energy-efficient stanford university design with › sfbanano › files › 2015 › 09 ›...

78
Stanford University Department of Electrical Engineering 2011.03.10 Center for Integrated Systems Emerging Non-volatile Memory: Energy-efficient Design with Carbon Nano-materials Ethan C. Ahn, Ph.D. Electrical Engineering, Stanford University, CA, U.S.A. IEEE SFBA Nanotechnology Council, Sep. 15, 2015

Upload: others

Post on 04-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2011.03.10Center for Integrated Systems

Emerging Non-volatile Memory:Energy-efficient Design with

Carbon Nano-materials

Ethan C. Ahn, Ph.D.Electrical Engineering, Stanford University, CA, U.S.A.

IEEE SFBA Nanotechnology Council, Sep. 15, 2015

Page 2: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong2

Data sources: AMD, Koomey et al. (2011)

50 years of Moore’s law, “how about energy?”

Ethan C. Ahn 2015. 09. 15.

Page 3: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong3

“Technology node transitions (volume production)”

Ethan C. Ahn 2015. 09. 15.

Slowing below 32 nm

?

Page 4: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong4

“What’s the difference?”

vs.

$ 299 $ 399Ethan C. Ahn 2015. 09. 15.

Page 5: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong5

vs.

16 GB 64 GBEthan C. Ahn 2015. 09. 15.

“Adding more NAND”

(DRAM + NAND) (DRAM + MORE NAND)

Page 6: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong6

Emerging non-volatile memory (NVM); sub-10 nm scalability & low cost (<0.1$/GB)

3D DRAM (TSV)

SK Hynix, 2013 (product) Toshiba, 2009(32 Gb-chip prototype)

3D NAND- Tohiba (BiCS)- Sandisk (BiCS)- Samsung (TCAT)- SK-Hynix- Micron- …

“Fundamental solution”

“New tricks to further increase density”

Ethan C. Ahn 2015. 09. 15.

Page 7: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong7

More than 50% powerconsumed by memory

Ref: ITRS 2011 Edition (System Drivers)

Memory: Limiting factor for energy-efficient system

Memory Static Power

(Consumer Portable Chips)

Ethan C. Ahn 2015. 09. 15.

Page 8: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong8

“New” Players in NVM

filamentoxygen ion

Top Electrode

Bottom Electrode

metaloxide

oxygenvacancy

Bottom Electrode

Top Electrode

oxideisolation

switchingregion

phase change material

filament

Bottom Electrode

solidelectrolyte

Active Top Electrode

metalatoms

STT-MRAM CBRAMRRAMPCMSpin torque transfer magnetic

random access memoryPhase change

memoryResistive switching

random access memoryConductive bridge

random access memory

Soft Magnet

Pinned Magnet

tunnel barrier (oxide)

current

Random access, non-volatile, no erase before write

Ethan C. Ahn 2015. 09. 15.

Page 9: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong9

Nothing fasterthan STT-MRAMNothing fasterthan STT-MRAM

Speed limitedby physicsSpeed limitedby physics

Energy vs Speed Trade-Off @ Device Level

Wong and Ahn et al. “Stanford Memory Trends”, https://nano.stanford.edu

Ethan C. Ahn 2015. 09. 15.

Page 10: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong10

1. Energy-efficient Cell design

2. Energy-efficient Architecture design

Page 11: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong11

PCM: Phase-change memory (PRAM/PCRAM)

HDDNAND/NOR

DRAMSRAMCPU

volatileworkingmemory

nonvolatile(storage)

Speed

Density(Cost)

Phase-Change Memory (PCM)

Packaged MCP that includes 512 Mb PCM(NOR-compatible, Samsung, 2010)

Ethan C. Ahn 2015. 09. 15.

Page 12: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong12

PCM at a glance: Based on Joule-heating

Poly-CrystallineAmorphous

High Resistivity Low Resistivity

Annealing(Crystallization/SET)

Melt-quenched(Amorphization/RESET)

‘0’ State ‘1’ State

Time

Tmelt

Tcrys

Read

SET pulse

RESET pulse

Troom

Programming region(amorphous)

Oxide isolationBottom Electrode

Top Electrode

Phase-change material(GeSbTe, etc.)

Ethan C. Ahn 2015. 09. 15.

