energy policy energy island - chudnovsky thesis

73
SUSTAINABLE ENERGY POLICY FOR AN ENERGY ISLAND. Natural Gas and Renewables, Powering Israel by 2030. A thesis submitted to the Center for Global Affairs at New York University for the fulfillment of a Master of Science in Global Affairs. By: Margareta Chudnovsky Concentration: Energy Policy Thesis Advisor: Professor Chris Gadomski New York, NY Fall 2014

Upload: margareta-chudnovsky

Post on 21-Mar-2017

95 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Energy Policy Energy Island - Chudnovsky Thesis

SUSTAINABLE  ENERGY  POLICY  FOR  AN  ENERGY  ISLAND.    

Natural  Gas  and  Renewables,    

Powering  Israel  by  2030.  

 

 

A  thesis  submitted  to  the  Center  for  Global  Affairs  at                                                                                                                                                          

New  York  University  for  the  fulfillment  of  a  Master  of  Science  in  Global  Affairs.  

 

 

By:  Margareta  Chudnovsky  

Concentration:  Energy  Policy  

Thesis  Advisor:  Professor  Chris  Gadomski  

New  York,  NY  

Fall  2014  

 

 

 

Page 2: Energy Policy Energy Island - Chudnovsky Thesis

Page 1

TABLE OF CONTENTS  ACKNOWLEDGEMENTS  ..................................................................................................................................................  2  

EXECUTIVE  SUMMARY  ...................................................................................................................................................  3  

ABBREVIATIONS  .............................................................................................................................................................  4  

1.   INTRODUCTION:  ....................................................................................................................................................  6  1.1    IS  THERE  A  GAS  BONANZA  IN  ISRAEL?  ..........................................................................................................................  6  1.2    NATURAL  GAS  CHOICES  FACING  ISRAEL  BY  2030:  ......................................................................................................  8  1.3                THE  OPPORTUNITY  -­‐  NATURAL  GAS  FUELING  A  SUSTAINABLE  ENERGY  POLICY:  ............................................  10  1.4   THE  SIGNIFICANCE  OF  ANALYZING  ISRAEL’S  ENERGY  POLICY  BY  2030:  ..............................................................  11  

2.   ENERGY  POLICY  OF  AN  ENERGY  ISLAND:  ...........................................................................................................  15  2.1   FACTORS  AFFECTING  ISRAEL’S  ENERGY  POLICY:  ......................................................................................................  16  

2.1.1   Demographics:  ..............................................................................................................................................................  16  2.1.2   Economic  Growth:  ........................................................................................................................................................  17  2.1.3     Access  to  Water:  ..........................................................................................................................................................  17  

2.2   ROLE  OF  GOVERNMENT:  ..................................................................................................................................................  18  2.3   ROLE  OF  IMPORTS:  ............................................................................................................................................................  19  2.4   THE  ELECTRICITY  INFRASTRUCTURE:  ..........................................................................................................................  21  2.5              SECURITY  AND  ENERGY  POLICY:  ..................................................................................................................................  22  

2.5.1   Energy  Security  Defined:  ...........................................................................................................................................  22  2.5.2   Israel’s  Energy  Security  Concerns:  ..........................................................................................................................  23  2.5.3   Security  Concerns  Post  Arab  Spring:  ......................................................................................................................  24  

3.   NATURAL  GAS:  ......................................................................................................................................................  26  3.1     ROLE  OF  NATURAL  GAS  IN  WORLD  ENERGY  MARKETS:  ........................................................................................  26  

3.1.1   Supply  of  Natural  Gas:  ................................................................................................................................................  27  3.1.2   Geopolitics  of  Natural  Gas:  .......................................................................................................................................  27  3.1.3   Natural  Gas  Use  for  Electricity  Generation:  ..........................................................................................................  28  

3.2   ISRAEL’S  NATURAL  GAS  MARKET  DEVELOPMENT:  ...................................................................................................  28  3.2.1   Domestic  Gas  Production:  ........................................................................................................................................  29  

§   Who  Is  Operating  Israel’s  Gas  Fields:  ......................................................................................................................  29  §   Why  Policy  Really  Matters:  ........................................................................................................................................  30  

3.2.2   Domestic  Gas  Consumption  –  Mainly  Electricity:  ................................................................................................  31  §   The  Market:  ...................................................................................................................................................................  32  §   The  Technology:  ...........................................................................................................................................................  32  §   The  Opportunity:  .........................................................................................................................................................  34  

3.3   ASSESSMENT  OF  THE  RISKS  &  REWARDS:  ..................................................................................................................  36  

4.   RENEWABLES:  ........................................................................................................................................................  38  4.1   THE  CASE  FOR  SOLAR:  .....................................................................................................................................................  40  

4.1.1   Solar  Water  Heating  –  History  Deploying  Renewables:  ......................................................................................  40  4.1.2   Opportunities  for  Solar:  .............................................................................................................................................  41  

§   The  Market  .....................................................................................................................................................................  41  §   The  Technology  ............................................................................................................................................................  42  §   The  Opportunity  for  Desalination  ...........................................................................................................................  45  

4.2     ASSESSMENT  OF  THE  RISKS  &  REWARDS:  ..................................................................................................................  51  

5.     CONCLUSION:  ........................................................................................................................................................  54  5.1   IMPLICATIONS  FOR  A  SUSTAINABLE  ENERGY  POLICY  BY  2030:  ............................................................................  54  5.2   RECOMMENDATIONS:  ......................................................................................................................................................  55  

§   Natural  Gas  ....................................................................................................................................................................  55  §   Renewables  ....................................................................................................................................................................  56  

APPENDIX  .....................................................................................................................................................................  59  

WORKS  CITED  ...............................................................................................................................................................  64  

Page 3: Energy Policy Energy Island - Chudnovsky Thesis

Page 2

ACKNOWLEDGEMENTS  

I  would  first  like  to  sincerely  thank  my  thesis  advisor,  Professor  Chris  Gadomski,  for  his  

guidance,   enthusiasm   and   inspiration   in   the   field   of   energy   policy.   Professor   Gadomski’s  

knowledge   and   eye   for   numbers   was   extremely   helpful   while   writing   my   thesis.   And   his  

mentorship  really  pushed  me  to  take  a  position  and  think  like  an  analyst.  

This  paper  would  also  not  have  been  possible  without  the  encouragement,  support  and  

love  of  my  family.  I  have  an  amazing  and  unique  family  in  many  ways.  Their  support  has  been  

unconditional.  I  thank  my  parents,  Boris  and  Bella,  for  their  encouragement  and  for  allowing  

me  to  be  as  ambitious  as  I  wanted.    

And  finally,  I  particularly  want  to  thank  my  wonderful  boys.  My  husband  Kamran  and  

son  Ethan  for  their  love,  support,  and  tremendous  patience,  patience,  patience.  

 

 

 

 

 

Page 4: Energy Policy Energy Island - Chudnovsky Thesis

Page 3

EXECUTIVE SUMMARY

 Israeli  Prime  Minister  Golda  Meir  was  famously  quoted  saying  that  the  one  grievance  

Israelis  have  against  Moses  is  that  “he  took  us  40  years  through  the  desert  in  order  to  bring  us  

to  the  one  spot  in  the  Middle  East  that  has  no  oil”  (Topol  64).  In  a  region  that  predominately  

has  vast  energy  resources,  Israel  has  been  at  a  disadvantage  for  much  of  its  history,  trying  to  

access  sufficient  oil,  coal  and  gas.  But  the  recent  discoveries  of  natural  gas  and  the  presence  of  

large  shale  oil  have  the  potential  to  change  Israel   into  a  net  energy  exporter.  Israel’s  natural  

gas   reserves   can   also  provide   the   country  with   a  higher   level   of   energy   security,  which   is   a  

driving   factor   of   its   energy   policy.   Recent   events,   such   as   the   Arab   Spring,   have   increased  

Israel’s  urgency  for  domestic  natural  gas  production,  given  that  Egypt  cancelled  an  agreement  

in  2012  to  supply  natural  gas.    

The  evolution  of  Israel’s  energy  sector  and  policy  reflects  the  historical  lack  of  domestic  

energy   resources   and   the   volatile   relationships  with  many   surrounding   countries.  The   term  

“energy  island”  is  used  to  describe  Israel  because  electricity  is  generated  domestically  and  the  

country  has  no  grid  connection  with  any  neighboring  countries,  with  the  exception  that  Israel  

supplies  electricity  to  the  West  Bank  and  Gaza.    

Change  in  the  areas  of  energy  and  technology  are  described  as  “driven  by  desperation  or  inspiration”  (El-­‐Katiri,  “Roadmap  for  Renewable  Energy  in  the  Middle  East”  26).  

 The  focus  of  this  thesis  is  on  evaluating  the  opportunities  and  risks  that  Israel  faces  in  

shifting   to   energy  mix   increasingly   dominated   by   domestic   natural   gas.   In   fact,   during   the  

period  2006  to  2013,  Israel’s  natural  gas  consumption  has  increased  by  more  than  610  percent.    

Natural  gas  has  also  been  described  as  a  transition  fuel  from  oil  and  coal  to  renewables  

and   provides   the   opportunity   for   Israel   to   increase   the   use   of   renewable   energy   for   power  

generation.   This   is   another   significant   element   assessed   in   this   thesis,   the   opportunity   for  

promoting   Israel’s   energy   independence   and   security   through   renewable   energy.   The  

government  has  also  set  a   target  of   10  percent  renewable  energy  sources  by  2020.  Overall,  a  

sustainable  energy  policy  is  assessed  for  Israel  by  2030  based  on  the  four  imperatives  outline  

by  Robert  Bryce  –  power  density,  energy  density,  cost  and  scale.    

Page 5: Energy Policy Energy Island - Chudnovsky Thesis

Page 4

ABBREVIATIONS  APERC   =   Asia  Pacific  Energy  Research  Centre  

Bcf     =   Billion  cubic  feet  

Bcm     =   Billion  cubic  meters  

CBS     =   Israel  Central  Bureau  of  Statistics  Agency  

CCGT     =   Combined  Cycle  Gas  Turbine  

CEPOS     =   Danish  Center  for  Political  Studies/  Center  for  Politiske  Studier    

CO2     =   Carbon  dioxide  

CPV     =   Concentrated  Photovoltaic  

CPVT     =   Concentrated  Photovoltaic  and  Thermal  

CSP         =   Concentrated  Solar  Power  

EIA     =   U.S.  Energy  Information  Administration  

EIB     =   European  Investment  Bank  

EMG     =   East  Mediterranean  Gas  Company  

GW     =   Gigawatt;  one  billion  watts  or  one  thousand  megawatts.  

ICCS     =   Integrated  Solar  Combined  Cycle  

IEA     =     International  Energy  Agency  

IEC     =     Israel  Electric  Corporation  

IPCC     =   International  Panel  on  Climate  Change  

kWh   =   Kilowatthour;  defined  by  EIA  as  a  measure  of  electricity  -­‐  a  unit  of  work                  or  energy,  measured  as  1  kilowatt  (1,000  watts)  of  power  for  1  hour.  One  kWh  is  equivalent  to  3,412  Btu.  

LCOE     =   Levelized  Cost  of  Energy  

LNG     =   Liquefied  Natural  Gas  

MCM     =   Million  cubic  meters  

MED     =   Multiple  Effect  Distillation  

MEE     =   Multiple  Effect  Evaporation  

Page 6: Energy Policy Energy Island - Chudnovsky Thesis

Page 5

MENA     =   Middle  East  and  North  African  Countries  

MJ     =   Megajoule  

MNI     =   Israel  Ministry  of  National  Infrastructures  

MSF     =     Multi-­‐Stage  Flash  distillation  

Mtoe     =   Million  tonnes  of  oil  equivalent  

MW     =   Megawatt;  one  million  watts  of  electricity.  

NIS     =   Israel  New  Shekel  (Currency)  

OECD     =   Organization  for  Economic  Cooperation  and  Development  

OPIC     =   U.S.  Overseas  Private  Investment  Corporation  

PUA     =   Israel  Public  Utility  Authority  

PV     =   Photovoltaic  

PVT     =   Photovoltaic  Thermal  

RO       =   Reverse  Osmosis  

SO2     =   Sulfur  Dioxide  

SPR     =   Strategic  Petroleum  Reserve  

SWH     =     Solar  Water  Heater  

SWRO     =   Seawater  Reverse  Osmosis  

Tbd     =     Thousand  Barrels  Per  Day  

Tcf     =   Trillion  Cubic  Feet  

Toe     =   Tonne  of  Oil  Equivalent;  energy  released  by  burning  1  tonne  of  crude  oil.  

TPE     =   Total  Primary  Energy  

TWh     =   Terawatthour;  one  trillion  watt  hours.  

USGS     =   United  States  Geological  Survey  

Page 7: Energy Policy Energy Island - Chudnovsky Thesis

Page 6

1. INTRODUCTION:

Israeli  Prime  Minister  Golda  Meir  was  famously  quoted  saying  that  the  one  grievance  

Israelis  have  against  Moses  is  that  “he  took  us  40  years  through  the  desert  in  order  to  bring  us  

to  the  one  spot  in  the  Middle  East  that  has  no  oil”  (Topol  64).  Israel  has  always  been  the  state  

without   any   significant   domestic   reserves   of   hydrocarbons,   despite   many   countries   in   the  

Middle  East  having   abundant   reserves.   In   fact,   as  of   2006,  domestic   energy  production  was  

approximately  0.7  Mtoe  (million  tonnes  of  oil  equivalent)1  per  year,  whereas  net  imports  were  

19  Mtoe  (Mor,  Seroussi  and  Ainspan  22).  By  2012  domestic  energy  production  was  at  3.26  Mtoe  

and   net   imports   were   at   22.43  Mtoe   (IEA,   “Key  World   Energy   Statistics   2014”   52).   But   the  

discovered  natural  gas  reserves  and  large  shale  oil  deposits  can  potentially  provide  Israel  with  

energy  independence  and  change  the  country  into  an  energy  exporter  (Paraschos  40).

1.1 IS THERE A GAS BONANZA IN ISRAEL?

In   January   2009,   Israel   announced   that   a   large   offshore   natural   gas   field   was  

discovered,  called  Tamar,  which  is  located  west  of  Haifa  in  5,500  feet  of  water.  Noble  Energy  is  

the   operator   of   the   Tamar   field   and   is   working  with   a   consortium   of   Israeli   companies   on  

developing   it;  Noble   is   based   in  Houston   and   is   an   oil   and   gas   exploration   and  production  

company.  Noble  and  its  partners  began  to  extract  gas  from  the  Tamar  field  in  March  2013.  The  

volume  of  conventional  gas  in  this  field  was  initially  estimated  at  6.3  trillion  cubic  feet  (Tcf)  

(Bryce,  “Ten  Reasons  Why  Natural  Gas  Will  Fuel  the  Future”)  but  the  latest  estimates  are  for  

10.0  Tcf  (Noble  Energy).  The  Tamar  gas  field  itself  could  fully  supply  Israel's  natural  gas  needs  

for   two   to   three   decades.   And   the   expectation   is   that   this   field   will   continue   to   be   used  

1    IEA  uses  the  following  conversion  factor  for  electricity:  1  TWh  =  0.086  Mtoe.        

Page 8: Energy Policy Energy Island - Chudnovsky Thesis

Page 7

primarily  for  Israel’s  domestic  electricity  generation.  In  December  2010,  Noble  and  its  partners  

announced  the  discovery  of  Leviathan,  another  offshore  field,  that  was  estimated  to  contain  18  

Tcf   of   conventional   gas,   as   of  March   2013,   (Solomon   and   Ackerman).   Noble   increased   this  

estimate  in  July  2014  to  22  Tcf  (Noble  Energy).    

Other  fields  have  also  been  discovered  since  Leviathan.  In  June  2011  two  gas  fields  were  

discovered,  called  Sarah  and  Mira,  together  estimated  to  contain  up  to  6.5  Tcf  of  natural  gas.  

Additionally,  in  June  2012  the  Pelagic  field  was  discovered,  also  estimated  to  contain  up  to  6.7  

Tcf  of  natural  gas  and  1.4  billion  barrels  of  oil.  In  February  2012,  the  Tanin  field  was  discovered  

with  estimates  up   to   1.2  Tcf  of  natural  gas.  And   in  March  2012   two  natural  gas   fields,  called  

Gabriella  and  Yitzhak,  were  discovered  near  Tel-­‐Aviv,  estimated  to  contain  up  to  232  million  

barrels  of  oil  and  1.8  Tcf  of  natural  gas  (Paraschos  41-­‐2).    

The  Oil  and  Gas  Journal  estimates  as  of  January  2014  that  Israel  had  10.1  Tcf  of  proven  

natural  gas  reserves2  (U.S.  EIA,  “Israel  Country  Overview/Data”).  It  is  important  to  note  that  

while   these  natural   gas   reserves   are   significant   for   Israel,   in   a   global   context   they   are  not   a  

dramatic  game  changer,  since  just  in  2013  the  United  States  consumed  over  26  Tcf  of  natural  

gas   (U.S.   EIA,   “U.S.   Natural   Gas   Total   Consumption”).   Even   if   the   estimated   reserves   for  

Leviathan  were   included,   in   global   terms,   the   Israeli   natural   gas   resources  would   represent  

about  0.4  percent  of  the  estimated  world  total.  This  amount  is  comparable  to  the  remaining  

reserves   of   the   United   Kingdom   and   the   Netherlands   (Hemmings   9-­‐10).   But   for   Israel   a  

country  of  8.9  million  people  (Grave-­‐Lazi),  compared  to  the  U.K.’s  population  of  64  million  or  

the  Netherlands  16.8  million  people,  this  is  certainly  a  game  changer.  

2   EIA   defines   probable   energy   reserves   as   estimated   quantities   of   energy   sources   that,   on   the   basis   of   geologic   evidence,  support  projections   from  proven  reserves,  and  can  reasonably  be  expected   to  exist  and  recovered  under  existing  economic  and  operating  conditions.

Page 9: Energy Policy Energy Island - Chudnovsky Thesis

Page 8

The  US  Geological  Survey   (USGS)  estimates   in  March  2010   that   the  Levant  Basin,3   in  

which   many   of   Israel’s   fields   are   based,   contains   approximately   122   Tcf   of   undiscovered  

natural   gas   and   1.7  billion  barrels   of  undiscovered  oil   resources   (U.S.  EIA,   “Overview  of  Oil  

and   Natural   Gas”).   These   reserves   are   significantly   larger   than   Israel’s   natural   gas  

consumption   level,   which   was   at   245.4   billion   cubic   feet   (Bcf)   in   2013   (U.S.   EIA,   “Israel  

Country  Overview/Data”).   See  Map   1   in   the   Appendix   displaying   the   Levant   Basin   and   the  

location  of  Israel’s  gas  fields.    

1.2 NATURAL GAS CHOICES FACING ISRAEL BY 2030:

Natural  gas  is  the  immediate  opportunity  facing  Israel  and  the  role  of  natural  gas  has  

increased   in   Israel’s   energy   mix.   In   fact,   during   the   period   2006   to   2013,   natural   gas  

consumption   grew   by  more   than   610   percent,   from   34.3   Bcf   to   245.4   Bcf   (U.S.   EIA,   “Israel  

Country   Overview/Data”).   See   Table   1   in   the   Appendix   for   Israel’s   annual   natural   gas  

consumption  figures  from  1990  to  2013,  provided  by  the  EIA.  

The   Tamar   field   began   operating   in   2013   and   given   that   Leviathan   is   expected   to  

become  operational  in  late  2017  or  early  2018  (Noble  Energy),  the  aim  of  this  thesis  is  to  assess  

the   role   of   natural   gas   in   Israel’s   energy   mix   by   2030.   The   focus   is   on   evaluating   the  

opportunities   and   risks   that   Israel   faces   by   shifting   to   an   energy   mix   that   is   increasingly  

dominated  by  domestic  natural  gas  (Popper  et  al.  1-­‐2).  Recent  events,  such  as  the  Arab  Spring,  

have   also   increased   Israel’s   urgency   for   domestic   natural   gas   production,   given   that   Egypt  

3  The  Levant  Basin  is  located  along  and  off  the  coast  of  Syria,  Lebanon,  Israel,  and  the  Gaza  Strip,  extending  westward  into  Cypriot  waters.  The  basin   connects   to   the  Red  Sea  via   the  Suez  Canal   and   the  Black  Sea   through   the  Aegean  Sea   and   the  Turkish   Straits.   The   basin   is  made   up   of   a   total   sea   and   land   area   of   thirty-­‐two   thousand   square  miles,  most   of  which   is  offshore  (Paraschos  39).  

