«emr-based simulation tool of a multi-train subway system - emr... · « emr-based simulation tool...

11
08/07/2016 1 EMR’16 UdeS - Longueuil June 2016 Summer School EMR’16 “Energetic Macroscopic Representation” « EMR - based Simulation Tool of a Multi - train Subway System » Dr. C. Mayet 1 , Dr. P. Delarue 1 , Prof. A. Bouscayrol 1 Dr. J.-N. Verhille 2 , Mr. E. Chattot 2 1 L2EP, Université Lille1, France 2 SIEMENS, France EMR’16, UdeS Longueuil, June 2016 2 « EMR - based simulation tool of a multi - train subway systems » - Context and Objective - Objective: Develop and energetic and flexible simulation tool SOUS-STATION - + - + Accurate estimation of energy consumptions Evaluate new solutions to save energy (i.e. ESS), size the system, etc. - Non-linearities (Non-reversiblity of TPS) - Structural Variability (trains displacements) - Coupling of several subsystems (trains, TPS, etc.) Accuracy of the results & Simulation flexibility ? Main difficulties

Upload: others

Post on 10-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

1

EMR’16

UdeS - Longueuil

June 2016

Summer School EMR’16

“Energetic Macroscopic Representation”

«EMR-based Simulation Tool of a

Multi-train Subway System »

Dr. C. Mayet1, Dr. P. Delarue1, Prof. A. Bouscayrol1

Dr. J.-N. Verhille2, Mr. E. Chattot2

1 L2EP, Université Lille1, France 2 SIEMENS, France

EMR’16, UdeS Longueuil, June 20162

« EMR-based simulation tool of a multi-train subway systems »

- Context and Objective -

Objective: Develop and energetic and flexible simulation tool

SOUS-STATION

Rail positif

Rail de retour

SOUS-STATION

- + - +

Accurate estimation of energy consumptions

Evaluate new solutions to save energy (i.e. ESS), size the system, etc.

- Non-linearities (Non-reversiblity of TPS)

- Structural Variability (trains displacements)

- Coupling of several subsystems (trains, TPS, etc.)

Accuracy of the results

&

Simulation flexibility ?

Main difficulties

Page 2: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

2

EMR’16, UdeS Longueuil, June 20163

« EMR-based simulation tool of a multi-train subway systems »

- Outline -

1. EMR of Subsystems

• EMR of the supply subsystem

• EMR of the subway subsystem

2. EMR of Mono-train Subway Systems

• EMR of mono-train subway systems

• Experimental validation

3. EMR of Multi-train Subway Systems

• EMR of multi-train subway systems

• Simulation results

4. Conclusion & Perspectives

EMR’16

UdeS - Longueuil

June 2016

Summer School EMR’16

“Energetic Macroscopic Representation”

« EMR of Subsystems »

Page 3: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

3

EMR’16, UdeS Longueuil, June 20165

« EMR-based simulation tool of a multi-train subway systems »

- EMR of the Supply Subsystem -

ON

OF

ON

OF

Petri Net

Models activation

tuteteA railssss 02 :

0:1 tiA ss

A2

Mode bloqué

A1

Mode passant

Off-state

On-state

Non-linear system

iss(t)

ess(t)

i2(t)i1(t)ig(t) L2 R2

Lμ, Rir

mt

Dup1,2,3

Ddo1,2,3

Traction Power Substation

Lr-pos Rr-pos

DC rails LoadGrid

Cbus-eq

ibus-eq(t)

Lr-neg Rr-neg

Modeling of each states

urail(t)

ug(t)

ug(t)

ig(t)

i1(t)

Grid

u20(t)

i2(t)

Load

Rectifier

ess0(t)

iss(t)

ug(t) iss(t)

urail(t)

Transformer

i10(t)

u20(t)

i2(t)

iss(t)

urail(t)

i2(t)

iss(t)

u20(t)

Global non-linear behavior = 2 linear behaviors

iss(t)

ess(t)

