emtl1

Upload: ramonakiss20084478

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 emtL1

    1/80

    EEE241:

    Fundamentals of

    ElectromagneticsIntroductory Concepts, Vector

    Fields and Coordinate Systems

    Instructor: Dragica Vasileska

  • 7/27/2019 emtL1

    2/80

    Outline

    Class Description

    Introductory Concepts

    Vector Fields Coordinate Systems

  • 7/27/2019 emtL1

    3/80

    Class Description

    Prerequisites by Topic:

    University physics

    Complex numbers

    Partial differentiation

    Multiple Integrals

    Vector Analysis

    Fourier Series

  • 7/27/2019 emtL1

    4/80

    Class Description

    Prerequisites: EEE 202; MAT 267, 274 (or275), MAT 272; PHY 131, 132

    Computer Usage: Students are assumed to be

    versed in the use MathCAD or MATLAB toperform scientific computing such as numericalcalculations, plotting of functions and performingintegrations. Students will develop and visualizesolutions to moderately complicated fieldproblems using these tools.

    Textbook: Cheng, Field and WaveElectromagnetics.

  • 7/27/2019 emtL1

    5/80

    Class Description

    Grading:

    Midterm #1 25%

    Midterm #2 25%

    Final 25%

    Homework 25%

  • 7/27/2019 emtL1

    6/80

    Class Description

  • 7/27/2019 emtL1

    7/80

    Why Study Electromagnetics?

  • 7/27/2019 emtL1

    8/80

    Examples of Electromagnetic

    Applications

  • 7/27/2019 emtL1

    9/80

    Examples of Electromagnetic

    Applications, Contd

  • 7/27/2019 emtL1

    10/80

    Examples of Electromagnetic

    Applications, Contd

  • 7/27/2019 emtL1

    11/80

    Examples of Electromagnetic

    Applications, Contd

  • 7/27/2019 emtL1

    12/80

    Examples of Electromagnetic

    Applications, Contd

  • 7/27/2019 emtL1

    13/80

    Research Areas of

    Electromagnetics

    Antenas

    Microwaves

    Computational Electromagnetics

    Electromagnetic Scattering

    Electromagnetic Propagation

    Radars

    Optics

    etc

  • 7/27/2019 emtL1

    14/80

    Why is Electromagnetics

    Difficult?

  • 7/27/2019 emtL1

    15/80

    What is Electromagnetics?

  • 7/27/2019 emtL1

    16/80

    What is a charge q?

  • 7/27/2019 emtL1

    17/80

    Fundamental Laws of

    Electromagnetics

  • 7/27/2019 emtL1

    18/80

    Steps in Studying Electromagnetics

  • 7/27/2019 emtL1

    19/80

    SI (International System) of

    Units

  • 7/27/2019 emtL1

    20/80

    Units Derived From the

    Fundamental Units

  • 7/27/2019 emtL1

    21/80

    Fundamental Electromagnetic Field

    Quantities

  • 7/27/2019 emtL1

    22/80

    Three Universal Constants

  • 7/27/2019 emtL1

    23/80

    Fundamental Relationships

  • 7/27/2019 emtL1

    24/80

    Scalar and Vector Fields

    A scalar field is a function that gives us

    a single value of some variable for

    every point in space. Examples: voltage, current, energy,

    temperature

    A vector is a quantity which has both a

    magnitude and a direction in space. Examples: velocity, momentum, acceleration

    and force

  • 7/27/2019 emtL1

    25/80

    Example of a Scalar Field

  • 7/27/2019 emtL1

    26/80

    26

    Scalar Fields

    e.g. Temperature: Every location has

    associated value (number with units)

  • 7/27/2019 emtL1

    27/80

    27

    Scalar Fields - Contours

    Colors represent surface temperature

    Contour lines show constant temperatures

  • 7/27/2019 emtL1

    28/80

    28

    Fields are 3D

    T = T(x,y,z)

    Hard to visualizeWork in 2D

  • 7/27/2019 emtL1

    29/80

    29

    Vector FieldsVector (magnitude, direction) at every point

    in space

    Example: Velocity vector field - jet stream

  • 7/27/2019 emtL1

    30/80

    Vector Fields Explained

  • 7/27/2019 emtL1

    31/80

    Examples of Vector Fields

  • 7/27/2019 emtL1

    32/80

    Examples of Vector Fields

  • 7/27/2019 emtL1

    33/80

    Examples of Vector Fields

  • 7/27/2019 emtL1

    34/80

    VECTOR REPRESENTATION

    3 PRIMARY COORDINATE SYSTEMS:

    RECTANGULAR

    CYLINDRICAL

    SPHERICAL

    Choice is based on

    symmetry of problem

    Examples:

    Sheets - RECTANGULAR

    Wires/Cables - CYLINDRICAL

    Spheres - SPHERICAL

  • 7/27/2019 emtL1

    35/80

    Orthogonal Coordinate Systems: (coordinates mutually perpendicular)

    Spherical Coordinates

    Cylindrical Coordinates

    Cartesian Coordinates

    P (x,y,z)

    P (r, , )

    P (r, , z)

    x

    y

    zP(x,y,z)

    z

    rx

    y

    z

    P(r, , z)

    r

    z

    yx

    P(r, , )

    Page 108

    Rectangular Coordinates

  • 7/27/2019 emtL1

    36/80

    -Parabolic Cylindrical Coordinates (u,v,z)

    -Paraboloidal Coordinates (u, v, )-Elliptic Cylindrical Coordinates (u, v, z)

    -Prolate Spheroidal Coordinates (, , )

    -Oblate Spheroidal Coordinates (, , )-Bipolar Coordinates (u,v,z)

    -Toroidal Coordinates (u, v, )

    -Conical Coordinates (, , )

    -Confocal Ellipsoidal Coordinate (, , )

    -Confocal Paraboloidal Coordinate (, , )

  • 7/27/2019 emtL1

    37/80

    Parabolic Cylindrical Coordinates

  • 7/27/2019 emtL1

    38/80

    Paraboloidal Coordinates

  • 7/27/2019 emtL1

    39/80

    Elliptic Cylindrical Coordinates

  • 7/27/2019 emtL1

    40/80

    Prolate Spheroidal Coordinates

  • 7/27/2019 emtL1

    41/80

    Oblate Spheroidal Coordinates

  • 7/27/2019 emtL1

    42/80

    Bipolar Coordinates

  • 7/27/2019 emtL1

    43/80

    Toroidal Coordinates

  • 7/27/2019 emtL1

    44/80

    Conical Coordinates

  • 7/27/2019 emtL1

    45/80

    Confocal Ellipsoidal Coordinate

  • 7/27/2019 emtL1

    46/80

    Confocal Paraboloidal Coordinate

  • 7/27/2019 emtL1

    47/80

    Cartesian CoordinatesP(x,y,z)

    Spherical Coordinates

    P(r, , )

    Cylindrical Coordinates

    P(r, , z)

    x

    y

    z

    P(x,y,z)

    z

    rx

    y

    z

    P(r, , z)

    r

    z

    yx

    P(r, , )

  • 7/27/2019 emtL1

    48/80

    Coordinate Transformation

    Cartesian to Cylindrical

    (x, y, z) to (r,,)

    (r,,) to (x, y, z)

  • 7/27/2019 emtL1

    49/80

    Cartesian to CylindricalVectoral Transformation

    Coordinate Transformation

  • 7/27/2019 emtL1

    50/80

    Coordinate Transformation

    Cartesian to Spherical

    (x, y, z) to (r,,)

    (r,,) to (x, y, z)

  • 7/27/2019 emtL1

    51/80

    Cartesian to Spherical

    Vectoral Transformation

    Coordinate Transformation

    V t R t ti

  • 7/27/2019 emtL1

    52/80

    Page 109

    x

    y

    z

    Z plane

    x plane

    xyz

    x1

    y1

    z1

    AxAy

    Unit vector properties

    0

    1

    xzzyyx

    zzyyxx

    yxz

    xzyzyx

    Vector Representation

    Unit (Base) vectors

    A unit vector aA along A is a vector

    whose magnitude is unity

    A

    Aa

    V t R t ti

  • 7/27/2019 emtL1

    53/80

    zyx AzAyAxA

    Page 109

    x

    y

    z

    Z plane

    x plane

    222

    zyxAAAAAA

    xyz

    x1

    y1

    z1

    AxAy

    Az

    Vector representation

    Magnitude of A

    Position vector A

    ),,( 111 zyxA

    111 zzyyxx

    Vector Representation

  • 7/27/2019 emtL1

    54/80

    x

    y

    z

    Ax Ay

    AzA

    B

    Dot product:

    zzyyxx BABABABA

    Cross product:

    zyx

    zyx

    BBB

    AAA

    zyx

    BA

    Back

    Cartesian Coordinates

    Page 108

  • 7/27/2019 emtL1

    55/80

    Multiplication of vectors

    Two different interactions (whats the

    difference?)

