engineering science the life behind an internal combustion

25
ENGINEERING SCIENCE LECTURE NOTES The Life Behind an Internal Combustion Engine BY HAZEL WEE LING, ST HILDA’S COLLEGE, 2015–2019 AND SHAUN TANG, UNIVERSITY COLLEGE, 2012–2016 The internal combustion engine ranks as one of the most important inventions ever made, providing controllable power from a truly portable unit since 1859. In this class, we will look at the theoretical thermodynamic cycles behind these machines – using knowledge of the First Law for a closed system – and at how real engines work.

Upload: others

Post on 19-Feb-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

ENGINEERING SCIENCE

LECTURE NOTES

The Life Behind anInternal Combustion EngineBY HAZEL WEE LING, ST HILDA’S COLLEGE, 2015–2019AND SHAUN TANG, UNIVERSITY COLLEGE, 2012–2016

The internal combustion engine ranks as one of the most important inventions ever made, providing controllable power from a truly portable unit since 1859. In this class, we will look at the theoretical thermodynamic cycles behind these machines – using knowledge of the First Law for a closed system – and at how real engines work.

EngineeringScience HazelWeeLing&ShaunTang

1

FirstLawforOpenSystemsIntroductionManythermodynamicmachinesmaybemodelledasopensystems.TheFirstLawofthermodynamics

forclosedsystemsisnotreadilyapplicabletosuchmachines,sowemustrecastitintoanewform,the

steadyflowenergyequation.Wewillalsomeetanewproperty,enthalpy,whichisparticularlyuseful

forthesecalculations.

SteadyFlowinOpenSystemsSteadyFlowEnergyEquationForaclosedsystemtheFirstLawstates

whereUistheinternalenergyofthesystemduetothermalmotionofthe

molecules.WecanextendthisconcepttoincludethetotalenergyEofthesystem,comprisinginternal,gravitationalandgrosskineticenergy,sothat

where

z=heightaboveanarbitrarylevelm

c=bulkvelocityofthefluidms-1.

ThusgzJkg-1(orkJkg-1)isthepotentialenergyperunitmass,and1/2c2Jkg

-1(orkJkg

-1)isthegross

kineticenergyperunitmass.Usuallyinclosedsystemstheinitialandfinalvaluesofzareequal,andthe

valuesofcarezero,sothatthetotalenergyEisthesameastheinternalenergyU.

Consideranopensystemwithasteadymassflowm˙kgs-1intoandoutofthe

systemboundary,asillustratedbelow.Theheatflowrateintothesystemis

EngineeringScience HazelWeeLing&ShaunTang

2

Nowconsiderwhathappensduringonesecond.AnelementoffluidAispushed

intothesystem,andanelementoffluidBisexpelledasshowninthefigure.The

systemboundarycanbeanalysedasaclosedsystembutwithamovingboundary.TheFirstLawforaclosedsystemgives

EngineeringScience HazelWeeLing&ShaunTang

3

Enthalpy

EngineeringScience HazelWeeLing&ShaunTang

4

NegligibletermsintheSFEE

Workinareversiblesteadyflowprocess

EngineeringScience HazelWeeLing&ShaunTang

5

istheareaunderap–vcurve,betweenthecurveandthevaxisoffigure(a).Nowp1v1andp2v2arethetworectanglesinfigure(b),sothattheshaftworkws

isgivenbyminustheareabetweenthecurveandthepaxisoffigure(c),oranalyticallyby

Steadyflowdevices

Compressor

Acompressororpumpisadeviceforincreasingthepressureofafluid,illustratedschematicallyinthe

figureabove.Thetermcompressorisgenerallyusedforgases,andthetermpumpisusedforliquids.

Inacentrifugalcompressorarotatingimpellerflingsthefluidradiallyoutward,thusincreasingits

pressure.Inanaxialcompressor,thefluidispushedbybladesonarotatingwheelthroughstationary

bladesintoasmallerspace.Areciprocatingcompressoroperatesinadifferentfashion.

Consideracompressorwhichtakesfluidatpressurep1anddeliversitatpressurep2wherep2>p1.Ifweassumethat

_thecompressorisadiabatic

_kineticandpotentialenergychangesarenegligible

EngineeringScience HazelWeeLing&ShaunTang

6

Turbine

Aturbineisadeviceforextractingworkfromahighpressurefluid,illustratedschematicallyinthe

figureabove.Thebasicprincipleisthatthefluidexpandsthroughstationarynozzlesorbladesand

impactsagainstbladesmountedonarotatingwheel.Thisprocesscanberepeatedmanytimesin

stages.Ateachstagethefluidlosessomeofitsoriginalpressure.Commonexamplesarethesteam

turbineandthegasturbine.

Consideraturbinewhichtakesfluidatpressurep1andexhaustsitatpressurep2wherep1>p2.Ifweassumethat

_theturbineisadiabatic

_kineticandpotentialenergychangesarenegligible

EngineeringScience HazelWeeLing&ShaunTang

7

Example1:

Problem:Asteadyflowpumpcompressesliquidwaterat20oCfrom0.0233barto100bar,asshownschematicallyin

figure7.13.Thepumpisreversible.Calculatetheworkrequiredperkgofwater.Ifthepumpisalsoadiabatic,calculatethe

changeinspecificenthalpyofthewater.

