emerging risk factor

Upload: paty-olan-vargas

Post on 08-Aug-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/22/2019 Emerging Risk Factor

    1/13

    nature reviews|nephrology volume 5 | DeCemBer 2009 | 677

    Division of GeneticEpidemiology,Department of MedicalGenetics, Molecularand ClinicalPharmacology,Innsbruck MedicalUniversity, Innsbruck,

    Austria.

    Correspondence:Division of GeneticEpidemiology,Department of MedicalGenetics, Molecularand ClinicalPharmacology,Innsbruck MedicalUniversity,Schpfstrasse 41,A6020 Innsbruck,[email protected]

    emi isk facts ad maks f cickid disas ssiFlorian Kronenberg

    Abstact | Chronic kidney disease (CKD) is a common condition ith an increasing prevalence. A number

    of comorbidities are associated ith CKD and prognosis is poor, ith many patients experiencing disease

    progression. Recognizing the factors associated ith CKD progression enables highrisk patients to be

    identified and given more intensive treatment if necessary. The identification of ne predictive markers might

    improve our understanding of the pathogenesis and progression of CKD. This Revie discusses a number

    of emerging factors and markers for hich epidemiological evidence from prospective studies indicates

    an association ith progression of CKD. The folloing factors and markers are discussed: asymmetric

    dimethylarginine, factors involved in calciumphosphate metabolism, adrenomedullin, Atype natriuretic

    peptide, Nterminal probrain natriuretic peptide, livertype fatty acid binding protein, kidney injury molecule 1,

    neutrophil gelatinaseassociated lipocalin, apolipoprotein AIV, adiponectin and some recently identified

    genetic polymorphisms. Additional epidemiological and experimental data are required before these markers

    can be broadly used for the prediction of CKD progression and before the risk factors can be considered as

    potential drug targets in clinical interventional trials.

    Kronenberg, F. Nat. Rev. Nephrol.5, 677689 (2009);doi:10.1038/nrneph.2009.173

    Introduction

    i 2003, d f h us pp-bd thdn Hh d n ex sy(nHanes iii) pd h h pc fchc kdy d (CKD) h us d pp- 11%.1 wh p bddd hf g f CKD ccdg h n Kdy

    Fd Kdy D oc Qy i(nKF-KDoQi) gd, h pc f g 1hgh 5 CKD 3.3%, 3.0%, 4.3%, 0.2% d 0.2%,pcy.1 i ep, h pc f CKD y h h us,2 b h pc hgh a d a.3 Dbgy, h pc fCKD c c, h nHanes d hgh CKD pc cd by 30% b 1990d 2000.4

    th cdc f d-g d (esrD) dy b c, h cdc f 100150 p pp p y ep, 300 p pp p y h us d mxc d 400 p

    pp p y t.3

    my k fcd k f h dp d pg fCKD x (Fg 1) d h dff kdy bc. C f f esrD j cc,pcy gh f h cg pc f CKD.ahgh h pc f esrD y b 0.2%,esrD pg cc f 6.7% f mdcxpd d mdc c cd h esrDcd by 57% b 1999 d 2004.5

    th r dc b f gg fcd k f hch pdgc dc fppc d h d xp d h

    Cmti itsts

    The author, the Journal Editor S. Allison and the CME questionsauthor C. P. Vega declare no competing interests.

    Continuing Medical Education online

    This activity has been planned and implemented in accordance

    ith the Essential Areas and policies of the Accreditation Council

    for Continuing Medical Education through the joint sponsorship of

    MedscapeCME and Nature Publishing Group.

    MedscapeCME is accredited by the Accreditation Council for

    Continuing Medical Education (ACCME) to provide continuing

    medical education for physicians.MedscapeCME designates this educational activity for a maximum

    of 1.25 AMA prA Cat 1 CditsTM. Physicians should only

    claim credit commensurate ith the extent of their participation

    in the activity. All other clinicians completing this activity ill

    be issued a certificate of participation. To participate in this

    journal CME activity: (1) revie the learning objectives and author

    disclosures; (2) study the education content; (3) take the posttest

    and/or complete the evaluation at tt://www.mdscacm.cm/

    jua/; and (4) vie/print certificate.

    lai bjctivs

    Upon completion of this activity, participants should be able to:

    1 Specify elements of calciumphosphate metabolism that are

    useful in predicting the progression of CKD.

    2 Describe the relationship beteen fibroblast groth

    factor 23 and CKD.3 Recognize ho novel markers may be used to predict the

    progression of CKD.

    4 Identify the most discriminatory marker predicting CKD

    progression in the Mild to Moderate Kidney Disease study.

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

    mailto:[email protected]:[email protected]://www.nature.com/doifinder/10.1038/nrneph.2009.173http://www.nature.com/doifinder/10.1038/nrneph.2009.173http://www.medscapecme.com/journal/nrnephhttp://www.medscapecme.com/journal/nrnephhttp://www.medscapecme.com/journal/nrnephhttp://www.medscapecme.com/journal/nrnephhttp://www.nature.com/doifinder/10.1038/nrneph.2009.173mailto:[email protected]:[email protected]
  • 8/22/2019 Emerging Risk Factor

    2/13

    678 | DECEMBER 2009 | voluME 5 www.atu.cm/

    h c h CKD pg. t x f h dfyg kf CKD pg. Fy, k ppdc f hch p k f xpcgCKD pg d h cd cqc (fxp, cdc k, cbd, q- f pc hpy, dc qyf f d k f dh). ahgh f

    Key points

    Chronic kidney disease (CKD) is a highly prevalent health problem ith anincreasing incidence and a strong tendency for progression

    Fe studies have searched for emerging risk factors or markers for progressionof CKD

