engineering acoustics (mechanic system)

16
9/10/2021 1 Engineering Acoustics (Mechanic System) P ROF.NING XIANG GRADUATE P ROGRAM IN ARCHITECTURAL ACOUSTICS,S OA RENSSELAER P OLYTECHNIC I NSTITUTE,T ROY,NEW YORK Greene 204, Sept. 8 th 2021 Program in Architectural Acoustics 2 http://symphony.arch.rpi.edu/~xiangn/XiangTeaching.html Course Materials Click on here Teaching Program in Architectural Acoustics Outline Oscillation definition Categories of oscillations Basic elements of linear, oscillating, mechanic systems Parallel mechanic oscillations Free / forced oscillations 3

Upload: others

Post on 31-Oct-2021

7 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Engineering Acoustics (Mechanic System)

9/10/2021

1

Engineering Acoustics(Mechanic System)

PROF. NING XIANG

GRADUATE PROGRAM IN ARCHITECTURAL ACOUSTICS, SOA

RENSSELAER POLYTECHNIC INSTITUTE, TROY, NEW YORK

Greene 204, Sept. 8th 2021

Program in Architectural Acoustics2

http://symphony.arch.rpi.edu/~xiangn/XiangTeaching.html

Course Materials

Click on here Teaching

Program in Architectural Acoustics

Outline Oscillation definition

Categories of oscillations

Basic elements of linear, oscillating,

mechanic systems

Parallel mechanic oscillations

Free / forced oscillations3

Page 2: Engineering Acoustics (Mechanic System)

9/10/2021

2

Program in Architectural Acoustics

Definition

Oscillation:

An oscillation is a process with

its attributes that are repeated

regularly with time.

4

Program in Architectural Acoustics

Oscillation: Energy SwingEnergy swinging between:

Kinetic Potential Energy

Electric Magnetic Energy5

Program in Architectural Acoustics

Linear Time-Invariant SystemsLinear time-invariant (LTI):

Superposition principle applies

Assuming )()( txty kk

k

kkk

kk txbtyb )()(Then:

6

Page 3: Engineering Acoustics (Mechanic System)

9/10/2021

3

Program in Architectural Acoustics

Eigen-Function of LTI-Systems

: complex frequency

tsAe

js

;eˆ jAA : angular frequency

7

ttA jee ttA t sinjcose

ttA je

Program in Architectural Acoustics

Basic QuantitiesQuantity General Sinusoidal

Velocity

Acceleration

Displacementt jeˆ)(t

)(tv tvv jeˆ

)(ta taa jeˆ8

Program in Architectural Acoustics

Basic Quantities

t

ttv

d

)(d)(

ttvt d)()(

t

tvta

d

)(d)( ttatv d)()(

2

2

d

)(d)(

t

tta

tttat dd)()(

9

Page 4: Engineering Acoustics (Mechanic System)

9/10/2021

4

Program in Architectural Acoustics

Sinusoidal Quantities

jv j/v

va j j/av

2a 2/ a10

Program in Architectural Acoustics

Basic QuantitiesRelationbetween

Arbitrary time-function Sinusoidal time-function

Displacement

velocity

Velocity

acceleration

Displacement

acceleration

t

ttv

d

)(d)(

ttvt d)()(

t

tvta

d

)(d)( ttatv d)()(

2

2

d

)(d)(

t

tta

tttat dd)()(

jv v

j

1

va j avj1

2a a2

1

11

Program in Architectural Acoustics

Section 2.1

Basic Elements of

Linear, Oscillating

Mechanic Systems

12

Page 5: Engineering Acoustics (Mechanic System)

9/10/2021

5

Program in Architectural Acoustics

Basic Assumptions

• Linear relationships of all quantities

• Constant features of elements

• One-dimensional motion (simplified)

