energyfrom waves and water cleaning in …shippingtech.it/download convegni...

57
ENERGYFROM WAVES AND WATER CLEANING IN THE PORT OF GENOA Presented by Prof. Paul Noja - Project coordinator International Forum on intelligent energies and the sustainable development of the city and the port

Upload: dangdung

Post on 26-Aug-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

ENERGYFROM WAVES AND WATER CLEANING

IN THE PORT OF GENOA

Presented by Prof. Paul Noja - Project coordinator

International Forum on intelligent energiesand the sustainable development of the city and the port

why energy from waves?

ENERGY FROM WAVES

O W CM

Water energy module

why energy from waves?

why sea waves?

Because sea waves, if properly

canalized have a ready available power

bigger than other renewable energy

sources, and offer more possibilities of

utilization:

Are typically available H24

May be used to clean port water

May produce drinking water

o w c m project

Oscillating

water

column

motor

o w c m

Owcm is a multiple piston engine coaxially

connected with a vertical pump, which

uses sea waves as propeller, utilizing the

combined factors:

Archimede’s prinìiple

Clapotis effect

Waves focalization

o w c m

The project is a spin off of an origional idea

of Domenico Bozano, well known inventor

of several marine systems, and it has been

refined through the cooperation of a few

institutional bodies

Fase 1 – a – porto antico – 0,6 kmworking principle

Clean water from open sea is pulled up to the top of the sea wall through the

vertical movement of the piston (a floating device) generated by the pushing

of the waves. A coaxial vertical pump attached to the piston fills a very long

water tank placed on top of the sea wall, from which tank the water

precipitates in a turbine/generator placed a few meters below, and from the

turbine, through ducts, the water is driven in dirty areas of the port to clean

inner waters

participating bodies

Institutional bodies

Hydrographic Institute of the

Navystudy of sea waves

Port Authority of Genoaauthorization to do tests

on the outer sea wall

University of Genoatests on models and final tests

Prof. Paul Noja policy and scientific coordination

Regione Liguria / filseEuropean Community financing

participating bodies

operational

risorse per l’ambiente

Project management

general montaggi genovesi

System manufacturing

Port Authority

made available the area in the sea

wall for installing the prototype and

conducting tests

Hydrographic institute of the Navy

Study of the meteo-marine conditions in

the port of Genoa.

University of GenoaFaculty of engineering

Tests of models in the<water tank

Final tests of the prototype

General montaggi genovesi

prototype manufacturing

Risorse per l’ambiente

project development

Starting data

Meteo-marine conditions in the port of

Genoa

Sea state

182 days per year with wave higher than 1 meterAverage on 19 years study

Study from companies building marinas

wave height cm days useful

days

0-50 87

100 104 104

0

150 51 51

0

200-250 37 37

0

300-350 12 12

291 204

Sea state – other sources

204 days per year with waves higher than one meter

o w c m

Owcm is a piston engine coaxially

connected with a vertical pump, which

uses sea waves as propeller, utilizing the

combined factors:

Archimede’s prinìiple

Clapotis effect

Waves focalization

Archimede’s principle

A body immersed in a liquidreceives an up push equal to the

weight of the lquid it moves

Clapotis effect

Effetto clapotis

When a wave approaches a vertical sea wall its height doubles

Wave focalization

The entrance of the water has a parabolic section which has

double width of the cylinder, so water flowing inside gets a

further acceleration to better push up the piston

o w c m development

1:20 model

Foto modelli 1:20

Target of the model: verification of the working principle

Tests of the model in the water tank

of the university

Filmati test in vasca

tests results in the water tank

Execution of qualitative tests with artificially producedwaves

Verification of the effect produced by the variation of the waves entrance vane of the model

Verification of the principle of operation

Construction of prototype in scale

1:5

target:

Verification of the operationin real conditions with sea waves

Prototype design in scale 1:5

Disegno pre-prototipo

Construction of the prototype

Test of the prototype inside the port

Transportation of the prototype to sea wall

Prototype installed on sea wall

Container housing the turbine/generator complexand instrumentation for execution of tests