Page 10: Energy Policy Energy Island - Chudnovsky Thesis

Page 9

subsequently  cancelled  an  agreement  in  2012  to  supply  natural  gas.  Energy  security  continues  

to  be  an  underlying  factor  in  the  decision-­‐making  related  to  Israel’s  national  energy  policy.    

By   2030,   it   is   expected   that   natural   gas   will   have   a   60   percent   contribution   to  

generating   Israel’s  electricity.  This   is  a   significant  change  since  oil   and  coal  had  nearly  a  70  

percent  contribution  in  2009  (Paraschos  42;  Israel  MNI,  “Renewable  Energies”  6).  The  Israeli  

government   also   established   an  official   export   policy   in   June   2013,   to  use   60  percent   of   the  

produced   natural   gas   domestically   and   to   export   the   rest   (Gombar).   The   government   has  

faced  domestic  opposition  to  the  plan  of  exporting  even  40  percent,  but   Israel’s  High  Court  

upheld   the   export   policy   in   October   2013   (Bob   and   Udasin).   The   rate   of   exploration   and  

development  is  expected  to  grow  with  the  rate  of  domestic  demand.  It  will  also  depend  on  the  

available  technology  and  the  economic  returns  from  exporting  the  gas  (Popper  et  al.  63-­‐4).    

There   are   a  number  of  opportunities   already   considered   to   export   the  natural   gas   to  

Jordan,  Europe  and  even  Egypt.  In  fact,  a  group  of  Israeli  companies  signed  a  letter  of  intent  in  

September   2014   to   sell   natural   gas   to   the   Jordanian   state-­‐owned   National   Electric   Power  

Company.   This   consortium   plans   to   sell   45   billion   cubic   meters   (Bcm)   of   gas   from   the  

Leviathan   field,   over   a   period   of   15   years   (Stub   and  Kent).   But   despite   these   opportunities,  

geopolitics   is  a  key  obstacle   for   Israel   to  become  an  energy  exporter.   In   fact,  The  Economist  

discusses  that  a  key  obstacle  to  the  full  development  of  Israel’s  gas   fields   is  not  a   lack  of  oil  

and  gas  but  “a  lack  of  regional  cooperation”  (“Israel's  and  Palestine's  Gas  and  Oil”),  given  the  

volatile   relationships   with   neighboring   countries   who   are   the   potential   export   markets   for  

Israel’s   gas.   Other   scholars   believe   that   having   joint   energy   security   concerns   provides   the  

necessary  incentive  for  accomplishing  regional  cooperation  (Mason  and  Mor  xxvi).  

Page 11: Energy Policy Energy Island - Chudnovsky Thesis

Page 10

1.3 THE OPPORTUNITY - NATURAL GAS FUELING A SUSTAINABLE ENERGY POLICY:

Another   significant   element   assessed   in   this   thesis   is   the   opportunity   for   promoting  

Israel's  energy   independence  and  security  through  renewable  energy.  The  government  has  a  

target   to   reach   10   percent   renewable   energy   sources   contributing   to   power   generation   by  

2020,  which  translates  into  an  installed  capacity  goal  of  2,760  MW  (Israel  MNI,  “Policy  on  the  

Integration  of  Renewable  Energy  Sources”  2-­‐3).  

Overall,  the  focus  of  this  thesis  is  on  assessing  a  sustainable  energy  policy  for  Israel  by  

2030.   It   is   important   to   note   that,   within   the   framework   of   this   thesis,   sustainable   energy  

policy  is  assessed  based  on  the  four  requirements  that  Robert  Bryce  outlines  in  Power  Hungry.  

The   requirements   are   those   technologies   that   provide   “power   density,   energy   density,   cost  

and   scale”   (Bryce,   “Power   Hungry”   4).   Sustainability   is   also   assessed   by   Dr.   Ben-­‐Eli   of   the  

Sustainability  Laboratory,  which  is  a  non-­‐governmental  organization  with  projects  in  Israel,  as  

“an  organizing  principle…  to  foster  a  well-­‐functioning  alignment  between  individuals,  society,  

the  economy  and  the  regenerative  capacity  of  the  planet's  life-­‐supporting  ecosystems…  [It  is  a]  

balance  in  the  interaction  between  a  population  and  the  carrying  capacity  of  its  environment.”  

Both   of   these   perspectives   are   significant   when   considering   renewable   energy   as   a   part   of  

Israel’s  sustainable  energy  policy  because  renewable  energy  does  not  have  much  value  unless  

it   translates   into   renewable   power   that   can   be   dispatched   at   the   time   when   it   is   needed  

(Bryce,  “Power  Hungry”  39).  

The   Israeli  Ministry  of  National   Infrastructure  encourages  a  domestic   increase   in   the  

use  of  natural  gas.  But  at   the  same  time,   there   is  concern   that  being  dependent  on  a  single  

fuel  also  increases  the  energy  risk.  The  process  of  gas  transmission  is  also  more  susceptible  to  

breakdowns   and   sabotage   (Israel   MNI,   “Policy   on   the   Integration   of   Renewable   Energy  

Page 12: Energy Policy Energy Island - Chudnovsky Thesis

Page 11

Sources”  9).  Overall,  the  implications  of  a  robust  Israeli  natural  gas  sector  are  profound  and  

possibly  transformative,  especially  if  investments  are  made  to  increase  the  share  of  renewables  

in   the  energy  mix.   Integrating  renewable  energy  sources  not  only  diversifies   the  energy  mix  

but  also  strengthens  Israel's  energy  security.  

1.4 THE SIGNIFICANCE OF ANALYZING ISRAEL’S ENERGY POLICY BY 2030:

There  are  many  communities  across  the  world  that  face  similar  circumstances  to  Israel  

where  rain  and  access  to  water  is  limited  and  where  the  soil  is  worn  down  by  the  sun.  These  

are  circumstances  facing  communities  in  Africa,  Oman,  as  well  as  the  United  States,  such  as  in  

California.  The  choices  that  Israel  makes  can  provide  a  model  for  a  sustainable  energy  policy  

that  includes  renewable  energy  in  the  mix.  This  is  significant  because  there  are  countries  that  

have  increased  the  role  of  renewables  in  their  energy  mix,  such  as  Denmark,  but  that  has  not  

necessarily  resulted  in  a  sustainable  energy  policy.  For  example,  between  1999  and  2007,  the  

amount  of  electricity  produced  from  wind  in  Denmark  grew  by  around  136  percent,  increasing  

to   7.1   billion   kWh   of   electricity.   Wind   power   contributed   13   percent   of   all   the   electricity  

generated   in   Denmark   by   2007.   And   yet   in   2007,   Denmark's   coal   consumption   had   not  

changed   since   1999,   and   was   similar   to   the   consumption   level   in   1981.   Furthermore,   the  

Danish  Center  for  Political  Studies  (CEPOS)  concluded  in  a  2009  study  that  Denmark's  wind  

industry  "saves  neither  fossil  fuel  consumption  nor  carbon  dioxide  emissions"  (Bryce,  “Power  

Hungry”   114;   Bryce,   “Cleaning   up   Oil’s   Reputation”).  It   is   thus   important   to   assess   the  

resources  and  technology  opportunities  for  Israel  to  develop  a  sustainable  energy  policy.  

Natural   gas   also   creates   a   particularly   unique   opportunity   for   Israel   because   it   is  

referred  to  as  the  "transition  fuel"  from  oil  and  coal  to  renewable  energy  (Clegg  5).  According  

to   Dr.   Vaclav   Smil,   from   the   University   of  Manitoba,   there   is   one   element   that   all   energy  

Page 13: Energy Policy Energy Island - Chudnovsky Thesis

Page 12

transitions   have   in   common,   “they   are   prolonged   affairs   that   take   decades   to   accomplish…  

And  the  greater  the  scale  of  prevailing  uses  and  conversions  the  longer  the  substitution  will  

take”   (Bryce,   “Power   Hungry”   20).   In   the   past,   bureaucratic   government   obstacles   and  

inadequate   grid   infrastructure   were   factors   that   prevented   significant   development   of  

renewable  energy  in  Israel.  From  this  perspective,  given  “long  lead  construction  times,  Israel…  

[must]   make   expensive,   momentous   investment   decisions   internal   governmental   obstacles  

and   inadequate   grid   infrastructure   in   the   near   future”   (Popper   et   al.   2)   while   “considering  

future   levels  of  demand,   the   costs   and  availability  of   sources  of   fuel   supply,   security  of   fuel  

supply,  future  development  of  alternative  technologies,  reliability,  environmental  effects,  and  

land  use”  (“Natural  Gas  and  Israel’s  Energy  Future”  1).  

When   considering   the   global   energy   forecasts   by   2030,   the   projections   indicate   an  

overall   increase   in   the   role   of   renewable   energy   used   for   electricity   generation.   Bloomberg  

New  Energy  Finance  assessed  the  direction  that  global  energy  policy  is  expected  to  follow  by  

2030  and  the  difference  in  projections.  

• International  Energy  Agency  World  Energy  Outlook:  The  IEA  projections  are  that  

the  use  of  coal  for  electricity  generation  will  decrease  from  41%  in  2010  to  33%  in  2035,  

while   natural   gas   increases   from   22%   to   23%   and   renewables,   including   hydro,   will  

increase   to   30%.   Within   that   30%,   wind   is   expected   to   increase   from   2%   to   7%,  

bioenergy  from  2%  to  4%  and  solar  to  3%  (McCrone).  

• BP  Energy  Outlook:  BP’s  projection  for  renewables  is  comparable  to  the  IEA  but  the  

forecast   is   for   2030.   The   forecast   is   that   25%   of   electricity   generation   will   be   from  

renewables,  with  wind  and  solar  contributing  11%  (McCrone).    

Page 14: Energy Policy Energy Island - Chudnovsky Thesis

Page 13

• Exxon’s  Annual  Outlook:  Exxon’s  projections  are  through  2040.  The  forecast  is  that  

natural  gas  will  contribute  30%  for  electricity  generation,  coal  at  26%  and  renewables  

at  27%.  Wind  is  at  7%  and  solar  at  2%  (McCrone).  

• Bloomberg  New  Energy  Finance:  Bloomberg  projects  that  under  the  “New  Normal”  

scenario,   which   is   their   central   projection,   renewables   will   account   for   37%   of   the  

world  total  electricity  generation  mix  by  2030  (McCrone).  

   These   forecasts   become  particularly   significant   given   expectations   that   over   the  next  

few  decades  the  demand  for  oil  may  surpass  supply  (Smith,  El-­‐Katiri  and  Main  30).  In  fact,  in  

2010,   Saudi  Aramco  CEO  Khaled  Al-­‐Falih  discussed   that   if   Saudi  Arabia’s   existing  domestic  

level  of  oil  use  does  not  change,  up  to  3  million  barrels  per  day  of  crude  oil  could  be  lost  by  

2028  (El-­‐Katiri,  “Why  Renewable  Energy  Could  Be  a  Chance  for  the  GCC  Economies”  14).  But  

peak   oil   is   not   a   new   claim.   In   2005,  Matthew   Simmons   assessed   the   outlook   of   Saudi   oil  

production   in   Twilight   in   the   Desert.   His   premise   was   that   many   Saudi   oil   fields   are   over  

produced   and   could   decline   rapidly.   Saudi   officials   and   many   in   the   energy   industry  

disregarded   these   assertions   because   Saudi   Arabia   is   often   expected   to   make   up   for  

imbalances  in  global  production  and  ensure  that  supply  meets  demand.  But  many  are  starting  

to  doubt  that  this  will  still  be  the  case  (Smith,  El-­‐Katiri  and  Main  32-­‐3).    

Given   the   importance   of   oil   and   gas   to   modern   economies,   the   energy   security  

implications   of   inadequate   supplies   are   clear   and   thus   the   need   to   focus   on   developing  

sustainable   energy   policy.  Daniel   Yergin   describes   in  The  Prize,   the   energy   policy   decisions  

that  Winston  Churchill  was  faced  with  over  seventy  years  ago.  Chruchill  saw  a  key  strategic  

advantage   in  using  oil  because   it  would   increase  the  speed  of  British  ships  and  reduce  their  

Page 15: Energy Policy Energy Island - Chudnovsky Thesis

Page 14

number  of   refueling   times.  He   then  ordered   to  build  oil   fueled  battleships,   committing   the  

British   navy   to   this   new   fuel   (Yergin   xiv).   The   sustainable   energy   policy   choices   that   Israel  

faces  today  are  no  less  consequential  and  Israel’s  approach  must  be  as  insightful  for  its  time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 16: Energy Policy Energy Island - Chudnovsky Thesis

Page 15

2. ENERGY POLICY OF AN ENERGY ISLAND:

The  evolution  of  Israel’s  energy  sector  and  policy  reflects  the  historical  lack  of  domestic  

energy   resources   and   the   volatile   relationships  with  many   surrounding   countries.  The   term  

“energy   island”   has   been   used   by   government   agencies   and   scholars   in   describing   Israel  

because   electricity   is   generated   domestically   and   its   energy   infrastructure   system   is   not  

connected  with  neighboring  states.  The  exception  is  that  Israel  supplies  electricity  to  the  West  

Bank  and  Gaza.  Since  the  establishment  of  the  State  of  Israel  in  1948,  most  of  the  energy  mix  

has  consisted  of  imported  fossil  fuels,  mainly  coal  and  crude  oil  (Bahgat,  “Alternative  Energy  

in  the  Middle  East”  60;  Fischhendler  and  Nathan  154).    

There  has  been  extensive   research  on   the  evolution  of   Israel’s   energy  policy,   and  Dr.  

Gawdat   Bahgat,   of   the   Near   East   South   Asia   Center   for   Strategic   Studies   at   the   National  

Defense  University,  has  written  extensively  on  this  subject.  Israel  made  a  number  of  attempts  

to  produce  oil  and  gas  domestically.  The  initial  attempts  at  natural  gas  exploration  were  made  

in  1950  and  oil  exploration  began  in  1947,  even  a  year  before  the  State  of  Israel  was  established  

(Bahgat,  “Israel’s  Energy  Security”  26-­‐7).  Israel  was  also  provided  access  to  the  U.S.  Strategic  

Petroleum   Reserve   (SPR)   under   certain   conditions.   The   SPR   is   supply   of   crude   oil   for  

emergency  purposes  that  is  stored  in  large  underground  salt  caves  along  the  coastline  of  the  

Gulf  of  Mexico.  Israel  was  provided  access  to  the  SPR  based  on  the  terms  of  the  1975  Second  

Sinai  Withdrawal  Agreement.  According  to  this  Agreement,  the  United  States  is  committed  to  

sell  oil   to  Israel,   for  up  to  five  years,   in  the  case  of  an  emergency  (Phillips  12-­‐3).  Overall,   for  

Israel,  energy  diversification  and  a  reduction  in  the  dependence  on  imported  fossil  fuels,  can  

enhance  energy  security  and  the  overall  national  security.  

 

Page 17: Energy Policy Energy Island - Chudnovsky Thesis

Page 16

2.1 FACTORS AFFECTING ISRAEL’S ENERGY POLICY:

The  use  of  energy  by  a  country  increases  as  more  economic  sectors  develop,  the  import  

and   export   structure   changes,   and   population   growth   occurs.   In   the   case   of   Israel,   the  

following  are  outlined  factors  affecting  the  growing  energy  needs  of  the  country.  

2.1.1   Demographics:  

Israel  has  a  population  of  8.9  million  people  (Grave-­‐Lazi).  As  of  2013,  92  percent  of  the  

population   is   urban.   This   is   among   the   highest   urban   populations   in   the   world.   In  

comparison,  the  United  States  has  an  83  percent  urban  population,  81  percent  in  Canada  and  

80  percent  in  the  United  Kingdom  for  the  same  year.  The  population  density  is  340  persons  

per   square   kilometer   UN   38-­‐209).   Furthermore,   the   density   effect   is   considered   higher  

because  over  50  percent  of  Israel’s  land  area  is  made  up  of  the  Negev  desert.  Israel  also  has  a  

relatively  high  natural  growth  rate  for  a  developed  economy  (Alterman  259).  The  mean  annual  

growth   rate   was   1.8   percent   in   2010   (Israel   CBS,   “Statistical   Abstract   of   Israel   2010”   89).  

According   to   the   Population   Reference   Bureau,   the   latest   2014   growth   rate   figure   is   at   1.6  

percent,   compared   to  0.4  percent   for  both   the  U.S.   and  Canada,   0.3  percent   for   the  United  

Kingdom  and  0.2  percent  for  the  Netherlands.  In  fact  during  the  period  1990  to  2009,  Israel’s  

population  almost  doubled.  The  arrival  of  a  million  immigrants  from  the  former  Soviet  Union  

during  this  period  also  contributed  to  the  population  growth.    

Population   density   and   the   country’s   location   at   the   edge   of   the   desert  make   Israel  

particularly  vulnerable  to  climate  change,  especially  since  60  percent  of  the  population  lives  

near  a  narrow  coastal  line  along  the  Mediterranean.  The  Intergovernmental  Panel  on  Climate  

Change   (IPCC)   projects   that   throughout   the   twenty-­‐first   century   the   surface   warming  

temperature   for   the   Southern   and   Eastern   Mediterranean   will   be   2.2°C-­‐5.1°C.   This  

Page 18: Energy Policy Energy Island - Chudnovsky Thesis

Page 17

temperature  growth  forecast  is  higher  than  the  IPCC’s  average  global  projection  of  1.8°C-­‐4°C  

(Mor,  Seroussi  and  Ainspan  20;  Mason  and  Mor  xxviii-­‐xxix).  

2.1.2   Economic  Growth:  

Israel's   economy   has   grown   steadily   and   per   capita   GDP   was   over   $36,000   in   2013.4  

There  has  also  been  an  increase  in  the  demand  for  energy  along  with  the  economic  growth.  

“Electricity   is   the   energy   commodity   that   separates   the   developed   countries   from   the   rest.  

Countries  that  can  provide  cheap  and  reliable  electric  power  to  their  citizens  can  grow  their  

economies  and  create  wealth”  (Bryce,  “Power  Hungry”  52).    

In   fact,   the  use  of   energy   in   Israel   on   a  per   capita  basis  has   increased  by  44  percent  

from  1990  through  2008.  This   is  a  steep  increase   if  compared  for  example  to  the   increase   in  

the  European  Union,  which  was  on   average   a   15   percent   growth   rate  during   the   same   time  

period  (Mor,  Seroussi  and  Ainspan  20).  In  2012,  the  total  primary  energy  supply  in  Israel  was  

at  3.07  tons  of  oil  equivalent  (toe)  per  capita,  compared  to  3.02  toe  per  capita  for  the  United  

Kingdom  and  6.81  toe  per  capita  for  the  United  States  that  same  year  (IEA,  “Key  World  Energy  

Statistics   2014”   53-­‐57).  Additionally,   during   the   time  period   1998   to   2008,   Israel’s   electricity  

consumption  doubled  and  according   to  estimates  provided   for   the  NATO  Science   for  Peace  

and  Security  Programme,  consumption  is  expected  to  almost  double  to  87  GWh  by  2028  (Mor,  

Seroussi  and  Ainspan  21).    

2.1.3     Access  to  Water:  

Another   factor   to  consider   is  water   resources  given   the   issue  of  water   scarcity   in   the  

Middle  East.  In  Israel,  water  resources  have  been  nationally  regulated  since  the  State  of  Israel  

4  GDP  data  is  in  current  USD  provided  by  the  World  Bank.  Last  updated  on  September  19,  2014.    

Page 19: Energy Policy Energy Island - Chudnovsky Thesis

Page 18

was   established   in   1948.   All   water   resources   are   nationally   owned   and   controlled,   which  

include  streams,  the  Sea  of  Galilee  or  the  Kinneret,  and  aquifers  (Alterman  271-­‐72).  Access  to  

fresh  water  is  a  significant  concern  for  Israel  and  desalination  has  played,  and  is  expected  to  

continue  playing,   an   even   stronger   role   in   closing   the  water   gap.  This   is   also   a   concern   for  

most  Middle  East  and  North  African  (MENA)  countries.  As  of  2010,  desalinated  water  made  

up   15   percent   of   Israel’s   water   demand   (World   Bank   64-­‐5).   Desalination   though   is   an  

extremely   energy   intensive   process.   Climate   change   is   expected   to   exacerbate   the   issue   of  

water   scarcity   and   increase   food   insecurity   and  prices   in   the   region   (Mason   and  Mor   xxix).  

Thus,  Israel’s  growing  economy,  the  increasing  use  of  desalination,  and  a  growing  population  

have  all  contributed  to  the  increased  use  of  energy.    