L2 R2 Lr-eq Rr-eq

i22(t) L2 R2

i23(t) L2 R2

v201(t)

v202(t)

v203(t)

iss(t)

ess(t)

i21(t) L2 R2 Lr-eq Rr-eq Dup1

i22(t) L2 R2

i23(t) L2 R2 Ddo3

v201(t)

v202(t)

v203(t)

ess0(t)

i21(t)

Mode bloqué (aucune diode ne

conduit)

Mode passant (ex : Dup1 et Ddo3

conduisent)

1

1

1

1

2

2

2

2

3

3

3

3

Dup

Dup

Ddo

Ddo

urail(t)

urail(t) Off-state

On-state

EMR’16, UdeS Longueuil, June 20166

« EMR-based simulation tool of a multi-train subway systems »

- EMR of the Supply Subsystem -

Energy consumption

Average error

Experiment 1.25 Wh 0 %

Simulation 1.12 Wh 1.4 %

Bus DC

Current

source

DC Rails

Rectifier

Transformer

Experimental validation

Tension des rails urail(t) (V)

Temps (s)

Mesure Simulation 0 1 2 3 4 5 6 7 8 9

82

78

74

70

66

Courant AC ig1(t) (A)

Temps (s)

3

2

1

0

-1

-2

-3

Mesure Simulation 0 1 2 3 4 5 6 7 8 9

Courant ibus-eq(t) (A)

Temps (s)

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9

Traction Power Substation DC rails LoadGrid

Page 4: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

4

EMR’16, UdeS Longueuil, June 20167

« EMR-based simulation tool of a multi-train subway systems »

- EMR of the Supply Subsystem -

Models Time step Comp. time Average error

Dynamical 0.05ms 348.3s 0 % (référence)

Averaged static non-linear 1ms 5.2s 0.36 %

Averaged static linear 1ms 5.1s 13.36 %

Courant ig(t) (A) 30

20

10

0

-10

-20

-30

0 5 10 15 20 25 30 35 40 45 50 55

Temps (s) Dynamique instantané non-linéaire Statique moyen non-linéaire Statique moyen linéaire

Courant iss(t) (A) 1200

800

400

0

-400

0 5 10 15 20 25 30 35 40 45 50 55

Temps (s) Dynamique instantané non-linéaire Statique moyen non-linéaire Statique moyen linéaire

Linear : non-reversibility is neglected

Static: transient states are neglected

Averaged: averaged value on 50 Hz

Averaged static non-linear model

3Vg(t)

IPFg(t)

IPF1(t)

IPF10(t)

Grid

3V20(t)

IPF2(t) ess0(t)

iss(t)

iss(t)

3Vg(t)

3Vg(t) 3V20(t)

IPF2(t)

3V20(t)

IPF2(t)

iss(t)

urail(t)

urail(t)

Rectifier Transformer

O F O N

Load

iss(t)

urail(t)

O F O N

EMR’16, UdeS Longueuil, June 20168

« EMR-based simulation tool of a multi-train subway systems »

- EMR of the Subway Subsystem -

Model

urail(t)

isub(t)

Rail Env.

vsub(t) Fwh(t)

vsub(t)

ubus(t)

ivsi(t)

ubus(t)

ibus(t) itrac(t)

ubus(t)

Aux. ubus(t)

iaux(t)

Tsm(t)

Ωsm(t)

uvsi(t)

ism(t)

mvsi(t)

vdq(t)

idq(t) Θ(t)

idq(t)

edq(t)

Brake

Tbk(t) Ωsm(t)

Tbk-ref

Ttrans(t)

Ωsm(t) vsub(t) Fres(t)

Fsub(t)

8 2

Aux. VSI PMSM Brake Trans. Chassis

4

Filter

ibo(t)

ubus(t)

urail(t)

ibo(t)

Ttrans-ref(t) Tsm-ref(t) idq-ref(t) vdq-ref(t) uvsi-ref(t) Fwh-ref(t) KDbk(t)

Fsub-ref(t) vsub-ref(t)

8

Inversion-based control

isub(t)

icar1(t)

ibo2(t)