Page 13: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong13

PCM: Key challenges and issues

Physics of threshold switching, crystallization, etc. High write latency (due to long crystallization time) Cost-effective array architecture High programming (RESET) current Resistance drift (difficulty in MLC) Cross-talk (thermal disturbance) etc.

Ethan C. Ahn 2015. 09. 15.

Page 14: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong14

PCM: Key challenges and issues

Physics of threshold switching, crystallization, etc. High write latency (due to long crystallization time) Cost-effective array architecture High programming (RESET) current Resistance drift (difficulty in MLC) Cross-talk (thermal disturbance) etc.

Ethan C. Ahn 2015. 09. 15.

Page 15: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong15

“How hot is Ge2Sb2Te5?” Melt(RESET)

Crystallize(SET)

Ethan C. Ahn 2015. 09. 15.

Page 16: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong16

Toward lower IRESET: Materials EngineeringExample:Recent studies with GeTe/Sb2Te3 super-lattice structure

IPCM (Interfacial PCM)(R.E. Simpson, Nature Nanotech. 6, 2011)

Charge-injectionSuper-lattice PCM(N. Takaura, VLSI 2013)

Ethan C. Ahn 2015. 09. 15.

Page 17: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong17

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Ethan C. Ahn 2015. 09. 15.

Page 18: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong18

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Generated heat

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Ethan C. Ahn 2015. 09. 15.

Page 19: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong19

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Ethan C. Ahn 2015. 09. 15.

Page 20: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong20

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Ethan C. Ahn 2015. 09. 15.

Page 21: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong21

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Q3

Q3 Diffused into oxide

Ethan C. Ahn 2015. 09. 15.

Page 22: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong22

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Q3

Q3 Diffused into oxide

Q4

Q4 Flows into the metal(at the bottom)

Ethan C. Ahn 2015. 09. 15.

Page 23: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong23

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Q3

Q3 Diffused into oxide

Q4

Q4 Flows into the metal(at the bottom)

Q5

Q5

Diffused into surroundingGST (crystalline)

Ethan C. Ahn 2015. 09. 15.

Page 24: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong24

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Q1

Q1 Used for switching

Q2

Q2 Stored in the heater

Q3

Q3 Diffused into oxide

Q4

Q4 Flows into the metal(at the bottom)

Q5

Q5

Diffused into surroundingGST (crystalline)

Q6

Q6

Flows into the metal(at the top)

Ethan C. Ahn 2015. 09. 15.

Page 25: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong25

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

Q1

Q2Q3Q4

Q5

Q6Percentiles (%)

Q4: 60-72%

Q3: 21-25%

Q5 + Q6: 3-17%

“Only a very small fraction (< 1 %)of the generated heat is actuallyused in the active region”

Q2: 0.2%

Q1 S. M. Sadeghipour et al., ITHERM 2006

Ethan C. Ahn 2015. 09. 15.

Page 26: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong26

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

“Only a very small fraction (< 1 %)of the generated heat is actuallyused in the active region”

“WO3 (130 nm)(k ~ 1.6 W/mK)”

F. Rao, Nanotech. 19, 2008

Ethan C. Ahn 2015. 09. 15.

Page 27: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong27

Toward lower IRESET: Thermal Engineering

Remembering that PCM operation is based on “Joule Heating,”

Heat dissipated during RESETin a typical mushroom PCM cell

Programming region(amorphous)

OxideBottom Electrode(heater plug)

Top Electrode

GST

“Only a very small fraction (< 1 %)of the generated heat is actuallyused in the active region”

“C60 (fullerene)(k ~ 0.4 W/mK)”

C. Kim, APL 92 2008

Ethan C. Ahn 2015. 09. 15.

Page 28: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong28

“How about graphene?”

Page 29: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong29

“In-plane” “Out-of-plane”

The Janus faces of graphene

Ethan C. Ahn 2015. 09. 15.

See references[1] Pop et al. MRS Bull. 2012[2] Guzman et al. ITherm. 2014[3] Koh et al. Nano Lett. 2010[4] Mak et al. APL 2010

Page 30: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong30

Graphene as a thermal barrier: TDTR measurements

Q1: Is a single-layer graphene good as a thermal barrier?(Is a single-layer graphene thermally-resistive well enough?)