    Available studies have identified markers related to nitric oxide synthesis,calciumphosphate metabolism, natriuretic peptides, apolipoprotein AIV,

    adiponectin and other parameters

    Further epidemiological and experimental studies are required to determinehether these factors are involved in the pathogenesis of CKD progression or

    hether they are just markers of the risk for disease progression

    Hypothesisfree approaches such as genomeide association studies,

    metabolomic studies and other omics technologies ill identify ne risk

    factors and markers of CKD progression in elldefined cohorts

    b kdy fc y y b,h p h d pdc pc. sp d b h d h c (auC) kdy fc h c pg chcc (roC) y pfd. th fdg gg h h dc- cpby f h p h f

    kdy fc , dcg h h p- cd b g p f kdy fc- d cd b d pdc CKD pggd b g f (GFr). thcd f h h fd hdd k gh d b ddgf h phg d pg f CKD, c, y f CKD pg c bxpd f dj f b GFr.

    a p, c hh y f h b-k k k k fc f CKDpg. rk k cy d CKD pg b hy dc h pbby

    f pg, hy gh b f dgc .rk fc cy ffc d pg d ,hf, g hpc g. of c,pdgc b d cy pcy. sch b y g hyph- h d b p d, d ghy hd h p pg f CKD. Fh pdgcd d xp d dd bf yf h gg k k d fc c b d pdc CKD pg b cdd pdg g cc , d yp ch cc ppc.

    Definition of CKD progression

    n c d f df x f h pg- f CKD, d h chc f df y f-cd by h ch d b d h df h ppc b pd (tb 1). typcd p g f h GFr p (f xp,dbg f b c d/ hd f pc hpy, pc c f b c , yy hy dc GFr, GFr dc 50% fb, dy kdy p, gf) pc dc f dg (f xp,

    g f p, ppc f b p h db). th ck f fy -k h cpg h pgcp f p k fc d k.

    Risk factors and markers of CKD progression

    th r fc pb k fc d kf CKD pg f hch ppcdy h p z f b 100 ddh b pfd. rh h dcbg d fcc bhd k fc ch g, gd,bd p, kg, bc yd, c

    Figure 1 | Risk factors and markers for the initiation and progression of chronickidney disease. Traditional factors involved in the initiation and progression of CKDare discussed elsehere.137 The present Revie discusses emerging risk factorsand markerssuch as ADMA, FGF23, ANP and NTproBNPthat are shon in thebottom panel and require fur ther study. Abbreviations: ADMA, asymmetricdimethylarginine; ANP, Atype natriuretic peptide; apoAIV, apolipoprotein AIV; CKD,chronic kidney disease; ESRD, endstage renal disease; FGF23, fibroblast groth

    factor 23; GFR, glomerular filtration rate; PTH, parathyroid hormone; KIM1, kidneyinjury molecule 1; LFABP, livertype fatty acid binding protein; NGAL, neutrophilgelatinaseassociated lipocalin; NTproBNP; Nterminal probrain natriuretic peptide.

    Progressionof CKD:

    GFR declineand ESRD

    CKD

    Initiating factors: Age Gender Ethnicity Family history of CKD Diabetes mellitus Metabolic syndrome Hyperltration state High normal urinary albumin excretion Dyslipidemia Nephrotoxins Primary kidney disease Urological disorders Cardiovascular disease

    Traditional progressionfactors or markers: African American ethnicity Proteinuria Hypertension High protein intake Obesity Anemia Dyslipidemia Smoking Nephrotoxins Cardiovascular disease

    Emerging progressionfactors or markers: ADMA FGF23 Phosphate PTH

    Adrenomedullin ANP NT-proBNP L-FABP KIM-1 NGAL ApoA-IV Adiponectin Genetic polymorphisms

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    3/13

    nature reviews|nephrology volume 5 | DeCemBer 2009 | 679

    cd, cy gd p ch f d h, gg p dcd (Fg 1). mk h h y bgd c kdy jy (aKi) c-dd, d d d d dcd y bfy.

    Asmmtic dimtaii

    ayc dhyg (aDma) yccg cd d hb f c xd(no) yh. aDma cp h g f

    bdg no yh d d dcdpdc f no (Fg 2). exp d dch dcd c no pdc gh b d pg kdy dg.69

    aDma gd f h dgd f hy-d p cg aDma d (Fg 2). i bzd y by dhyg dhy-hyd (DDaH)10 dhy d c-, d y fc f aDma xcdchgd by h kdy. a DDaH d no yh c-czd g dh c d

    Table 1 | Prospective observational studies investigating emerging risk factors and markers for CKD progression*

    Stud Stud uati ed its Duati f

    fw-u

    paamts assciatd

    wit CKD ssi

    paamts swi

    assciati wit

    CKD ssi

    MMKD

    study15,25,65,101,111,112177 nondiabetic patientsith primary CKD

    Doubling of baseline serumcreatinine and/or renalreplacement therapy (n= 65)

    Up to 7 years;median53 months

    ADMA, FGF23, Ph, CaPh,PTH, adiponectin (in men),apoAIV, ANP, adrenomedul lin,

    NTproBNP (borderline)

    Ca

    Hanai et al.18 225 patients ith type 2diabetes

    Progression of diabeticnephropathy (n= 37)

    Median5.2 years

    ADMA

    EURAGEDIC

    casecontrol

    study17

    397 patients ith type 1diabetes ithnephropathy

    Dialysis or kidneytransplantation (n= 70);yearly decline of GFR

    Median11.3 years

    ADMA

    Ravani et al.16 131 nely referredpatients ith stages 25CKD

    Dialysis treatment or GFRreduction to half of baseline(n= 29)

    Mean27 months

    ADMA

    Scharz et al.23 985 US male veteransith stages 15 CKD

    Doubling of baseline creatinineand/or renal replacementtherapy (n= 258)

    Median2.1 years

    Ph, CaPh Ca

    AASK24,113 1,094 black patientsith hypertensive

    nephrosclerosis (GFR2065 ml/min/1.73 m)

