emission mechanisms. i...cmkm ze ddtdv dw ei eiff ff kt h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26...

34
Emission mechanisms. I Emission mechanisms. I Giorgio Giorgio Matt Matt (Dipartimento di Fisica, Universit (Dipartimento di Fisica, Universit à à Roma Tre, Roma Tre, Italy Italy ) ) Reference: Reference: Rybicki Rybicki & & Lightman Lightman , , “ Radiative Radiative processes in astrophysics processes in astrophysics” , Wiley , Wiley

Upload: others

Post on 22-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Emission mechanisms. IEmission mechanisms. I

GiorgioGiorgio MattMatt(Dipartimento di Fisica, Universit(Dipartimento di Fisica, Universitàà Roma Tre, Roma Tre, ItalyItaly))

Reference: Reference: Rybicki Rybicki & & LightmanLightman, , ““Radiative Radiative processes in astrophysicsprocesses in astrophysics””, Wiley, Wiley

Page 2: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Outline of the lectureOutline of the lecture Basics (emission, absorption, Basics (emission, absorption, radiativeradiativetransfer)transfer)

BremsstrahlungBremsstrahlung

Synchrotron emissionSynchrotron emission

Compton Scattering (Inverse Compton) Compton Scattering (Inverse Compton)

Page 3: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Any charged particle in accelerated motion emits e.m. radiation.The intensity of the radiation is governed by Larmor’s formulae:

where q is theelectric charge, v

the particlevelocity, _ the

angle between theacceleration

vector and thedirection ofemission

( Averaged overemission angles)

The power is in general inversely proportional to thesquare of the mass of the emitting particle !! (dv/dt = F/m)

Electrons emit much more than protons !

222

3

2223

3

2

sin4

1

==

Θ

m

F

dt

dvq

cdt

dWP

dt

dvq

cdtd

dW

π

Page 4: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

The previous formulae are valid in the non relativistic case.If the velocity of the emitting particle is relativistic, then the

formula for the angle-averaged emission is:

where _ is the Lorenzt factor ( _=(1-v2/c2)-1/2 ) of the emittingparticle, and the acceleration vector is decomposed in the

components parallel and perpendicular to the velocity.Of course, for _~1 the non relativistic formula is recovered.

+

= parallelperpdt

dv

dt

dvq

cP

22

.

242

33

2γγ

Page 5: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

( )

tcoefficienabsorptionds

dI

I

dsjdIemissivityddVdtd

dEj

FluxdIF

IntensityddAdtd

dEI

ν

ννν

νν

ν

α

ν

ϑ

ν

1

cos

−=

Ω=

Ω≡

ν

νν

ννν

ν

ν

νν

νννν

α

τ

τ

ατ

α

jS

SId

dI

depthoptical

dsdwithor

jIds

dI

+−=

=

+−=

)(

,

The equation of radiativetransfer is:

If matter is in local thermodynamicequilibrium, S_ is a universal

function of temperature: S_ = B_(T)(Kirchoff’s law).

B_(T) is the Planck function:

=

1

2)(

2

3

kT

h

ec

hTB

νν

ν

Page 6: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

PolarizationPolarization

)(

2

2sin)(

2cos)(

222

22

22

22

VUQI

ABV

BAU

BAQ

BAI

++=

±=

−=

−=

+=

θ

θ

The polarization vector (which isa pseudovector, i.e. modulus π)

rotates forming an ellipse.Polarization is described by the

Stokes parameters:

If V=0, radiation islinearly polarized

If Q=U=0, radiation iscircularly polarized

Page 7: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

PolarizationPolarization

222TTTT VUQI ++≥

Summing up the contributionsof all photons, I increases whilethis is not necessarily so for the

other Stokes parameters.Therefore:

T

T

T

TTT

Q

U

I

VUQ

arctan2

1

222

=

++=Π

χ

The net polarizationdegree and angle are

given by:

Page 8: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Black Body emissionBlack Body emission

kTh

Wienec

hIkTh

JeansRayleighc

kTIkThv

TFBI

kTh

v

v

82.2

2

2

)(

max

2

3

2

2

4

=

=>>

−=<<

==

ν

νν

ν

σ

ν

νν

If perfect thermal equilibriumbetween radiation and matter is

reached throughout the material,I_ is independent of _. In this

case the matter emits as a BlackBody:

Page 9: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Black body emission occurs when __∞, so in practice there are always deviations from a pure Black Body spectrum

due to finite opacities and surface layers effects.The only perfect Black Body is the Cosmic Microwave

Background radiation.