2.2 ROLE OF GOVERNMENT:

The  Ministry   of  National   Infrastructures   (MNI)   has   the   overall   responsibility   for   the  

electricity,  natural  gas  and  oil-­‐based  fuel  sectors,  along  with  water  resources.  Diagram  1  in  the  

Appendix   depicts   the   structure   of   the   Ministry.  With   respect   to   the   electricity   sector,   the  

Ministry   is   responsible   to   approve   investment   programs   for   generation,   transmission   and  

distribution.  The  Natural  Gas  Authority  was  also  established  in  2003  to  oversee  the  gas  sector.  

And   although   the  Gas  Authority   is   technically   independent   from   the  MNI,   it   operates  with  

guidance  from  the  Ministry  (Hemmings  6).  

The  Israel  Electricity  Corporation  (IEC)  is  also  under  the  MNI’s  responsibility  and  is  a  

government   owned   electric   utility.   For   most   of   Israel’s   history,   the   IEC   has   been   the   only  

vertically  integrated  utility  company  (Eytan  and  Dor  101).  In  2003,  Israel  passed  a  law,  which  

separated  electricity  generation,   transmission  and  distribution   to  be  done  by   three   separate  

companies,  but  the  IEC  has  not  yet  implemented  this  reform.  In  2005,  Israel  allowed  private  

Page 20: Energy Policy Energy Island - Chudnovsky Thesis

Page 19

producers   to   enter   the   electricity   generation   market   (Shaffer,   “Israel—New   Natural   Gas  

Producer   in   the  Mediterranean”   5383).  By   2012  private   generation   capacity  was   at   500  MW,  

from   a   total   installed   capacity   of   13,248   MW   (IEC,   “Israel   Electric   Corporation   Strategic  

Aspects  Overview”  4).  

The   government   aims   to   partially   privatize   the   IEC   over   the   next   three   years,   along  

with  ten  other  state-­‐owned  companies  that  have  been  approved  for  privatization  in  October  

2014.   Because   it   is   considered   a   strategic   company,   the   government   will   sell   somewhere  

between   25   to   49   percent   of   the   company.   A   key   goal   for   this   wave   of   privatization   is   to  

improve  the  business  practices  of  Israeli  state-­‐owned  companies  and  to  hold  them  to  higher  

standards  of  transparency  (Bassok).    

2.3 ROLE OF IMPORTS:

Israel’s  energy  dependence  on  imported  fossil  fuels  has  been  among  the  highest  in  the  

world,  with  total  energy  production  at  0.7  Mtoe  as  of  2006  (Mor,  Seroussi  and  Ainspan  22).  In  

2009,  petroleum  net  imports  were  230.93  thousand  barrels  per  day  (tbd)  and  consumption  at  

235  tbd.  In  terms  of  coal,  both  the  consumption  and  net  imports  were  at  13.935  million  short  

tons.  The  total  production  for  natural  gas  was  at  55  Bcf,  consumption  at  115  Bcf,5  imports  at  60  

Bcf  and  proven   reserves  at   1   trillion  cubic   feet.  This   strong   reliance  on   imported   fossil   fuels  

opened   Israel   up   to   supply   interruptions   and   price   fluctuations   (Bahgat,   “Israel’s   Energy  

Security”  26-­‐9).  Figure  1  below  summarizes  Israel’s  2009  net  imports  versus  domestic  energy  

consumption.   As   of   2009   the   primary   energy   mix   consisted   of   46   percent   crude   oil   and  

5 Note  there  is  a  slight  variation  in  the  115  Bcf  figure  of  natural  gas  consumption  compared  with  the  110  Bcf  figure  provided  by  the  EIA  in  Table  1  of  the  Appendix  for  2009.

Page 21: Energy Policy Energy Island - Chudnovsky Thesis

Page 20

petroleum   products,   37   percent   coal   and   17   percent   natural   gas   (Israel   MNI,   “Renewable  

Energies”  3).    

FIGURE  1:  ISRAEL  ENERGY  RESOURCES,                                                                                            

CONSUMPTION  VERSUS  NET  IMPORTS  (2009)  

 

 Most   Israeli   policymakers   have   considered   importing   natural   gas   as   a   risky   policy  

because   of   concerns   about   supply   security,   given   the   need   for   an   established   distribution  

infrastructure   as   well   as   long-­‐term   supply   contracts.   Israel   began   to   consider   importing  

natural  gas  in  the  early  1990s  from  Qatar  and  the  former  Soviet  Union  states,  primarily  Russia  

and  Azerbaijan,  to  be  delivered  via  Turkey  (Shaffer,  “Israel—New  Natural  Gas  Producer  in  the  

Mediterranean”   5380).   The   main   consumer   of   the   natural   gas   has   been   the   Israel   Electric  

Corporation  but  also  industries  such  as  Israel  Chemicals  and  Nesher  Cement  (Bahgat,  “Israel’s  

Energy  Security”  28).  See  Table  2  in  the  Appendix  for  a  breakdown  of  the  fuels  used  by  the  IEC  

for  electricity  generation  since  1996.    

 

•  Petroleum-­‐  235  tbd  •  Coal  -­‐  13.935  million  short  tons      •  Natural  Gas  -­‐  110  Bcf  

Consumption  

•  Petroleum-­‐  230.93  tbd  •  Coal  -­‐  13.935  million  short  tons  •  Natural  Gas  -­‐  60  Bcf  

Net  Imports  

Page 22: Energy Policy Energy Island - Chudnovsky Thesis

Page 21

2.4 THE ELECTRICITY INFRASTRUCTURE:

Israel’s   electrical   grid   is  not   connected   to   its  neighbors,   and   therefore   the   country   is  

described  an  “electric  power  island,  depending  solely  on  itself  for  all  of  its  electricity”  (Popper  

et  al.  1).  This  means  that  even  if  there  is  a  small  decrease  in  the  reserve  margin,  the  stability  of  

the   electric   power   system   is   jeopardized.   The   reserve  margin   is  measured   as   the   difference  

between  capacity   for  power  generation  and   the  peak  demand  and   Israel  has  had   low  power  

reserves   (Fischhendler   and  Nathan   154).   For   developed   countries   the   power   reserve  margin  

tends  to  be  between  20-­‐30  percent.  But   in  2008,   Israel’s  electricity  reserves  were  around  4.8  

percent  of  installed  capacity  (Israel  MNI,  “Policy  on  Integration  of  Renewable  Energy  Sources”  

7).  The  reserve  margin  continued  to  decline  and  was  estimated  to  be  at  2-­‐3  percent  by  2012  

(Chase  and  Goldie-­‐Scot  2).  The  reserve  reached  this  point  because  the  growth  in  generation  

capacity   over   the   past   decade   has   not   been   at   the   same   growth   level   as   electricity  

consumption  (Fischhendler  and  Nathan  154).  

 In   2007   the   Ministry   of   National   Infrastructures   announced   that   unless   there   is   a  

substantial  investment  made  in  new  capacity  or  drastic  steps  are  taken  to  conserve  electricity,  

it  expects  an  8,000  MW  shortage  before  2020.  There  have  also  been  recent   instances  where  

capacity  utilization  reached  the   limit  of   the  system  (Popper  et  al.   1).  By  the  summer  of  2012  

Israel   did   experience   a   number   of   blackouts,   after   Egypt   canceled   an   agreement   to   deliver  

natural  gas.  Consequently,  the  coal  plants  in  Ashkelon  and  Hadera  were  fired  up  to  maximum  

capacity   and   several   natural   gas   units   were   switched   to   heavy   fuel   oil   and   diesel   (Bahgat,  

“Alternative  Energy  in  the  Middle  East”  68).  By  2012,  Israel  had  an  installed  capacity  of  13,248  

MW,  which  consisted  of  63  generation  units;  coal  contributed  36.5  percent,  natural  gas  53.6  

percent,  and  diesel  9.9  percent  (IEC,  “Israel  Electric  Corporation  Strategic  Aspects  Overview”  

Page 23: Energy Policy Energy Island - Chudnovsky Thesis

Page 22

8).  Map  2  in  the  Appendix  provides  a  breakdown  by  fuel  type  of  the  national  installed  capacity  

in  2012  throughout  the  country.  

2.5 SECURITY AND ENERGY POLICY:

Former  U.S.   Senator  Richard  Lugar   stated   that   ‘‘energy   is   a  potent  weapon”   (Shaffer,  

“Natural  Gas  Supply  Stability  and  Foreign  Policy”  114).  The  concept  of  energy  security  can  be  

interpreted  and  manipulated  in  various  ways  and  there  is  extensive  literature  on  this  subject.  

Some  scholars  stress  environmental  factors  and  independence  as  the  key  elements  of  energy  

security,   while   others   consider   supply   reliability   and   geopolitical   factors   as   the   priorities,  

when  exporting  natural  gas  (Fischhendler  and  Nathan  153).    

2.5.1   Energy  Security  Defined:  

Contemporary   energy   security   is   often   assessed   according   to   four   points   that   are  

presented  by  the  Asia  Pacific  Research  Centre  (APERC).  The  four  points,  or  the  four  A's,  are:  

availability,  accessibility,  acceptability,  and  affordability  (Fischhendler  and  Nathan  153).  These  

factors  certainly  frame  Israel’s  energy  security  concerns  and  thus  energy  policy.  

• Availability  of  geological  or  physical  energy  resources,  on  a  short  and  long-­‐term  

basis;  

• Accessibility   deals  with   the   political,   economic,   and   technological   factors   that  

affect  the  accessibility  of  energy  supplies  on  a  constant  basis;    

• Acceptability   of   energy   security   is   based   on   the   premise   that   the   production,  

consumption  and  depletion  of  a  resource  can  cause  certain  environmental  and  

societal  impacts  on  a  society;  

Page 24: Energy Policy Energy Island - Chudnovsky Thesis

Page 23

• Affordability  of  energy  security  considers  price  volatility  for  resources  because  of  

market  inefficiencies  (Fischhendler  and  Nathan  153-­‐54).    

2.5.2   Israel’s  Energy  Security  Concerns:  

Israel   regards   its   energy   policy   as   a   national   security   issue.   Although   officially   the  

Ministry  of  National  Infrastructures  is  the  leading  government  agency  that  coordinates  energy  

policy,   other   agencies   such   as   the   Prime   Minister’s   Office,   Ministry   of   Finance,   National  

Security  Council,  National  Economic  Council,  and  Ministry  of  Foreign  Affairs,  all  contribute  

to   setting   the   energy   policy   as   well   (Shaffer,   “Israel—New   Natural   Gas   Producer   in   the  

Mediterranean”  5380).    

Israel   also   considers   a   lot   of   the   data   that   deals   with   its   energy   consumption   as  

classified  information,  and  official  statistics  on  its  energy  trends  are  published  after  a  delay  of  

four   years.   Additionally,   Israel   does   not   disclose   official   data   on   its   strategic   reserves.  

Therefore,  even  though  in  2010  Israel  joined  the  Organization  for  Economic  Development  and  

Cooperation   (OECD),   they   have   not   attempted   to   gain   membership   in   the   International  

Energy  Agency.  The  IEA  is  affiliated  with  the  OECD  and  is  involved  in  coordinating  access  to  

emergency  supplies,   if  necessary,  among  member  states.  Member  states  must   share  data  on  

their  reserves,  which  Israel  is  not  willing  to  do.  Overall,  Israel’s  key  energy  security  concerns  

deal  with  availability  of  energy  supplies  for  the  military  if  a  conflict  occurs  and  with  providing  

physical  security  for  its  energy  infrastructure  (Shaffer,  “Israel—New  Natural  Gas  Producer  in  

the  Mediterranean”  5379-­‐80).    

 

 

Page 25: Energy Policy Energy Island - Chudnovsky Thesis

Page 24

2.5.3   Security  Concerns  Post  Arab  Spring:

The   2005   import   agreement   with   Egypt   played   a   significant   role   in   the   growth   of  

Israel’s  natural  gas  industry.  According  to  the  agreement,  Egypt  would  provide  Israel  with  60  

Bcf   of   natural   gas   per   year,   which   would   be   imported   via   the   East   Mediterranean   Gas  

Company  (EMG).6  In  fact,  the  Israel  Electric  Corporation  had  signed  a  contract  with  EMG  to  

receive  25  BCM  of  natural  gas  over  a  period  of   15  years.  The  EMG  Company  constructed  an  

undersea   pipeline   starting   from   El   Arish   in   Egypt’s   Sinai   territory   to   the   Israeli   city   of  

Ashkelon.  The  capacity  of  the  pipeline  was  to  handle  up  to  7  Bcm  per  year  (Shaffer,  “Israel—

New   Natural   Gas   Producer   in   the  Mediterranean”   5381;   Bahgat,   “Alternative   Energy   in   the  

Middle  East”  67).  But   from  2008  until   the  end  of  2010,  EMG  had  only  provided  2.5  Bcm  per  

year  to  the  IEC  (Bradley  and  Mitnick).    

In  the  summer  of  2010,  not  long  before  the  collapse  of  Hosni  Mubarak’s  regime,  there  

were   frequent   blackouts   in   Egypt.   Some   Egyptian   officials   and   also   those   part   of   the  

opposition,  blamed  the  gas  exports  to  Israel  as  the  reason  for  Egypt’s  blackouts.  After  the  fall  

of   Mubarak’s   regime   in   February   2011,   the   public   also   became   aware   of   EMG’s   corrupt  

practices.   And   in   2011,   the   former   head   of   EMG,   Hussein   Salem,   along   with  Mubarak   and  

members   of   Mubarak’s   family,   were   indicted   in   Egypt   on   corruption   charges.   The   charges  

dealt  with  the  misallocation  of  profits  by  EMG  from  natural  gas  exports  (Shaffer,  “Natural  Gas  

Supply  Stability  and  Foreign  Policy”  121).    

In   the   aftermath   of   the   Arab   Spring,   the   EMG   pipeline   was   damaged   over   a   dozen  

times,  which  disrupted  the   flow  of  gas  to  Israel.   In   fact,   the  pipeline  was  disabled  ten  times  

6   The   East  Mediterranean  Gas   Company   (EMG)   is   the   owner   and   operator   of   the   EMG   pipeline.   It   is   a   joint   company   of  Mediterranean  Gas   Pipeline   Ltd,  which   is   owned   by   the   "Evsen  Group   of   Companies"   (28%),   the   Israeli   company  Merhav  (25%),  PTT    Public  Company  (25%),  EMI-­‐EGI  LP  (12%),  and  Egyptian  General  Petroleum  Corporation  (10%)  (“PTT  Buys  25%”)  

Page 26: Energy Policy Energy Island - Chudnovsky Thesis

Page 25

during  2011  due  to  attacks,  which  were  linked  to  Bedouin  tribes  living  in  the  Sinai  Peninsula.  It  

took  the  government  a  substantially  longer  time  than  is  common  in  the  industry  to  complete  

the   repairs   (Shaffer,   “Natural   Gas   Supply   Stability   and   Foreign   Policy”   121-­‐22;   Bahgat,  

“Alternative  Energy  in  the  Middle  East”  68).  In  fact,  there  was  no  gas  delivered  for  a  total  225  

days   in   2011   and   for   66   days   during   the   first   quarter   of   2012   (Bradley   and   Mitnick).   The  

Egyptian   government   cancelled   the   agreement   in   April   2012.   They   used   the   premise   of  

terrorist  attacks  on  the  pipeline  as  the  reason  to  cite  force  majeure,  an  unanticipated  event,  so  

that  they  would  not  have  to  pay  commercial  penalties  for  the  cancellation  (Shaffer,  “Natural  

Gas  Supply  Stability  and  Foreign  Policy”  122).  

There  was  a  serious  energy  crisis  that  occurred  in  Israel  after  this  cancelled  agreement,  

given  that  54  percent  of  installed  power  generation  capacity  in  2012  relied  on  natural  gas.  In  

the   summer  of   2012,   Israel   reached  a  breaking  peak  demand  at   11,920  MW  and  experienced  

blackouts   in  various  places   (IEC,   “Israel  Electric  Corporation  Strategic  Aspects  Overview”  8,  

34).  The  cancelled  gas  agreement  and  the  previous  disruptions  of  the  EMG  pipeline  reinforced  

Israel’s  focus  to  control  its  energy  production  capacity  and  critical  energy  infrastructure.  Thus,  

one  of  the  primary  reasons  for  expanding  Israel’s  domestic  natural  gas  production  continues  

to  be  energy  security.  

 

 

 

 

 

Page 27: Energy Policy Energy Island - Chudnovsky Thesis

Page 26

3. NATURAL GAS:

3.1 ROLE OF NATURAL GAS IN WORLD ENERGY MARKETS:

  “The   high   oil   prices   between   1973   and   1986   brought   about   structural   changes   in   the  

way  the  world  markets  demand  and  supply  energy”  (Noreng  85).  In  global  terms,  the  share  of  

natural  gas  in  total  primary  energy  (TPE)  consumption  was  at  23.7  percent  in  2013  (BP  4).  The  

share   of   natural   gas   in   total   primary   energy   supply   has   grown   to   3.52   billion   cubic  meters  

(Bcm),  which  was  a  62  percent  growth  rate  from  1993  to  2011.  In  comparison,  oil  supply  grew  

by  25  percent  during  that  same  period  (World  Energy  Council  6).    

To  put   it   in  other   terms,  since  the  Arab  oil  embargo   in   1973,   the  consumption  of  gas  

has  grown  three  times  as  rapidly  on  a  percentage  basis  than  oil  consumption  (Bryce,  “Power  

Hungry”  209).  The  reserves   for  conventional  natural  gas  have  grown  by  36  percent  over   the  

past  two  decades  and  production  by  61  percent.  And  although  the  general  conclusion  from  the  

World  Energy  Council  2013  Survey   is   that  coal,  oil  and  gas,  are  expected  to   last   for  decades,  

the  role  of  oil  in  the  world  TPE  consumption  will  be  challenged  by  other  fuels  such  as  natural  

gas  (7-­‐14).  

The   demand   for   gas   in   the   Middle   East   reached   344   Bcm   by   2009   and   has   almost  

doubled  every  decade  since  1980.  In  1980,  the  region  contributed  less  than  3  percent  of  global  

demand,  which  increased  to  12  percent  by  2009.  Demand  for  gas  in  the  Middle  East  has  been  

mainly   for   power   generation,   petrochemicals   and   desalination   purposes.   The   growth   in  

demand  throughout  the  region  is  also  linked  to  GDP  growth  rates,  a  population  growth  rate  

that  exceeded  the  world  average  and  government  policies  that  specifically  focus  on  increasing  

the  use  of  gas  for  power  generation  and  water  desalination  (Fattouh  and  Stern  2-­‐3).  

Page 28: Energy Policy Energy Island - Chudnovsky Thesis

Page 27

3.1.1   Supply  of  Natural  Gas:  

  Natural   gas   is   different   from   almost   any   commodity,   since   the   majority   of   its  

international  trade  is  done  through  permanent  pipelines  and  trade  deals  that  are  structured  

via  long-­‐term  contracts.  Long-­‐term  investment  is  necessary  to  produce  natural  gas  resources  

and  to  establish  an  export  infrastructure.  The  price  of  natural  gas,  both  pipeline  and  liquefied  

natural  gas  (LNG),  is  not  set  by  the  global  market,  but  each  contract  has  its  own  deal  terms  

between   the   producer   and   consumer   (Shaffer,   “Natural   Gas   Supply   Stability   and   Foreign  

Policy”  116).  But  overall,  the  natural  gas  supply  is  essentially  dependent  on  price.  The  higher  

the  natural  gas  prices,  the  greater  incentive  producers  have  to  search  for,  and  to  develop,  new  

reserves  (Sturm  11).    

  The  pipeline,  also  called  the  mainline,  is  the  basic  method  for  transporting  natural  gas  

from  one  location  to  another.  Pipelines  typically  connect  areas  of  supply  with  markets.  Some  

pipelines  connect  gaps  with  other  pipelines  or  with   storage   facilities.  Therefore,  natural  gas  

flow   along   a   pipeline   system   is   usually   from   the   supply   source   to   the   burner-­‐tip.   It   is   also  

important   to   note,   that   from   an   operational   standpoint,   gas   only   flows   from   areas   of   high  

pressure  to  areas  of  low  pressure.  Consequently,  compressor  stations  are  set  up  along  the  way  

to  pressurize   the  gas   so   that   it  will   flow  along  a  pipeline   to   the  next   compressor   station  or  

interconnect.  Each  pipeline  also  has  a  maximum  capacity  of  gas  that  it  can  handle  at  any  one  

time  (Sturm  8).    