    Decline in GFR by either 50%or 25 ml/min/1.73 m from

    baseline or occurrence ofESRD

    Median4 years

    Ph CaPh, NTproBNP

    Voormolen et al.26 448 patients ithstages 45 CKD and GFR

  • 8/22/2019 Emerging Risk Factor

    4/13

    680 | DECEMBER 2009 | voluME 5 www.atu.cm/

    b c, d kdy dyfc d c aDma cc.11 th b h fdg f bc d d-g h h kdy h hch aDma d f h cc.12

    Cd ch hypch hyp-gyc hb DDaH, hch cdaDma (Fg 2). a h g dc no pdc cd h dcd pf, cd c c, hyp ddh dg, aDma g pk f cdc d.13

    aDma kdy d p-

    .11,14,15

    tgh h h xp dchg aDma b CKD pg fc ,69 f ppc d h fd c b aDma d CKD pg- h (tb 1). th md md KdyD (mmKD) dy, hch fd 177 ph py dbc CKD f p 7 y,hd h ch 0.1 / c aDma cd h 47% c h pbbyf pg f CKD (tb 1), f cc fb c .15 r d c-g fd h hgh aDma cdh cd k f esrD d y g

    131 p h CKD.16

    a dy 397 p hyp 1 db d dbc phphy hdh aDma hgh h h d c-d h f yy dc GFr d gk f dpg esrD d f-p f11.3 y h aDma b h d.17adj f b b (cdg GFr)kd h c b d bdgfc (P= 0.055). a dy cdg 225 ph yp 2 db (183 h b d42 h cb) fd p 5.2 ypd pg f dbc phphy

    dcd g 37 p.18 P h aDma b h d hd 2.7-fd hgh k fd pg h p h aDma b h d. tgh, h d pd gdc h cd aDma cdh pg f CKD.1518

    exp d kdy d d-

    c c f aDma pg fc fkdy d, ggg h g aDma ghb bfc.19,20 oxp f DDaH gfcydcd aDma d pd h pgf dyfc by hbg h pg fg d pb cp, fb d y p xc. Fh,xp f DDaH ppd h hcdxp f tGF- (hch gh h b c-qc f hypxc cd g f h f g d b cp). s fdg pd d f dbc phphy.21ad f DDaH p hcg c-

    y hf ggd p hpcgy f h f CKD. i h cx, g-, dzd, cd b p hCKD f : p cd -p dppd h h k- cd pcbf 3 y.22 idd h cd k- cdxpcd pcd dc aDma , -c bdy f d p, d gfc dy h pg f CKD.

    Cap mtabism, vitami D ad FgF23

    Dbc ccphph b ffc y cdc bdy d y

    p h CKD, b fc h pgf CKD.

    Ca, Ph, CaPh product and PTH

    ahgh p f ccphph bch cc, phph, ccphph pdcd phyd h (PtH) f h cphy d p p hCKD, y f d h gd hh f h p cd h CKDpg (tb 1).2327 th b d fd cg k f pg h cg ph-ph cc.2327 th d h

    cc b hg h phph c- p h CKD h d y q pc hpy gh hp p dkdy fc28 d h phph bd ppg f CKD.29,30

    th b d fd cb ccphph pdc d h pg- f CKD.23,25,26 F d hd c c- b cc cc d pg fCKD,23,2527 b d fd c bhgh PtH cc d CKD pg.25,27Fh, pc ch dy xd

    Figure 2 | The role of ADMA in the progression of kidney disease. ADMA is mainlymetabolized by the enzyme DDAH. The activity of DDAH is strongly impaired inkidney disease, hich leads to increased ADMA levels. These increased ADMAlevels inhibit NO synthase, thereby resulting in decreased NO levels, hich hasmajor adverse consequences for the kidney and might lead to progression of CKD.Abbreviations: ADMA, asymmetric dimethylarginine; CKD, chronic kidney disease;DDAH, dimethylarginine dimethylaminohydrolase; NO, nitric oxide.

    ADMARenally excreted NO synthase

    Proteins with ADMA residues L-Arginine

    Dimethlyamine + citrulline

    80%

    20%

    LDL cholesterolHomocysteineHyperglycemia

    HypertensionSmoking

    InammationAging

    Renal plasma owRenovascular resistanceBlood pressureEndothelial damageCKD progression

    NODDAH

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    5/13

    nature reviews|nephrology volume 5 | DeCemBer 2009 | 681

    c c f 186 d 517 pdy dh CKD d db, h d h cdyhypphyd, d fd h dd hcdy hypphyd hd fdcd k f qg dy dg h6-y f-p pd cpd h h hcdy hypphyd.31

    ey xp k ggd h phphc h PtH-dpd bfc ffc h pg f d .32 th fdg d by h fc h gy h phy-gc hypphph. a f PtH CKDpg h b ppd by dc xp- cc dc,33 b xp dh h h pg f f gf-cy d by h d f ccc phydcy.34

    Vitamin D

    i h g pp, D dfccy

    cy cd h cd ch hyp,cdc d, db , h fd cc.35 Dp h d fc f

    D hh d hgh D h pcd ffc ccphph b,y dy h gd h c b

    D d h pg f CKD (tb 1).36 thdy fd 168 cc p y fd CKD cc f g f 48 h. Dgh , 48 p d dy d 78p dd. l f 25-hydxy D dpd pdc f pg esrD dh f dj f g, d GFr

    (GFr), h f, d h b. a c f25 / (10 g/) 25-hydxy D cd h 40% dc h hzd fCKD pg.36 igy, 25-hydxy D b pdc f pg esrD dhh 1,25-dhydxy D.