Page 10: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Thomson scatteringThomson scattering

θσ 2

42

4

sincm

e

d

d T =Ω

22542

2

1065.63

8cm

cm

eT

−×==π

σ

It is the interaction between aphoton and an electron (at rest),

with h_«mc2. It is an elasticprocess. The cross section is:

The differentialcross section is:

θθ

2

2

cos1

cos1

+

−=P

The scattered radiation is polarized.E.g., the polarization degree of a

parallel beam of unpolarized radiationis:

Page 11: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Pair production and annihilationPair production and annihilation

137

1≈≈→

≈→

−+

−+

αασσγ

σσγγ

γ

γγ

Tp

T

peep

ee

A e+-e- pair may annihilate producing two_-rays (to conserve momentum). If the

electrons are not relativistic,the two photons have E=511 keV.

Conversely, two _-rays (or a _-ray with thehelp of a nucleus) may produce a e+-e- pair

The pair productioncross sections are:

Pair production is of course athreshold process. E_1 E_2 >

2m2c4

_-rays interacts with IR photons. The maximum distance at which an extragalactic _-ray source is observed provides an estimate of the

(poorly known) cosmic IR background

Page 12: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Bremsstrahlung Bremsstrahlung ((““braking radiationbraking radiation””))a.k.a. free-free emissiona.k.a. free-free emission

It is produced by the deflectionof a charged particle (usually an

electron in astrophysicalsituations) in the Coulombian

field of another charged particle(usually an atomic nucleus).

Also referred to as free-freeemission because the electron is

free both before and after thedeflection.

Page 13: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

The interaction occurs on atimescale

_t ≈ 2b/v

A Fourier analysis leads to theemitted energy per unit frequency ina single collision, which is inversely

proportional to the square of: themass, velocity of the deflectedparticle (electron) and impact

parameter.

( )

( )ων

ων

/

0

/3

162223

62

vbd

dW

vbbvmc

eZ

d

dW

>>

<<

b is called theimpact parameter

Page 14: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Integrating over the impact parameter, we obtain:

bmax and bmin must beevaluated taking into

account quantummechanics. They are

calculatednumerically.

gff is the so calledGaunt factor. It is oforder unity for large

intervals of theparameters.

To get the final emissivity, we have to integrate over the velocity distribution of the electrons.

=

=

min

max

23

622

ln3

33

32

b

bg

where

gnnvmc

eZ

dtdVd

dW

ff

ffie

π

πν

Page 15: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Thermal Thermal BremsstrahlungBremsstrahlung If electrons are in thermal equilibrium, their velocity distribution

is Maxwellian. The bremsstrahlung emission thus becomes:

Integrated overfrequencies

The above formulae are valid in theoptically thin case. If _ >> 1, we of

course have the Black Bodyemission

∫=

=

=−−

dVnnTfdt

dW

gnnTm

k

mhc

eZ

dtdV

dW

gennTkmmc

eZ

dtdVd

dW

ie

ffie

ffkTh

ie

)(

3

2

3

64

3

2

3

64

21

23

622

21

23

622

ππ

ππν

ν

Emission measure

Page 16: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Free-free absorptionFree-free absorption

ffkTh

ieff

ffff

gennTkmmhc

eZ

TBdtdVd

dWj

)1(3

2

3

8

)(4

321

23

62 ν

ν

ννν

νππ

α

ανπ

−−−−=

==

A photon can be absorbed by a free electron in the Coulombianfield of an atom: it is the free-free absorption, which is theaborption mechanism corresponding to bremsstrahlung.

Thus, for thermal electrons:

At low frequencies matter inthermal equilibrium is optically

thick to free-free aborption,becoming thin at high

frequencies.

Page 17: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

PolarizationPolarization

Bremsstrahlung photons are polarized with the electricvector perpendicular to the plane of interaction.

