energy efficient propulsion systems optimization execution j. brent staubach & michael winter...

20
Energy Efficient Propulsion Systems Optimization Execution A B C D E THERM ALS DRAFTING M FG Y1 . Brent Staubach & Michael Winter ratt & Whitney nited Technologies Corporation Energy & Computation MIT May 10 th 2006 Simulation CAD/CAM

Upload: cameron-hawkins

Post on 28-Dec-2015

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Energy Efficient Propulsion Systems

Optimization

Execution

A

B

C

D

ETHERMALS

DRAFTING

MFG

A

B

C

D

ETHERMALS

DRAFTING

MFG

Y1

J. Brent Staubach & Michael WinterPratt & WhitneyUnited Technologies Corporation

Energy & ComputationMIT

May 10th 2006

Simulation

CAD/CAM

Page 2: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Computing Power Will Fundamentally Change How We Design Gas Turbines

• Review Current Manual Design Optimization Practices

• Computer Based Design & Key Enablers

• Future New Design Paradigms; Less Time; Fewer People

Computer Speed- 2x Every 18 months -

Network Speed- 2x Every 9 months -

TremendousGrowth

Billion X SpeedBillion X Speed by 2025by 2025

Hardware: 100,00X

Massive Parallel Grid Computing, Assume ~10,000X

IBM & IntelExpect ContinuedGrowth

• Transistor Scaling• Manufacturing: Copper, SiGe,• Parallelization: chip, board, rack• Quantum Computing

Cost of Sending1012 BitsData AcrossCountry HasDropped From$150,000 in 1970To 12 cents In 2000

Cost of aThreeMinutePhone Call FromNew YorkToLondon

# T

ran

sist

ors

(K

s)

RELEASE THIS POWER ON DESIGN PROCESSES

Page 3: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Integrated TEC& Augmentor

Integrated TEC& Augmentor

Variant-common F135Turbomachinery

LO Axi-symmetricNozzle

LO Axi-symmetricNozzle

Lift Fan, Clutch,& Driveshaft

Roll ControlDucts and Nozzles

Roll ControlDucts and Nozzles

3-BearingSwivel Duct3-Bearing

Swivel Duct

Controls & externals,engine gearbox

Pratt & WhitneyPratt & Whitney

Hamilton SundstrandHamilton Sundstrand Rolls-Royce Rolls-Royce

Propulsion System Complexity Driving Need for More Robust Systems Engineering Process and Tools

Propulsion has Become a System of Systems

System Engineering Process Driven by Product Needs

Page 4: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

~ 80,000 PARTS

~5000 PART NUMBERS

~ 200 MAJOR PART NUMBERS REQUIRING 3D FEA/CFD ANALYSIS

~ 5000-10,000 PARAMETRIC CAD VARIABLES DEFINE MAJOR PART NUMBERS

~ 200 MAN-YEAR ANALYTICAL DESIGN EFFORT

~ 200 MAN-YEARS DRAFTING / ME EFFORT

Modern Gas Turbine Optimization Is An Exercise In Managing Complexity

Page 5: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

• IPTs ARE THE ORGANIZATIONAL MECHANISM THAT ENABLES A BALANCED DESIGN - MANUAL MULTI-DISCIPLINARY DESIGN LOCAL OPTIMIZATION

INTEGRATEDPRODUCT TEAM

BURNERMECHANICAL

COMPRESSORAERO

COMPRESSORMECHANICAL

TURBINESTRUCTURES

COMPRESSORSTRUCTURES

FANSTRUCTURES.

FANMECHANICAL.

TURBINEAEROTURBINEAERO

BURNERSTRUCTURES

BURNERSTRUCTURES

TURBINESTRUCTURES

BURNERAERO

COMPRESSORAERO

TURBINEMECHANICAL

TURBINEMFG.

FANAERO.

Complexity Is Managed By Decomposing The Design, Coordinating & Re-assembling via The SIPT/CIPT/IPT

SYSTEM

CIPT CIPT

CIPTCIPT

Page 6: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Within Modules & Disciplines SophisticatedSimulation Based Design Systems Have Evolved

Page 7: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

CADMODEL

PHYSICSMODEL

DECISIONDESIGN

DESIGN SPACE

- NON LINEAR - MULTI MODAL - DISCONTINUOUS - NOISEY - HIGHLY CONSTRAINED

ENGINEER MAY ITERATE 100s TO 1000s OF TIMES TO GETSATISFACTORY RESULTS -- MANUALLY !