0 1 2 3 4

0.6

0.7

0.8

0.9

1.0

1.1

Nor

mal

ized

Ref

lect

ance

Time (ns)

Al/GST/SiO2/SiAl/GST/SLG/SiO2/Si

“TDTR (Time Domain ThermoReflectance)”

Slower thermal decay with SLG

Larger Thermal Boundary Resistance

A1: YES

Ethan C. Ahn 2015. 09. 15.

Ahn et al. Nano Letters 2015

Page 31: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong31

Graphene as a thermal barrier: TDTR measurements

Q1: Is a single-layer graphene good as a thermal barrier?(Is a single-layer graphene thermally-resistive well enough?)

0 1 2 3 4

0.6

0.7

0.8

0.9

1.0

1.1

Nor

mal

ized

Ref

lect

ance

Time (ns)

Al/GST/SiO2/SiAl/GST/SLG/SiO2/Si

“TDTR (Time Domain ThermoReflectance)”

Slower thermal decay with SLG

Larger Thermal Boundary Resistance

A1: YES

ΔTBR (m2K/GW)= 32 +/- 10 for as-dep. GST

44 +/- 3 for crystalline GST

Q2: HOW LARGE?A2:

Ethan C. Ahn 2015. 09. 15.

Ahn et al. Nano Letters 2015

Page 32: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong32

GST (10 nm)Pt/Ti/TiN (50 nm)

SLG (Single-Layer Graphene)

W (30 nm)

SiO2 (30 nm)SiO2 (100 nm)

GND

W via

Vtop

wSLG

PCM heat plug (W)

G-PCM: Device structure

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.

Page 33: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong33

GST (10 nm)Pt/Ti/TiN (50 nm)

SLG (Single-Layer Graphene)

W (30 nm)

SiO2 (30 nm)SiO2 (100 nm)

GND

W via

Vtop

wSLG

PCM heat plug (W)

G-PCM: Device structure

Active device region Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.

Page 34: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong34

GST (10 nm)Pt/Ti/TiN (50 nm)

SLG (Single-Layer Graphene)

W (30 nm)

SiO2 (30 nm)SiO2 (100 nm)

GND

W via

Vtop

wSLG

PCM heat plug (W)

G-PCM: Raman & TEM studies

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.

Page 35: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong35

G-PCM: IRESET of traditional PCM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.00.51.01.52.02.53.03.5

IR

PCM (wB.E. = 200 nm)

Res

ista

nce

(M

)

Current (mA)

trise/twidth/tfall= 10ns/100ns/10ns

twidth

trise tfall

a-GST

c-GST

Heater (W plug)

SiO2

T.E.

B.E.

“PCM”SET

RESET

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.

Page 36: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong36

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.00.51.01.52.02.53.03.5

IR

G-PCM (A)(wSLG = 1 m)

PCM (wB.E. = 200 nm)

Res

ista

nce

(M

)

Current (mA)“G-PCM (A)”Heater (W plug)

SiO2

T.E.

B.E.

wSLG

c-GST

a-GSTSLG

G-PCM: IRESET of GPCM (A) – Control sample

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.

Page 37: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong37

G-PCM: IRESET of GPCM (B) – Optimal design

“G-PCM (B)”Heater (W plug)

SiO2

T.E.

B.E.

wSLG

c-GST

a-GSTSLG

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.

Page 38: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong38

G-PCM: Verifying endurance is of great importance“Programming endurance” “Resistance distribution”

100 101 102 103 104 1050.01

0.1

1

10

LRS

200 nm PCM100 nm PCM50 nm PCM

Res

ista

nce

(M

)

Endurance Cycle

HRS

0.01 0.1 10

20

40

60

80

100

50 nm

100 nm

LRS HRSCum

ulat

ive

Perc

enta

ge (%

)

Resistance (M)

200 nm

(wB.E.)

100 101 102 103 104 1050.01

0.1

1

10

LRS

200 nm GPCM (B)100 nm GPCM (B)50 nm GPCM (B)

Res

ista

nce

(M

)

Endurance Cycle

HRS

0.01 0.1 10

20

40

60

80

100

50 nm

100 nm

LRSHRSC

umul

ativ

e Pe

rcen

tage

(%)

Resistance (M)

200 nm

(wB.E.)

PCM

G-PCM (B)

Ahn et al. Nano Letters 2015

Ethan C. Ahn 2015. 09. 15.