In most astrophysical situations, and certainly in case ofthermal bremsstrahlung, the planes of interaction arerandomly distributed, resulting in null net polarization.

For an anisotropic distribution of electrons, however,bremsstrahlung emission can be polarized.

Page 18: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Cooling timeCooling time

dtdE

Etcool /

=

For any emission mechanism, the cooling time is defined as:

yrTgZn

xt

ffe

cool2

1

2

3106≈

where E is the energy of the emittingparticle and dE/dt the energy lost by

radiation. For thermal bremsstrahlung:

The cooling time is of order one thousandyears for a HII regions, and of a few times

1010 years (i.e. more than the age of theUniverse) for a Cluster of galaxies

Radio image of theOrion Nebula

X-ray emission of theComa Cluster

Page 19: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Synchrotron emissionSynchrotron emission

mc

qB

r

v

qB

mcvr

BB

B

γα

ω

αγ

==

=

sin

sin

It is produced by theacceleration of a moving

charged particle in amagnetic field due to the

Lorentz force:

The force is always perpendicular to theparticle velocity, so it does not do work.Therefore, the particle moves in a helicalpath with constant |v| (if energy lossesby radiation are neglected). The radius

of gyration and the frequency of the orbitare

(_ is the angle between v and B):

)( Bvc

qF

rrr×=

Page 20: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

π

γβσ

8

3

4

2

22

BU

UcP

B

BT

= Let us assume the charged

particle is an electron.Using the relativistic Larmorformulae, and averaging over

_, the power emitted by anelectron is (__v/c):

The synchrotron spectrumfrom a single electron is

peaked at:

mc

eB

παγ

ν4

sin3 2

0 =

Page 21: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

To get the total spectrum from a population of electrons, wemust know their energy distribution. A particularly relavant case

is that of a power law distribution, N(E)=KE-p.The total spectrum is also a power law, F(_)=C_-_, with _=(p-1)/2

F(_)=A(p)KB(p+1)/2_-_

Page 22: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Synchrotron self-absorptionSynchrotron self-absorption

2

4

2

2

)(+

−+

=pp

syn KBpG ναν

If the energy distribution of the electrons is non-thermal, e.g. apower law, N(E)=KE-p, the absorption coefficient cannot be derived

from the Kirchhoff’s law. The direct calculation using Einstein’scoefficient yields:

In the optically thickregion, the spectrumis independent of p

The transition frequency is related to the magnetic field andcan be used to determine it.

Page 23: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

PolarizationPolarization

The radiation ispolarized

perpendicularly tothe projection of Bon the plane of the

sky

For a power law distribution ofemitting particles, the degree ofpolarization is _=(p+1)/(p+7/3).This is actually un upper limit,

because the magnetic field is neverperfectly ordered.

Page 24: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Cooling timeCooling time

The cooling time is: sBcU

mct

BT

cool γγ

βγσ

γ2

8

22

2 1075.7)1(

3

4)1( ×

≈>>≈−

For the interstellar matter (B ~ a few _G, _~104): _~108 yr

For a radio galaxy (B ~ 103 G, _~104): _~0.1 s continuous acceleration

(Electron’s rest mass is irreducible)

Page 25: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

EquipartitionEquipartitionThe energy in the magnetic field is proportional to B2. Given a

synchrotron luminosity, the energy in particles isproportional to B-3/2. If it is assumed that the system is in the

minimum of total energy, the magnetic field can be estimated.

The minimum occurswhen

WB~Wp (“equipartition”).

Beq _ L2/7

Page 26: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

(Inverse) Compton scattering(Inverse) Compton scattering

( ) ( ) ( )( )

2

23 21

31

2

21ln21ln

21

121

4

3

mc

Ex

x

x

x

xx

x

xx

x

xTKN

+

+−

++

+−

+

++= σσ

In the electron rest frame, thephoton changes its energy as:

E0

E

( )ϑcos1120

0

−+=

mc

EE

E

The cross section is the Klein-Nishina:

_KN _ _T

for x _ 0

Page 27: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

In the laboratory rest frame E ≈ E0_2 (the calculation is done in theelectron rest frame, where the photon energy is E ≈E0_, the other _

arising in the transformation back to the lab frame).For __1, the classic Compton scattering is recovered,

while for ultrarelativistic electrons E ≈_mc2

The power per single scattering is, assuming E « mc2 in theelectron rest frame (Urad energy density of the radiation field):

(Note that this formula is equal to the Synchrotron one,but with Urad instead of UB)

Assuming a thermal distribution for the electrons, the mean percentage energy gain of the photons is:

radT cUP σβγ 22

3

4=

20

0

4

mc

EkT

E

E −=

Δ4kT > E0 _ Energy transferred from electrons to

photons4kT < E0 _ Energy transferred from photons to

electrons

Page 28: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

CoolingCoolingThe formula for the energy losses by a single electron isidentical to the synchrotron one, once Urad replaces UB.

Therefore PIC/Psyn=Urad/UBIC losses dominate when the energy density of the

radiation field is larger than that of the magnetic field(“Compton catastrophe”)

22

2

3

4)1(

βγσ

γ

radT

cool

cU

mct

−≈

which may be very short for relativistic electrons in a strong radiation field

The cooling time is:

Page 29: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

ComptonizationComptonizationLet us define the Comptonization parameter as: y = _E/E0 x

NscattAssuming non relativistic electrons, the mean energy gain of

the photons is: E = E0 ey

To derive the spectral shape, one has to solve the diffusioneequation, also known as the Kompaneets equation:

In general , it should be solvednumerically.

In case of unsaturated Comptonization (i.e.not very opt. thick matter):

15.1

1;1(

4

4

9

2

3

3

≈≈

<<−>>+

+±−=

∝−+

yform

yforyfor

ym

eI kTh

ν ν

Page 30: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Synchrotron Self-Compton (SSC)Synchrotron Self-Compton (SSC)Electrons in a magnetic field can work twice: first producing

Synchrotron radiation, and then Comptonizing it (SSC). The ratiobetween SSC and Synchrotron emission is given by (spectral

shapeis the same):

min

max:,lnν

ντ =ΛΛ≈ where

j

jc

Syn

SSC

Mkn 501SSC emission may be

relevant in Blazars, wheretwo peaks are actually

observed. The first peak isdue to Synchrotron, the

second to IC (either SSC orexternal IC)

Page 31: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

PolarizationPolarization

In Blazars, the radiation fieldmay be either thesynchrotron emission (SSC)or the thermal emission fromthe accretion disc (externalIC).The polarization propertiesare different in the two cases:e.g. while in the SSC the pol.angle of IC and S are thesame, in the external IC thetwo are no longer directlyrelated.

SSC

Compton scattering radiation is polarized (but less than Thomsonscattering. Polarization degree decreases with h_/mc2 in thereference frame of the electron). The degree of polarization

depends on the geometry of the system.

Page 32: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

SunayevSunayev--Zeldovich Zeldovich effecteffect

CMB photons are Comptonized bythe IGM in Clusters of

Galaxies. As a result, the CMBspectrum in the direction of a CoG

is shifted

_I_/I_ ≈ -2y

(in the R-J regime)

43

22

32

1010

1054

1010

−−

−−

−≈

×≈≈Δ

−≈≈

ymc

kT

RneT

νν

στ

Page 33: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

SunayevSunayev--Zeldovich Zeldovich effecteffect

The S-Z effect is potentially a veryefficient tool to search for Clusters

and, when combined with X-rayobservations, can be used to

estimatethe baryonic mass fraction and even

the Hubble constant.

43

22

32

1010

1054

1010

−−

−−

−≈

×≈≈Δ

−≈≈

ymc

kT

RneT

νν

στ

Page 34: Emission mechanisms. I...cmkm Ze ddtdV dW ei eiff ff kT h ei 3 2 3 64 3 2 3 64 2 1 32 26 2 1 32 26 ππ π π ν ν Emission measure Free-free absorption ff kT h ei ff ff ff Tn eg

Cherenkov Cherenkov radiationradiationIt occurs when a charged particle passes through a medium

at a speed greater than the speed of light in that medium.

It is used to detecthigh energy (~TeV) _-

rays. Projects likeVeritas, HESS andMagic are indeed

providing outstandingresults.