Observations

Meteo station

Wind speed and direction

Wave meter

Visual double wave meter

for normal wave and

Clapotis effect

measurement

Twin laser wave meter

Measurement and analysis instruments

flux meter pressure meter

voltmeter

wind station and data loggerwater tank level

output

electrical energy drinking water

turbine and generator

data

mathematical model for components dimensioning

data

diametro raggio escursione volume portata numero pompe

tubo tubo tubo pompa pompa x secondo 1 100 200 300

pompa pompa cm 3 litri x onda periodo s m3/sec litri/sec litri/min m3/s m3/s m3/s

cm cm 3,14 100 cm3 1.000 m3 5 1.000 60

7 4 4 3,14 100 3.847 0,004 0,00 0,1 0,2 0,2

10 5 5 3,14 100 7.850 0,008 0,00 0,2 0,3 0,5

12,2 6,1 6,1 3,14 100 11.684 11,68 0,012 0,002 0,0023 2,3368 140 0,23 0 1

15,0 8 8 3,14 100 17.663 0,018 0,004 0,0035 0,35 1 1

60 30 30 3,14 100 282.600 0,283 0,06 6 11 17

80 40 40 3,14 100 502.400 0,502 0,10 10 20 30

90 45 45 3,14 100 635.850 0,636 0,13 13 25 38

100 50 50 3,14 100 785.000 0,785 0,16 16 31 47

120 60 60 3,14 100 1.130.400 1,130 0,23 23 45 68

140 70 70 3,14 100 1.538.600 1,539 0,31 31 62 92

160 80 80 3,14 100 2.009.600 2,010 0,40 40 80 121

180 90 90 3,14 100 2.543.400 2,543 0,51 51 102 153

200 100 100 3,14 100 3.140.000 3,140 0,63 63 126 188

underwater tube

mathematical model for components dimensioning

data

diametro raggio altezza

tubo tubo tubo guida

portata portata cm 3

cm cm 3,14 780 m3 kg

7 4 4 3,14 780 0,03 30,00

10 5 5 3,14 780 0,06 61,23

12,2 6,1 6,1 3,14 780 0,09 91,13

13,1 6,6 6,6 3,14 780 0,11 105,08

58 29 29 3,14 780 2,06 2.059,78

78 39 39 3,14 780 3,73 3.725,23

88 44 44 3,14 780 4,74 4.741,65

100 50 50 3,14 780 6,12 6.123,00

118 59 59 3,14 780 8,53 8.525,67

140 70 70 3,14 780 12,00 12.001,08

158 79 79 3,14 780 15,29 15.285,46

178 89 89 3,14 780 19,40 19.400,11

198 99 99 3,14 780 24,00 24.004,61

Upper tube

mathematical model for components dimensioning

data

diametro raggio altezza

galleggiante galleggiante galleggiante peso spinta spinta

cm 3 gallegg netta residua

cm cm 3,14 100 m3 kg

30 15 15 3,14 100 0,07 70,65

40 20 20 3,14 100 0,13 125,60

40 20 20 3,14 100 0,13 125,60

60,6 30 30 3,14 100 0,29 288,28 55,00 233,28 128,20

80 40 40 3,14 100 0,50 502,40

90 45 45 3,14 100 0,64 635,85

110 55 55 3,14 100 0,95 949,85

120 60 60 3,14 100 1,13 1.130,40

140 70 70 3,14 100 1,54 1.538,60

160 80 80 3,14 100 2,01 2.009,60

180 90 90 3,14 100 2,54 2.543,40

200 100 100 3,14 100 3,14 3.140,00

300 150 150 3,14 100 7,07 7.065,00 300,00 6.765,00 - 5.823,00

400 200 200 3,14 100 12,56 12.560,00

500 250 250 3,14 100 19,63 19.625,00

606 303 303 3,14 100 28,83 28.828,03 g

piston/buoy

mathematical model for components dimensioning

data

Observations and measurements on working prototype

Verifications on working prototype

No appreciable deviation from mathematical model

check of technical working (valves and teflon rings)

Verification of movement of the piston according to the movement of the wave meters buoys

Verification of water production

Verification of production of electrical energy

Verification of production of drinking water

Full scale module

Target of full scale module:

1 – verification of quantitative results for production module

2 – optimization of industrial production (1.200 pumps)

Full scale module

Cilinder: 3,20 meter diameter built in concrete

Internal piston:3 meters diameter built in

fiberglass flowing through teflon vertical bars

Fase 1 – a – porto antico – 0,6 kmKaplan turbine coupled with 3 MW generator

Full scale module

Modello matematico

matemathical model to choose the diameter and up push of the piston

full scale module

Forecast of water and energy production

Development forecast in the port of Genoa

First phase (A): east dam: 1 module = 3 MW

Second phase (B): airport dam: 8 modules = 24 MW

Third phase (C): containers port : 3 modules = 9 MW

2,0 km4,6 km0,6 km

Canalizzazione acque puliteTransfer of clean water to the port

1.296.000 cubic meters per hour of clean water toexchange the water in particularly sensible areas

Business plan data

System cost: 180 million euro

break-even: 4 years

ROI: 18 % per year in full operation

Possible developments in short time

Solar panels equipped with Fresnel lenses

boasting 31% efficiencyself directional and self protecting from weather adversities

wind sun

Connclusions on owcm

End of presentation

Need info? : [email protected]