Page 39: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong39

1. Energy-efficient Cell design

2. Energy-efficient Architecture design

Page 40: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong40

RRAM: Resistive (switching) RAM or Metal-oxide RAM

Panasonic, 2013(Embedded)

Crossbar, 2014

HDDNAND/NOR

DRAMSRAMCPU

volatileworkingmemory

nonvolatile(storage)

Speed

Density(Cost)

RRAM

Ethan C. Ahn 2015. 09. 15.

Page 41: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong41

RRAM: Emerging candidate for sub-10 nm NVM

2000 2002 2004 2006 2008 2010 2012

0

100

200

300

400

500

600

700N

umbe

r of P

ublic

atio

ns

Year P. Wong, Proc. IEEE, 2012

HfOx, AlOx,TaOx, ZnO,etc.

“Simple device structure”

“I-V (hysteresis)”

Ethan C. Ahn 2015. 09. 15.

Page 42: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong42

RRAM: Emerging candidate for sub-10 nm NVM

2000 2002 2004 2006 2008 2010 2012

0

100

200

300

400

500

600

700N

umbe

r of P

ublic

atio

ns

Year Wong, Proc. IEEE, 2012

“Less than 10 X 10 nm2 RRAM”

B. Govoreanu et al. (IMEC),IEDM 2011

Stanford (2013)

Z. Zhang, EDL 34 2013

W. Yi, IEDM 2013

Ethan C. Ahn 2015. 09. 15.

Page 43: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong43

RRAM: Key attributes (electrical performance) High endurance (> 1012 cycles) with MLC High speed (< 1 ns)

H. Y. Lee, IEDM 2010

Low programming voltage, current, and powerEstimated power:< 100 nW (10 fJ per bit)

C.-L. Tsai, ACS Nano 7, 2013

CMOS compatible Low temperature High degree of freedom

(engineering design) …

C.-W. Hsu, VLSI 2013

W. Kim, VLSI 2011

Ethan C. Ahn 2015. 09. 15.

Page 44: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong44

RRAM: Key challenges and issues

Physics of resistive switching and conduction Array architecture Killer application

Ethan C. Ahn 2015. 09. 15.

Page 45: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong45

RRAM: Key challenges and issues

Physics of resistive switching and conduction Array architecture Killer application

Ethan C. Ahn 2015. 09. 15.

Page 46: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong46

July 2015Ethan C. Ahn 2015. 09. 15.

Page 47: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong47

July 2015Ethan C. Ahn 2015. 09. 15.

3D X-point

Page 48: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong48

RRAM array: Cross-point structure

“attractive,” due to Easy to fabricate Small cell size: 4F2

Potential for 3D stacking(4F2/N, N = number of layers)

(WLs)

(BLs)

2F

2F

Ethan C. Ahn 2015. 09. 15.

Page 49: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong49

RRAM array: Cross-point structure

“attractive,” due to Easy to fabricate Small cell size: 4F2

Potential for 3D stacking(4F2/N, N = number of layers)

“problematic,” due to Sneak path problem- Increased power consumption- Reduced write/read margin(limiting maximum allowablearray size)

2F

2F

(WLs)

(BLs)

Ethan C. Ahn 2015. 09. 15.

Page 50: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong50

RRAM array: Cross-point structure

“attractive,” due to East to fabricate Small cell size: 4F2

Potential for 3D stacking(4F2/N, N = number of layers)

“problematic,” due to Sneak path problem- Increased power consumption- Reduced write/read margin(limiting maximum allowablearray size)

2F

2F

We need “Selection Device”to cut-off sneak leakage current

(WLs)

(BLs)

Ethan C. Ahn 2015. 09. 15.

Page 51: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong51

“What selector will be the best choice for you?”

Ethan C. Ahn 2015. 09. 15.

Page 52: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong52

Carbon nanotube field-effect transistors (CNFETs)

Schematic representation of CNFET

Ethan C. Ahn 2015. 09. 15.

Page 53: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong53

Carbon nanotube field-effect transistors (CNFETs)

Schematic representation of CNFET

Rolling up a sheet of graphene

Ref: J. Wilder et al, Nature 391, 1998

Ethan C. Ahn 2015. 09. 15.

Page 54: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong54

Carbon nanotube field-effect transistors (CNFETs)

Ref: J. Wilder et al, Nature 391, 1998

Schematic representation of CNFET

Rolling up a sheet of graphene

“Why CNTs to replace Si?”Ballistictransport

Ultra-thinbody

Higher on-currentLower operating voltage

Aggressive scalingExcellent electrostatic control

Ethan C. Ahn 2015. 09. 15.