    th fdg h ppd by ddc f d. ahgh Dhpy py d b phxc, hbd phxc ffc pbby f D-dcd hypcc p hCKD.37 rc xp dc h cy hh D d g pg

    f CKD d.33,38,39

    Fibroblast growth factor 23

    th mmKD dy hd hgh p fbbgh fc 23 (FGF23) cc b fh g k fc k f CKD pg- (tb 1).25 FGF23 phph hgh b d h yc bc f phph hgh c h h , b dkdy.40,41 i h cc g, d fFGF23 h b h b cd h hyp-phph, 1,25-dhydxy D

    d c.42,43 exp df FGF23 pdc dbc ccphph b, d c fh Fgf23 g c hypphphd hgh ccg 1,25-dhydxy D .44,45ud phygc cd, hypphphg dy phph d h c-

    f FGF23, g phph d pp- f h pdc f D.46 i hpc f p, h dc fc pd by c FGF23, phph d PtH cc c d gf GFr.25,47 i dcd g f CKD, dbc h gy k y hgh f FGF23.48 H, h cc d cd d hh h cd FGF23 h c f h cd cc d ph-ph h cqc. exp dhd h h c FGF23 pcdd hdc 1,25-dhydxy D cc-

    , ggg h FGF23 h p h dp f cdyhypphyd.49th d ppd by f cc dh fd h f FGF23 cd h y g f CKD, bf phphd cc cc hd bc b.50ahgh c hh cd FGF23 c cqc f dbc b d d h CKD, FGF23 xc dc f h cpx dbc fccphph b dcd by CKD, dh g cqc f h dbd b h ccpd by c ccfc-

    .5153

    of , dy c pbhd 2009 hd h FGF23 pd h pgf kdy d b ggd dyphyby dcg 1-hydxy d hby -g D .54 th h pcd h fh FGF23 gg phy cd b pd phphc phy d 1-hydxy phy,h phphc phy d b d dg g.igy, d pdy CKD ddh cg FGF23 dpdy c-d h f c dx d f c- hypphy.55 i p ccg hdy, cd FGF23 cc d-

    pdy cd h cd k f ydg h f y f dy .56

    oy ppc b dy hh gd h c b CKD pg- d f FGF23 gh h f hp f ccphph b.25ahgh FGF23, ccphph pdc, ph-ph d PtH pdcd pg f CKD g b (f dj f g, gd,GFr d p), h h p h pdc h FGF23 ddd hpdc d.

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    6/13

    682 | DECEMBER 2009 | voluME 5 www.atu.cm/

    Adicti

    adpc j dpcy cy ph p y d p -fy d -hcc pp.57l dpc cd h -c,58,59 by d h f f h bcyd60 d h yp 2 db d

    cdc d.6163 a c dyp dd h h d dg f p d p h h py CKDd GFr,64 c b dp-c d pg f CKD d b xpcd.spgy, h, h dpd d hh c b hgh dpc d CKD pg (tb 1).6567 th mmKD dyfd h hgh dpc dpdpdc f d pg b .65 J d cg fd 198 p hyp 1 db d dbc phphy f g f 8 y.66 th 40 p h chd esrD

    dg h b pd hd gfcy hghdpc b h h h dd .a dpc b h d cd h 2.7-fd hgh GFr-djd k f esrD h b h d. s bd b-gp f 296 p h yp 1 db dcb f h Fh Dbc nphphysdy.67 adpc gfcy hghg h 83 p h pgd esrDh g h h dd pg. adpc gfcy pdc f pg esrD p h b cb.

    a b f hyph f h xpcd fd-

    g h b ppd. o gg h hcd dpc cd h chg h gdcp cy ( cc h hh cp y f).68 oh g-g cd h d h h cd dpc CKD f dcd dpc c-c by h kdy69 h c-gyp bc dg f.70igy, xp d f 2009 gg hd p dpc p h CKDgh py cpy h cc dyfc cd h g c d-d.71 rc dpc72,73 pby,

    h f dpc dyfc g h dyfc dg f dpc cp- h c-gy c dpcc. s ppc d h fd fd c b dpc d cd-

    c c dh, pcy ddh dy h d chc d b-. th ldghf rk d Cdc Hh(luriC) dy, hch fd 2,500 ph hd cy y d b f h 5 y, fd h cd dpc gy cd h -c d cdc

    y.74 th mdfc f D r D(mDrD) dy pd fdg p h b GFr f 33 //1.73 .75 Kpet al. pd h hgh dpc pdc- f y p h chc h f,dpdy f h y f h d.76 thd pc h h pg f dp-

    c chc d cpy p dh d c dg.77

    nuti atias-assciatd icai

    nph g-cd pc (nGal) (25 kD) p h xpd bc d d h bd d f xp- hf ch ch xcy. th f nGal cc h h f h d g bf c c cc. nGal h hf b ppd b- dc f c kdy dg hc d GFr k f fc

    ph b.78 th f nGal pcfc, d y pdc f aKi f c dd, pc hck, kdy p dcdc gy h b gd xy d hb d h.78,79

    D dc h nGal y pdc f aKib f h pg f CKD. o dy fdh y nGal gfcy hgh dd h b phphy h c- d h p h hgh b y nGal hd gfcy hgh k f g d fc h h h .80 ah dy 96 p h g 24 CKD fd

    h bh d y nGal dcycd h h pg f CKD df-p f 18.5 h, dpdy f g d GFr b (tb 1).81 a p dy 78 p hCKD hd h b nGal cdgy h chg c (cffc fc r= 0.77) d GFr (r= 0.40) d h c d b g f-p pd f 200 dy p h b nGal .82

    t d h dcbd h p f nGal fg h d p f d. o f h hd h p h

    phc yd ph hd k-dy d y nGal h dcd p ccf .83 th h dy, p h p cdy d-phc b phphy, hd h ghgh-d b f f gb c-d h dc dc d ynGal 1 h f f, h pp h-fy pp f h .84 i b hh nGal bc fbk qcky gg p p pc .

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    7/13

    nature reviews|nephrology volume 5 | DeCemBer 2009 | 683

    liv-t fatt acid bidi ti

    Cc d c b -yp fycd bdg p (l-FaBP) d kdy d p. th p xpd px bc d cd xp d hgh h f p h kdy d.85,86 a ghh cg pg h 900 dd

    d h g y f l-FaBP ppxy 50% hgh p h db, hyp chc hp h c-.87 a dy gg l-FaBP ph yp 2 db d dff g f ph-phy hd h y l-FaBP cd hh y f dbc phphy.88 s d p h d kdy dyfc gg hy l-FaBP cc cd ph fc d fh.86,89 lgd h g- f-p qd cfh fdg.