Complex Designs Are Inherently & Brutally Iterative, Bounded By Best Practice Rules . . . . . . . .

WORKINSTRUCTIONS

CRITERIA

VALIDATEDANALYSIS

PREFERREDCONFIGURATIONS

STANDARDWORK

Page 8: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

. . . and Complex Designs Are Iterated Across Disciplines & Organizations . . .

STAR

PROSTAR 3.00

23-SEP-97VIEW

1.000 1.000 1.000

ANGLE 0.000

DISTANCE 6.549

CENTER 10.138 -0.554 0.776

EHIDDEN PLOT

X

Y Z

CYCLE

1D AERO

COOLINGFLOWS

3D AERO

HEAT XDESIGN

PLATFORM

NECK

ATTACHMENT

DISK & SEALS

FEED FORWARD

FE

ED

BA

CK

IPTPROCESS

Page 9: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

. . . And Iterations Can Take Place Across The Globe

• OUTSOURCING

• PARTNERSHIPS

• INTER-DIVISIONAL

• CUSTOMERS

Page 10: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

STAFFINGSTAFFING

• STAFFING EXPLODES WITH FIDELITY: ANOTHER “CURSE OF DIMENSIONALITY”

FIDELITY

DESIGNSPACE

NEWENGINE

0D 1D 2D 3D 4D VTE

Iterations Are Simplified By Employing A Range Of Fidelity

KNOWLEDGE INFORMATION DATA

PRODUCT DEVELOPMENT PHASES

ConceptInitiation Detailed Design

PreliminaryDesign

Validation/Certification

ConceptOptimization

AirplaneValidation

Service &Support0 I 2 3 4 5

• REQUIRES EXTENSIVE KNOWLEDGE TO JUDGE LOW FIDELITY MODELS

Page 11: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

SYSTEMOPTIMIZATIONENSURE CONFORMANCETO CUSTOMER NEEDS &BUSINESS GOALS

COMPONENTOPTIMIZATIONTEAMS - HUMAN INTERACTIONEXECUTE MANUAL MDO

PARTOPTIMIZATIONISOLATED MULTI-FIDELITY DESIGN SYSTEMS

Labor Intensive, Compartmentalized Design Process That Relies On Teams, Management, & Procedures

Result Is Manual “Human” Based Multidisciplinary Design Optimization – At Best

IPMT

CIPT CIPTCIPT

IPTIPTIPTIPTIPTIPT

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4LE

VE

LS

OF

FID

EL

ITY

NO

N-A

NA

LY

TIC

AL

NO

N-A

NA

LY

TIC

AL

NO

N-A

NA

LY

TIC

AL

MARKETNEEDS

BUSINESSNEEDS

SYSTEM

Page 12: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Gains Can Be Made By Shifting From “Human” To “Computer” Based MDO

AUTOMATE WORKFLOW

AUTOMATE MODEL BUILDING & EXECUTION

AUTOMATE DESIGN EXPLORATION

MANUAL WORK FLOW per PROCESS MAPS

MANUAL CAD/CAE MODEL BUILDING& EXECUTION per STANDARD WORK

MANUAL EXPLORATION TO FIND OPTIMAL DESIGNS THAT MEET TECHNOLOGY LEVELS

“COMPUTER” BASED

WORKFLOW, RULES,WORKFLOW, RULES,And DESIGN ITERATIONSAnd DESIGN ITERATIONSAUTOMATED WITHINAUTOMATED WITHINAnd ACROSS SYSTEMS And ACROSS SYSTEMS & DISCIPLINES & DISCIPLINES

SYSTEM SUB-SYSTEM A SUB-SYSTEM B

Business PlanConcept &

Venture Definition

IntegratedBusiness

& Project Plan

Product/ Industrial Plan Execution & FETT

Validate, Certify, Deliver

EIS, OperationalService

& Support0 I II III IV V

Program Program Standard Work Flow

Business PlanConcept &

Venture Definition

IntegratedBusiness

& Project Plan

Product/ Industrial Plan Execution & FETT

Validate, Certify, Deliver

EIS, OperationalService

& Support0 I II III IV V

Program Program Standard Work Flow

Engineering Standard Work Flow

System

ConceptInitiation

Product Design Procurement & Initial Validation (FETT)