3.1.2   Geopolitics  of  Natural  Gas:  

Natural  gas  supply  involves  long-­‐term  relationships  and  permanent  infrastructure  and  

these  factors  increase  the  chance  for  politics  to  come  into  play.  States  must  approve  the  routes  

and  pipeline  installations.  And  investors  typically  need  the  host  and  transit  state  governments  

Page 29: Energy Policy Energy Island - Chudnovsky Thesis

Page 28

to  provide   formal  agreements   for   international  supply  projects.  State  owned  companies  also  

control  most   of   the  world’s   oil   and  gas   reserves   and   states   are   thus   involved   in  natural   gas  

trade  through  these  companies.  Some  of  these  deals  have  no  instances  of  supply  disruptions,  

while  others  experience  frequent  disruptions.  In  many  cases  the  disruptions  occur  because  of  

technical   failures  and  weather  conditions,  but  even  in  those   instances  political  relationships  

can  affect  the  urgency  of  a  response  (Shaffer,  “Natural  Gas  Supply  Stability  and  Foreign  Policy”  

115-­‐16).  

3.1.3   Natural  Gas  Use  for  Electricity  Generation:  

In  OECD  countries  and  developing  countries,  natural  gas  has   increasingly  been  used  

for   electricity   generation.   According   to   the   BP   Statistical   Review   of  World   Energy,   by   2013  

natural   gas   had   a   23.7   percent   contribution   to   global   electricity   generation.   Among  OECD  

countries  it  had  a  26  percent  contribution  versus  21.9  percent  for  non-­‐OECD  countries  as  of  

2013   (BP   41).   In   comparison,   as   of   2006,   natural   gas   had   a   20.1   percent   contribution   to   the  

world’s  total  electricity  generation  (Bryce,  “Power  Hungry”  56).  

3.2 ISRAEL’S NATURAL GAS MARKET DEVELOPMENT:

Over  a  decade  ago,  the  Israeli  natural  gas  market  essentially  did  not  exist.  But  in  less  

than   ten  years,   consumption   in   Israel  has  grown  by  more   than  610  percent.   In   fact,  by  2013  

consumption   was   at   245   Bcf   (U.S.   EIA,   “Israel   Country   Overview/Data”).   Table   1   in   the  

Appendix  provides  the  EIA  figures  for  annual  natural  gas  consumption  in  Israel  from  1990  to  

2013.   Within   a   rather   short   period   of   time,   natural   gas   has   been   increasingly   used   for  

electricity  generation  (Israel  MNI,  “Natural  Gas  Sector  in  Israel”).  As  Table  2  in  the  Appendix  

indicates,  as  of  2003  natural  gas  played  virtually  no  role  in  electricity  generation  but  by  2010  

Page 30: Energy Policy Energy Island - Chudnovsky Thesis

Page 29

had   a   37   percent   contribution.7   By   2012,   54   percent   of   the   installed   capacity   for   electricity  

generation   was   fueled   by   natural   gas   (IEC,   “Israel   Electric   Corporation   Strategic   Aspects  

Overview”  8).  

3.2.1   Domestic  Gas  Production:  

Israel's  domestic  gas  production  was  not  an  overnight  phenomenon.   In   1998,  Gideon  

Tadmor,  the  CEO  of  the  Delek  Group,8  saw  the  revenue  gains  from  offshore  gas  development  

in  Egypt.  He  therefore  sent  an  employee  to  Houston  and  demanded  that  he  "Bring  someone  

home!"  Three  months  later  two  companies  expressed  an  interest  to  meet  and  Tadmor  was  on  

the  next  flight  to  the  United  States.  But  by  the  time  he  arrived  in  Houston,  Noble  was  the  only  

company  interested  in  a  meeting  (Topol  64).  

     § WHO  IS  OPERATING  ISRAEL’S  GAS  FIELDS:  

A   consortium   that   consisted   of   Noble   Energy,   the   Delek   Group,   and   other   Israeli  

companies  discovered  the  Tamar  gas  field  in  2009.  Noble’s  latest  estimate  for  this  field  was  at  

10.0  Tcf.  The  Israeli  partners  that  are  working  with  Noble  to  develop  the  Tamar  field  are  Avner  

Oil  with  a  16  percent  stake,  the  Delek  Group  at  16  percent  and  Isramco  Negev  is  a  29  percent  

shareholder  (Cleary  179;  Noble  Energy).  Delek  Drilling  and  Avner  Oil  are  both  subsidiaries  of  

the  Delek  Group.    

According   to   current   consumption   rates,   the   Tamar   field   itself   could   meet   Israel’s  

domestic  demand  for  the  next  two  to  three  decades.  However,  the  most  significant  discovery  

for   Israel   has   been   the   Leviathan   field.   Leviathan   was   discovered   in   December   2010   and   7  In  comparison,  the  year/year  growth  in  the  use  of  coal  for  electricity  generation  was  in  -­‐5%  in  2008,  -­‐3%  in  2009,  and  -­‐0.17%  in  2010.  In  comparison,  the  growth  for  natural  gas  was  34%,  22%,  and  18%,  respectively.  

8  The  Delek  Group  is  an  integrated  energy  company,  involved  in  exploration  and  production  of  natural  gas.  

Page 31: Energy Policy Energy Island - Chudnovsky Thesis

Page 30

contains   an   estimated   22   Tcf   of   conventional   gas   reserves   (Noble   Energy).   Noble   is   the  

operator  of  the  field  and  has  a  stake  of  39.66  percent.  The  Delek  Group  holds  45.35  percent  

through  two  subsidiaries,  Delek  Drilling  and  Avner  Oil  Exploration.  Ratio  Oil  Exploration  is  a  

15   percent   stakeholder   (“Woodside   Pulls   Out   Of   Leviathan   Acquisition”).   Leviathan   is  

expected   to   become  operational   in   late   2017/   early   2018   (Noble   Energy),   and   these   reserves  

have  the  potential  to  change  Israel  to  an  energy  exporter.  

   

§ WHY  POLICY  REALLY  MATTERS:  

One   of   the   main   impediments   to   developing   Leviathan   was   a   lack   of   a   natural   gas  

export  policy  until  June  2013.  "Without  an  export  policy,  there's  no  way  you  can  commit,"  said  

Charles  Davidson,  Noble's  CEO  (Reed  15).  In  2011  the  Tzemach  Committee  was  set  up,  faced  

with   the   question   of   Israel   achieving   energy   security   and   balancing   gas   exports   with   a   gas  

reserve  policy.  The  Tzemach  Committee  was   led  by  Shaul  Tzemach,  Director  General  of  the  

Ministry   of   Energy   and  Water   Resources,   and   included   seven   other  members   from   several  

agencies.  They  assessed  various  options  with  different   impacts  on   Israel's   energy  policy  and  

the   stability   of   the   region   (Fischhendler   and   Nathan   153-­‐55). The   Tzemach   Report  

recommended   that   Israel   export   up   to   500   billion   cubic   meters   (Bcm)   of   natural   gas   and  

maintain   450   Bcm   for   domestic   needs   (Reed   15).   The   government   export   policy   that   was  

established  in  June  2013  allocates  a  maximum  of  40  percent  of  the  natural  gas  to  be  used  for  

exports   and   60   percent   for   domestic   consumption   (Fischhendler   and   Nathan   155).   Other  

policy   changes   that   have   occurred   include   the   government   retroactively   raising   the  

government   tax   of   oil   and   gas   revenue   to   a   range   of   52   through   62   percent,   up   from   the  

previous  rate  of  30  percent  (Bahgat,  “Israel’s  Energy  Security”  30).  

Page 32: Energy Policy Energy Island - Chudnovsky Thesis

Page 31

There   are   still   opportunities   and   geopolitical   uncertainties,   with   which   the  

development  of   Leviathan   is   faced.   In   2012,  Woodside  Petroleum,   an  Australian  oil   and  gas  

producer,   proposed   to   join   the   consortium   developing   the   field   and   to   produce   liquefied  

natural  gas  (LNG)  at  a  floating  or  at  an  onshore  terminal  in  Israel.  They  wanted  to  export  the  

LNG   to   Asia,   where   the   prices   were   high   for   natural   gas.   In   2012,   Noble   and   its   partners  

initially  agreed  to  sell  a  30  percent  equity  stake  of  Leviathan  to  Woodside  for  $2.3  billion.  After  

the   consortium   decided   not   to   export   from   the   field   using   an   onshore   LNG   terminal,   the  

terms   changed   to   25   percent   for   $2.55   billion   in   February   2014.   However,   the   consortium  

missed  a  deadline  in  March  2014  to  finalize  the  deal,  and  Woodside  subsequently  pulled  out  of  

the  deal  (“Woodside  Pulls  Out  Of  Leviathan  Acquisition”).  

The   current   plan   is   to   export   the   gas   from   Leviathan   to   other   countries   in   the  

Mediterranean   region   using   underwater   pipelines.   Any   LNG   export   project   related   to  

Leviathan  will   be   considered   only   as   part   of   a   third   phase   of   development,   and   even   then  

would  probably  be  done  using  a  smaller   floating  facility  (“Woodside  Pulls  Out  Of  Leviathan  

Acquisition”).    

3.2.2   Domestic  Gas  Consumption  –  Mainly  Electricity:  

Israel  primarily  used  natural  gas  to  generate  electricity  over  the  past  decade.  But  until  

2004,   Israel  produced  all  of   its   electricity   from  coal   and  oil.   In  2007,   19.8  percent  of   Israel’s  

electricity  came  from  natural  gas,  which  increased  to  32.6  percent  by  2009.  In  2012,  natural  gas  

units  represented  54  percent  of  installed  capacity  (Shaffer,    “Israel—New  natural  gas  Producer  

in  the  Mediterranean”  5381;  IEC,  “Israel  Electric  Corporation  Strategic  Aspects  Overview”  8).  

 

Page 33: Energy Policy Energy Island - Chudnovsky Thesis

Page 32

§ THE  MARKET:  

Currently,   Israel   has   one   of   the  highest   proportions   of   natural   gas   use   for   electricity  

generation   in   the   world.   The   growing   use   of   natural   gas   for   Israel’s   power   generation   has  

occurred   at   the   expense   of   using   oil.   A   number   of   large-­‐scale   industrial   factories   also   use  

natural   gas   (Shaffer,   “Israel—New   natural   Gas   Producer   in   the  Mediterranean”   5381).   Nick  

Butler,   a   previous   senior   energy   adviser   to   former   UK   Prime  Minister   Gordon   Brown,   and  

former  vice  president  for  strategy  and  policy  development  at  British  Petroleum  Group,  stated  

in  a  September  2014  interview:  “the  [Israeli]  government  should  aim  at  having  90  percent  of  

electricity   production   based   on   gas.   In   addition   to   electricity,   the   government   should  

introduce  the  use  of  gas  in  transport  and  the  petrochemicals  industry.  All  these  ventures  will  

generate  large  investments  and  many  jobs  in  the  country"  (“Israel's  Natural  Gas  Bonanza  is  an  

Illusion”).  

Israel’s  electricity  generation  sector  is  expected  to  go  through  the  main  changes  given  

the  increasing  use  of  natural  gas.  A  2011  Congressional  Research  Report  assessed  that  if  Israel  

would   convert   all   existing   electric   power   generation   to   natural   gas,   it   would   require   an  

additional   0.8   Bcf   per   day   (Bcf/d)   of   natural   gas.   Replacing   the   coal   plants   would   have  

required  0.67  Bcf/d  of  natural  gas.  Implementing  these  types  of  changes  requires  a  lot  of  time  

and  funds  (Ratner  5-­‐6).  

 

§ THE  TECHNOLOGY:  

The  increasing  use  of  natural  gas  for  power  generation  creates  the  opportunity  for  the  

use  of  combined  cycle  gas  turbines  (CCGT).  The  CCGT  combines  two  different  technologies,  

Page 34: Energy Policy Energy Island - Chudnovsky Thesis

Page 33

the   gas   and   the   steam   turbines   (Colpier   and   Cornland   310).   The   CCGT   has   a   conversion  

efficiency   of   60   percent   (World   Energy   Council   14),   which   is   expected   to   increase   to  

approximately   64   percent   by   2020   (Seebregts   1).   Electrical   efficiency   is   defined   as   the   ratio  

between  the  energy  output  at  a  specific  time,  and  the  value  of  the  input  energy  for  that  same  

time.  Power  generating  technologies  such  as  nuclear,  coal  and  CCGT  mostly  run  in  base  load  

mode   with   capacity   factors   near   0.85.   The   capacity   factor   is   an   indication   of   how   much  

electricity  a  power  plant  actually  produces  relative  to  the  maximum  it  could  produce  if  it  was  

operating  at  full  capacity  during  the  same  period.  Base  load  power  plants  are  meant  to  provide  

uninterrupted  energy  and  typically  run  all  the  time  except  in  the  case  of  repairs  or  scheduled  

maintenance  (Larsson  et  al.  177-­‐78).    

Coal-­‐fired  plants  and  CCGT  are  the  only  types  of  power  plants  that  are  being  built   in  

Israel  from  2003  until  2020.  The  new  CCGT  plants  in  Israel  have  a  capacity  of  about  360  MW  

and   should   be   available   92   percent   of   the   year   and   operate   during   the   peak   and  mid-­‐peak  

hours  of  the  day.  This  translates  into  an  average  of  16  hours  per  day.  According  to  data  from  

the   IEC,   the   cost   of   purchasing   and   fully   installing   a   360  MW  CCGT   plant   is   around   $225  

million.  Assuming  a  6.5  percent  capitalization  rate  over  20  years  results  in  an  annual  cost  of  

$19.3  million  per  plant.   In   terms  of   the  operational  estimates   for  a  CCGT,  a  positive   level  of  

output  contributes  an  additional  annual  fixed  operations  and  maintenance  (O&M)  cost  of  $8.9  

million.  Overall,   the   fixed   cost   for   a   360  MW  CCGT   is   an   estimated   $28.2  million   per   year  

(Tishler  and  Woo  851-­‐52).  

It   can   be   argued   that   the   CCGT   plants   that   are   powered   by   locally   produced   gas  

provide   some   of   the   quickest   and   cheapest   electric   power   (Clegg   7-­‐8).   CCGT   plants   are  

designed  to  respond  relatively  quickly  to  fluctuations  in  electricity  demand  and  can  operate  at  

Page 35: Energy Policy Energy Island - Chudnovsky Thesis

Page 34

50  percent  of  their  intended  capacity  without  a  significant  decrease  in  electrical  efficiency.  In  

comparison  with  coal  plants,  CCGT  has  the  advantage  of  a  shorter  construction  time,   lower  

investment   costs,   a   significant   decrease   in   carbon   dioxide   (CO2)   emissions   per   kWh   and  

operational  flexibility.  In  general,  the  IEA  describes  CCGT  technology  as  a  serious  competitor  

for  all  power  generation  technology  (Seebregts  1;  Colpier  and  Cornland  311).  

 § THE  OPPORTUNITY:  

To   some,   the   CCGT   technology   represents   the   potential   to   reduce   greenhouse   gas  

emissions  since  the  CCGT  plants  are  more  energy  efficient  and  natural  gas  is  cleaner  than  oil  

and   coal.   Others   consider   this   technology   as   an   impediment   to   the   development   and  

commercial   scale   deployment   of   renewable   energy   generating   technology   (Colpier   and  

Cornland  309).  

According  to  the  Ministry  of  National  Infrastructures,  Israel  expects  to  increase  the  use  

of  natural  gas,  up  to  12.5  BCM  by  2020  and  up  to  18  BCM  by  2030.  The  expectation  is  that  85  

percent  of   this  natural  gas  will  be  used   for  electricity  generation  and   industry.  The  demand  

forecast  for  the  period  2011  to  2040  is  a  total  of  494  BCM  (Israel  MNI,  “Natural  Gas  Sector  in  

Israel”).  

The  growth   in  natural  gas  use   is  based  on   the   following   factors.  First   the  continuing  

increase  in  “electricity  consumption  at  a  multi-­‐annual  average  rate  of  3.1%;  on  minimal  use  of  

heavy  fuel  oil;  on  reliance  on  coal  power  stations  to  the  same  extent  as  at  the  present  time;  on  

gradual   adoption   of   renewable   energy   sources   to   reach   a   level   of   10%   in   2020;   and   on   a  

Page 36: Energy Policy Energy Island - Chudnovsky Thesis

Page 35

transition  to  natural  gas  as  the  primary  fuel  for  electricity  generation  as  of  2014”  (Israel  MNI,  

“Natural  Gas  Sector  in  Israel”).  

According  to  research  done  by  Greenpeace,  if  the  2020  target  of  10  percent  renewable  

energy   is   exceeded,   then   by   2050   renewables   can   potentially   replace   all   coal   power   plants.  

This  would  certainly  improve  Israel’s  energy  security  (Fischhendler  and  Nathan  155).  In  fact,  

natural  gas   is  expected  to  reach  a  60  percent  contribution  for  electricity  generation  by  2027  

and   68   percent   by   2040.   In   2030,   the   consumption   of   natural   gas   during   peak   demand   is  

expected  to  be  at  80  percent  (Israel  MNI,  “Natural  Gas  Sector  in  Israel”).    

Figure   2  below  provides   the   annual   forecast   for   Israel’s  natural   gas  demand  by   2030.  

The   forecast   is   provided   by   Yehuda   Niv,   the   Commissioner   of   Israel’s   Electricity  

Administration,  and  indicates  that  the  majority  of  growth  in  the  use  of  natural  gas  is  expected  

to  be  for  power  generation.  The  assumption  is  that  no  additional  coal  plants  will  be  built  and  

the  use  of  natural  gas  for  the  transportation  sector  is  not  included  in  this  analysis  (Israel  MNI,  

“Renewable  Energies”  4).  

FIGURE  2:  ISRAEL  NATURAL  GAS  DEMAND  FORECAST  

 

Source:  Israel  MNI,  “Renewable  Energies”  4.  

Page 37: Energy Policy Energy Island - Chudnovsky Thesis

Page 36

The   increasing   use   of   natural   gas   for   power   generation,   particularly   with   the   use   of  

CCGT  technology,  presents  the  opportunity  for  Israel  to  also  increase  the  intermittent  role  of  

renewable  energy  for  power  generation.  The  nature  of  renewable  energy  is  intermittent  at  this  

point   because   most   people   would   not   accept   access   to   electricity   only   when   the   wind   is  

blowing   or   the   sun   is   shining.   Therefore,   electricity   that   is   powered   by   solar   or   wind  

technology  can  be  utilized  intermittently  while  a  dispatchable  power  plant,  such  as  a  natural  

gas  powered  CCGT,   is  maintained   to  balance   the  capacity.  Every  megawatt  of  wind  or   solar  

power   that   is   added   to   an   electricity   system  must   be   backed  up  with   a  megawatt   of   a   gas-­‐

powered  plant.  This  is  necessary  because  power  generation  must  be  available  to  switch  on  if  

the  sun  is  not  shining  or  the  wind  is  not  blowing.  As  discussed,  a  key  advantage  to  the  CCGT  

plants   is   that   they   have   a   fast   start-­‐up,  which  makes   it   an   effective   response   to   changes   in  

demand.   In  comparison,  coal  plants  are  designed  to  run  at  a  constant  rate.  And  although   it  

can  be  argued  that  adding  wind  or  solar  energy  sources  to  the  grid  reduces  the  utilization  rate  

of   a   gas   turbine,   from   a   capital   standpoint   (Bryce,   “Power   Hungry”   126-­‐29;   Colpier   and  

Cornland  311),  this  is  a  tremendous  opportunity  from  sustainable  energy  policy  standpoint.    

3.3 ASSESSMENT OF THE RISKS & REWARDS:

There  are   several   factors   to  consider  when  assessing   the  opportunities  and   risks   that  

Israel  faces  in  shifting  to  a  power  generating  system  that  is  increasingly  dominated  by  natural  

gas.   On   the   one   hand,   using   natural   gas   to   generate   electricity   significantly   reduces  

greenhouse  gas  emissions  when  compared  to  the  use  of  coal.  Burning  coal  emits  830  grams  of  

CO2  per   kilowatt-­‐hour   of   generated   electricity.   In   comparison,   using  natural   gas   emits   600  

grams  of  CO2  per  kilowatt-­‐hour.  Additionally,  when  generating  electricity   from  natural  gas,  

0.1  grams  of  sulfur  dioxide  (SO2)  are  emitted  per  kilowatt-­‐hour,  compared  with  5.2  grams  of  

Page 38: Energy Policy Energy Island - Chudnovsky Thesis

Page 37

SO2   per   kilowatt-­‐hour   produced   from   burning   coal   (Israel   MNI,   “Policy   on   Integration   of  

Renewable  Energy  Sources”  9).  