-

urail(t) Bogie 1

ibo1(t)

Bogie 2

Car 1 icar2(t)

ibo4(t)

Bogie 3

ibo3(t)

Bogie 4

Car 2

+

Subway

iaux(t)

ivsi(t)

ism1(t) ubus(t)

uvsi13(t) Ωsm(t)

Tsm(t)

Ωsm(t) Ttrans(t)

Ωwh(t)

Twh(t)

Aux. VSI Traction system

Cbus

Lf itrac(t) ibo(t)

PMSM

PMSM uvsi23(t)

ism2(t)

Aux.

ibus(t)

Filter

rf

rbus

Energy management strategy

strategy

Voltage-dependent electrodynamic

braking characteristic

ubus (t)

Regenerative braking

Ubus_brk Ubus_MAX

Dissipative braking

Page 5: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

5

EMR’16, UdeS Longueuil, June 20169

« EMR-based simulation tool of a multi-train subway systems »

- EMR of the Subway Subsystem -

Energy consumption

Average error

Experiment 33.80 kWh 0 %

Simulation 34.15 kWh 3.48 %

Experimental validation

Temps (s)

70

60

50

40

30

20

10

0

Vitesse vsub(t) (km/h) 70

60

50

40

30

20

10

0

Altitude (m)

840 850 860 870 880 890 900 910 920 930

Vitesse mesurée (km/h) Vitesse simulée (km/h) Altitude (m)

Courant isub(t) (A) 1200

900

600

300

0

-300

-600

Temps (s) Mesure Simulation 840 850 860 870 880 890 900 910 920 930

EMR’16, UdeS Longueuil, June 201610

« EMR-based simulation tool of a multi-train subway systems »

- EMR of the Subway Subsystem -

Cte. velocity: accelerations & decelerations

are neglected

Models Step time Comp. time Average error

Dynamic 1ms 185s 0 %

Quasi-static 50ms 1.92s 0.77 %

Static 100ms 0.25s 14.16 %

Cte. velocity 100ms 0.23s 20.54 %

Quasi-static: fast dynamics are neglected

Static: low dynamics are neglected

Dynamique Quasi-statique Static Vitesse moyenne

Energie (kWh)

Temps (s)

40

30

20

10

0 0 500 1000 1500

Courant (A)

Temps (s)

900

600

300

0

-300

-600 0 20 30 40 50 60

Dynamique Quasi-statique Static Vitesse moyenne

urail(t)

isub(t)

Rail Env.

vsub(t) Fwh(t)

vsub(t)

ubus(t)

ivsi(t)

ubus(t)

ibus(t) itrac(t)

ubus(t)

Aux. ubus(t)

iaux(t)

Tsm(t)

Ωsm(t)

Frein Tbk(t)

Ωsm(t)

Tbk-ref(t)

Ttrans(t)

Ωsm(t) vsub(t) Fres(t)

Fsub(t) urail(t)

ibo(t)

8

Ttrans-ref(t)

Tsm-ref(t)

Fwh-ref(t) KDbk(t) Fsub-ref(t) vsub-ref(t)

strategie

4 2

8

Auxiliaire Filtre MSAP Frein méca. Tans. Masse Filter Aux PMSM Brake Trans. Chassis

Quasi-static model

Page 6: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

6

EMR’16

UdeS - Longueuil

June 2016

Summer School EMR’16

“Energetic Macroscopic Representation”

« EMR of Mono-train Subway

Systems »

EMR’16, UdeS Longueuil, June 201612

« EMR-based simulation tool of a multi-train subway systems »

urail(t)

isub(t)

Env.

vsub(t) Fwh(t)

vsub(t)

ubus(t)

ivsi(t)

ubus(t)

ibus(t) itrac(t)

ubus(t) Tsm(t)

Ωsm(t)

Brake Tbk(t)

Ωsm(t)

Tbk-ref(t)

Ttrans(t)

Ωsm(t) vsub(t) Fres(t)

Fsub(t) urail(t)

ibo(t)