    Kid iju mcu 1Kdy jy c 1 (Kim-1), b -b c h k fc, dc-b hhy kdy. a phphdy cp,Kim-1 py p pp bycgzg ppc c d dcg h y-.90 Kim-1 xp cd d d py xpd h d fddffd px b d f fbd f.91 t et al. fd h f y Kim-1 gfcy d ph d d dcb hhyc.91 a ppc dy 145 p

    cp fd f 4 y d h ddh y Kim-1 cc h cd dhd hd 3.6-fd d 5.1-fd cd k,pcy, f g h gf.92 th ccddpdy f c cc, p dg f h gf d. a p hc y f fp h pc kdy d d h

    cb f , d c dhydchhzd dc p hd hh cd Kim-1 cc dcd p- h dc p hgh kdyfc dd chg dg h 6-k bpd.93 whh Kim-1 j bk f

    c d chc kdy d hh cyd kdy jy c.

    Aiti A-IV

    H ppp a-iv (pa-iv) 46 kDgycp h yhzd -cy dg f bp d cpd hfc f c chyc (g pp p-c h p dy pd f h h c h bdy).94 apa-iv h p- ch p, hch d-bd p h CKD.95 apa-iv kdy

    d esrD96,97 d k f kdyp h c h gf CKD.98 ihchc d dcbg hcy f pa-iv kdy b cd g f pa-iv h h hpa-iv fd hgh h g d y bbd by px b c.99,100

    th mmKD dy fd h hgh pa-iv cd h CKD pg (tb 1). a 10 g/dc b pa-iv ( y cc ph GFr h h g 4590 //1.73 ) cd h ppxy 60% cd kf pg f CKD dg h d bpd f 53 h, dpdy f b GFr,p d h pp p.101

    th c f hgh pa-iv cc hCKD pg xpcd g h phygcfc f pa-iv ch pd pd xd pp.102 o ghh cpd h h cd pa-iv

    dd h pd kdy fc d hd cd f ch f -g c d h, gh h h xd pp- pa-iv, d d pg f CKD.whh cd pa-iv fc pc f p h d c p h GFr hh pa-iv fy fc c f p c. th hyph gg , pcy h gh f h cf pa-iv h cdc d.103,104H, p h hd dy xpcd h-cc h f h mmKD dy hd pa-iv h h h hcc

    cpc ch f GFr.98

    natiutic tids

    o c y, h c f h h d hkdy bc fc f d h cd- yd cd. H, h ph h fg h c cdy p fkdy fc. a p h py CKD dpcdc yp h h g , bcb h py b h g cch h -y b h h dkdy. th d h d pp f cfcf h cd yd h bcd h fc d phphygc pc, hghy dcd h .105 myk f cdc dyfc pdc fCKD pg. P xp c pp-d ch a-yp c ppd (anP), d-d d B-yp c ppd (BnP). thppd p hyp, dc, d -c ppd h d g cd-

    c d h.106108 icd p f anP d dd h b pd dd h cdc d, f cdyfc d h h kdy d.109,110

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    8/13

    684 | DECEMBER 2009 | voluME 5 www.atu.cm/

    add, anP, d N- p-b

    c ppd (nt-pBnP) gd h mmKD dy d hgh f ch fd b cd h CKD pg (tb 1).111,112th pcd c fd f d-d: c h p by ddd cd h 2.6-fd cd k fd pg. a c anP by ddd h dbd h k f pg-.112 igy, dpd d gfc c-b f ch p h pdc f CKDpg fd h bh p ddd h Cx g d h .nt-pBnP y f bd gfcc f p-

    dcg kdy d pg h mmKD dy.i h afc ac sdy f Kdy D dHyp (aasK), h cdc f dpg cd h cg nt-pBnP ,b h fdg gfc f dj fkdy fc (tb 1).113 a ppc dy 83 p h CKD h cc dc fh f b hd h g nt-pBnP b hgh p h xp-cd pg f CKD h h h dd .114H, dj d f b GFr h dy.

    Cmais f aamts i t MMKD stud

    m f h d dcd b yzd y f p , kg y p-b cp h . a f h ph g c h ch h, y g Cx g d b pfd hc. rc pg c f GFr, aDma,

    FGF23, pa-iv, anP, nt-pBnP d ddf h mmKD dy dc h dd b b dc b p h dh pg f CKD, h b dc-y by h GFr d by hx (Fg 3).P f h dd f ch f h pc b Cx g d djd f g, x, p- d GFr h h dd, FGF23, aDma,anP d pa-iv gfcy cbd h p-dc f CKD pg.15,25,101,111,112 th hd f dpc, b y .65 th pcy cb h pdc f CKD pgd h c f h b h pg-

    c py b xpd by c hGFr p.

    Genetic factors for progression of CKD

    th j dg f g gc fc f -g CKD pg h by, hy hd ccp d d gy chg h d.if hy fd b cd h d, hy f cy d h d q.