Solution:Liquidwaterisalmostincompressible,soonthep–vdiagramoffigure7.14thelinefrom1to2isalmostvertical.

Atlowtemperaturesthespecificvolumeofwateriseffectivelyconstantandequaltov=1lkg-1=10

-3m

3kg

-1.Iftheprocessisreversible,thentheshaftworkis

EngineeringScience HazelWeeLing&ShaunTang

8

Example2:

Problem:Aboilertakesinwateratapproximately20

ocand100bar,heatsittoboilingtemperature,

vaporisesit,andsuperheatsthesteamto500oC,asshowninthefigurebelow.Theboileroperatesat

constantpressure,soonthep–vdiagram,theline2to3ishorizontal.Calculatetheheatinputperkg

offluid.

EngineeringScience HazelWeeLing&ShaunTang

9

Example3:

Problem:Steamat5000Cand100barispassedthroughanadiabaticturbineandexhaustsata

pressureof0.0233barandadrynessfractionof0.8,asshowninthefigure.Calculatetheshaftwork

producedbytheturbineperkgoffluid.

EngineeringScience HazelWeeLing&ShaunTang

10

Onthep–vdiagram,thelineformsagentlecurvefrom3to4.Fromthepreviousexample,h3=3374.6kJkg

-1.Wecanwriteh4as

Example4:

Problem:Wetsteamat0.0233baranddryness0.8iscondensedtogivesaturatedwaterat200C,as

illustratedinfigureabove.Calculatetheheatreleasedbythecondensationperkgoffluid.

Solution:Thewetsteamiscondensedinacondenser.Typicallythewetsteamimpactsagainstasurface

cooledbycoldwater.Noshaftworkisdone,sows=0,

EngineeringScience HazelWeeLing&ShaunTang

11

Onthep–vdiagram,thelinefrom3to4ishorizontal.Fromthepreviousexamples,h4=2047.3kJkg-1andh5=83.9kJkg-1.Notethatthesaturationpressureat200Cis0.0233bar.Hence

CyclesRankineCycleItwillbeobviousthatthelastfourexamplesdescribeprocesseswhichcanbejoinedtoformacycle.Thiscycle,calledtheRankinecycle,isillustratedinthefigurebelow,andisthebasisofmostelectrical

generatingstations,suchastheDidcotpowerstation.Itconvertsheatintowork.

EngineeringScience HazelWeeLing&ShaunTang

12

EngineeringScience HazelWeeLing&ShaunTang

13

Rankinecycleonap-vdiagramItisusefultorepresenttheRankinecycleonap–vdiagramasinthefigureabove.Labeltheend

pointsofeachprocessclearlyandmarkarrowstoshowthedirectionofthecycle.Notethearrowsgo

clockwisearoundthecycle.Theprocessesare1→2feedpump,2→3boiler,3→4turbineand4→1

condenser.Notethatintheboilerandthecondenser,thepressureremainsconstant.Thefeedpump

lineisalmostverticalasthespecificvolumevdecreasesonlyslightlyfrom1→2.Point1liesonthe

saturatedliquidline,point2isinthesubcooledregion,point3inthesuperheatregion,andpoint4

insidethesaturatedliquidandvapourregion.

Internalcombustionengines

IntroductionTheinternalcombustionengine,initstwocommonforms,thespark-ignitionengineandthe

compression-ignitionorDieselengine,mustrankasoneofthemostimportantinventionsevermade,

providingcontrollablepowerfromatrulyportableunit.Inthischapterwewilllookatthetheoretical

cyclesbehindthesemachines,usingourknowledgeoftheFirstLawforaclosedsystem,andalsoat

howrealengineswork.

IdealisedCycles(AirStandardCycles)WhenweconsideredtheRankinecycle,theworkingfluidateverypointinthecyclewassteam,or

water,apuresubstance.Thesamewatersimplywentaroundandaroundthecycle,undergoingeach

processinturn,inaclosedsystem.Theinternalcombustionengineisratherdifferent.

Thespark-ignitionenginedrawsairfromtheatmosphereintoachamber,mixesitwithfuel,

compressesthefuel-airmixture,ignitesitwithaspark,allowstheresultinghotgasestoexpandanddo

work,thenexpelsthegasesintotheatmosphere.

Thecompression-ignitionengineisverysimilarexceptthattheairaloneis

compressed,afterwhichthefuelisinjected,ignitingspontaneously.Thustherearetwofeatureswhich

areimmediatelyapparent.

- Theinternalcombustionengineisnotstrictlyaclosedsystem,asairisdrawninandlater

expelled,alongwithcombustionproducts.True,thatsameaircouldeventuallybedrawnintotheengineagain,makingitacycleasillustratedinthefigurebelow,butthisisstretchingthe

definitionsomewhat.