8

Ttrans-ref(t)

Tsm-ref(t)

Fwh-ref(t) KDbk(t) Fsub-ref(t) vsub-ref(t)

Strategy

4 2

8

Aux. Filter PMSM Brake Trans. Chassis Rectifier Transformater

ubus(t) IPF2(t) 3Vg(t)

IPFg(t)

IPF1(t)

IPF10(t)

Grid

3V20(t)

IPF2(t) ess0(t)

iss(t)

iss(t)

3Vg(t)

3Vg(t)

3V20(t)

IPF2(t)

3V20(t)

iss(t)

ubus(t)

iss(t) O F O N

O F O N

urail(t)

iaux(t)

Aux.

ubus(t)

- EMR of Mono-train Subway Systems -

Grid

uvsi23(t)

uvsi13(t)

ug(t)

iss(t)

ess(t)

i2(t) i1(t) ig(t) L2 R2

Lμ, Rir

u20(t)

mt

Dup1,2,3

Ddo1,2,3

Traction Power Substation

i10(t)

Lr-pos(x) Rr-pos(x)

u2(t)

DC rails

iaux(t)

ivsi(t)

ism1(t) ubus(t)

Ωsm(t)

Tsm(t)

Ωsm(t) Ttrans(t)

Ωwh(t)

Twh(t)

Cbus

itrac(t)

PMSM

PMSM

ism2(t)

Aux.

ibus(t)

rbus

isub(t) ibo(t) Lf rf

urail(t)

Filter Aux. VSI Traction System

Lr-neg(x) Rr-neg(x)

Other bogies

Other bogies

Subsystems connexion

Systemic approach DC bus has to be taken into account

Cartesian approach

Rail voltage

?

Page 7: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

7

EMR’16, UdeS Longueuil, June 201613

« EMR-based simulation tool of a multi-train subway systems »

Grid

uvsi23(t)

uvsi13(t)

ug(t)

iss(t)

ess(t)

i2(t) i1(t) ig(t) L2 R2

Lμ, Rir

u20(t)

mt

Dup1,2,3

Ddo1,2,3

Traction Power Substation

i10(t)

Lr-pos(x) Rr-pos(x)

u2(t)

DC rails

iaux(t)

ivsi(t)

ism1(t) ubus(t)

Ωsm(t)

Tsm(t)

Ωsm(t) Ttrans(t)

Ωwh(t)

Twh(t)

Cbus

itrac(t)

PMSM

PMSM

ism2(t)

Aux.

ibus(t)

rbus

isub(t) ibo(t) Lf rf

urail(t)

Filter Aux. VSI Traction System

Lr-neg(x) Rr-neg(x)

Other bogies

Other bogies

- EMR of Mono-train Subway Systems -

Env.

vsub(t) Fwh(t)

vsub(t)

ubus(t)

ivsi(t)

ubus(t)

ibus(t) itrac(t)

ubus(t) Tsm(t)

Ωsm(t)

Brake Tbk(t)

Ωsm(t)

Tbk-ref(t)

Ttrans(t)

Ωsm(t) vsub(t) Fres(t)

Fsub(t) isub(t)

ubus(t)

8

Ttrans-ref(t)

Tsm-ref(t)

Fwh-ref(t) KDbk(t) Fsub-ref(t) vsub-ref(t)

Strategy

4 2

8

Aux. DC bus PMSM Brake Trans. Chassis Rectifier Transformer

ubus(t) IPF2(t) 3Vg(t)

IPFg(t)

IPF1(t)

IPF10(t)

Grid

3V20(t)

IPF2(t) ess0(t)

iss(t)

iss(t)

3Vg(t)

3Vg(t)

3V20(t)

IPF2(t)

3V20(t)

iss(t)

ubus(t)

iss(t)= isub(t)

O F O N

O F O N

ubus(t)

xsub(t)

iaux(t)

Aux.

ubus(t)

Impact on strategy

Impact on

switching (on/off)

Strong impact on energy

EMR’16, UdeS Longueuil, June 201614

« EMR-based simulation tool of a multi-train subway systems »