13

Program in Architectural Acoustics

Basic Quantity: MassamF Newton’s law

)()( tamtF

In sinusoidal cases

mvmamF 2j

(one-port)Mechanic impedance

mZ jmech imaginary

2

2

d

d

d

d

tm

t

vm

Physical unit of a mass: or]kg[ ]/mNs[ 2

14

Program in Architectural Acoustics

Basic Quantity: Spring

kFHooke’s law

: Spring constant: Stiffness k: Compliance with a unitkn /1

)(1

tn

F

ttan

tvn

dd1

d1

]m/N[

15

Page 6: Engineering Acoustics (Mechanic System)

9/10/2021

6

Program in Architectural Acoustics

Basic Quantity: SpringIn sinusoidal cases:

a

nv

nnF

2

1

j

11

Mechanic impedance:

nZ

j1

mech imaginary

16

Program in Architectural Acoustics

Fluid Damper (Dashpot)

ar

rvrF

j

jIn sinusoidal cases:

tart

rtvrtF dd

d)()(

Mechanic impedance:

]Ns/m[mech rZ real

17

Program in Architectural Acoustics

Force -- ResponsesResponse R Force

----------------Response

Response-----------------

Force

Displacement Dynamic stiffness Dynamic complianceReacceptanceDynamic flexibility

Velocity Mechanic impedance Mobility (mech.admittance)

Acceleration Dynamic mass Inertance,Accelerance

18

Page 7: Engineering Acoustics (Mechanic System)

9/10/2021

7

Program in Architectural Acoustics

Parallel Mechanic Oscillators

nt

rt

mtF1

d

d

d

d)(

2

2

ttvn

tvrt

vmtF d)(

1)(

d

d)(

nrm FFFtF )(

19

Program in Architectural Acoustics

Section 2.3

Free Oscillations of

Parallel Mechanic

Oscillators20

Program in Architectural Acoustics

Free Oscillations of PMO

01

d

d

d

d2

2

nt

rt

m

0for,0

0for,ˆ)(

t

tFtF

0t

tseTrial: 012 n

srsm

20

22

2

2,1

1

42

mnm

r

m

rs

21

Page 8: Engineering Acoustics (Mechanic System)

9/10/2021

8

Program in Architectural Acoustics

Quadratic Equation

02 cxbxa

a

c

a

b

a

bx

2

2

2,1 42

22

Program in Architectural Acoustics

Free Oscillations of PMO20

22,1 s

mr 2/Damping coefficient:

nm

10 Characteristic angular frequency:

0 : weak damping

0 : strong damping

0 : critical damping

23

Program in Architectural Acoustics

Weak Damping22

02,1 j s

2,1s0

: two complex roots

tttjt j

21eeee

For 2/2,121

)cos(e2

)ee(e2

2,1

jj

1tt

ttt

(a) 

24

Page 9: Engineering Acoustics (Mechanic System)

9/10/2021

9

Program in Architectural Acoustics

Strong / Critical Damping20

22,1 s

2,1s0

: two real roots

tt )(

2

)(

1

20

220

2

ee

(b)  (strong)

2,1s0 : single real root

t e)(21

(c)  (critical)

25

Program in Architectural Acoustics

Decays of Simple Oscillator( b ) creeping case (aperiodic case)

( a ) oscillating case

( c ) aperiodic limiting case

Fig.2.3

0

0

0

26

Program in Architectural Acoustics

Quality / Decay Time

r

mQ 00

2

Q oscillations reduce

to 4% of start value

/9.6T decays 60 dB (reverberation time)

Displacement / velocity decay 1/1000

Power decays 1/100000027

Page 10: Engineering Acoustics (Mechanic System)

9/10/2021

10

Program in Architectural Acoustics

Section 2.4

Forced Oscillation of

Parallel Mechanic

Oscillators30

Program in Architectural Acoustics

Forced Oscillation

nt

rt

mtF1

d

d

d

d)cos(ˆ

2

2

In complex form:

n

rmF1

j2 For velocity: 

nrm

v

F

j

1j mechZ

Mechanic admittance:(mobility)  mechmech /1 ZY

31

Program in Architectural Acoustics

Forced Oscillation

Mechanic impedance:n

rmv

F

j

1j mechZ

Mechanic admittance:(mobility) 

mechmech /1 ZY

mechY1

j

1j

nrm

Characteristic angular frequency:  nm/10 32

Page 11: Engineering Acoustics (Mechanic System)