Page 55: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong55

High forward-current (Ion) densities (Jon)to program aggressively scaled memory deviceJon > 10 MA/cm2

High On/off ratio (Ion/Ioff)to have high selectivity of memory bitsIon/Ioff > 106

Low off-current (Ioff)to accommodate un- and half-selected cellsIoff < 10 pA

Low processing temperature (T)to allow 3D stackingT < 300 °C

Bipolar operationto allow for best-of-breed RRAMSymmetric I-V at both polarities

+ “small device area”

CNFET: Ideal selection device for memory array

Ethan C. Ahn 2015. 09. 15.

Page 56: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong56

1TnR array: Based on CNFET selection device

*R.S.L. (Resistive Switching Layer)- Metal-oxide for RRAM- Phase-change material for PCMAhn et al. VLSI 2014

Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.

Page 57: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong57

1TnR array: Reduced sneak leakage

“Sneak leakage is much reduced from 2D to 1D,”as it is confined within the 1D CNT channel

“selected WL”

Ethan C. Ahn 2015. 09. 15.

Page 58: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong58

1TnR: (1) Requires NO additional contacts/wiring

“CNFET selector is tightly integrated, with CNT as B.E.”Ahn et al. VLSI 2014Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.

Page 59: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong59

1TnR: (2) Rectangular array preferred

Ahn et al. VLSI 2014Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.

Page 60: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong60

Electrical results: IVs of fabricated CNFETs

High current-drive (> 20 MA/cm2)Good electrostatic control by gateNear-symmetric I-V (bipolar)

High on/off ratio (105 ~ 107)Low leakage current < 10 pA(even at high Vd)

Ethan C. Ahn 2015. 09. 15.

Ahn et al. IEEE TED 2015

Page 61: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong61

Integration: CNFET + Memory = 1TnR“Integrating with Al2O3-based RRAM”

“Integrating with PCM (GST)”

Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.

Page 62: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong62

Electrical results: 1TnR RRAM – Selective switching

-5 -4 -3 -2 -1 0 1 2 3 4 510-9

10-7

10-5

10-3

10-1

101

Selected CellNon-selected Cell

(as-dep.)Non-selected Cell

(LRS or HRS)

Cur

rent

(I)[

A]

Top Electrode Voltage (Vtop) [V]

Forming should not occur, as the turned-offCNFET is NOT able to carry high currents

CNFET: OFF

(DC)

(VWL = + 2V)

“n = 1 cell is NOT selected”

Ethan C. Ahn 2015. 09. 15.

Ahn et al. IEEE TED 2015

Page 63: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong63

-5 -4 -3 -2 -1 0 1 2 3 4 510-9

10-7

10-5

10-3

10-1

101

Selected CellNon-selected Cell

(as-dep.)Non-selected Cell

(LRS or HRS)

Cur

rent

(I)[

A]

Top Electrode Voltage (Vtop) [V]

The cell is not programmable, as the voltagemostly drops across more-resistive CNFET

CNFET: OFF

Electrical results: 1TnR RRAM – Selective switching(DC)

(VWL = + 2V)

“n = 2 cell is NOT selected”

Ethan C. Ahn 2015. 09. 15.

Ahn et al. IEEE TED 2015

Page 64: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong64

-5 -4 -3 -2 -1 0 1 2 3 4 510-9

10-7

10-5

10-3

10-1

101

Selected CellNon-selected Cell

(as-dep.)Non-selected Cell

(LRS or HRS)

Cur

rent

(I)[

A]

Top Electrode Voltage (Vtop) [V]

Forming

Vform

“CNFET: ON”

Electrical results: 1TnR RRAM – Selective switching(DC)

(VWL = - 5V)

“n = 3 cell is selected”

Ethan C. Ahn 2015. 09. 15.

Ahn et al. IEEE TED 2015

Page 65: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong65

“CNFET: ON”

Electrical results: 1TnR RRAM – Selective switching(DC)

-5 -4 -3 -2 -1 0 1 2 3 4 510-9

10-7

10-5

10-3

10-1

101

HRS

Selected CellNon-selected Cell

(as-dep.)Non-selected Cell

(LRS or HRS)

RESET

Cur

rent

(I)[

A]

Top Electrode Voltage (Vtop) [V]

Forming

Vform

LRS“n = 3 cell is selected”

(VWL = - 5V)

Ethan C. Ahn 2015. 09. 15.