    Scalar or dot product :

    the calculation giving the work done by a force during a

    displacement

    work and hence energy are scalar quantities which arise

    from the multiplication of two vectors

    if AB = 0 The vector A is zero

    The vector B is zero

    = 90

    ABBABA cos||||

    A

    B

  • 7/27/2019 emtL1

    56/80

    Vector or cross product :

    n is the unit vector along the normal to the plane

    containing A and B and its positive direction isdetermined as the right-hand screw rule

    the magnitude of the vector product ofA and B is

    equal to the area of the parallelogram formed byA

    and B

    if there is a force Facting at a point Pwith position

    vectorrrelative to an origin O, the moment of a force

    Fabout O is defined by :

    if A x B = 0

    The vector A is zero

    The vector B is zero

    = 0

    nsin|||| BABA

    A

    B

    ABBA

    FrL

    Commutative law :

  • 7/27/2019 emtL1

    57/80

    Commutative law :

    ABBA

    ABBA

    Distribution law :

    CABACBA )(

    CABACBA )(

    Associative law :))(( DCBADBCA

    CBABCA )(

    CBACBA )(

    CBACBA )()(

  • 7/27/2019 emtL1

    58/80

    Unit vector relationships

    It is frequently useful to resolve vectors into components

    along the axial directions in terms of the unit vectors i,j,

    and k.

    1

    0

    kkjjii

    ikkjji

    jik

    ikj

    kjikkjjii

    0

    zyx

    zyx

    zzyyxx

    zyx

    zyx

    BBB

    AAA

    kji

    BA

    BABABABA

    kBjBiBB

    kAjAiAA

    S l t i l d t CBA

  • 7/27/2019 emtL1

    59/80

    Scalar triple product CBA

    The magnitude of is the volume of the parallelepiped with edges parallel to

    A, B, and C.

    CBA

    A

    BC

    A B

    ],,[ CBABACACBACBCBACBA

    V t t i l d t CBA

  • 7/27/2019 emtL1

    60/80

    Vector triple product CBA

    The vector is perpendicular to the plane of A and B. When the further vector

    product with C is taken, the resulting vector must be perpendicular to and

    hence in the plane of A and B :

    BA

    A

    BC

    A B

    BA

    nBmACBA )( where m and n are scalar constants to be determined.

    0)( BnCAmCCBAC ACn

    BCm

    BACABCCBA )()()(

    Since this equation is valid

    for any vectors A, B, and C

    Let A = i, B = C =j:

    1

    CBABCACBA

    ACBBCACBA

    )()()(

    )()()(

  • 7/27/2019 emtL1

    61/80

    x

    z

    y

    VECTOR REPRESENTATION: UNIT VECTORS

    yaxa

    za

    Unit Vector

    Representationfor Rectangular

    Coordinate

    System

    xa

    The Unit Vectors imply :

    ya

    za

    Points in the direction of increasing x

    Points in the direction of increasing y

    Points in the direction of increasing z

    Rectangular Coordinate System

    VECTOR REPRESENTATION: UNIT VECTORS

  • 7/27/2019 emtL1

    62/80

    r

    f

    z

    P

    x

    z

    y

    VECTOR REPRESENTATION: UNIT VECTORS

    Cylindrical Coordinate System

    za

    fa

    ra

    The Unit Vectors imply :

    za

    Points in the direction of increasing r

    Points in the direction of increasing j

    Points in the direction of increasing z

    ra

    fa

    Cylindrical Coordinates

  • 7/27/2019 emtL1

    63/80

    Base

    Vectors

    A1

    radial distance in x-y plane

    azimuth angle measured from the positive

    x-axis

    Z

    r0

    20

    z

    y

    ,

    ,

    z

    z

    z

    zAzAAAaA

    Pages 109-112Back

    ( , , z)

    Vector representation

    222

    zAAAAAA

    Magnitude of A

    Position vector A

    Base vector properties

    11 zz

    Cylindrical Coordinates

  • 7/27/2019 emtL1

    64/80

    Dot product:

    zzrr BABABABA ff

    Cross product:

    zr

    zr

    BBB

    AAA

    zr

    BA

    f

    f

    f

    BA

    Back

    y

    Pages 109-111

    VECTOR REPRESENTATION: UNIT VECTORS

  • 7/27/2019 emtL1

    65/80

    VECTOR REPRESENTATION: UNIT VECTORS

    Spherical Coordinate System

    r

    f

    P

    x

    z

    y

    a

    fa

    ra

    The Unit Vectors imply :

