, ON January 29, 2015 SMART is Powered by:

Upload: others

Post on 16-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Evan CoxGeosyntec Consultants, Inc.

    Full‐Scale Electrokinetic‐Enhanced Bioremediation (EK‐BIO) of PCE DNAPL Source Area in Clay Till 

    www.vertexenvironmental.ca

    SMART RemediationToronto, ON

    January 29, 2015

    SMART isPowered by:

  • 1

    FULL‐SCALE EK‐BIOTM OF PCE DNAPL SOURCE AREA IN CLAY TILL

    Evan [email protected]

    THE CHALLENGE OF LOW PERMEABILITY MATERIALS

    Over time, contaminants diffuse into low permeability (low K) materials

    Clays/silts serve as secondary sources for decades after cleanup of sands/gravels

  • 2

    IN SITU REMEDIATION IS ALL ABOUT DELIVERY AND CONTACT

    Bio and ISCO are effective technologies, but amendment distribution is poor in Low K and heterogeneous materials

    Better amendment delivery techniques are required for low K sites

    SOLUTION = ELECTROKINETIC MIGRATION

    Application of direct current (dc) to saturated subsurface

    Amendments move through clays and silts by:

    • Electro‐migration (EM) – movement of charged ions

    • Electro‐osmosis (EO) – bulk movement of water

  • 3

    As Kh decreases, EK becomes the most efficient delivery method

    Why will EK work in low‐K formations where conventional injection techniques commonly fail?

    Advection

    WHY EK WORKS?

    electron donor amendment

    low power requirementsreverse polarization

    cross‐circulation for pH control

    amendmentsupply well

    amendmentsupply well

    electron donorsfollow electric field

    CLAY

    sand stringers

    SAND

    clay stringers

    more uniform distributionof amendment

    HOW EK IS APPLIED IN THE FIELD

  • 4

    EK‐BIOTM = Distribution of electron donors (lactate) or acceptors (oxygen, nitrate) and/or microorganisms (Dehalococcoides, Dehalobacter) to promote biodegradation

    EK‐ISCOTM = Distribution of permanganate (MnO4‐) to promote oxidation

    EK‐TAPTM = Distribution of persulfate (S2O82‐) by EK (DC current), followed by thermal activation of the persulfate (AC current)

    EK TERMINOLOGY

    EK‐BIOTM

  • 5

    Reductive Dechlorinationof PCE to Ethene

    DehalobacterDehalospirillum

    DesulfitobacteriumDesulfuromonasDehalococcoides

    Only Dehalococcoides &

    Dehalobacter

    Can accumulate if requisite bacteria are absent

    9

    FULL‐SCALE EK‐BIOSITE LOCATION

    Treatment area: Hot Spot IV

    PCE DNAPL

    10.000-100.000 µg CVOC/L

    1.000-10.000 µg CVOC/L

    100-1.000 µg CVOC/L

    AREA A

    AREA B

    Groundwater Flow Direction

    Area 150 m2, depth 8 m

  • 6

    THE ROAD TO FULL‐SCALE

    Start: 100 mg PCE/kg Day 100: 

    All PCE degradedto ethene

    2009 ERD Microcosms• 100% PCE degradation 

    via ERD with Dehalococcoides (Dhc) bioaugmentation

    2010 EK‐BIO Lab Test• Lactate transport 

    rate 3.2 cm/day• Increase in vcrA

    numbers• PCE dechlorination 

    to VC and ethene

    2011 EK‐BIO Field Pilot Test• Lactate transport rate 

    2.5‐5 cm/day• Increase in vcrA in 

    groundwater and clay• PCE dechlorination to VC 

    and ethene• PCE desorption and 

    dissolution

    Stage 2

    Stage 1

    Stage 3

    Stage 1

    Stage 4

    Stage 3

    Stage 2

    Stage 4

    Stage 2

    Stage 3

    Stage 4

    Stage 1

    FULL‐SCALE PROJECT SCHEDULE

    Cycle 1:2012‐2014 Cycle 2:2014‐2015 Cycle 3:2016‐2017

    Status today

    BioaugmentationArea A Bioaugmentation Area B

    • Alternating active‐passive phases of 90 days per area

    • Full‐scale remedial duration estimated at 3‐5 years

  • 7

    ELECTRICAL FIELD & LAYOUTAREA A  – STAGE 1 + 3

    Anodes (+)

    Cathodes (‐) 