- EMR of Mono-train Subway Systems -

Energy consumption

Average error

Experiment 3.1 kWh0 %

(référence)

Simulation 3.0 kWh 1.9 % Experimental validation

Energie totale de traction (kWh) 3,5

3

2,5

2

1,5

1

0,5

0

Temps (s)

0 20 40 60 80 100 120

Mesure Simulation

Courant total de traction Nbcar/rameNbbo/car itrac(t) (A) 1200

800

400

0

-400

Temps (s)

0 20 40 60 80 100 120

Mesure Simulation

Tension de bus ubus(t) (V) 1000

950

900

850

800

750

700

Mesure Simulation

Temps (s)

0 20 40 60 80 100 120

Vitesse vsub(t) (km/h)

Temps (s)

60

50

40

30

20

10

0

-10

0 20 40 60 80 100 120

Mesure Simulation Altitude (m)

60

50

40

30

20

10

0

-10

Altitude (m)

Page 8: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

8

EMR’16

UdeS - Longueuil

June 2016

Summer School EMR’16

“Energetic Macroscopic Representation”

« EMR of Multi-train Subway

Systems »

EMR’16, UdeS Longueuil, June 201616

« EMR-based simulation tool of a multi-train subway systems »

Grid

ug(t)

iss(t)

ess(t)

i2(t) ig(t) L2 R2

Lμ, Rir

u20(t)

mt

Dup1,2,3

Ddo1,2,3

Traction Power Substation

u2(t)

Rail section 1

iaux2(t)

ivsi2(t)

ubus2(t) Cbus

itrac2(t)

PMSM

PMSM

Aux.

ibus2(t)

rbus

isub2(t) Lf rf

Other bogies

Other bogies

iaux1(t)

ivsi1(t)

ubus1(t) Cbus

itrac1(t)

PMSM

PMSM

Aux.

ibus1(t)

rbus

isub1(t) Lf rf

Subway 1

Other bogies

Other bogies

Subway 2

Lrp(x2) Rrp(x2)

Lrn(x2) Rrn(x2)

Rrp(x1) Lrp(x1)

Rrn(x1) Lrn(x1)

urail2(t) urail1(t)

Rail section 2

Grid

ug(t)

iss(t)

ess0(t)

i2(t) ig(t)

Rtps-eq

Rir

mt

Dup1,2,3

Ddo1,2,3

Traction Power Substation

Rail section 1

iaux2(t)

ivsi2(t)

ubus2(t) Cbus

itrac2(t)

PMSM

PMSM

Aux.

ibus2(t)

rbus

isub2(t) rf-eq

Other bogies

Other bogies

iaux1(t)

ivsi1(t)

ubus1(t) Cbus

itrac1(t)

PMSM

PMSM

Aux.

ibus1(t)

rbus

isub1(t)

Subway 1

Other bogies

Other bogies

Subway 2

Rr2-eq(x2) Rr1-eq(x1)

urail2(t) urail1(t)

Rail section 2

ess(t)

rf-eq

- EMR of Multi-train Subway Systems -

Page 9: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

9

EMR’16, UdeS Longueuil, June 201617

« EMR-based simulation tool of a multi-train subway systems »

Env. 8

Brake

2 4

Aux.

ibo1(t)

ubus1(t)

ubus1(t)

ibus1(t)

ubus1(t) ubus1(t)

itrac1(t)

ubus1(t)

iaux1(t)

ivsi1(t)

Tsm1(t)

Ωsm1(t)

Ttr1(t)

Ωsm1(t)

Ωsm1(t) Tbk1(t)

Fwh1(t)

vsub1(t) vsub1(t)

vsub1(t) Fsub1(t)

Fres1(t)

Tbk1-ref(t)

Tsm1-ref(t)

8

vsub1-ref(t) Fsub1-ref(t) Fwh1-ref(t) Ttr1-ref(t) KDbk1(t)

Strategy

Subway 1

Traction Power Substation

IPF2(t) 3Vg(t)