However,   from  an  economic  and  strategic  standpoint,   it   is  risky  to  depend  so  heavily  

on   natural   gas.   Relying   on   a   single   fuel   exposes   the   country   to   energy   risk.   It   is   also   risky  

because   gas   is   transmitted   predominately   via   pipelines,   which   are   more   susceptible   to  

breakdowns  and  sabotage.  Thus,  despite  the  environmental  benefits  of  using  natural  gas   for  

electricity   generation,   there   are  potential   risks   and   challenges.  Additionally,   a   lot   of   Israel’s  

newly   discovered   reserves   are   located   offshore.   And   the   laws   and   regulations   dealing   with  

environmental   standards   for   offshore   oil   and   gas   development   in   Israel   have   also   been  

described  as  “outdated,  redundant,  unenforced  and  contradictory”  (Portman  37-­‐8).    

There   is   also  geopolitical   risk  because  of   the  potential  uncertainty  of   Israel’s  borders  

with  neighboring  countries,  particularly  Lebanon  and  Turkey,  which  have  challenged  Israel’s  

access  to  its  natural  gas  fields  (Alster  and  Weinberg).  Israel  and  Lebanon  have  an  undefined  

maritime  border  and  many  of  Israel’s  gas  fields  are  adjoining  with  Lebanon,  thus  “creating  a  

race  to  the  bottom”  (Fischhendler  and  Nathan  159).  Overall,   if   the  natural  gas  estimates  are  

correct,   Israel  may   become   an   energy   exporter   but  would   also   be   exposed   to   the   risks   and  

politics  involved  with  extracting  and  exporting  natural  gas.  

 

 

 

 

Page 39: Energy Policy Energy Island - Chudnovsky Thesis

Page 38

4. RENEWABLES:

Israel  expressed  an  interest  in  renewable  energy  over  fifty  years  ago,  as  the  first  Prime  

Minister   David   Ben-­‐Gurion   stated,   “the   sun   [is]   the   largest   and  most   impressive   source   of  

energy   in  our  world…   [But]   a   source   so   little  used  by  mankind   today”   (Bahgat,   “Alternative  

Energy   in   the   Middle   East”   72).   In   2002   the   government   started   to   focus   on   providing  

incentives  for  the  private  sector  to  develop  renewable  energy.  A  national  goal  was  also  set  that  

at   least   2   percent   of   all   electricity   generation  would   be   supplied   from   renewable   energy   by  

2007,  increasing  to  5  percent  by  2016.  Israel  did  not  meet  the  2007  target  and  in  2009  another  

goal   was   set   to   reach   5   percent   production   of   power   from   renewable   sources   by   2014,  

increasing  to  10  percent  by  2020.  The  10  percent  target  is  equivalent  to  an  installed  capacity  of  

2,760   MW   by   2020   (Israel   MNI,   “Renewable   Energy   Sources”;   Israel   MNI,   “Policy   on   the  

Integration  of  Renewable  Energy  Sources”  24).  

The  estimated  installed  capacity   in  2011   from  renewable  energy  sources  was  a  total  of  

69  MW,  with  24  MW  from  wind,  water,  and  biomass  sources  and  45  MW  from  solar  energy  

sources  (Eytan  and  Dor  101).  The  initial  targets  for  2020  were  for  thermo-­‐solar  or  large-­‐scale  

solar  photovoltaic  (PV)  systems  to  produce  35  percent  of  the  renewable  energy  derived  power,  

at  2.28  terawatthour  (TWh).  Wind  generation  would  contribute  30  percent  of  the  renewable  

electricity   generation   at   1.96   kWh   (Israel   MNI,   "Israel   MNI,   “Policy   on   the   Integration   of  

Renewable  Energy  Sources”  3).    

Photovoltaic  cells  take  dispersed  light  energy  and  concentrate  it  into  electricity,  which  

is   then   fed   into   the   grid   (Bryce,   “Power   Hungry”   41).   In   2013,   PV   contributed   less   than   1  

percent   of   Israel’s   electricity   needs   (Halász   and   Malachi   22).   However,   according   to   Eitan  

Parnass,  the  Chairman  of  the  Green  Energy  Association,  one  of  Israel’s  main  renewable  energy  

Page 40: Energy Policy Energy Island - Chudnovsky Thesis

Page 39

lobbying  groups,  the  latest  numbers  for  2014  indicate  that  there  is  500  MW  of  grid-­‐connected  

PV   energy   capacity.   Half   of   this   installed   capacity   is   made   up   of   10,000   residential   and  

commercial   systems,   and   the   other   half   with   medium   sized   utility   systems.   According   to  

Parnass,  the  category  of  medium-­‐sized  systems  in  particular  has  been  expanding  in  2014,  with  

100  MW  added   in   a   six-­‐month  period.  There   are   also   200  MW  of   large-­‐scale  utility   systems  

that  are  under  construction  (Tsagas).    

In   February   2014,   there   was   a   transfer   of   a   290   MW   quota   that   was   allocated   for  

renewable   energy   specifically   to   the   solar   PV   sector.   By   October   2014   the   government  

authorized  another  change  to  the  renewable  energy  quotas  so  that  520  MW  were  transferred  

to  PV  systems  from  other  projects  (“Israel  Revises  Quotas”).  The  goal  is  to  have  1,550  MW  of  

renewable   energy   capacity   by   2014   and   2,760   MW   by   2020   (Israel   MNI,   “Policy   on   the  

Integration  of  Renewable  Energy  Sources”  24)  with  that  capacity  divided  into  quotas  for  the  

different  technology.  Another  90  MW  were  also  transferred  from  wind  to  PV  and  another  20  

MW   from   concentrated   solar   power   (CSP)   to   PV   as   well.   CSP   is   a   technology   where   solar  

energy  is  captured  and  redirected  by  clusters  of  mirrors  to  head  fluids,  and  can  generate  both  

heat  and  electricity.  An  additional  60  MW  of  biogas  will  be  converted  into  230  MW  of  solar  

PV.  Two  solar  thermal  plants  also  had  their   licenses  revised  so  that  they  would  produce  180  

MW  of  power  from  PV  panels  (“Israel  Revises  Quotas”).  

Besides   solar   power,   Israel’s   renewable   energy   potential   is   arguably   limited.   The  

potential  for  biomass  is  about  8.6  Mtoe,  mainly  from  municipal  waste.  Israel’s  wind  potential  

is  also  low,  with  a  maximum  capacity  at  600  MW  or  1.75  billion  kWh.  Wind  technology  also  

faces   the   challenge   of   location   and   grid   interconnection.   Therefore   Israel’s   emphasis   for  

renewable  energy  is  on  solar  (Adelekan  13).    

Page 41: Energy Policy Energy Island - Chudnovsky Thesis

Page 40

4.1 THE CASE FOR SOLAR:

It   is   estimated   that   between   22   and   26   percent   of   the   world’s   total   solar   energy   is  

available   in  the  MENA  region.   In   fact,   the  region’s  solar  energy  potential   is  higher  than  any  

other   region   in   the   world.   The   annual   solar   radiation   in   the  MENA   region   is   greater   than  

2,000  kWh  per  square  meter  (World  Bank  81).   Israel   is   located  at  a   latitude  of  30oN  and   its  

daily  solar  energy  resources  range  from  5.5  to  7.0  kWh  per  meter  squared,  and  a  daily  average  

of   5.48   kWh   per  meter   squared   on   a   collector   surface.   Furthermore,   given   that   the   Negev  

Desert  makes  up  over  50  percent  of  Israel’s  land  area,  Israel  is  a  natural  environment  for  solar  

power  (Eytan  and  Dor  100;  Adelekan  12).    

4.1.1   Solar  Water  Heating  –  History  Deploying  Renewables:  

Israel  pioneered   the  development  of   rooftop   solar  water  heating   (SWH)   systems  and  

has   experience   in   deploying   a   solar   renewable   technology.   China,   Israel   and   Australia   are  

among  the  top  ten  countries  using  SWH  systems  (Li,  Rubin  and  Onyana  162).  But  Israel  has  

the   highest   per   capita   solar   water   heater   use   rate   in   the   world,   at   about   90   percent   of  

households.  This  equates  to  having  about  3  percent  of  Israel’s  primary  electricity  consumption  

supplied  by  solar  water  heating  systems  (Grossman  and  Goldrath  1).  A  typical  domestic  SWH  

unit  operates  at  an  annual  average  efficiency  of  50  percent  and  can  save  about  2,000  kWh  per  

year   in   electricity   costs.   The   SWH   can   increase   the   temperature   of   a   water   tank   by  

approximately  30oC  above  its  starting  point  on  an  average  day.  This  means  that  on  most  days  

of  the  year  it  is  not  necessary  to  use  the  electrical  backup-­‐heating  coil,  which  all  storage  tanks  

have  (Faiman).  

The   increase   in   the   1973  world   oil   prices   to   $12   per   barrel   contributed   to   the   Israeli  

government’s   mandate   in   1980   to   install   SWH   systems.   But   after   oil   prices   decreased,   the  

Page 42: Energy Policy Energy Island - Chudnovsky Thesis

Page 41

government   maintained   the   policy.   In   fact,   Israel   was   the   first   country   in   the   world   to  

mandate  the  installation  of  SWHs  for  new  private  houses  below  27  meters  in  height.  Having  

the   mandatory   installation   regulation   kept   a   consistent   demand   for   the   SWH   units.   This  

provided   security   and  motivation   for   the  SWH   industry   to   innovate   the   technology.   Israel’s  

centralized  political   system  also  contributed   to   the  deployment  of   the  SWH  technology   (Li,  

Rubin   and   Onyana   164-­‐65).   Yet   despite   Israel’s   experience   with   deploying   this   renewable  

energy   technology   and   the   5   percent   renewables   target   by   2014,   in   2013   PV  met   less   than   1  

percent  of  Israel’s  electricity  needs  (Halász  and  Malachi  22).  

4.1.2   Opportunities  for  Solar:  

§ THE  MARKET  

  Companies  such  as  Arava  Power  and  Millennium  Electric,  as  well  as  universities,  such  

as  the  Blaustein  Institute  at  Ben-­‐Gurion  University  and  the  Weizmann  Institute,  are  some  of  

the   leading   developers   of   solar   technology   in   Israel.   The   areas   of   focus   for   the   research  

institutes  have  been  on  energy  conversion,  storage,  and  concentrator  PV.  A  key  development  

at   the  Weizmann   Institute  has  been   the   solar   tower   for   concentrating   solar   energy  and   the  

solar   dish   facility   at   the   Blaustein   Institute.   The   Blaustein   Institute   has   concentrated   on  

improving  the  efficiency  of  solar  thermal  and  PV  technology  for  commercial  purposes  while  

the  Weizmann  Institute  has  focused  on  solar  technology  as  a  base  for  other  processes  such  as  

hydrogen  fuel  storage  and  transportation  (Adelekan  13).    

Within   the  private   sector,   there  has   been   significant   progress   in   the  development   of  

solar   thermal   and   PV.   Millennium   Electric   has   used   its   Photovoltaic   Thermal   (PVT)  

technology  for  monitoring  traffic,  for  tolls  on  the  Cross-­‐Israel  Highway  and  for  school  system  

Page 43: Energy Policy Energy Island - Chudnovsky Thesis

Page 42

that   are   connected   to   the   grid   (Adelekan   13).   Recent   research   and   development   has   also  

focused   on   systems   that   allow   solar   energy   to   be   used   for   generating   electricity   and   heat  

simultaneously.  The   Israeli   company  ZenithSolar  was  able   to  achieve  up   to  75  percent   solar  

power   conversion   efficiency   using   such   a   technology,   which   was   developed   at   Ben   Gurion  

University   (Israel   Ministry   of   Economy,   “Creative   Energy”   3).   Suncore   Photovoltaic  

Technology,   a   Chinese-­‐US   joint   venture   company   that   specializes   in   Concentrated  

Photovoltaic  (CPV)  technology  bought  ZenithSolar  in  June  2013.  

Ben-­‐Gurion   famously   said   that   the   “Negev   offers   the   greatest   opportunity   to  

accomplish  everything  from  the  beginning.”  And  the  Negev  desert  offers  an  ideal  location  for  

the  deployment  of  utility  scale  PV  plants  in  Israel  because  the  average  annual  solar  radiation  

is   above   2,000   kWh   per   meter   squared,   compared   with   locations   in   Europe   that   have   an  

annual  average  irradiation  of  1,000  to  1,500  kWh  per  meter  squared  (Halász  and  Malachi  20).  

That  means  that  the  Negev  gets  over  2,000  hours  of  sunlight  per  year,  about  the  same  as  the  

Sahara  Desert  (Levinson).  Therefore,   increasing  the  installation  of  solar  powered  technology  

in  the  Negev,  is  a  specific  opportunity  for  renewable  energy  deployment  in  Israel.    

 

§ THE  TECHNOLOGY    

There   is   significant  development  occurring   in   the  Negev.  The  Arava  Power  Company  

aims   to   supply   10  percent  of   Israel’s   electricity  needs  by  working  with  kibbutzim  (collective  

farms  or  settlements),  with  the  Bedouin  living  in  the  Negev,  and  other  landowners.  Siemens  

holds  a  40  percent  stake  in  Arava  as  of  2009.  Arava  has  also  established  in  June  2011  the  first  

commercial  solar  field  in  Israel,  called  Ketura  Sun,  which  consists  of  18,500  PV  panels  installed  

on  19  acres  of  land.  It  generates  4.95  MW,  which  is  about  9  million  kWh  of  electricity  per  year  

Page 44: Energy Policy Energy Island - Chudnovsky Thesis

Page 43

(Bahgat,  “Alternative  Energy  in  Israel”  15;  Bahgat,  “Alternative  Energy  in  the  Middle  Easy”  74).    

The  Negev  region  typically  has  no  rainfall  from  June  through  October  and  the  lack  of  

rain,  combined  with  high  winds,  results  in  frequent  dust  storms.  Having  dust  on  solar  panels  

can  reduce  their  efficiency  up  to  35  percent,  by  some  estimates.  The  solar  panels  at  Ketura  Sun  

were   initially   cleaned   only   nine   times   a   year,   given   that   manual   panel   cleaning   can   be  

expensive  and  took  up  to   five  days  to  complete.  During  the  cleaning  process,   the  solar   field  

was  not  operating  at  optimal  efficiency  and  the  panels  had  a  higher  chance  of  being  damaged  

by  workers.  Arava  introduced  the  Ecoppia  E4  robots,  which  removed  99  percent  of  the  dust  

on  the  panels  each  day.  The  E4s  were  deployed  for  the  entire  Ketura  field  and  currently,  100  

E4  robots  are  used  to  clean  every  panel  on  a  nightly  basis.  These  robots  are  solar  powered  and  

are  charged  during  the  day  to  operate  at  night.  They  move  along  a  horizontal  track,  and  slide  

down  rows  of  panels  to  clean  them.  Ecoppia’s  E4  do  not  use  water  during  the  panel  cleaning  

process,  but  instead  are  “using  a  rotating  microfiber  brush  and  directed  air  flow  to  get  rid  of  

dust  and  other  contaminants”  (Kara).  The  cleaning  process  can  be  managed  remotely  by  using  

Ecoppia’s  web-­‐based  control  system  (Kara).    

According   to   Ecoppia,   the   Israeli   company   manufacturing   the   robots,   when  

considering  for  example  a  300  MW  PV  farm,  using  the  robots  can  translate  into  $9  million  of  

operational   savings   per   year.   Additionally,   it   is   expected   to   take   up   to   18   months   for   the  

investment   in   the   system   to   be   repaid   (Snieckus).   This   is   a   tremendous   technological  

development,  which  contributes  to  the  feasibility  of  deploying  solar  technology  in  places  like  

the   Negev.   The   E4   robot   technology   is   also   being   deployed   on   a   global   scale.   In   fact,   the  

Photovoltaik   Institut   Berlin,   which   is   a   leading   independent   testing   laboratory   for   PV  

technology,  has  certified   the  E4   robot   system  as   safe   to  use  on  a   long-­‐term  basis   for  panels  

Page 45: Energy Policy Energy Island - Chudnovsky Thesis

Page 44

made  by  nine  global  manufacturers.  The  nine  solar  panel  manufacturers  are  Yingli  Solar,  First  

Solar,   Solar   Frontier,   Photowatt,   JA   Solar,   Trina   Solar,   Canadian   Solar,   Jinko   Solar,   and  

ReneSola.   JA   Solar   has   also   certified   Ecoppia's   technology   based   on   extensive   simulation,  

which  they  tested  as  the  equivalent  of  20  years  of  daily  cleaning.  JA  Solar  already  has  a  plan  to  

deploy   the   robots   on   40  MW   of   panel   installations   in   various   locations   around   the   world  

(Ecoppia).  

In   March   2012   Israel’s   Public   Utility   Authority   (PUA)   also   issued   licenses   for   nine  

additional   solar   fields   (Bahgat,   “Alternative  Energy   in   the  Middle  East”   74).  By   June  2014,   11  

new  solar  fields  began  to  operate  in  southern  Israel.  The  new  fields  were  launched  by  Arava  

Power  and  EDF  Energies  Nouvelles  (EDF  EN);  EDF  EN  is  a  subsidiary  of  Electricite  de  France.  

Arava’s  fields  generate  36  MW  of  electricity  and  the  EDF  EN  fields  produce  32  MW  (Udasin).    

In  2012  the  PUA  made  a  significant  change  to  the  methodology  used  for  calculating  the  

tariff   on  PV  plants.   Instead  of   a   fixed   tariff,   they  began  using   a   variable   tariff.   The   variable  

tariff   is  pegged  to  a   formula  that  takes   into  account   interest  rates,   inflation,  exchange  rates,  

and   the  Bloomberg  New  Energy   Finance   (BNEF)  Module   and   Inverter   indices.9  The   goal   of  

this  change  was  to  avoid  having  a  bubble  for  solar  technology  in  Israel,  because  feed-­‐in  tariffs  

(FIT)   would   be   disconnected   from   actual   costs.   According   to   the   PUA,   the   new   method  

encourages   the   Israeli   PV   industry   to   develop   and  maintain   costs   at   a   comparable   level   to  

global  prices.  This  plays  an  important  role  in  allowing  solar  technology  to  achieve  grid  parity.  

However,  most  of  the  870  MW  PV  quotas  had  already  been  authorized  with  a  fixed  tariff.  The  

changed  methodology  was  thus  applied  so  far  to  350-­‐400  MW  of  PV,  mainly  large-­‐scale  utility  

9 The BNEF Inverter Price Index is a monthly survey of central and string inverter spot prices across residential, commercial and utility segments. The BNEF Solar Module Spot Price Index is surveying spot prices for the dominant technologies of crystalline silicon, thin film silicon, cadmium telluride and copper indium gallium selenide modules.

Page 46: Energy Policy Energy Island - Chudnovsky Thesis

Page 45

projects  (IRENA  24;  Tsagas).  

One  of   Israel’s  most   recent  developments   in   the  Negev   is   the  Ashalim  Thermal  Solar  

Power  Station  project,  which  is  a  joint  venture  between  the  Israeli  solar  technology  company  

BrightSource   Energy   and   the   French   firm   Alstom.   The   European   Investment   Bank   (EIB)   is  

providing  a  Euro  4,150  million  loan  for  this  project.  The  Ashalim  plant  has  the  design  of  a  CSP  

plant  with  a  net  capacity  of  110  MW  and  will  be  the  largest  solar  plant  in  the  country.  The  goal  

for  this  plant  is  to  generate  a  level  of  electricity  that  meets  the  needs  of  a  medium-­‐sized  city  in  

Israel,   with   around   120,000   homes.   The   target   is   to   have   Ashalim   operational   by   2017.  

BrightSource  will  provide  the  heliostats  and  optical  concentrating  devices  for  the  project,  as  

well  as  their  concentrating  solar  power  tower  technology.  The  solar  power  tower  is  similar  to  

the   technology  used   at   the   Ivanpah  project   in   Southern  California.  And  based  on   a   25-­‐year  

agreement,  the  IEC  will  purchase  100  percent  of  the  electricity  generated  at  Ashalim.  Israel’s  

government  guarantees  the  purchase  by  the  IEC  (“EU  Bank  Funds  Largest  Solar  Power  Plant  

in  Israel”;  “Construction  to  start  on  Ashalim  solar  power  plant  in  Israel”;  U.S.  OPIC  1).  

 

§ THE  OPPORTUNITY  FOR  DESALINATION  

Access  to  fresh  water  is  a  significant  concern  for  Israel  and  desalination  has  played,  and  

is  expected  to  continue  playing,  an  even  stronger  role  in  closing  the  water  gap  needs.  This  is  

the  case  with  most  Middle  East  and  North  African  (MENA)  countries  (World  Bank  63-­‐5).  As  of  

2012,  313  million  cubic  meters  of  seawater  were  desalinated   in   Israel,  contributing  around  15  

percent   of   the   water   produced.   There   has   been   an   18   percent   increase   in   the   amount   of  

produced  desalinated  seawater  since  2010  (Israel  CBS,  “Statistical  Abstract  of  Israel  2014”  924).  