PreliminaryDesign

Validation/Certification

ConceptOptimization

AirplaneValidation

Service &Support0 I 2 3 4 5

Module

ConceptInitiation

Product Design Procurement & Initial Validation (FETT)

PreliminaryDesign

Validation/Certification

ConceptOptimization

AirplaneValidation

Service &Support

Part

ConceptInitiation

Product Design Procurement & Initial Validation (FETT)

PreliminaryDesign

Validation/Certification

ConceptOptimization

AirplaneValidation

Service &Support3I2 4 5I

SelectConcept

ProgramLaunch

After FETT

Release toProduction

I 2 3 4 5

2.52.5

“HUMAN” BASED

IPMT

CIPT CIPTCIPT

IPTIPTIPTIPTIPTIPT

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

LE

VE

LS

OF

FID

EL

ITY

NO

N-A

NA

LY

TIC

AL

NO

N-A

NA

LY

TIC

AL

NO

N-A

NA

LY

TIC

AL

-- LABOR INTENSIVE --

Page 13: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

ASSESSMENT ASSESSMENT MODELINGMODELING

PHYSICS

COST

- SOLVE TURBULENCE- MULTIDISCIPLINARY ANALYSIS (MDA)- MATERIAL PROPERTIES- PROBABILISTICS

- MFG - MAINTENANCE - NEGOTIATED

INTEGRATION FRAMEWORKSINTEGRATION FRAMEWORKSPHYSICSMODELS

CAD/CAMMODELS

COSTMODELS

STANDARDWORK

COMPUTERESOURCESMDO

FIPER

Technologies Are Progressing To Enable Large Scale Computer Based MDO

GRID COMPUTINGGRID COMPUTING

CHALLENGES-SECURITY- POLITE COEXISTENCE- FAULT TOLERANCE

ROBUST ROBUST PARAMETRICPARAMETRIC

MASTER MODELMASTER MODEL

CHALLENGES -LARGE ASSEMBLIES -TOPOLOGICAL -GENERATIVE - DIRECT MFG

SYSTEM ANALYSISSYSTEM ANALYSIS

CHALLENGES-CYCLE BALANCE-2ND FLOWS-TRANSIENTS

COMPUTER BASEDCOMPUTER BASEDMDOMDO

NAVIGATETHE VIRTUAL

DESIGN SPACE

Page 14: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Implementation Path: Electronic Enterprise EngineeringElectronic Enterprise Engineering

LIBRARY OF“WRAPPED” TOOLS

A

B

C

B

CG

VALIDATED

CERTIFIED

EMBEDDEDKNOWLEDGE

CONTROLLED

INTEGRATIONFRAMEWORK

A

E

C

G

B

D

F

H

INTEGRATETHIRD PARTY& LEGACY TOOLS

INDUSTRYACCEPTED

COMMERCIAL

ELECTRONICPROCESS MAPS

A

B

D E

F

C

G

AA

BB

DD EE

FF

CC

GG

TOOLSINTEGRATEDINTO ELECTRONICPROCESS MAPS & ASSOCIATED WITH WORKINSTRUCTIONS

ELECTRONICIPT

A

B

D E

F

C

G

IPT 1

IPT 2

IPT 3

WORK FLOWMANAGEMENT

COLLABORATIVEENGINEERING

SECURE B2B

COMPUTER BASEDOPTIMIZATION

A

B

D E

F

C

G

SYSTEMOPTIMIZER

OP

TIM

IZE

R

OP

TIM

IZE

R

IPT 1&2

IPT 3

AUTOMATEITERATION

SATISFY CRITERIA

GRID COMPUTING

Page 15: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Large Scale Computer Based MDO Is AlreadyPractical

Aero Xsections

0

0.1

0.2

0.3

0.4

0.5

AreaS1 AreaS2 AreaS3 AreaS4 AreaS5

Are

a

Initial

Iteration 515

Aero Xsections

0

0.1

0.2

0.3

0.4

0.5

AreaS1 AreaS2 AreaS3 AreaS4 AreaS5

Are

a

Initial

Iteration 515

AIRFOILSHAPE

OPTIMIZER

PARAMETRICCAD MESH

VIBRATORYANALYSIS

3D AEROCFD

EFFICIENCY

STRESS MODE 1

MODE 2 MODE 3 MODE 4

CAMPBELL DIAGRAM

3D Aero-Vibratory Shape Optimization Of A Cooled Turbine Airfoil(Single Row RANS CFD, Cooled UG Parametric Model, 3D ANSYS Vibes)