IPFg(t)

IPF1(t)

IPF10(t)

Grid

3V20(t)

IPF2(t) ess0(t)

iss(t)

3Vg(t)

3Vg(t)

3V20(t)

IPF2(t)

3V20(t)

O F O N

iss(t)

ess0(t)

Grid

ug(t)

iss(t)

ess0(t)

i2(t) ig(t)

Rtps-eq

Rir

mt

Dup1,2,3

Ddo1,2,3

Traction Power Substation

Rail section 1

iaux2(t)

ivsi2(t)

ubus2(t) Cbus

itrac2(t)

PMSM

PMSM

Aux.

ibus2(t)

rbus

isub2(t) rf-eq

Other bogies

Other bogies

iaux1(t)

ivsi1(t)

ubus1(t) Cbus

itrac1(t)

PMSM

PMSM

Aux.

ibus1(t)

rbus

isub1(t)

Subway 1

Other bogies

Other bogies

Subway 2

Rr2-eq(x2) Rr1-eq(x1)

urail2(t) urail1(t)

Rail section 2

ess(t)

rf-eq

iss(t)

ess0(t)

Rtps-eq

Rail section 1

iaux2(t)

ivsi2(t)

ubus2(t) Cbus

itrac2(t)

PMSM

PMSM

Aux.

ibus2(t)

rbus

isub2(t) rf-eq

Other bogies

Other bogies

iaux1(t)

ivsi1(t)

ubus1(t) Cbus

itrac1(t)

PMSM

PMSM

Aux.

ibus1(t)

rbus

isub1(t)

Subway 1

Other bogies

Other bogies

Subway 2

Rr2-eq(x2) Rr1-eq(x1)

urail2(t) urail1(t)

Rail section 2

ess(t)

rf-eq

- EMR of Multi-train Subway Systems -

.

and and

with

1

222111

22112211

11

22

011

22

xRrxRxRrxR

xRxRxRRxRRxR

tuxRRR

RxRRte

xR

xR

xRti

eqreqfeqeqreqfeq

eqeqeqeqtpseqeqtpseqon

buseqeqtpseqtps

eqtpseqeqtps

sseq

eq

eqonsub

.11 titi subss

TPS is on-state

.11

111

11

22

2211

tutixR

xR

xRxRti busss

eq

eq

eqeqsub

TPS is off-state

.222

1

2

1 2211

0 tixR

RxR

Rtute sub

eq

eqss

eq

eqssbusss

ubus(t)

isub(t)

isub(t)

ubus(t)

isub(t)

O F O N

ubus(t)

ubus1(t)

isub1(t) ubus2(t)

isub2(t)

xsub1(t) xsub2(t)

iaux2(t)

ivsi2(t)

ubus2(t) Cbus

itrac2(t)

PMSM

PMSM

Aux.

ibus2(t)

rbus

Other bogies

Other bogies

iaux1(t)

ivsi1(t)

ubus1(t) Cbus

itrac1(t)

PMSM

PMSM

Aux.

ibus1(t)

rbus

Subway 1

Other bogies

Other bogies

Subway 2

Subway 2

iaux2(t)

ivsi2(t)

ubus2(t) Cbus

itrac2(t)

PMSM

PMSM

Aux.

ibus2(t)

rbus

Other bogies

Other bogies

Env.

vsub2(t) Fwh2(t)

vsub2(t)

ubus2(t)

ivsi2(t)

ubus2(t)

ibus2(t) itrac2(t)

ubus2(t) Tsm2(t)

Ωsm2(t)

Brake Tbk2(t)

Ωsm2(t)

Tbk2-ref(t)

Ttr2(t)

Ωsm2(t) vsub2(t) Fres2(t)

Fsub2(t) ibo2(t)

ubus2(t)

8

Ttr2-ref(t)

Tsm2-ref(t)

Fwh2-ref(t) KDbk2(t) Fsub2-ref(t) vsub2-ref(t)

4 2

8

iaux2(t)

Aux.

ubus2(t)