    Assciati studis usi tic misms

    th pcp f c d f gc py-ph h chgd dcy h p f

    y. Py, gc d h fc cpx phyp ch cd-

    c d, db d kdy d. w k, h, h pyph h k f 2 f h cpx phyp y d ch d gh b f p- chc fdg. G-d c dd -y h h h h gc k f pc c cd h pc gc

    f y 1.2 . F xp, b 20g h c by cd hyp 2 db d h y d dd kc f b 1.1 d 1.4 p- b.115

    Hg p z dd b ffc cp dfy d-cg gc .idfyg gc pyph h d

    c h h j dg, h, hcy ky. th bcccdg h f md dzgc gy cpb h cfdg h cd fdg c b d, g p ch d g hgd pp ffd d f cfdgby pyph kg dqb h hpyph d g c b xcdd116

    Figure 3 | Receiver operating curves from the MMKD study for GFR measured by

    iohexol, ADMA, FGF23, apoAIV and the natriuretic peptides ANP, NTproBNP andadrenomedullin to predict progression of CKD. Area under the curve values foreach of these parameters are shon as are Pvalues for the addition of each ofthe particular variables to a Cox reference model adjusted for age, sex, proteinuriaand GFR. Adrenomedullin shoed the greatest area under the curve, hichindicates that it had the best ability to discriminate beteen patients ho ouldand ould not experience CKD progression, even superior to the ability of GFRmeasured by iohexol. Data are calculated from a number ofreferences.15,25,101,111,112 Abbreviations: ADMA, asymmetric dimethylarginine;ANP, Atype natriuretic peptide; apoAIV, apolipoprotein AIV; CKD, chronic kidneydisease; FGF23, fibroblast groth factor 23; GFR, glomerular filtration rate;NTproBNP; Nterminal probrain natriuretic peptide.

    Parameter AUC Cox model P value

    Adrenomedullin 0.873 0.0000003

    GFR 0.839 Referencemeasured by iohexol

    FGF23 0.815 0.0000084

    ADMA 0.811 0.0000058

    ANP 0.811 0.0000014

    ApoA-IV 0.800 0.012

    NT-proBNP 0.751 0.099

    Reference line

    1.0

    0.8

    0.6

    0.4

    0.2

    0

    0.0 0.2 0.4

    Specicity

    Sensitivity

    0.6 0.8 1.0

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    9/13

    nature reviews|nephrology volume 5 | DeCemBer 2009 | 685

    (Fg 4). th md dz ccp ppd c f-p dy h gd hc b dpc d pg- f CKD h euraGeDiC dy.66 adpc cd h pg f yp 1 dbcphphy b c b gcd pyph d pg f CKD

    fd. G h y b 8% f h dpc c b xpd by h h dpcg,117 d dpc xp y 10% fCKD pg b, y g b f pd b qd dfy c f h - h CKD pg (Fg 4). if h f, g dy h c f gc d hgh dpc d c fh h CKD pg, cy bgy ggd.

    gm-wid assciati studis

    th dc f g-d c d

    pdd d pf ppch h q fg cd h cpx phyp. th dg hdd f hd f gc c h h g d hhhy cd h h phyp f . ic h hyph-d ppch f cddg d, g-d c d h hj dg h hy hyph f d chf dfy cdd g h kgy bgc p. og h g bf pfd h d, h, g pz qd.

    a g-d c dy f pp-

    bd ch h f CKD, c-bdGFr d cy-C-bd GFr 19,877, 18,127 d12,266 dd, pcy, h dfd c cd h kdy fc.118 Kg et al.fd h d (UMOD) cd hCKD d h c-bd GFr. Fh,y f d f f h dh ppc- ahc rk C (ariC)dydfd h g g h cd h dcd k f cdCKD (hzd 0.81, 95% Ci 0.720.92, P= 0.001).r h UMOD g k c d d ch f j

    hypc phphy, gcyc kdyd, d dy cyc kdy d yp 2.119121i y g h ch h cgc d c p c h g g h fc d-dphyp h pp . oh g d-fd b cd h c-bd GFr hg-d c dy pd by Kget al. h fy b 3 (SHROOM3) ch 4 d pg cd 5-k 1(SPATA5L1) h GATM-SPATA5L1 c ch- 15.118 i dd, cc 1 (STC1)

    ch 8 d gc g cdpyph (snP) b h g c f cy- C (CST3) d cy 9 (CST9) ch 20 fd b cd h cy-C-dGFr. lc ch GATM-SPATA5L1 d g h

    cy pfy g c (CST3 d CST9)d c d cy yh d d cy fc cpby f CKD GFr.m f h y dfd g d fh fc- chcz d c d hfh kdy-d phyp d h pg- f CKD. oh g c py hgh bcd h CKD CKD pg (f xp,g-i-cg zy, ppp e,hyhydf dc d cpfc 7-k 2122125) dd h g-dgfcc Kg et al.dy.

    Kg et al. fd h, gh, h gc c

    dfd b cd h GFr d byc xpd b 0.7% f h cf c-d GFr d h h gc cdfd f GFr d by cy xpd b3.2% f h cy-C-bd GFr c.118 Dph hgh hby f GFr, h pcg pg d h fdg f d fh q f hby.126128 thfdg dc h h y dfdgcc x h fc kdy fc d h y h h dfd g gh xph c fh.129 G-d c d

    Figure 4 | Application of the concept of Mendelian randomization for identifyingparameters causally related to progression of CKD, using adiponectin as anexample. At conception, hich of the to alleles is inherited from the mother andhich of the to alleles is inherited from the father is determined randomly.Particular genetic variants ithin theADIPOQ gene are associated ith increasedadiponectin levels; these variants explain about 8% of adiponectin concentrationvariance.117 If high concentrations of adiponectin are truly associated ith CKDprogression, the genetic variants associated ith lifelong high adiponectin levelsould be expected to lie more often ithin the group of patients ho experienceCKD progression. As this association is unlikely to be confounded by other factors,a reverse association can be excluded. Very large sample sizes are required todetect an association beteen a particular gene and progression of CKD if only

    small fractions (for example, belo 10%) can explain the association beteen thegene and the intermediate phenotype and the association beteen theintermediate phenotype and CKD progression. This concept is discussed in moredetail elsehere.116,138 Abbreviations:ADIPOQ, adiponectin gene; CKD, chronickidney disease. Figure adapted from references 138 and 139 ith kind permissionof Springer Science + Business Media Kronenberg, F. & Heid, I. M. MedizinischeGenetik19, 304308 (2007).