Page 16: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Large Scale Computer Based MDO Is AlreadyBecoming Practical

GENERATION0 10 20 30

0.6

0.4

0.2

0.0

DE

LT

A T

UR

BIN

E E

FF

ICIE

NC

Y

150 VARIABLES 15 CONSTRAINTS

LOSS CONTOURS

LOSS CONTOURS

3D Shape Optimization Based On Hybrid Genetic Algorithm & Rule System(3D RANS Multi Row CFD, Population Size 80, Total Runs 2400, Run Time 48 hrs on 40CPUs)

Discovered “bowed” rotorTo control tip leakageVortex

Page 17: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Efficient Scalable System Problem FormulationsAre Becoming Understood For Gas Turbine Design

APPROXIMATIONTO HIGH FIDELITYAPPROXIMATIONTO HIGH FIDELITY

LIFE

WEIGHT

COST

LIFE

WEIGHT

COST

MIN: WEIGHT & COST ST: JOB TCKT & SWVAR: MECHANICALS

LIFE

WEIGHT

COST

LIFE

WEIGHT

COST

MIN: WEIGHT & COST ST: JOB TCKT & SWVAR: MECHANICALS

LIFE

WEIGHT

COST

LIFE

WEIGHT

COST

MIN: WEIGHT & COST ST: JOB TCKT & SWVAR: MECHANICALS

HIGH FIDELITY PARTSHIGH FIDELITY PARTS

NUMERICALOPTIMIZATION

x1

x2Xi+1 = Xi - ifi

NUMERICALOPTIMIZATION

x1

x2Xi+1 = Xi - ifi

x1

x2Xi+1 = Xi - ifi

TURBINE (i) MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & AIRFOILS

MEANLINE

COMPRESSOR (i)MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & AIRFOILS

MEANLINE

BURNER (i) MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & LENGTHS

MEANLINE

FLOWPATH

TURBINE (i) MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & AIRFOILS

MEANLINE

COMPRESSOR (i)MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & AIRFOILS

MEANLINE

BURNER (i) MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & LENGTHS

MEANLINE

TURBINE (i) MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & AIRFOILS

MEANLINE

COMPRESSOR (i)MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & AIRFOILS

MEANLINE

BURNER (i) MIN: COST LOCAL ST: JOB TCKT & SWVAR: RADI & LENGTHS

MEANLINE

FLOWPATHFLOWPATH

PROBLEM FORMULATION

MIN: MANUFACTURING COSTST: DOC+I, RANGE, NOISE, EMISSIONSVARIABLES: SYSTEM DISCRETE & CONTINUOUS

DISCRETE PARAMETERS,--- Nspool, GEAR, ROTATION, MIXED, MOUNTS, etc.

CONTINUOUS PARAMETERS -- BPR, FPR, OPR, WS, CET, Wc, RPMi, etc

FULLENGINEMODEL(0D, 1D, 2D, 3D) VEHICLE ANALYSIS

REPRESENTATION

CONFIGURATOR

CYCLE

PROBLEM FORMULATION

MIN: MANUFACTURING COSTST: DOC+I, RANGE, NOISE, EMISSIONSVARIABLES: SYSTEM DISCRETE & CONTINUOUS

DISCRETE PARAMETERS,--- Nspool, GEAR, ROTATION, MIXED, MOUNTS, etc.

CONTINUOUS PARAMETERS -- BPR, FPR, OPR, WS, CET, Wc, RPMi, etc

FULLENGINEMODEL(0D, 1D, 2D, 3D) VEHICLE ANALYSIS

PROBLEM FORMULATION

MIN: MANUFACTURING COSTST: DOC+I, RANGE, NOISE, EMISSIONSVARIABLES: SYSTEM DISCRETE & CONTINUOUS

DISCRETE PARAMETERS,--- Nspool, GEAR, ROTATION, MIXED, MOUNTS, etc.