Ahn et al. IEEE TED 2015

Page 66: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong66

-5 -4 -3 -2 -1 0 1 2 3 4 510-9

10-7

10-5

10-3

10-1

101

Selected CellNon-selected Cell

(as-dep.)Non-selected Cell

(LRS or HRS)

SET

RESET

Cur

rent

(I)[

A]

Top Electrode Voltage (Vtop) [V]

Forming

Vform

“CNFET: ON”

Electrical results: 1TnR RRAM – Selective switching(DC)

“n = 3 cell is selected”

(VWL = - 5V)

Ethan C. Ahn 2015. 09. 15.

Ahn et al. IEEE TED 2015

Page 67: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong67

Semiconducting CNT

GND

I-VBL = Vdd

VWL= Vdd (ON)

Gate oxideE-field

Resistive-switching layer(Oxide), HRS -> LRS

Critical roles of CNTs

“selected cell case”

I+

RRAM CNT

~Vdd

>>

Ethan C. Ahn 2015. 09. 15.

Page 68: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong68

Critical dimension: < 5 nm2

Ethan C. Ahn 2015. 09. 15.

Ref: F. Xiong et al, Nano Letters 13, 2013

“PCM reset current scales withthe effective contact area”

Page 69: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong69

Critical dimension: < 5 nm2

Ethan C. Ahn 2015. 09. 15.

Ref: F. Xiong et al, Nano Letters 13, 2013

“Sub-1 µA RESET current PCMintegrated into the 1TnR array”

(=CNT)

This work (Ahn 2015)

1TnR PCM

Ahn et al. IEEE TED 2015

Page 70: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong70

Electrical results: 1TnR RRAM – Pulsed endurance

Al2O3 RRAM Low programming power Size of CF: small

(1)

(0)

Wong, Proc. IEEE, 2012

oxygen ionoxygen vacancy

Ahn et al. IEEE TED 2015

Ethan C. Ahn 2015. 09. 15.

Page 71: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong71

Energy-efficientNVM design

Cell

Graphene-PCM, Low-power PCMAhn et al. Nano Letters, in press, 2015(DOI: 10.1021/acs.nanolett.5b02661)

1TnR X-point array, 1D selectorAhn et al. IEEE TED 62, 2197, 2015

Architecture

“Summary”

Ethan C. Ahn 2015. 09. 15.

Page 72: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong72

“Acknowledgement”

Ethan C. Ahn 2015. 09. 15.

Page 73: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong73

“Closely-related publications”

Ethan C. Ahn 2015. 09. 15.

1. J. Sohn et al. IEDM 2015.

2. H.-Y. Chen et al. VLSI 2014.

3. S. Yu et al. ACS Nano 7(3), 2320, 2013.

4. Liang et al. ACM JETC 9(1), 2013.

3D Vertical RRAM

Wire Scaling

Page 74: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong74 Ethan C. Ahn 2015. 09. 15.

Ethan Ahn, Stanford University Ph.D. Dissertation(available online at http://purl.stanford.edu/fp960bw6447)

“Which memory?”

Page 75: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong75 Ethan C. Ahn 2015. 09. 15.

“Just imagine”

Wearable tech gets stylish (Apple, Aug. 2014)

Page 76: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong76 Ethan C. Ahn 2015. 09. 15.

“Just imagine”

Wearable tech gets stylish (Apple, Aug. 2014)

Graphene/CNTinterconnects?

Page 77: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong77 Ethan C. Ahn 2015. 09. 15.

“Just imagine”

Wearable tech gets stylish (Apple, Aug. 2014)

Graphene/CNTinterconnects?

All-spin low powermicrochip?

Page 78: Energy-efficient Stanford University Design with › sfbanano › files › 2015 › 09 › 150915-Ethan-Ahn-… · Stanford University Center for Integrated Systems 2011.03.10 Department

Stanford University

Department of Electrical Engineering2014.02.18H.-S. Philip Wong78 Ethan C. Ahn 2015. 09. 15.

“Just imagine”

Wearable tech gets stylish (Apple, Aug. 2014)

Graphene/CNTinterconnects?

All-spin low powermicrochip?

RRAM-basedstorage device?