In   fact,   Avraham   Tenne,   head   of   the   Desalination   Division   at   Israel’s   Water   Authority,   is  

Page 47: Energy Policy Energy Island - Chudnovsky Thesis

Page 46

quoted   stating   in   February   2014   that   “with   a   touch   of   a   button,   [Israel]   can   produce   600  

million   cubic   meters   of   water”   (Odenheimer   and   Nash).   This   is   a   substantial   volume   of  

desalination  potential  for  a  country  that  consumed  1,902  million  cubic  meters  of  water  in  2012  

(Israel  CBS,  “Statistical  Abstract  of  Israel  2014”  924).    

By  2030,  the  lack  of  available  fresh  water  is  expected  to  become  a  severe  limitation  on  

the  socioeconomic  development10  in  all  21  MENA  countries,  including  Israel  (World  Bank  3).  

For   Israel,   the   2020   target   is   to   be   able   to   produce   750   million   cubic   meters   of   water   via  

desalination  per  year  and  by  2025  desalinated   supplies   should   increase   to  70  percent  of   the  

domestic   water   demands.   By   2050,   the   desalination   target   increases   to   100   percent   of  

drinkable  water  demand  (Israel  Water  Authority,  “Sea  Water  Desalination  in  Israel”  3-­‐4).  

Between   1974   and   2009,   131   renewable   energy   powered   desalination   plants   were  

installed  worldwide,  and  these  plants  reflect  eight  different  combinations  of  renewable  energy  

technology  and  desalination;  wave  power  is  excluded.  Solar  heat  is  the  most  common  energy  

source,  among  these  131  plants,  followed  by  PV.  The  primary  reason  that  solar  heat  and  PV  are  

the  preferred  energy  sources  is  that  solar  energy  is  considered  to  be  more  predictable.  Having  

sufficient  energy  when  and  where  it  is  needed  is  an  essential  factor  when  aligning  renewable  

energy  and  desalination  (World  Bank  87-­‐8).  

The   following   are   three   primary   technologies   used   for   commercial   deployment   of  

large-­‐scale  desalination  plants,  Reverse  Osmosis   (RO),  Multi-­‐Stage  Flash  Distillation   (MSF),  

and  Multiple  Effect  Evaporation  (MEE).  RO  requires  electricity,  however,  MEE  and  MSF  use  

thermal  energy,  and  can  operate  using  heat  sources  such  as  solar  energy.  The  solar  powered  

RO   plants   are   not   entirely   integrated   systems,   since   the   electricity   generated   by   solar   10  The  Food  and  Agriculture  Organization  (FAO)  of  the  United  Nations  considers  renewable  water  availability   levels  of   less  than  1,000  m3  per  person  per  year  as  a  severe  constraint  to  socioeconomic  development  and  environmental  sustainability.  

Page 48: Energy Policy Energy Island - Chudnovsky Thesis

Page 47

technology  can  be  fed  into  the  grid,  while  electricity  for  the  RO  plant  can  be  taken  from  the  

grid  (Mittelman  et  al.,  1322).    

Solar   powered   RO   technology  would   be   an   economically   feasible   option   if   the   solar  

derived   electricity   is   competitive   on   its   own   compared   to   conventional   grid   power,  

irrespective  of  the  desalination.  In  the  case  of  solar  thermal  desalination  processes  there  is  no  

equivalent   grid   for   the   heat.   Therefore,   the   solar   and   the   desalination   components   are  

evaluated   together   as   an   integrated   system.   According   to   analysis   by  Mittelman   et   al.,   the  

projected  cost  of  water  that  is  desalinated  with  a  thermal  process  powered  by  solar  heat  is  still  

significantly  higher  than  that  of  a  conventional  desalination  plant.  This  is  primarily  because  of  

the   cost   for   the   solar   thermal   collectors,   which   are   used   for   capturing   solar   radiation  

(Mittelman  et  al.,  1322-­‐23).    

The   opportunity   assessed   for   Israel,   in   this   thesis,   is   in   using   a   Concentrating  

Photovoltaic   and  Thermal   (CPVT)   system.  With   the  CPVT   technology   the   collected  heat   is  

utilized,  which  is  the  process  for  producing  thermal  energy.  Comparatively,  with  PV  units  the  

heat  is  typically  wasted  (Mittelman  et  al.,  1323).  

Desalination  is  an  extremely  energy  intensive  process  since  energy  is  required  to  move  

water   from   source   to   tap   and   also   to   treat   the   water.   Each   step   of   the   water   supply   and  

disposal  cycle  uses  energy  (World  Bank  129).  The  extent  of  energy  used  for  desalination  also  

depends  on  the  salinity  of  the  water  and  the  type  of  technology  being  used.  The  processes  of  

extraction,   transport   and   treatment   of   fresh   water   are  much   less   energy   intensive   (Geurts,  

Noothout   and   Schaap   2).   According   to   data   from   2007,   the   electricity   consumed   per   cubic  

meter  of  desalinated  water   ranged   from  2.0   to   5.0  kWh  per   cubic  meter,  depending  on   the  

Page 49: Energy Policy Energy Island - Chudnovsky Thesis

Page 48

desalination   process.   Table   3   in   the   Appendix   shows   the   average   energy   consumption   for  

various  desalination  technologies  (Meindertsma,  van  Sark  and  Lipchin  455-­‐56).  According  to  a  

2010   report   by   the   Head   of   Israel’s   Desalination   Division,   Israel’s   national   average   cost   of  

producing  a  cubic  meter  of  desalinated  water  is  US  65¢  per  3.5  kWh  (Israel  Water  Authority,  

“Sea  Water  Desalination  in  Israel”  10).  Israel’s  average  cost  for  producing  desalinated  water  is  

lower   because   of   the   use   of   the   latest   seawater   RO   technologies,   which   utilize   advanced  

energy  recovery  devices  (Meindertsma,  van  Sark  and  Lipchin  455).  

There  are   four  desalination   facilities   in   Israel,   the  Ashkelon,  Palmachim,  Hadera  and  

Sorek   plants.   There   are   also   a   number   of   smaller   facilities   that   treat   brackish   water   from  

groundwater   wells,   rather   than   seawater.   Israel   currently   relies   mainly   on   seawater  

desalination.  The  Sorek  facility  has  the  capacity  to  treat  624,000  cubic  meters  of  seawater  per  

day  and  is  the  biggest  seawater  desalination  plant   in  the  world;  this  plant  uses  the  seawater  

reverse  osmosis  (SWRO)  process.  The  Ashkelon  SWRO  plant  has  a  capacity  of  330,000  cubic  

meters   per   day   and   produces   around   5   to   6   percent   of   Israel's   total   water   needs   (“Sorek  

Desalination  Plant,  Israel”;  “Ashkelon,  Israel”;  Meindertsma,  van  Sark  and  Lipchin  455-­‐6).    

The   price   of   energy   is   the  main   component   of   a   desalination   plants   operational   and  

maintenance  costs.  The  Foundation   for  Water  Research  estimates   that   for   thermal  seawater  

desalination  processes,  energy  contributes  approximately  50  percent  of  the  total  desalination  

cost.  For  SWRO,   the  cost  of  energy  contributes  around  44  percent.  For   the  Ashkelon  plant,  

the  energy  costs  are  around  25  percent  of  the  total  water  price.  This  is  low  compared  to  other  

desalination   plants   because   the   SWRO   in   Ashkelon   is   using   an   advanced   energy   recovery  

device,  which  reduces  the  amount  of  needed  consumed  (Meindertsma,  van  Sark  and  Lipchin  

455).

Page 50: Energy Policy Energy Island - Chudnovsky Thesis

Page 49

The   opportunity   for   solar   powered   desalination   in   Israel   is   with   concentrating   solar  

power  (CSP)  technology.  With  CSP,  solar  energy  is  captured  and  redirected  by  mirrors  to  heat  

fluids,  and  can  be  used  to  generate  both  heat  and  electricity.  Although  the  electricity  cannot  

be  stored  as  electrical  energy,  heat  can  be  stored.  Moreover,  as  a  renewable  energy  technology  

used   to   store   and   provide   power   on   demand,   CSP   is   a   particularly   applicable   option   for  

desalination  plants,  which  need  to  operate  on  a  continuous  basis  (World  Bank  2-­‐13).  

What   makes   the   opportunity   particularly   unique   for   Israel   is   that   there   is   an  

established  and  efficient  national  water  distribution   system  and   it   is  not   really  necessary   to  

provide   local  desalination  plants   for  remote  areas  of   the  country.  This  means  that  the  small  

number   of   large   desalination   plants   can   continue   supplying   the   entire   country  with  water.  

Large  desalination  plants  have  the  advantage  of  economies  of  scale,  thus  reducing  the  cost  of  

water.   According   to   an   extensive   study   conducted   by   Greenpeace,   the   European   Solar  

Thermal  Power  Industry  Association  (ESTIA)  and  the  International  Energy  Agency  (IEA),  CSP  

is  considered  to  be  the  most  promising  renewable  energy  technology  for  countries  like  Israel  

that  have  a  high  solar  irradiation.  The  proposed  CSP  technology  for  Israel  uses  the  parabolic  

trough,  because   it   is   available  on  a  commercial   scale,   requires   the   smallest  amount  of   land,  

works  with  storage  facilities  to  ensure  continuous  operation  and  can  also  operate  as  a  hybrid  

system  with   natural   gas   plants.   The   ability   to   use   CSP   technology   as   a   hybrid   system  with  

natural  gas  reinforces  the  opportunity  for  increasing  the  intermittent  use  of  renewable  energy  

technology,  particularly  solar,  in  Israel  (Meindertsma,  van  Sark  and  Lipchin  452-­‐60).  

The   electricity   costs   from  parabolic   troughs  have  decreased   to   a   range   of   $15-­‐$17   per  

kWh.  According  to  the  same  study  conducted  by  Greenpeace,  ESTIA  and  the  IEA,  because  of  

technological  improvements  and  the  mass  production  of  solar  troughs,  their  electricity  costs  

Page 51: Energy Policy Energy Island - Chudnovsky Thesis

Page 50

are   expected   to   go   down   to   $0.09   per   kWh   by   2020.   In   the   long-­‐run,   hybrid   systems,  

combining  CSP  and  gas  fueled  power  plants,  called  Integrated  Solar  Combined  Cycle  (ICCS)  

systems,  are  expected  to  provide  electricity  at  costs  ranging  from  $0.10  per  kWh  to  $0.075  per  

kWh.   For   Israel,   cost   estimates   for   the   first   hybrid   natural   gas   CSP   plant,   with   a   40   to   50  

percent   solar   share,   are   between   $0.07   and   $0.08   per   kWh   (Meindertsma,   van   Sark   and  

Lipchin  460).  The  World  Bank  also  estimates  that  the  electricity  potential  for  Israel  from  CSP  

is  151  TWh  per  year  versus  6.0  TWh  per  year  for  PV  (World  Bank  83).

In  2001,   the  Ministry  of  National   Infrastructure  announced  an   intention   to   introduce  

CSP   to   the   Israeli   electricity   market   (Meindertsma,   van   Sark   and   Lipchin   457).   There   are  

currently   two  operational  CSP  plants   in   Israel,  BrightSource  SEDC  at  6  MW  and   the  AORA  

Solar  Tulip  Tower  at  0.10  MW.  There   is   also  a   total  of   300  MW  from  CSP  plants   at   various  

stages   of   planning   and   development,   which   includes   the   Ashalim   plant   in   the   Negev  

(Alcauza).11  The  World  Bank  estimates  for  the  MENA  region  that  the  transition  from  the  use  

of   conventional   to   CSP   desalination   technology   would   start   at   100   million   cubic   meters  

(MCM)  in  2015;  this  is  equivalent  to  three  plants,  each  with  a  capacity  of  33.5  MCM  per  year.  

After   2030,   the   transition   would   reach   a   maximum   level   of   1,500   MCM   added   per   year.  

“Growth  is  expected  to  be  exponential  from  2015  to  2020,  linear  after  2020,  and  constant  after  

2030”  (World  Bank  55).  

Replacing  existing  desalination  plants  could  be  achieved  either  by  installing  combined  

solar  power  with  desalination  plants  that  would  use  multiple  effect  distillation  (MED)12  and  a  

solar-­‐powered  steam  cycle.  The  other  option  could  be  to  use  RO  plants  that  are  powered  by  

11  All  of  the  CST  projects  that  are  planned  or  in  development  are  located  in  southern  Israel  and  include  the  following:  Shneur  Solar  Thermal  Power  Plant  is  planned  for  120  MW;  Two  Sigma  CSP  Plant  is  planned  at  60  MW;  Ashalim  CSP  Plant  is  under  development  at  121  MW;  HelioFocus  Ramat  Hovav  is  planned  at  1  MW  (Alcauza).  

12  MED  plants  typically  are  set  up  to  obtain  energy  from  adjacent  thermal  power  stations  run  on  oil  or  gas  (World  Bank  65).  

Page 52: Energy Policy Energy Island - Chudnovsky Thesis

Page 51

solar   energy.   The   assumption   is   that   desalination   plants   will   be   run   on   a   hybrid   energy  

system,  with  a  46–54  percent  solar  share.  In  order  to  ensure  the  adoption  of  renewable  energy  

desalination,  CSP  technology  needs  to  become  more  price  competitive  by  approximately  2030,  

since  half  of  the  existing  plants  may  be  decommissioned  between  2036  and  2039  (World  Bank  

54-­‐60).  

4.2 ASSESSMENT OF THE RISKS & REWARDS:

  Given   Israel’s   historical   lack   of   domestic   fossil   fuels   and   the   levels   of   domestic   solar  

radiation,  it  was  only  natural  for  Israel  to  add  targets  for  renewable  energy  to  its  energy  mix.  

In   assessing   the   opportunities   and   risks   that   Israel   faces  with   increasing   renewables   in   the  

energy  mix,  it  is  important  to  note  that  given  the  nature  of  renewable  energy,  if  the  sun  is  not  

shining  or  the  wind  is  not  blowing,  these  technologies  do  not  produce  power.  Power  output  

fluctuations  can  potentially  have  a  negative  effect  on  the  stability  of  a  utility  grid,  especially  in  

the  case  of  an  isolated  power  system  like  Israel,  the  energy  island.  Therefore,  the  choice  of  PV  

sites   and   having   the   appropriate   distribution   of   installed   power   are   particularly   important  

factors  for  large-­‐scale  deployment  of  PV  systems  in  Israel  (Halász  and  Malachi  20-­‐1).    

The  fluctuations  of  solar  energy  can  rapidly  change  the  power  output  of  a  PV  unit.  For  

an   energy   island   like   Israel,   the   power   fluctuations   can   disrupt   the   balance   of   generation  

versus   load.   This   imbalance   can   be   measured   by   how   frequently   the   control   system   is  

activated   at   conventional   power   plants   that   provide   backup   to   these   fluctuations.   The  

response   time   ranges   from   ten   seconds   to   several   minutes,   depending   on   the   system.   But  

fluctuations  in  power  above  a  certain  MW  level,  or  ramp  rate  (MW/min),  cannot  be  balanced  

by   the   load-­‐frequency   control   of   conventional   power   plants.   Consequently,   the   quality   of  

Page 53: Energy Policy Energy Island - Chudnovsky Thesis

Page 52

power  will   be   reduced   and,   in  more   serious   cases,   under-­‐frequency   load   shedding   (UFLS)13  

maybe   necessary   in   order   to   restore   the   generation   balance   and   avoid   having   a   system  

collapse.   Therefore,   even   a   small   number   of   annual   instances   caused   by   the   fluctuation   of  

power  by  a  PV  system  would  be  very  disruptive   for   Israel.  A  potential   solution   to   this   issue  

would  be  to  install  fast  response  backup  capacity,  such  as  a  spinning  reserve.  They  are  meant  

to  offset  the  large  or  rapidly  changing  power  imbalances  that  result  from  renewable  sources.  

However,   these   backup   capacities   are   expensive   and   can   create   challenges   in   operating   a  

system   (Halász   and   Malachi   20-­‐21).   The   advantage   of   the   proposed   application   of   CSP  

technology   is   that   it   does   not   require   additional   spinning   reserve   to   address   intermittency  

issues  associated  with  PV  plants.  

There   have   also   been   recent   developments   by   an   Israeli   solar   power   company,  

Brenmiller  Energy,  to  more  efficiently  store  heat  from  the  sun.  This  could  allow  thermal  solar  

power  plants  to  run  at   full  capacity,  both  day  and  night.  The  company  is  aiming  to  have  1.5  

MW  installed  by  next  year  on  15  acres  in  the  Negev  and  connected  to  the  national  grid.  They  

also   have   a   number   of   global   pilot   projects   at   10   to   20   MW.   The   projects   are   meant   to  

demonstrate   that   the  price   for  electricity  produced  with  this   technology  can  be  competitive  

with  power  from  conventional  plants.  Brenmiller’s  technology  uses  a  row  of  parabolic  mirrors  

to  track  the  sun, concentrating  the  rays  to  generate  steam,  which  powers  the  turbine.  Their  

innovation   is   in   the   cement-­‐like   structure   that   stores   the   heat,  which   is   located   about   two  

meters  below  the  mirrors.  The  IEA  states  in  a  2014  report  that  energy  storage  can  be  a  key  to  

bridging   the   gap   between   energy   supply   and   demand.  And   according   to  Amit  Mor   of   Eco-­‐

13   The   purpose   of   UFLS   is   to   balance   generation   and   load   when   an   event   causes   a   significant   drop   in   frequency   of   an  interconnection.   The   UFLS   activation   metric   measures   the   number   of   times   it   is   activated   and   the   total   MW   of   load  interrupted.  After  an  UFLS  event,  frequency  relays  can  be  utilized  to  automatically  restore  or  supervise  the  restoration  of  load  to  a  power  system.  

Page 54: Energy Policy Energy Island - Chudnovsky Thesis

Page 53

Energy,  "in  my  understanding,  there  is  no  other  technology  like  it  in  the  world"  (Rabinovitch).    

Renewable  energy  projects  such  as  Ashalim  also  provide  socioeconomic  advantages  in  

Israel   by   creating   employment   opportunities   in   the   Negev   region,   particularly   in   the  

construction  and  operation  of  the  fields  using  renewable  energy  technology.  The  Negev,  from  

this   perspective,   is   a   relatively   poorer   area   of   Israel   with   local   populations   having   limited  

employment   opportunities   and   underdeveloped   infrastructure.   The   Ashalim   project   is  

expected  to  create  new  technical   jobs   in  the  region,  which  will   involve  extensive  training   in  

plant  operation,  management  and  maintenance  (U.S.  OPIC  1-­‐2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 55: Energy Policy Energy Island - Chudnovsky Thesis

Page 54

5. CONCLUSION:

In   a   region   that   predominately   has   vast   energy   resources,   Israel   has   been   at   a  

disadvantage  for  much  of  its  history,  trying  to  access  sufficient  oil,  coal  and  gas.  All  of  that  is  

changing   and   Israel’s   natural   gas   reserves   can   provide   the   country   with   a   higher   level   of  

energy  security,  which  is  a  driving  factor  of  its  energy  policy.  Described  as  a  “transition  fuel”,  

natural  gas  also  provides  the  opportunity  to  increase  the  intermittent  use  of  renewable  energy  

for  power  generation.    

5.1 IMPLICATIONS FOR A SUSTAINABLE ENERGY POLICY BY 2030:

The  long-­‐term  future  is  full  of  uncertainties.  But  a  joint  outlook  study,  by  the  Jerusalem  

Institute   of   Israel   Studies   and   the   Ministry   of   Environmental   Protection,   provides   the  

following   framework   for   2030:   “Israel   in   2030   will   be   a   country   whose   citizens   live   in   an  

environment   that   provides   economic  well   being,   social   resilience   and   personal   security...   It  

will  be  a  country  that  promotes  innovation  and  enterprise,  thriving  urban  life,  inclusion  and  

access  for  all  of  the  population  to  employment  opportunities  and  services.  It  will  be  a  country  

where   there   is   absolute   decoupling   of   economic   growth   from   deterioration   of   the  

environment...   In  2030  the  quality  of   life   in  Israel  of  the  current  generation  will  be  high  but  

will   include   responsibility   for   protecting   natural   resources   for   the   present   and   future  

generations”  (Brachya  7).    