    Injectionwells

    Monitoringwells

    Electromigra‐tion: Donortransport

    Elektro‐Osmosis: Biomasstransport

    Stage 1: Operation period dec. 2012 – apr. 2013 Stage 3: Operation period sep. 2013 – dec. 2013

    FULL‐SCALE EK‐BIO COMPONENTS

    Katode

    Lactate tanks

    Lactic acid

    NaOH

    Injektionsboring

    Anode

    CathodeInjection well

  • 8

    DISTRIBUTION OF DONOR (AS NVOC)‐ High donor concentration in treated areas‐ Partial donor depletion during passive stages

    BASELINE STAGE 4STAGE 2

    STAGE 1 STAGE 3

    PCE DECHLORINATION TO ETHENE‐ Dechlorination to VC & ethene in all wells‐ PCE only present in 2 wells after Cycle 1

    BASELINE

    STAGE 3

    STAGE 2

    STAGE 1

    STAGE 4

    Molar

    fraction

    Molar

    fraction

  • 9

    SOIL CORE RESULTS AFTER CYCLE 1 

    ‐ Decrease in total CVOC‐ Decrease in PCE‐ Production of cDCE, VC and ethene

    ‐ Increase in vcrA in clay samples from 103/gram to 106/gram

    ‐ Production of chloride‐ Soil results support gw results

    B: Baseline         C1: After Cycle 1

    B B B

    B B B

    C1 C1 C1

    C1 C1 C1ADJACENT MONITORING WELL

    CONCLUSIONS AFTER YEAR 1

    • Effective distribution of lactate across treatment area in clays• Increase in vcrA in groundwater and clay across treatment area• Complete dechlorination of PCE to ethene; PCE mass declining• PCE desorption and dissolution – should shorten remedial duration

    • Soil data confirm that dechlorination is occurring in the clay till

  • 10

    EK‐ISCOTMEK‐TAPTM

    T = 12 hr w/ 8-hr EK(MnO4- flushing with EK)

    T = 6 hr w/ 2-hr EK(MnO4- flushing with EK)

    T = 12 hr(MnO4- flushing;No EK)

    EK-ISCO

    Med

    ium

    to F

    ine

    silt

    Med

    ium

    to F

    ine

    silt

    Coa

    rse

    san

    d

    Coa

    rse

    san

    d

    Coa

    rse

    san

    d

    T = 6 hr(MnO4- flushing;No EK)

    Flow Direction

    Electric Field Direction

  • 11

    • Use of dual purpose EK-ERH electrodes

    • EK uses direct current (DC) to inexpensively distribute

    persulfate through clays and silts

    • ERH then uses alternating current (AC) to heat soils

    • Contaminant (incl. 1,4-Dioxane) is oxidized in situ at

    ~40oC rather than boiled/volatilized at 100oC

    • Less energy use, no SVE = lower remediation cost

    • Patent application filed by Geosyntec

    EK-TAP(Thermally-Activated Persulfate)

    0

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    3,500

    4,000

    4,500

    0.0 5.0 10.0 15.0

    Tota

    l Sul

    fur S

    oil C

    once

    ntra

    tion

    (mg/

    kg)

    Distance from Anode (cm)

    Initial Soil Concentration Soil Concentration Following EK(Total sulfur used as persulfate analogue)

    EK-TAP in Clay Soil, Northern California

    20 g/L persulfate

    Anode CathodePersulfate Electromigration

  • 12

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0 2 4 6 8 10 12 14

    Tota

    l mm

    ols

    CO

    Cs

    Distance From Anode (cm)

    Following EK-TAPBackground

    21 Days of EK2 Days Heating(45oC)

    COCsPCETCE1,1DCEcis-DCE1,4-D

    ~99% Decrease

    Anode CathodePersulfate Electromigration

    EK-TAP in Clay Soil, Northern California

    How Do I Get Me Some of That?

    Treatability Testing ($15,000 - $40,000)

    Kinetics (NOD, batch testing)

    Column migration experiments or 2D box reactor experiments

    Pilot test ($200,000 - $300,000, depends on scale)

    Full-scale implementation ($85/yd3)

  • 13

    Acknowledgements

    – Geosyntec Consultants• David Reynolds• James Wang

    – NIRAS A/S• Charlotte Riis• Martin Bymose

    – US Army Engineer R&D Center• David Gent

    – The Capital Region DK• Mads Terkelsen

    – Western University• Denis O’Carroll• Ahmed Chowdhury

    QUESTIONS EK‐Bio Wins a Green Innovation (Sustainability) Award from US Army Corps of Engineers