9/10/2021

11

Program in Architectural Acoustics

Complex PlaneImpedance Admittance (mobility) 

33

4545 Bandwidth

0

Program in Architectural Acoustics

Frequency ResponseDisplacement

12 j

1

r

nm

F

22

21

1

rmn

F

34

Program in Architectural Acoustics

Frequency Response

0Q

Velocity1

j

1j

nrm

F

v

22

1

1

rn

mF

v

35

4545 Bandwidth

Page 12: Engineering Acoustics (Mechanic System)

9/10/2021

12

Program in Architectural Acoustics

Complex PlaneImpedance

0

36

Program in Architectural Acoustics

Complex PlaneAdmittance (mobility) 

37

Program in Architectural Acoustics

Frequency Response (Velocity)

0Q

2

0Q

2

38

Magnitude

Phase

Page 13: Engineering Acoustics (Mechanic System)

9/10/2021

13

Program in Architectural Acoustics

Section 2.5

Energies and

Dissipation Losses

39

Program in Architectural Acoustics

Energy / Dissipation Losses

ttvn

tvrt

vmtF d)(

1)(

d

d)( )(tv )(tv

2)(tv

Instantaneous power:  d

ttv d)(

1

1

0

,0 d)(t d

t tvtFW

111

00

2

0

d1

ddd

dt dtt

tvn

tvrtt

vvm

1

0

d)(

tF

d

ttv d)(

40

Program in Architectural Acoustics

Energy / Dissipation LossesEnergy (work) : 

21

0

221

0

1

2

1d

2

1d)(

11

ntvrvmtF

t

Kinetic energy Potential energy

Friction loss

Lossless: )(2

1)(

2

1)( 22 t

ntvmtW

41

Page 14: Engineering Acoustics (Mechanic System)

9/10/2021

14

Program in Architectural Acoustics

Lossless Energies

)(2

1)(

2

1)( 22 t

ntvmtW

)(2

1)(

2

1 2

0

2

0t

nWtvmW

v

00v

At instant all energy is kinetic

At instant all energy is potential42

Program in Architectural Acoustics

Frictional Losses0r

1

0

2 d)(t

r ttvrW

averaging over one T

2

0

22 ˆ2

1d)(cosˆ

1vrttv

TrP

T

r

Power has to be supplied: 

1

0

2 d)(t

r ttvdt

drP

rmsrms2/ˆˆ vFvF 43

For single‐tones:

Program in Architectural Acoustics

Section 2.6

Basic Elements of

Linear, Oscillating

Acoustics Systems

44

Page 15: Engineering Acoustics (Mechanic System)

9/10/2021

15

Program in Architectural Acoustics

Acoustic Elements: MassVolume velocity

)(d

d

d

dtvA

tA

t

Vq

21 ppp

Pressure difference

t

qmtp

d

d)( a

aa j mq

pZ

45

Program in Architectural Acoustics

Acoustic Elements

tqn

tp d1

)(a aj n

qp

qrp a arq

pZ a

aa j

1

nq

pZ

46

Program in Architectural Acoustics

Section 2.7Helmholtz Resonator

1821 - 189447

Page 16: Engineering Acoustics (Mechanic System)

9/10/2021

16

Program in Architectural Acoustics

Helmholtz Resonator

aaaa j

1j

nrm

q

pZ

aaa nrmppp

p

48

Program in Architectural Acoustics

Helmholtz Resonator

49

lV

Ac

lAm 0a

220

a c A

Vn

aa0 /1 nm

3

0a

0a c

2

Vr

mQ a A

l

: Cross-section area

: Neck length

V : Cavity volume

A

l

Program in Architectural Acoustics

Assignment #2 Problem 2.1 -2.7

Problem 2.3 -- review Sec 2.3

Problem 2.4 -- review Sec 2.4

Problem 2.5 - review Appendix 16.2

Problem 2.6 - electrical circuit in series

Due on Wed. Sept. 15th 2021

50