CONTINUOUS PARAMETERS -- BPR, FPR, OPR, WS, CET, Wc, RPMi, etc

FULLENGINEMODEL(0D, 1D, 2D, 3D) VEHICLE ANALYSIS

MIN: MANUFACTURING COSTST: DOC+I, RANGE, NOISE, EMISSIONSVARIABLES: SYSTEM DISCRETE & CONTINUOUS

DISCRETE PARAMETERS,--- Nspool, GEAR, ROTATION, MIXED, MOUNTS, etc.

CONTINUOUS PARAMETERS -- BPR, FPR, OPR, WS, CET, Wc, RPMi, etc

FULLENGINEMODEL(0D, 1D, 2D, 3D) VEHICLE ANALYSIS

MIN: MANUFACTURING COSTST: DOC+I, RANGE, NOISE, EMISSIONSVARIABLES: SYSTEM DISCRETE & CONTINUOUS

DISCRETE PARAMETERS,--- Nspool, GEAR, ROTATION, MIXED, MOUNTS, etc.

CONTINUOUS PARAMETERS -- BPR, FPR, OPR, WS, CET, Wc, RPMi, etc

MIN: MANUFACTURING COSTST: DOC+I, RANGE, NOISE, EMISSIONSVARIABLES: SYSTEM DISCRETE & CONTINUOUS

DISCRETE PARAMETERS,--- Nspool, GEAR, ROTATION, MIXED, MOUNTS, etc.

CONTINUOUS PARAMETERS -- BPR, FPR, OPR, WS, CET, Wc, RPMi, etc

FULLENGINEMODEL(0D, 1D, 2D, 3D) VEHICLE ANALYSIS

REPRESENTATION

CONFIGURATOR

CYCLE

REPRESENTATION

CONFIGURATOR

CYCLE

CONFIGURATOR

CYCLE

ALGORITHMS

$

WT

SFC

TRIAL A B C D E F G

1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2 3 1 2 2 1 1 2 2 4 1 2 2 2 2 1 1 5 2 1 2 1 2 1 2 6 2 1 2 2 1 2 1 7 2 2 1 1 2 2 1 8 2 2 1 2 1 1 2

RESPONSE SURFACEMODELS

Y1

ROBUSTDESIGN

DESIGNOFEXPERIMENT

ALGORITHMS

$

WT

SFC

TRIAL A B C D E F G

1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2 3 1 2 2 1 1 2 2 4 1 2 2 2 2 1 1 5 2 1 2 1 2 1 2 6 2 1 2 2 1 2 1 7 2 2 1 1 2 2 1 8 2 2 1 2 1 1 2

RESPONSE SURFACEMODELS

Y1

ROBUSTDESIGN

DESIGNOFEXPERIMENT

ALGORITHMS

$

WT

SFC

$$

WTWT

SFCSFC

TRIAL A B C D E F G

1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2 3 1 2 2 1 1 2 2 4 1 2 2 2 2 1 1 5 2 1 2 1 2 1 2 6 2 1 2 2 1 2 1 7 2 2 1 1 2 2 1 8 2 2 1 2 1 1 2

TRIAL A B C D E F G

1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2 3 1 2 2 1 1 2 2 4 1 2 2 2 2 1 1 5 2 1 2 1 2 1 2 6 2 1 2 2 1 2 1 7 2 2 1 1 2 2 1 8 2 2 1 2 1 1 2

RESPONSE SURFACEMODELS

Y1

ROBUSTDESIGN

DESIGNOFEXPERIMENT

Page 18: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

LESS TIMELESS TIMEFEWER PEOPLEFEWER PEOPLE

Will Enable New Design ParadigmsNew Design Paradigms

COMPUTER BASED DESIGNCOMPUTER BASED DESIGNRUN 24/7 365 DAYS A YEAR

CONTINUOUS DETAILED DESIGN

SOLVE ALL POSSIBLEAPPLICATIONS @ TECHNOLOGY READINESS LEVEL

CUSTOMER NEEDS

UNDERSTAND THE FUTURE

CREATE TECHNOLOGY

IMPROVE MODELS

RE-FORMULATE PROBLEM

UPGRADE COMPUTER BASED DESIGN “MACHINE”

ENGINEERSENGINEERS

CUSTOMER REQ. EXCEED TECHNOLOGY

Page 19: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &
Page 20: Energy Efficient Propulsion Systems Optimization Execution J. Brent Staubach & Michael Winter Pratt & Whitney United Technologies Corporation Energy &

Powering Change………….Powering Freedom