- Theworkingfluidisnotapuresubstance,andinfactchangesconsiderablyinitscomposition

andthermalproperties,fromprocesstoprocess.Furthermore,themassofworkingfluid

containedwithintheenginevarieswithtime.Thecombustionprocessinarealengineisnotthe

simplestoichiometricequationyouhaveseeninthelastchapter,butisverycomplicated,with

EngineeringScience HazelWeeLing&ShaunTang

14

theformationofmanyotherproducts,suchasoxidesofnitrogenduetothehightemperatures,

andhydrocarbonsduetoprematurequenchingofthecombustionontherelativelycold

chamberwalls.

Tosimplifytheanalysisoftheinternalcombustionengine,weusetheairstandardcycle,inwhichtheworkingfluidisassumedtobeair,whichcirculateswithintheengineasinatrueclosedsystem.This

givesagoodfirstapproximation,becausetheprincipalconstituentofairisN2,whichremains

unchangedduringthecycle(exceptfortheformationofsmallamountsofNOandNO2).

InternalcombustionengineOttoCycleTheOttocycleisanairstandardcycleapproximatingthespark-ignitionengine

cycle.Therearefourprocesses,asillustratedinthefigureabove.

- 1→2representsreversibleadiabaticcompressionoftheair,requiringworkWin,frompressure

p1andvolumeV1top2andV2- 2→3representstheadditionofheatQintotheairatconstantvolumeV2=V3,raisingthe

pressuretop3- 3→4representsreversibleadiabaticexpansionoftheair,producingworkWout,topressure

p4andvolumeV4=V1- 4→1representstherejectionofheatQoutfromtheairatconstantvolumeV4=V1,reducing

thepressuretop1.

FromtheFirstLaw,wecanrelatetheworkandheattermsby

EngineeringScience HazelWeeLing&ShaunTang

15

Butthecompressionandexpansionprocesses,1→2and3→4,areboth

reversibleandadiabatic,soiftheairbehavesasanidealgas,canberepresentedby

EngineeringScience HazelWeeLing&ShaunTang

16

DieselCycleTheDieselcycleisanairstandardcycleapproximatingthecompression-ignition

enginecycle.Therearefourprocesses,asillustratedinthefigurebelow.

EngineeringScience HazelWeeLing&ShaunTang

17

EngineeringScience HazelWeeLing&ShaunTang

18

GasTurbineEnginesIntroductionThegasturbineenginehasrevolutionisedairtravelwithitsamazingpowerto

weightratio.Inthischapterwewilllookatthetheoreticalcyclebehindthegas

turbine,andalsohowarealgasturbineengineworks.

IdealisedCycle(AirStandardCycles)Asforthediscussionofinternalcombustionenginecycles,weuseairstandardcycleswhenwefirstconsidergasturbineengines.Thatis,weassumethatthe

workingfluidisair,whichcirculateswithintheengineasinatrueclosedsystem.

ThisgivesagoodapproximationbecausetheprincipalconstituentofairisN2.

JouleCycleTheJoulecycleisanairstandardcycleapproximatingthegasturbineengine.

Therearefourprocessesasillustratedinthefigurebelow.

EngineeringScience HazelWeeLing&ShaunTang

19

Thecompressionandexpansionprocesses,1→2and3→4,arebothreversibleandadiabatic,soif

theairbehavesasanidealgas,theycanberepresentedusingthepolytropiclawby

Joulecycleefficiencyvspressureratio

EngineeringScience HazelWeeLing&ShaunTang

20

ThusthethermalefficiencyoftheairstandardJoulecycleisdeterminedsolelybythepressureratio.

Increasingthepressureratiorpincreasesthethermalefficiency.

Thisisillustratedforγ=1.4infigurethefigureabove.Notethattheefficiencyfallstozeroatrp=1.Theworkratiorwisdefinedastheratioofthenetworkouttotheturbinework

Schematicdiagramofagasturbineengine

EngineeringScience HazelWeeLing&ShaunTang

21

Additionalnoteson• Behaviourofsteam-watermixtures• PolytropicProcesses

*Engineering Tables and Data, known affectionately as HLT after the initials of its authors, has been the primary reference for generations of Oxford University engineering students.

Behaviourofsteam-watermixturesSaturatedTableinHLTWhenwaterandsteamareinequilibriumwitheachother,wesaythatthesteamissaturated.Tofindthepropertiesofsuchsteam–watermixturesweusethesaturatedtableinHLTonpages54–65.Pages54–55aretabulatedasafunctionoftemperatureandpages56–65asafunctionofpressure.

EngineeringScience HazelWeeLing&ShaunTang

22

Drynessfraction

EngineeringScience HazelWeeLing&ShaunTang

23

SuperheatedsteamSuperheatedsteaminHLT

PolytropicprocessesPolytropicequations

Polytropicprocessesonp-vdiagram

whereniscalledthepolytropicindex.Figure6.14showstheformofthis

EngineeringScience HazelWeeLing&ShaunTang

24

relationshiponap–Vdiagram.Manyprocessesapproximatetoareversiblelawofthissortin

practice.Usuallyn≥1.

Effectofpolytropicindex

- n = 1.0 is called an isothermal process because DT = 0 - n = 1.4 is called an adiabatic process because Q = 0.