Strategy

Subway 2

EMR’16, UdeS Longueuil, June 201618

« EMR-based simulation tool of a multi-train subway systems »

- EMR of Multi-train Subway Systems -

Positions (km) 6

4

2

0 0 100 200 300 400 500 600 700 800 900

Subway 1 x1(t)

Subway 2 x2(t)

TPS xss

Velocities (km/h) Time (s) 80

60

40

20

0

0 100 200 300 400 500 600 700 800 900

Subway 1 vsub1(t)

Subway 2 vsub2(t)

Time (s)

Currents (A) 2000

1500

1000

500

0

-500

340 360 380 400 420 440 460 480 500

Subway 1 isub1(t)

Subway 2 isub2(t)

TPS iss(t)

DC voltages (V) Time (s) 1000

900

800

700

600

500 340 360 380 400 420 440 460 480 500

Subway 1 ubus1(t)

Subway 2 ubus2(t)

TPS ess(t)

Time (s)

Page 10: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

10

EMR’16

UdeS - Longueuil

June 2016

Summer School EMR’16

“Energetic Macroscopic Representation”

« Conclusion & Perspectives »

EMR’16, UdeS Longueuil, June 201620

« EMR-based simulation tool of a multi-train subway systems »

- Conclusion & Perspectives -

• EMR of each subsystems (dynamical model, experimental validation, model reduction)

• EMR and experimental validation of mono-train subway systems

- DC bus modelling, real braking strategy

• EMR and simulation of multi-train subway systems

- Switching of models

Conclusion

• Extension for real subway systems (several subways and TPSs)

• Experimental validation of the final simulation tool

- HIL simulation ?

• Study of innovative solutions

- ESS, reversible TPS ?

Perspectives

Page 11: «EMR-based Simulation Tool of a Multi-train Subway System - EMR... · « EMR-based simulation tool of a multi-train subway systems » - Context and Objective - Objective: Develop

08/07/2016

11

EMR’16

UdeS - Longueuil

June 2016

Summer School EMR’16

“Energetic Macroscopic Representation”

« REFERENCES »

EMR’16, UdeS Longueuil, June 201623

« EMR-based simulation tool of a multi-train subway systems »

- References -

[Allègre 10] A.-L. Allègre, A. Bouscayrol, P. Delarue, P. Barrade, E. Chattot and S. El-Fassi, “Energy StorageSystem With Supercapacitor for an Innovative Subway”, IEEE Transactions on Industrial Electronics,vol. 57, no. 12, pp. 4001-4012, December 2010 (common paper of L2EP, LEI and Siemens).

[Bouscayrol 12] A. Bouscayrol, J.-P. Hautier, and B. Lemaire-Semail, “Systemic Design Methodologies forElectrical Energy Systems – Chapter 3: Graphic Formalisms for the Control of Multi-physical EnergeticSystems: COG and EMR”, ISTE Ltd and John Wiley & Sons, Inc., 2012.

[Mayet 14] C. Mayet, L. Horrein, A. Bouscayrol, P. Delarue, J.-N. Verhille, E. Chattot and B. Lemaire-Semail, “Comparison of Different Models and Simulation Approaches for the Energetic Study of aSubway”, IEEE Transactions on Vehicular Technology, vol. 63, no. 2, pp. 556-565, February 2014(common paper of L2EP and Siemens).

[Mayet 16a] C. Mayet, P. Delarue, A. Bouscayrol, E. Chattot, and J.-N. Verhille, “Comparison of DifferentEMR-based Models of Traction Power Substations for Energetic Studies of Subway Lines”, IEEETransactions on Vehicular Technology, vol. 65, no. 3, pp. 1021-1029, March 2016 (common paper ofL2EP and Siemens).

[Mayet 16b] C. Mayet, P. Delarue, A. Bouscayrol, E. Chattot, and J. Sanchez, “EMR-based Simulation Toolof a Multi-train Subway System”, IEEE VPPC’16, Hangzhou, China, October 17-20 (common paper ofL2EP and Siemens) (accepted).