Economic  growth  and  an  increase  in  the  quality  of  life  will  require  energy.  Even  in  1865  

energy  was  described  by  William  Stanley  Jevons  as  “the  universal  aid–the  factor  in  everything  

we  do…  without  [which],  we  are  thrown  back  into  the  laborious  poverty  of  early  times”  (Bryce,  

“Power   Hungry”   302).   The   Ministry   of   National   Infrastructures   expects   that   Israel   will  

continue   increasing   the   use   of   natural   gas,   up   to   18   BCM   by   2030,   85   percent   of   which   is  

Page 56: Energy Policy Energy Island - Chudnovsky Thesis

Page 55

expected   to   be   used   primarily   for   electricity   generation   but   also   for   industry.   In   2030,   the  

consumption   of   natural   gas   during   peak   demand   is   also   expected   to   be   80   percent   (Israel  

MNI,   “Natural   Gas   Sector   in   Israel”).   The   following   are   the   outlined   recommendations   for  

Israel  to  pursue  by  2030:  

5.2 RECOMMENDATIONS:

The   focus   of   this   thesis   has   been   to   evaluate   the   opportunities   and   risks   that   Israel  

faces  in  shifting  to  an  energy  mix  increasingly  dominated  by  domestic  natural  gas.  The  main  

objection   to   an   increased   use   of   natural   gas   is   that   the   supply   is   more   susceptible   to  

breakdowns  and  sabotage,  potentially  making  it  less  reliable  than  coal  or  oil.  The  argument  of  

this   thesis   is   that  by  using  natural  gas,  particularly  via   the  CCGT  technology,  along  with  an  

increasing  mix  of  the  outlined  renewable  energy  technologies,  Israel  can  develop  a  sustainable  

energy  policy.    

 § NATURAL  GAS    

The  recommended  technology  use  for  electricity  generation  is  the  Combined  Cycle  Gas  

Turbine   (CCGT).   To   summarize,   the   conversion   efficiency   of   this   technology   is   60   percent,  

which  is  expected  to  increase  to  64  percent  by  2020.  CCGT  plants  run  in  base  load  mode  with  

capacity   factors   near   0.85.   Coal   fired   plants   and   CCGT   are   the   only   types   of   power   plants  

being  built  in  Israel  from  2003  until  2020.  Overall,  given  the  high  efficiency  of  CCGT  plants,  

they  are  optimal  for  both  base  load  power  generation  and  as  backup  to  solar  and  wind,  thus  

increasing  Israel’s  opportunity  for  the  intermittent  use  of  renewable  energy.    

 

Page 57: Energy Policy Energy Island - Chudnovsky Thesis

Page 56

§ RENEWABLES    

The   renewable   energy   technology   for   electricity   generation   that   Israel   should  

particularly   focus  on   includes  Photovoltaic   (PV)   and  Concentrating  Solar  Power   (CSP).  The  

parabolic-­‐trough  is  a  specifically  identified  CSP  technology  approach  for  Israel.    

It  is  important  to  note  that  aside  from  the  technological  viability  of  renewables,  there  

are  physical  and  technical  challenges  associated  with  connecting  renewable  energy  sources  to  

the  transmission  network. A  grid  can  normally  handle  a  specific  amount  of  its  energy  supply  

from  renewable  energy  sources  because  of   its   inability   to   tolerate   fluctuation.  And  precisely  

because   Israel   is   an   energy   island,   it   cannot   import   or   export   power   to   balance   fluctuating  

renewable   electricity   supply.  Thus,   the  development   and   implementation  of   a   smart   grid   is  

one  of  the  most  pressing  issues  in  Israel’s  energy  economy  (Shaviv,  Caine  and  Grossman  1-­‐2;  

IEC,  “Israel  Electric  Corporation  Strategic  Aspects  Overview”  40-­‐42).    

Israel  is  certainly  investing  in  developing  and  deploying  solar  energy.  In  fact,  by  2014,  

Israel   shifted   its   focus   to   net   metering   for   residential   systems,   given   that   PV   units   have  

become   more   cost   competitive.   Israel’s   Ministerial   Committee   on   the   Promotion   of  

Renewable  Energy  approved  to  raise  the  target  quota  for  PV  by  nearly  290  MW,  which  were  

originally   allocated   for   solar-­‐thermal   and   wind   technology   (IRENA   “Adapting   Renewable  

Energy   Policies   To   Dynamic   Market   Conditions”   24).   In   fact,   even   Israel’s   Parliament,   the  

Knesset,  building  will  be  installing  rooftop  PV  panels  for  400  kWh.  

The   Ashalim   plant   that   is   under   construction   in   the  Negev   is   one   of   the   latest   CSP  

technology  deployments  in  Israel.  The  first  phase  that  is  currently  under  construction  is  for  a  

Page 58: Energy Policy Energy Island - Chudnovsky Thesis

Page 57

120   MW   plant.   The   full   250   MW   plant   is   expected   to   consist   of   one   CSP   power   tower,   a  

parabolic-­‐trough,  a  natural  gas  fired  power  station  and  30  MW  of  PV  (Snieckus).    

According  to  a  2013  study  by  Germany’s  Institute  of  Solar  Research,  the  levelized  cost  

of  energy  (LCOE)14  is  from  0.139  to  0.196  Euro  per  kWh  for  parabolic  trough  power  plants  with  

an  8  hour  thermal  storage  capacity,  at  locations  with  an  annual  radiation  between  2,000  and  

2,500  kWh  per  meter  squared.  This  is  equivalent  to  USD  $0.17-­‐$0.25  per  kWh.  By  2030  they  are  

forecasting  significant  cost  reductions  for  CSP,  resulting  in  an  LCOE  of  0.097  to  0.135  Euro  per  

kWh,   equivalent   to   $0.12-­‐$0.17   USD.   In   comparison   by   2030,   the   cost   for   PV   electricity   at  

locations   with   high   solar   irradiation   is   expected   to   fall   to   0.043   to   0.064   Euro   per   kWh,  

equivalent  to  USD  $0.05-­‐$0.08  (Kost  et  al.  4-­‐5).  PV  has  historically  had  a  cost  advantage  over  

CSP,  particularly  given  cost  reductions  in  PV  technology  over  the  last  few  years.  Therefore,  a  

potential  cost  reduction  for  CSP  can  make  it  a  more  viable  option  in  Israel,  particularly  since  

CSP  has  the  advantage  of  energy  storage  and  can  deliver  dispatchable  power.  

The   International  Energy  Agency  also  projects   that  CSP  will  play  a  significant   role   in  

the  future,  contributing  over  11.3  percent  of  the  world’s  electricity  by  2050,  with  9  percent  of  

that   from   solar   power   and   1.7   percent   from   backup   fuels.   For   countries   with   high   solar  

radiation,  such  as  Israel,  the  IEA  projects  that  CSP  can  be  a  competitive  source  of  base  load  

power  by  2030  (IEA,  “Technology  Roadmap”  1-­‐3).    

The   final   outlined   opportunity   for   Israel   is   solar   powered   desalination.   Despite   the  

comparatively   lower  costs  of   Israel’s  SWRO  plants,  desalination   is  a  highly  energy   intensive  

process.  CSP  and  desalination  can  be  significant  elements  of  Israel’s  sustainable  energy  policy  

14    The  data  from  the  Fraunhofer  Institut  for  Solar  Energy  Systems  is  provided  in  Euro.  The  conversion  to  USD  is  based  on  the  exchange  rate  as  of  November  17,  2014.  The  exchange  rate  used  is  $1  USD  =  Euro  0.80.  

Page 59: Energy Policy Energy Island - Chudnovsky Thesis

Page 58

outlook.  There  are  pilot  programs  in  the  Middle  East  for  CSP  powered  desalination.  In  Qatar  

with  the  Sahara  Forest  Project,  and  two  in  Saudi  Arabia,  at  Al-­‐Khafji  and  Rabigh.  For  Israel,  

this   is   a   particularly   significant   opportunity   given   that   the   2025   target   for   desalination   to  

supply  70  percent  of  the  domestic  water  needs,  reaching  100  percent  by  2050.  

  Change  in  the  areas  of  energy  and  technology  are  described  as  “driven  by  desperation  

or   inspiration”   (El-­‐Katiri,   “Roadmap   for  Renewable  Energy   in   the  Middle  East”   26).  Overall,  

there   is   no   single   identified   sustainable   solution   for   the   future   of   Israel’s   energy   policy.  

However,  Israel  has  been  described  as  the  only  country  in  the  MENA  region  that  has  already  

benefited  from  government  policies  promoting  the  establishment  of  a  domestic  solar  industry  

(El-­‐Katiri,  “Roadmap  for  Renewable  Energy  in  the  Middle  East”  22).  Israel’s  domestic  natural  

gas   reserves   provide   the   opportunity   to   pursue   the   renewable   energy   targets.   And   the  

recommended   energy  mix   can  meet   the  demands  of   the   outlined   four   imperatives   –   power  

density,  energy  density,  cost  and  scale.  

Page 60: Energy Policy Energy Island - Chudnovsky Thesis

Page 59

APPENDIX

MAP  1:    LEVANT  BASIN    

                                                           Source:  U.S.  USGS,  “Map  of  Levant  Basin  Province.”  

Page 61: Energy Policy Energy Island - Chudnovsky Thesis

Page 60

MAP  2:    NATIONAL  INSTALLED  CAPACITY  (AS  OF  AUGUST  2012)  

Source:  IEC,  “Israel  Electric  Corporation  Strategic  Aspects  Overview”  8.  

Page 62: Energy Policy Energy Island - Chudnovsky Thesis

Page 61

TABLE  1:    ISRAEL  NATURAL  GAS  CONSUMPTION  HISTORY  

YEAR   Natural  Gas  Consumption  (Bcf)  

2013   245.4393  

2012   90.0533  

2011   175.6215  

2010   128.8998  

2009   101.7072  

2008   50.8536  

2007   40.2591  

2006   34.2556  

2005   26.1331  

2004   27.5457  

2003   0.7063  

2002   0.3532  

2001   0.3532  

2000   0.3532  

1999   0.3532  

1998   0.7063  

1997   0.7063  

1996   0.7063  

1995   0.710  

1994   1.060  

1993   1.0595  

1992   0.760  

1991   1.059  

1990   1.059  

Source:  U.S.  EIA,  “Israel  Country  Data  Overview”.  

Page 63: Energy Policy Energy Island - Chudnovsky Thesis

Page 62

TABLE  2:    IEC  ELECTRICITY  PRODUCTION  BY  PRIMARY  FUEL  TYPE  (MILLION  KWH)    

Power        Plant  

1996   1997   1998   1999   2000   2001   2002   2003   2004   2005   2006   2007   2008   2009   2010  

Fuel  Oil  

8,552 8,467 9,261 9,976 9,996 8,333

7,084 7,550 4,687 3,981 2,880 1,720 1,618 642 49

 Coal   22,372 24,781 26,430 26,196 19,186 32,899 35,072 36,055 36,453 36,127 35,658 37,247 35,387 34,302 34,243

 Gas   - - - - - -

- - 4,248 5,597 9,085 10,569 14,158 17,298 20,527

Gas  Oil  

367 359 687 1,484 2,173 887

1,605 1,907 1,500 2,561 2,637 3,962 3,231 820 840

 

Sources:  IEC,  “Statistical  Report  Year  2010“  4.  

IEC,  “Statistical  Report  Year  2006”  5.  

TABLE  3:    DESALINATION  TECHNOLOGY    Desalination  Technology   Electricity  Consumption                  

(kWh/m3)  Thermal  Energy  Consumption  (MJ/m3)  

SWRO   4.0 - 6.0 -

MSF   2.5 – 4.0 270 – 330

MED   1.5 – 2.2 120 – 260

SWRO  in  Israel   3.0 – 3.4 (3.85) -

Conventional  water  resources    in  Israel  

0.4 – 1.0 -

 Source:  Meindertsma,  van  Sark  and  Lipchin  455-­‐56.  

Page 64: Energy Policy Energy Island - Chudnovsky Thesis

Page 63

DIAGRAM  1:    STRUCTURE  OF  MINISTRY  OF  NATIONAL  INFRASTRUCTURE  

                                                                                                     Source:  Israel  MNI,  “Office  Structure”.  

Page 65: Energy Policy Energy Island - Chudnovsky Thesis

Page 64

WORKS CITED Adelekan,   B.   A.   "Recent   Advances   in   Renewable   Energy:   Research,   Applications   and   Policy  

Initiatives."  Physical  Review  &  Research  International  2.1  (2012):  1-­‐21.  ProQuest.  Web.  19  Nov.  2014.  

 Alcauza,  Jorge,  ed.  "CSP  World  Map."  CSP  World.  n.d.  Web.  19  Nov.  2014.    Alster,   Paul,   and  David   Andrew  Weinberg.   "The   Daunting   Challenge  Of   Defending   Israel's  

Multi-­‐Billion  Dollar  Gas  Fields."  Forbes  08  Jan.  2014:  n.p.  Web.  19  Nov.  2014.    Alterman,   Rachelle.   "National-­‐Level   Planning   in   Israel:   Walking   the   Tightrope   Between  

Government  Control  and  Privatisation."  National-­‐Level  Spatial  Planning  In  Democratic  Countries:  An  International  Comparison  Of  City  &  Regional  Policy-­‐Making.  Ed.  Rachelle  Alterman.  Liverpool:  Liverpool  UP,  2001.  257-­‐88.  Print.  

 "Ashkelon,   Israel."  Water-­‐technology.net.  Kara,   n.d.  Web.   19  Nov.   2014.   <http://www.water-­‐

technology.net/projects/israel/>.    Bahgat,   Gawdat.   "Alternative   Energy   in   Israel:   Opportunities   and   Risks."   Israel   Affairs   20.1  

(2014):  1-­‐18.  Index  to  Jewish  Periodicals.  Web.  19  Nov.  2014.    Bahgat,  Gawdat.  Alternative  Energy  in  the  Middle  East.  Hampshire:  Palgrave  Macmillan,  2013.  

Print.    Bahgat,   Gawdat.   "Israel's   Energy   Security:   Regional   Implications."   Middle   East   Policy   18.3  

(2011):  25-­‐34.  RAMBI.  Web.  19  Nov.  2014.    Bassok,   Motti.   "Israel   to   Privatize   $4b   worth   of   Government   Companies."  Haaretz   06   Oct.  

2014:  n.p.  Web.  19  Nov.  2014.    

 Ben-­‐Eli,  Michael.  The  Lab's  Unique  Approach.  The  Sustainability  Laboratory,  n.d.  Web.  18  Nov.  

2014.  <http://www.sustainabilitylabs.org/approach.html#sthash.RRkQ3q0Q.dpuf>  

 Bob,  Yonah  Jeremy,  and  Sharon  Udasin.  "High  Court  Rejects  Petition  against  State's  Decision  

on  Natural  Gas  Export."  The  Jerusalem  Post  21  Oct.  2014:  n.p.  Web.  18  Nov.  2014.  <http://www.jpost.com/National-­‐News/High-­‐Court-­‐rejects-­‐petition-­‐against-­‐states-­‐decision-­‐on-­‐natural-­‐gas-­‐export-­‐329337>    

 

Page 66: Energy Policy Energy Island - Chudnovsky Thesis

Page 65

Brachya,  Valerie,  ed.  Sustainability  Outlook  2030:  Environmental  Futures  for  Israel.  Publication  no.  407.  Jerusalem  Institute  of  Israel  Studies,  2010.  Web.  20  Nov.  2014.  <http://www.jiis.org/.upload/outlook.pdf>.  

 Bradley,  Matt,  and  Joshua  Mitnick.  "Egypt  Cancels  Israel  Gas  Deal."  The  Wall  Street  Journal  23  

Apr.  2012:  A7.  Web.  20  Nov.  2014.    British  Petroleum  (BP).  BP  Statistical  Review  of  World  Energy  June  2014.  Report  No.  63.  18  June  

2014.  Web.  19  Nov.  2014.      Bryce,  Robert.  "Cleaning  Up  Oil's  Reputation."  The  Wall  Street  Journal  23  Apr.  2010:  n.p.  Web.  

18  Nov.  2014.    Bryce,  Robert.   “Ten  Reasons  Why  Natural  Gas  Will   Fuel   the   Future.”  Energy  Policy   and   the  

Environment  Report  8  (2011):  n.p.  The  Manhattan   Institute,  8  Apr.  2011.  Web.   18  Nov.  2014.  

 Bryce,  Robert.  Power  Hungry:  The  Myths  of   "Green"  Energy  and   the  Real  Fuels  of   the  Future.  

New  York:  PublicAffairs,  2010.  Print.    Chase,   Jenny,   and   Logan   Goldie-­‐Scot.  Analyst   Reaction   Solar.   Publication.   Bloomberg   New  

Energy  Finance,  17  Aug.  2012.  Web.  20  Nov.  2014.    Cleary,   Andrew.   "The   Mashreq,   Israel   and   the   Palestinian   Territories."   Natural   Gas   in   the  

Middle   East   and   North   Africa.   Ed.   Jonathan   P.   Stern   and   Bassam   Fattouh.   Oxford:  Oxford  UP,  2011.  162-­‐195.  Print.  

 Clegg,   Michael   W.   Introduction.   The   Future   of   Natural   Gas   in   the   World   Energy   Market.  

Emirates  Center  for  Strategic  Studies  and  Research.  New  York:  British  Academic  Press,  2001.  1-­‐8.  Print.  

 Colpier,  Ulrika  Claeson,  and  Deborah  Cornland.  "The  Economics  of  the  Combined  Cycle  Gas  

Turbine   -­‐  An  Experience  Curve  Analysis."  Energy  Policy   30.4   (2002):   309-­‐16.  Scopus®.  Web.  19  Nov.  2014.  

 “Construction   to   start   on   Ashalim   solar   power   plant   in   Israel."   Energy   Monitor  Worldwide  

[Amman,  Jordan]  9  July  2014.  General  OneFile.  Web.  29  Nov.  2014.    Ecoppia.  Ecoppia  E4  Exclusively  Certified  by  PI  Berlin  Photovoltaic  Institute  |  Ecoppia  -­‐  Robotic  

Solar  Cleaning  Solution.  7  Oct.  2014.  Web.  19  Nov.  2014.    El-­‐Katiri,   Laura.   A   Roadmap   for   Renewable   Energy   in   the   Middle   East   and   North   Africa.  

Publication.  Oxford  Institute  for  Energy  Studies,  Jan.  2014.  Web.  20  Nov.  2014.  

Page 67: Energy Policy Energy Island - Chudnovsky Thesis

Page 66

El-­‐Katiri,   Laura.   "Why  Renewable   Energy   Could   Be   a   Chance   for   the  GCC   Economies."   Ed.  Bassam  Fattouh.  Oxford  Energy  Forum  96  (2014):  13-­‐15.  16  June  2014.  Web.  15  Nov.  2014.  

 "EU   bank   funds   'largest'   solar   power   plant   in   Israel."   Energy   Monitor  Worldwide   (Amman,  

Jordan)  11  July  2014:  NewsBank.  Web.  19  Nov.  2014.    Eytan,  Adam,  and  Noy  Dor.  "Private  Renewable  Energy  Production  In  Israel:  Background  And  

Lessons  To  Be  Drawn."  Renewable  Energy  Law  &  Policy  Review  3.2  (2012):  100-­‐11.  Index  to  Legal  Periodicals  Full  Text.  Web.  19  Nov.  2014.  

 Faiman,  David.  Israel  Science  &  Technology:  Solar  Energy  Sector.  Ben  Gurion  University.  

Jewish  Virtual  Library.  Web.  28  Nov.  2014.                                                                                                                                                                      <http://www.jewishvirtuallibrary.org/jsource/Environment/Solar.html>.  

   Fattouh,   Bassam,   and   Jonathan   Stern,   ed.   Introduction.  Natural   Gas  Markets   in   the  Middle  

East  and  North  Africa.  Oxford:  Oxford  UP,  2011.  1-­‐11.  Print.    Fischhendler,   Itay,   and  Daniel  Nathan.   "In   the  Name  of  Energy  Security:  The  Struggle  Over  

the  Exportation  of  Israeli  Natural  Gas."  Energy  Policy  70  (2014):  152-­‐62.  ElSeiver.  Web.  18  Nov.  2014.    

 Geurts,   Fieke,   Paul   Noothout,   and   Anton   Schaap.   Synergies   between   Renewable   Energy   and  

Fresh  Water  Production.  Scoping  Study.  International  Energy  Agency,  Feb.  2011.  Web.  <http://iea-­‐retd.org/wp-­‐content/uploads/2012/06/RENWA-­‐final-­‐report.pdf>.  

 Gombar,   Vandana.   Interview.   The   Pulse.   Bloomberg   TV.   New   York,   NY:   17   July   2013.  