    Strongassociation:explains 10%

    Weak association:explains 0.8% (0.100.08)

    No reverse causation

    Strongassociation:explains 8% End phenotype

    Progressionof CKD

    GeneADIPOQ

    Mendelianrandomization

    Intermediatephenotype

    Plasma adiponectinconcentrations

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    10/13

    686 | DECEMBER 2009 | voluME 5 www.atu.cm/

    d -y h p z ppchg100,000 dd pg d dfy g cd h CKD. F cb d d h h dfc f g cd h

    f f py CKD h c-d h pg f CKD. og h zf d f p h py CKD d ppcg CKD pg, dfyg g f

    h xdd phyp b chg.

    The future

    s bchc d gc fc h h hp b k f CKD pg fc d h pc h b dcd.H, h fdg dcd h y pd.v dcpy h h h ffx -c bkg gd (Fg 5). mbc hpdy g fd f g dg b- c fd ch p, , .130mg d phyp ch h c h d h phy f d

    d f py cfyg dd hhy dd gh pd d b pyffcd phy h dcy h -gy f h d. a cy k b cb d g pcd f pcd,y b dcy dcy d h dp pg f CKD d b d-fd. th hyph-f ppch h dy bccfy ppd g-d c d dfy g d gc d hdp f cpx d.131,132 By cbgg-d c d h bc,

    gp h fd c f c snP h cd h h d h f ky b- h h bdy d c xp p 12% fh bd c f h b.133wh f c b cc d pxy f zyc cy, p 28% f hbd c cd b xpd. th cbd

    ppch f bc d g-d cd hd pd gh h phchf d d, h f, h dd cd- f g xp d pc cbdy by p dfc f kfc f CKD d CKD pg. th ybgy ppch gh bg c p-zd hh-c y h cd h fcb f p g dg , chg.

    th y bgy ppch, h, y h cb f -c chqb q ch k gh b

    h p z qd f ffc c p.i gc pdgy d g-d cd, -y f 10,000 100,000 p y pfd.115,118,126128,134 s b b dd f h y bgy ppch. i dd,ffc ddz f y d pcd b y p. sch ddz dy pcf gypg d qcg d ff dy ddz c .135 ahghcb b dy gp, hch cy h qd p z, ccb f y g, h bc dd pcc hfd f g-d c d.

    Conclusions

    th gg p cd h CKD pg- b dd fh d hh hy cy d pg f CKD hhhy py pdc h pbby f pg. thp gh fc dhd g f-, dbc b fc kcb kdy fc h d g b fc. s f h p -k k f chc h f, c-fg h pcd ckg b CKD dh d.

    th dc p f f h p- b cdd f bd cc hdg f CKD pg. my p hy b gd f d, d d h dffg df f CKD pg- (tb 1). th f d f p gg b ppc hd b dd. whh k f aKi h h f dg f CKD CKDpg c. s p gh b ff h g f hp h fc kdyfc (py gy) d gh

    Figure 5 | The systems biology approach for identifying contributors to CKD,progression of CKD, cardiovascular outcomes and responses to drug treatment.

    Combining data on genetic variation, transcriptomics, proteomics andmetabolomics, and considering various regulatory and modulatory influences asell as environmental interactions, ill improve our understanding of thepathomechanisms of diseases. Abbreviation: CKD, chronic kidney disease.

    Genetic variation

    Proteomics

    CKDProgression of CKD

    Cardiovascular diseaseResponse to drugs

    Post-transcriptionaland

    post-translationalmodications

    Environment(e.g. nutrition,lifestyle, drugs)

    Transcriptionalregulation

    Epigenetics

    MetabolomicsInteractomics

    Transcriptomics

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    11/13

    nature reviews|nephrology volume 5 | DeCemBer 2009 | 687

    chg g bf hy dfd by c ch chg GFr p.

    i h , h f f ch f gpp-bd d ch h Fgh Hsdy, h ariC dy, h Cdc Hh sdyd h rd sdy f dyg phyph b dd.118,123,125 w f

    g ppc ch dch h Chcr iffccy Ch (CriC) dy136 d hG Chc Kdy D (GCKD) dyhch fc kdy fc d CKD pg.

    Review criteria

    A literature search as performed in PubMed using

    the search term chronic kidney disease AND

    progression. Bibliographies and discussion sections

    of the identified articles ere searched for additionalrelevant manuscripts. Papers discussing laboratory

    parameters found to predict the progression of chronic

    kidney disease ere included hen human studies ere

    available that included a prospective observation period.No date restrictions ere placed on the search.

    1. Coresh, J., Astor, B. C., Greene, T., Eknoyan, G. &Levey, A. S. Prevalence of chronic kidney diseaseand decreased kidney function in the adult USpopulation: Third National Health and NutritionExamination Survey.Am. J. Kidney Dis.41, 112(2003).

    2. Hallan, S. I. et al. International comparison ofthe relationship of chronic kidney diseaseprevalence and ESRD risk.J. Am. Soc. Nephrol.

    17, 22752284 (2006).3. Hallan, S. I. & Vikse, B. E. Relationship beteen

    chronic kidney disease prevalence and endstage renal disease risk. Curr. Opin. Nephrol.Hypertens.17, 286291 (2008).

    4. Coresh, J. et al. Prevalence of chronic kidneydisease in the United States.JAMA298,20382047 (2007).

    5. Foley, R. N. & Collins, A. J. Endstage renaldisease in the United States: an update fromthe United States Renal Data System.J. Am. Soc.Nephrol.18, 26442648 (2007).

    6. Baylis, C., Mitruka, B. & Deng, A. Chronicblockade of nitric oxide synthesis in the ratproduces systemic hypertension and glomerulardamage.J. Clin. Invest.90, 278281 (1992).

    7. Kang, D. H., Nakagaa, T., Feng, L. &

    Johnson, R. J. Nitric oxide modulates vasculardisease in the remnant kidney model.Am.

    J. Pathol.161, 239248 (2002).8. Kielstein, J. T. & Zoccali, C. Asymmetric

    dimethylarginine: a novel marker of risk and apotential target for therapy in chronic kidneydisease. Curr. Opin. Nephrol. Hypertens.17,609615 (2008).