    Points in the direction of increasing r

    Points in the direction of increasing j

    Points in the direction of increasing ra

    fa

    a

    Spherical Coordinates

  • 7/27/2019 emtL1

    66/80

    ,, RRR

    Spherical Coordinates

    Pages 113-115Back

    (R, , )

    f f AAARA R

    Vector representation

    222

    f AAAAAA R

    Magnitude of A

    Position vector A

    1RR

    Base vector properties

    Spherical Coordinates

  • 7/27/2019 emtL1

    67/80

    Dot product:

    ff BABABABA RR

    Cross product:

    f

    f

    f

    BBB

    AAA

    R

    BA

    R

    R

    Back

    BA

    Pages 113-114

    VECTOR REPRESENTATION: UNIT VECTORS

  • 7/27/2019 emtL1

    68/80

    zr aaa

    f f aaar

    zyx aaa

    RECTANGULAR

    Coordinate

    Systems

    CYLINDRICAL

    Coordinate

    Systems

    SPHERICAL

    Coordinate

    Systems

    NOTE THE ORDER!

    r,f, z r, ,f

    Note: We do not emphasize transformations between coordinate systems

    VECTOR REPRESENTATION: UNIT VECTORS

    Summary

    METRIC COEFFICIENTS

  • 7/27/2019 emtL1

    69/80

    METRIC COEFFICIENTS

    1. Rectangular Coordinates:

    When you move a small amount in x-direction, the distance is dx

    In a similar fashion, you generate dy and dz

    Unit is in meters

    Cartesian Coordinates

  • 7/27/2019 emtL1

    70/80

    Cartesian Coordinates

    Differential quantities:

    Differential distance:

    Differential surface:

    Differential Volume:

    dzzdyydxxld

    dxdyzsd

    dxdzysd

    dydzxsd

    z

    y

    x

    dxdydzdv

    Page 109

    C li d i l C di t

  • 7/27/2019 emtL1

    71/80

    Cylindrical Coordinates:

    Distance = r df

    x

    y

    dfr

    Differential Distances:

    ( dr, rdf, dz )

    C li d i l C di t

  • 7/27/2019 emtL1

    72/80

    Cylindrical Coordinates:

    Differential Distances: ( d, rdf, dz )zadzadadld ff

    zz addsd

    adzdsd

    adzdsd

    f

    f

    ff

    Differential Surfaces:

    Differential Volume:

    Spherical Coordinates:

  • 7/27/2019 emtL1

    73/80

    Spherical Coordinates:

    Distance = r sin df

    x

    y

    dfr sin

    Differential Distances:

    ( dr, rd, r sin df )

    r

    f

    P

    x

    z

    y

    Spherical Coordinates

    dRdl

  • 7/27/2019 emtL1

    74/80

    Differential quantities:

    Length:

    Area:

    Volume:

    dRRddRR

    dldldlRld R

    sin

    RdRddldlsd

    dRdRdldlsd

    ddRRdldlRsd

    R

    R

    R

    sin

    sin 2

    ddRdRdv sin2

    dRdl

    Rddl

    dRdlR

    sin

    Pages 113-115Back

    METRIC COEFFICIENTS

  • 7/27/2019 emtL1

    75/80

    Representation of differential length dl in coordinate systems:

    zyx adzadyadxld

    zr adzadradrld ff

    f f adrardadrld r sin

    rectangular

    cylindrical

    spherical

    METRIC COEFFICIENTS

  • 7/27/2019 emtL1

    76/80

    Example

    For the object on the rightcalculate:

    (a) The distance BC

    (b) The distance CD

    (c) The surface areaABCD

    (d) The surface area ABO

    (e) The surface areaA OFD

    (f) The volumeABDCFO

    AREA INTEGRALS

  • 7/27/2019 emtL1

    77/80

    AREA INTEGRALS

    integration over 2 delta distances

    dx

    dy

    Example:

    x

    y

    2

    6

    3 7

    AREA = 7

    3

    6

    2

    dxdy = 16

    Note that: z = con stant

    In this course, area & surface integrals will be

    on similar types of surfaces e.g. r =constantorf = constant or = constant et c.

    SURFACE NORMAL

  • 7/27/2019 emtL1

    78/80

    Representation of differential surface element:

    zadydxsd

    Vector is NORMAL

    to su r face

    SURFACE NORMAL

    DIFFERENTIALS FOR INTEGRALS

  • 7/27/2019 emtL1

    79/80

    DIFFERENTIALS FOR INTEGRALS

    Example of Line differentials

    or or

    Example of Surface differentials

    zadydxsd

    radzrdsd f

    or

    Example of Volume differentials dzdydxdv

    xadxld

    radrld

    ff ardld

    Cartesian to Cylindrical Transformation

  • 7/27/2019 emtL1

    80/80

    zz

    yx

    yxr

    cossin

    sincos

    fff

    ff

    zz

    yx

    yxr

    AA

    AAAAAA

    ffff

    f cossinsincos

    zz

    xy

    yxr

    )/(tan 1

    22

    f