Television.  Web.   15  Nov.   2014.     <http://www.bloomberg.com/video/israel-­‐exports-­‐40-­‐nat-­‐gas-­‐supplies-­‐as-­‐prices-­‐climb-­‐48zQ_cAST062frBayOUq~Q.html>.  

 Grave-­‐Lazi,   Lidar.   "Israeli   Population   Climbs   to   8,904,373   Ahead   of   Jewish   New   Year."  The  

Jerusalem  Post  21  Sept.  2014:  n.p.  Web.  18  Nov.  2014.  <http://www.jpost.com/Israel-­‐News/Politics-­‐And-­‐Diplomacy/Israeli-­‐population-­‐climbs-­‐to-­‐8904373-­‐ahead-­‐of-­‐Jewish-­‐New-­‐Year-­‐375927>    

 Grossman,  Gershon,  and  Tal  Goldrath,  eds.  Energy  Forum  24:  Solar  energy  for  residential  

buildings  in  Israel.  Summary  and  Recommendations  by  the  Energy  Forum  at  Samuel  Neaman  Institute.  Proc.  of  Energy  Forum  No.  24  -­‐  Solar  Energy  in  Residential  Buildings,  20  March  2012,  Technion.  Haifa:  Samuel  Neaman  Institute,  2012.  Web.  19  Nov.  2014.  <http://www.neaman.org.il/Neaman2011/Templates/ShowPage.asp?DBID=1&TMID=581&LNGID=1&FID=646&IID=10030>.  

 

Page 68: Energy Policy Energy Island - Chudnovsky Thesis

Page 67

Halász,   Gábor,   and   Yair   Malachi.   "Solar   Energy   from   Negev   Desert,   Israel:   Assessment   of  Power  Fluctuations  for  Future  PV  Fleet."  Energy  for  Sustainable  Development;  21  (2014):  20-­‐29.  ScienceDirect.  Web.  19  Nov.  2014.  

 Hemmings,   Philip.  Addressing  Challenges   in   the   Energy   Sector   in   Israel.  Working   paper   no.  

914.  OECD,  6  Dec.  2011.  Web.  18  Nov.  2014.      Israel  Electric  Corporation  (IEC).  Israel  Electric  Corporation  Strategic  Aspects  Overview.  Nov.  

2012.  Web.  19  Nov.  2014.  <https://www.iec.co.il/en/ir/documents/iecs_presentation.pdf>.  

 Israel  Electric  Corporation  (IEC).  Statistical  Report  Year  2006.  May  2007.  Web.  19  Nov.  2014.  

<http://www.iec.co.il/EN/FinancialInfo/Documents/2006StatENG.pdf>.      Israel  Electric  Corporation  (IEC).  Statistical  Report  Year  2010.  n.d.  Web.  19  Nov.  2014.  

<https://iec.co.il/EN/IR/Documents/stat2010.pdf>.    International  Energy  Agency  (IEA).  Key  World  Energy  Statistics  2014.  2014.  Web.  20  Nov.  2014.      International  Energy  Agency  (IEA).  Technology  Roadmap:  Concentrating  Solar  Power.  Foldout.  

11  May  2010.  Web.  20  Nov.  2014.  <http://www.iea.org/publications/freepublications/publication/csp_roadmap_foldout.pdf>.  

 International   Renewable   Energy   Agency   (IRENA).   Adapting   Renewable   Energy   Policies   To  

Dynamic  Market  Conditions.  Publication.  May  2014.  Web.  19  Nov.  2014.    Israel.  Central  Bureau  of  Statistics  (CBS).  Statistical  Abstract  of  Israel  2010  No.  61:  Subject  2  

Table  No.  3.  CBS,  n.d.  Web.  19  Nov.  2014.  <http://www.cbs.gov.il/reader/shnaton/shnatone_new.htm?CYear=2010&Vol=61&CSubject=2>.  

 Israel.  Central  Bureau  of  Statistics  (CBS).  Statistical  Abstract  of  Israel  2014.  Table  No.  21.4–  

Water  Production  and  Consumption.  CBS,  n.d.  Web.  19  Nov.  2014.                                                                                                        <http://www1.cbs.gov.il/shnaton65/st21_04.pdf>.  

 Israel.  Ministry  of  Economy.  Creative  Energy  –  the  Israeli  Alternative.  Ministry  of  Economy,  

n.d.  Web.  19  Nov.  2014.                                                                                                                                          <http://www.moital.gov.il/NR/rdonlyres/1B15B3C6-­‐63B7-­‐4239-­‐93ED-­‐045686DECE20/0/CreativeenergytheIsraelialternative.pdf>.  

 

Page 69: Energy Policy Energy Island - Chudnovsky Thesis

Page 68

Israel.  Ministry  of  National  Infrastructures  (MNI).  Energy  and  Water  Resources.  Policy  on  the  Integration  of  Renewable  Energy  Sources  into  the  Israeli  Electricity  Sector.  MNI,  14  Feb.  2010.  Web.  18  Nov.  2014.  <http://energy.gov.il/English/PublicationsLibraryE/REPolicy.pdf>  

 Israel.  Ministry  of  National  Infrastructures  (MNI).  Electricity  Administration.  Renewable  

Energies,  Natural  Gas  and  Israel’s  Energy  Mix  of  the  Future.  By  Yehuda  Niv.  AHK  Israel,  n.d.  Web.  18  Nov.  2014.  <http://israel.ahk.de/fileadmin/ahk_israel/Dokumente/Praesentationen/EE/Yehuda_Niv.pdf>.  

 Israel.  Ministry  of  National  Infrastructures  (MNI).  Energy  and  Water  Resources.  The  Natural  

Gas  Sector  in  Israel.  Ministry  of  National  Infrastructures,  MNI,  n.d.  Web.  19  Nov.  2014.  <http://energy.gov.il/English/Subjects/Natural%20Gas/Pages/GxmsMniNGEconomy.aspx>.  

 Israel.  Ministry   of  National   Infrastructures   (MNI).   Energy   and  Water   Resources.  Renewable  

Energy   Sources.   Ministry   of   National   Infrastructures,   MNI,   n.d.   Web.   28   Nov.   2014.                        <http://energy.gov.il/English/Subjects/Natural%20Gas/Pages/GxmsMniNGEconomy.aspx>.  

 Israel  Ministry  of  National  Infrastructures  (MNI).  “Office  Structure”.  About  the  Ministry.  n.d.  

Web.    23  Nov.  2014.  <http://energy.gov.il/English/AboutTheOffice/Pages/GxmsMniOfficeStructure.aspx>.  

 Israel.  Water  Authority.  Water  Desalination  Administration.  Sea  Water  Desalination  in  Israel:  

Planning,   Coping   with   Difficulties,   and   Economic   Aspects   of   Long-­‐term   Risks.   By  Abraham   Tenne.   Water   Authority,   Oct.   2010.   Web.   19   Nov.   2014.  <http://www.water.gov.il/hebrew/planning-­‐and-­‐development/desalination/documents/desalination-­‐in-­‐israel.pdf>.  

 "Israel  revises  quotas  to  open  space  for  520  MW  of  additional  PV."  ADP  News  (Middle  East  -­‐  

Africa)  23  Oct.  2014:  NewsBank.  Web.  19  Nov.  2014.    "Israel's  and  Palestine's  Gas  and  Oil.  Too  Optimistic?"  The  Economist  25  Jan.  2014:  58.  Print.    "Israel's  Natural  Gas  Bonanza   Is  an   Illusion,  Warns  British  Energy  Expert."  Haaretz  29  Sept.  

2014:  n.p.  Web.  19  Nov.  2014.        

Page 70: Energy Policy Energy Island - Chudnovsky Thesis

Page 69

Kara,  Dan.  "Autonomous  Robots  Clean  Solar  Panels,  Increasing  Efficiency  While  Reducing  Costs."  ARISPlex,  1  Apr.  2014.  Web.  19  Nov.  2014.  <http://www.arisplex.com/analysis/autonomous-­‐robots-­‐clean-­‐solar-­‐panels-­‐increasing-­‐efficiency-­‐reducing-­‐costs/>.  

 Kost,   Christoph,   Johannes   N.  Mayer,   Jessica   Thomsen,   Charlotte   Senkpiel,   Simon   Philipps,  

Sebastian   Nold,   Simon   Lude,   Noha   Saad,   and   Thomas   Schlegl.   Levelized   Cost   of  Electricity   Renewable   Energy   Technologies.   Rep.   Fraunhofer   Institut   for   Solar   Energy  Systems  ISE,  Nov.  2013.  Web.  20  Nov.  2014.  

 Larsson,   Simon,   Dean   Fantazzini,   Simon   Davidsson,   Sven   Kullander,   and   Mikael   Höök.  

"Reviewing  Electricity  Production  Cost  Assessments."  Renewable  &  Sustainable  Energy  Reviews  30  (2014):  170-­‐83.  Feb.  2014.  Web.  19  Nov.  2014.  

 Levinson,  Charles.   "In   Israel,  Big  Solar  Field  Begins   to  Rise."  The  Wall  Street   Journal   14  Dec.  

2010:  B.12.  Web.  19  Nov.  2014.    Li,   Wei,   Tzameret   H.   Rubin,   and   Paul   A.   Onyina.   "Comparing   Solar   Water   Heater  

Popularization  Policies   In  China,   Israel  And  Australia:  The  Roles  Of  Governments   In  Adopting   Green   Innovations."   Sustainable   Development   21.3   (2013):   160-­‐170.   Business  Source  Complete.  Web.  5  Nov.  2014.  

 Mason,   Michael,   and   Amit   Mor,   ed.   Introduction.   Renewable   Energy   in   the   Middle   East:  

Enhancing  Security  through  Regional  Cooperation.  Dordrecht:  Springer,  2009.  xxiii-­‐xxx.  Print.  

 Meindertsma,   W.,   W.G.J.H.M.   Van   Sark,   and   C.   Lipchin.   "Renewable   Energy   Fueled  

Desalination   in   Israel."   Desalination   and   Water   Treatment   13.1-­‐3   (2010):   450-­‐63.  Environment  Complete.  Web.  19  Nov.  2014.  

 Mittelman,  Gur,  Abraham  Kribus,  Ornit  Mouchtar,  and  Abraham  Dayan.  "Water  Desalination  

With  Concentrating  Photovoltaic/Thermal  (CPVT)  Systems."  Solar  Energy  83.8  (2009):  1322-­‐1334.  Scopus®.  Web.  19  Nov.  2014.  

 McCrone,   Angus.   "Energy   Forecasts   for   2030   and   Beyond   -­‐   Why   They   Differ   So   Much."  

Bloomberg  New  Energy  Finance  VIP  Comment  (29  May  2013):  n.  p.  Web.  23  Nov.  2014    Mor,  Amit,  Shimon  Seroussi,  and  Malcolm  Ainspan.  "Electricity  and  Renewable  Energy  -­‐  Israel  

Profile."   Renewable   Energy   in   the   Middle   East:   Enhancing   Security   through   Regional  Cooperation.   Ed.   Michael   Mason   and   Amit   Mor.   Dordrecht:   Springer,   2009.   19-­‐39.  Print.  

 

Page 71: Energy Policy Energy Island - Chudnovsky Thesis

Page 70

"Natural  Gas  and  Israel's  Energy  Future."  Research  Brief  of  Natural  Gas  and  Israel’s  Energy  Future:  Near-­‐Term  Decisions  from  a  Strategic  Perspective,  by  Steven  W.  Popper,  Claude  Berrebi,  James  Griffin,  Thomas  Light,  Endy  Y.  Min,  and  Keith  Crane.  2009:  n.p.  Rand  Corporation,  2009.  Web.  18  Nov.  2014.  <http://www.rand.org/content/dam/rand/pubs/research_briefs/2009/RAND_RB9476-­‐1.pdf>.  

 Noble  Energy.  Eastern  Mediterranean.  Noble  Energy,  2014.  Web.  18  Nov.  2014.  

<http://www.nobleenergyinc.com/operations/eastern-­‐mediterranean-­‐128.html>.    Noreng,   Øystein.   “The  World   Natural   Gas   Market   and   its   Implications   for   the   World   Oil  

Market.”  The  Future  of  Natural  Gas   in   the  World  Energy  Market.  Emirates  Center   for  Strategic  Studies  and  Research.  New  York:  British  Academic  Press,  2001.  85-­‐109.  Print.  

 Odenheimer,   Alisa,   and   James   Nash.   "Israel   Desalination   Shows   California   Not   to   Fear  

Drought."  Bloomberg.com.  Bloomberg,  12  Feb.  2014.  Web.  20  Nov.  2014.    Paraschos,   P.   E.   "Offshore   Energy   in   the   Levant   Basin:   Leaders,   Laggards,   and   Spoilers."  

Mediterranean  Quarterly  24.1  (2013):  38-­‐56.  Scopus®.  Web.  18  Nov.  2014.    Phillips,  James.  “The  Iranian  Oil  Crisis.”  The  Heritage  Foundation  Backgrounder  76  (1979).  The  

Heritage  Foundation,  28  Feb.  1979.  Web.  19  Nov.  2014    Popper,   Steven  W.,   Claude   Berrebi,   James   Griffin,   Thomas   Light,   Endy   Y.   Min,   and   Keith  

Crane.  Natural   Gas   and   Israel's   Energy   Future:   Near-­‐term  Decisions   from   a   Strategic  Perspective.  Santa  Monica:  RAND,  2009.  Rand  Corporation,  2009.  Web.  18  Nov.  2014.  

 Population  Reference  Bureau  (PRB).  "Table  Rate  of  Natural  Increase."  PRB  2014  World  

Population  Data  Sheet.  2014.  Web.  20  Nov  2014.                                                                                                                                                                                    <http://www.prb.org/datafinder/topic/rankings.aspx?ind=16>.  

 Portman,  Michelle   E.   "Regulatory  Capture   by  Default:  Offshore   Exploratory  Drilling   for  Oil  

and  Gas."  Energy  Policy  65  (2014):  37-­‐47.  Scopus®.  Web.  19  Nov.  2014.    “PTT   buys   25%   of   East  Mediterranean   Gas   Co.”  Oil   &   Gas   Journal.   7   Dec.   2007:   n.p.  Web.                        

23  Nov.  2014.    Rabinovitch,   Ari.   "Israeli   Firm   Looks   to   Keep   Solar   Power   Generators   Running   at   Night."  

Reuters.  Thomson  Reuters,  22  Sept.  2014.  Web.  19  Nov.  2014.      

Page 72: Energy Policy Energy Island - Chudnovsky Thesis

Page 71

Ratner,  Michael.   Israel’s  Offshore  Natural  Gas  Discoveries  Enhance   Its  Economic  and  Energy  Outlook.  Congressional  Research  Service.  Report  No.  R41618.  4  May  2011.  Web.  19  Nov.  2014.  

 Reed,   John.   "Noble  Urges   Israel   to   Set   Export   Policy."  The   Financial   Times   12   Apr.   2014:   15.  

Web.  18  Nov.  2014.    Seebregts,  A.  J.  Gas-­‐Fired  Power.  Issue  brief  no.  E02.  IEA  Energy  Technology  Systems  Analysis  

Programme,  Apr.  2010.  Web.  19  Nov.  2014.                                                                                                          <http://www.iea-­‐etsap.org/web/e-­‐techds/pdf/e02-­‐gas_fired_power-­‐gs-­‐ad-­‐gct.pdf>.  

 Shaffer,  Brenda.  "Israel—New  Natural  Gas  Producer  in  the  Mediterranean."  Energy  Policy  39.9  

(2011):  5379-­‐387.  Business  Source  Premier.  Web.  19  Nov.  2014.    Shaffer,  Brenda.  "Natural  Gas  Supply  Stability  and  Foreign  Policy."  Energy  Policy  56  (2013):  114-­‐

25.  Scopus®.  Web.  19  Nov.  2014.    Shaviv,  Elad,  Mark  E.  Caine,  and  Gershon  Grossman.  Clean  Energy  Innovation  Policy  in  Israel:  

Identifying   Fundamental   Principles   through   a   Case   Study   of   Smart   Grid   Policy.   Rep.  Samuel  Neaman  Institute,  June  2013.  Web.  19  Nov.  2014  

 Smith,  Mark   A.,  Mohammed   El-­‐Katiri,   and   Steven   J.  Main.  Climate   Change   and   the   Energy  

Crunch.   Shrivenham:   Defense   Academy   of   the   United   Kingdom,   2010.  Web.   18   Nov.  2014.  

 Snieckus,  Darius.  "IN  DEPTH:  March  of  the  PV  Robots."  Recharge  News,  7  Aug.  2014.  Web.  19  

Nov.  2014.    Solomon,  Shoshanna,  and  Gwen  Ackerman.  "Israel  Starts  Tamar  Gas  Production."  Bloomberg,  

31  Mar.  2013.  Web.  18  Nov.  2014.      "Sorek   Desalination   Plant,   Israel."   Water-­‐technology.net.   Kara,   n.d.   Web.   19   Nov.   2014.  

<http://www.water-­‐technology.net/projects/sorek-­‐desalination-­‐plant/>.    Stub,  Sara  Toth,  and  Sarah  Kent.  "Israel  Plans  to  Sell  Natural  Gas  to  Jordan."  The  Wall  Street  

Journal  3  Sept.  2014:  n.p..  Web.  18  Nov.  2014.    Sturm,   Fletcher   J.  Trading  Natural   Gas:   Cash   Futures  Options   and   Swaps.   Tulsa:   PennWell,  

1997.  Print.    Tishler,   A.,   and   C.   K.   Woo.   "Likely   Failure   of   Electricity   Deregulation:   Explanation   with  

Application  to  Israel."  Energy.  31.6-­‐7  (2006):  845-­‐56.  Scopus®.  Web.  19  Nov.  2014.  

Page 73: Energy Policy Energy Island - Chudnovsky Thesis

Page 72

Topol,   Sarah  A.   "Israel's  Well."  Fortune   16   Sept.   2013:   64.  Business   Source   Premier.  Web.   18  Nov.  2014.  

 Tsagas,  Ilias.  "Israel’s  Clean  Energy  Future."  PV-­‐Magazine.com.  PV  Magazine,  Sept.  2014.  Web.  

19  Oct.  2014.      Udasin,   Sharon.   "11   New   Solar   Projects   to   Harness   Israel's   Desert   Light   This   Week."   The  

Jerusalem  Post  6  Apr.  2014.  Web.  19  Nov.  2014.    United  Nations  (UN).  Department  of  Economic  and  Social  Affairs.  World  Statistics  

Pocketbook,  2014  V.38  (2014).  Web.  28  Nov  2014.                                                                                                                                                                                  United  States.  Energy   Information  Administration   (EIA).   Israel  Country  Overview/Data.  EIA  

Independent  Statistics  and  Analysis,  Mar.  2014.  Web.  18  Nov.  2014.      United   States.   Energy   Information   Administration   (EIA).   Overview   of   Oil   and   Gas   in   the  

Eastern  Mediterranean   region.   EIA   Independent   Statistics   and  Analysis,   15  Aug.   2014.  Web.  27  Nov.  2014.    

 United  States.  Energy  Information  Administration  (EIA).  U.S.  Natural  Gas  Total  Consumption.  

EIA  Independent  Statistics  and  Analysis,  31  Oct.  2014.  Web.  18  Nov.  2014.      

United   States.   Overseas   Private   Investment   Corporation   (OPIC).   SECTION   I:   NON-­‐CONFIDENTIAL   PROJECT   INFORMATION.   OPIC,   n.d.   Web.   19   Nov.   2014.  <http://www.opic.gov/sites/default/files/files/Negev%20Energy.pdf>.  

 United  States.  U.S.  Geological  Survey  (U.S.G.S.)  Map  of  Levant  Basin  Province,  Eastern  

Mediterranean.  22  May  2014.  Web.  23  Nov.  2014.   <http://gallery.usgs.gov/photos/04_07_2010_hlc5FRq11Y_04_07_2010_0#.VHKi2BZgNl>  

 Yergin,  Daniel.  The  Prize:  The  Epic  Quest   for  Oil,  Money,   and  Power.  New  York:   Free  Press,  

1991.  Print    "Woodside  Pulls  out  of  Leviathan  Acquisition."  Project  Finance  &  Infrastructure  Finance.  May  

2014:  246.  Business  Source  Complete.  Web.  19  Nov.  2014.    The  World  Bank.  Renewable  Energy  Desalination:  Emerging  Solution  to  Close  the  Water  Gap  in  

the   Middle   East   and   North   Africa.   Washington   D.C.:   International   Bank   for  Reconstruction  and  Development,  2012.  Web.  19  Nov.  2014.  

 World  Energy  Council.  World  Energy  Resources:  2013  Survey.  London:  World  Energy  Council,  

2013.  Oct.  2013.  Web.  19  Nov.  2014.