    9. Sharma, M. et al. ADMA injures the glomerularfiltration barrier: role of nitric oxide andsuperoxide.Am. J. Physiol. Renal Physiol.296,F1386F1395 (2009).

    10. Achan, V. et al. Asymmetric dimethylargininecauses hypertension and cardiac dysfunction inhumans and is actively metabolized bydimethylarginine dimethylaminohydrolase.

    Arterioscler. Thromb. Vasc. Biol.23, 14551459

    (2003).11. Kielstein, J. T. et al. Marked increase of

    asymmetric dimethylarginine in patients ithincipient primary chronic renal disease.J. Am.Soc. Nephrol.13, 170176 (2002).

    12. Nijveldt, R. J. et al. Net renal extraction ofasymmetrical (ADMA) and symmetrical (SDMA)dimethylarginine in fasting humans. Nephrol.Dial. Transplant.17, 19992002 (2002).

    13. Valkonen, V. P. et al. Risk of acute coronaryevents and serum concentration ofasymmetrical dimethylarginine. Lancet358,21272128 (2001).

    14. Vallance, P., Leone, A., Calver, A., Collier, J. &Moncada, S. Accumulation of an endogenous

    inhibitor of nitric oxide synthesis in chronic renalfailure. Lancet339, 572575 (1992).

    15. Fliser, D. et al. Asymmetric dimethylarginine andprogression of chronic kidney disease: The Mildto Moderate Kidney Disease Study.J. Am. Soc.Nephrol.16, 24562461 (2005).

    16. Ravani, P. et al. Asymmetrical dimethylargininepredicts progression to dialysis and death inpatients ith chronic kidney disease:

    a competing risks modeling approach.J. Am.Soc. Nephrol.16, 24492455 (2005).

    17. Lajer, M. et al. Plasma concentration ofasymmetric dimethylarginine (ADMA) predictscardiovascular morbidity and mortality in type 1diabetic patients ith diabetic nephropathy.Diabetes Care31, 747752 (2007).

    18. Hanai, K. et al. Asymmetric dimethylarginine isclosely associated ith the development andprogression of nephropathy in patients ithtype 2 diabetes. Nephrol. Dial. Transplant.24,18841888 (2009).

    19. Matsumoto, Y. et al. Dimethylargininedimethylaminohydrolase prevents progressionof renal dysfunction by inhibiting loss ofperitubular capillaries and tubulointerstitialfibrosis in a rat model of chronic kidney

    disease.J. Am. Soc. Nephrol.18, 15251533(2007).

    20. Ueda, S. et al. Involvement of asymmetricdimethylarginine (ADMA) in glomerular capillaryloss and sclerosis in a rat model of chronickidney disease (CKD). Life Sci.84, 853856(2009).

    21. Shibata, R. et al. Involvement of asymmetricdimethylarginine (ADMA) in tubulointerstitialischaemia in the early phase of diabeticnephropathy. Nephrol. Dial. Transplant.24,11621169 (2009).

    22. Teplan, V. et al. Reduction of plasma asymmetricdimethylarginine in obese patients ith chronickidney disease after three years of a loproteindiet supplemented ith ketoamino acids:a randomized controlled trial. Wien. Klin.

    Wochenschr.120, 478485 (2008).23. Scharz, S., Trivedi, B. K., KalantarZadeh, K. &

    Kovesdy, C. P. Association of disorders inmineral metabolism ith progression of chronickidney disease. Clin. J. Am. Soc. Nephrol.1,825831 (2006).

    24. Norris, K. C. et al. Baseline predictors of renaldisease progression in the African AmericanStudy of Hypertension and Kidney Disease.

    J. Am. Soc. Nephrol.17, 29282936 (2006).25. Fliser, D. et al. Fibroblast groth factor 23

    (FGF23) predicts progression of chronic kidneydisease: The Mild to Moderate Kidney Disease(MMKD) Study.J. Am. Soc. Nephrol.18,26002608 (2007).

    26. Voormolen, N. et al. High plasma phosphate asa risk factor for decline in renal function andmortality in predialysis patients. Nephrol. Dial.Transplant.22, 29092916 (2007).

    27. Levin, A., Djurdjev, O., Beaulieu, M. & Er, L.Variability and risk factors for kidney diseaseprogression and death folloing attainment ofstage 4 CKD in a referred cohort.Am. J. KidneyDis.52, 661671 (2008).

    28. LoghmanAdham, M. Role of phosphateretention in the progression of renal failure.

    J. Lab. Clin. Med.122, 1626 (1993).29. Cozzolino, M. et al. Sevelamer hydrochloride

    attenuates kidney and cardiovascularcalcifications in longterm experimental uremia.Kidney Int.64, 16531661 (2003).

    30. Ibels, L. S., Alfrey, A. C., Haut, L. & Huffer, w. E.Preservation of function in experimental renaldisease by dietary restriction of phosphate.N. Engl. J. Med.298, 122126 (1978).

    31. Schumock, G. T. et al. Association of secondaryhyperparathyroidism ith CKD progression,health care costs and survival in diabeticpredialysis CKD patients. Nephron Clin. Pract.113, c54c61 (2009).

    32. Tomford, R. C., Karlinsky, M. L., Buddington, B. &

    Alfrey, A. C. Effect of thyroparathyroidectomy andparathyroidectomy on renal function and thenephrotic syndrome in rat nephrotoxic serumnephritis.J. Clin. Invest.68, 655664 (1981).

    33. Ritz, E., Gross, M. L. & Diko, R. Role ofcalciumphosphorous disorders in theprogression of renal failure. Kidney Int. Suppl.S66S70 (2005).

    34. Ogata, H., Ritz, E., Odoni, G., Amann, K. &Orth, S. R. Beneficial effects of calcimimeticson progression of renal failure andcardiovascular risk factors.J. Am. Soc. Nephrol.14, 959967 (2003).

    35. Holick, M. F. Vitamin D deficiency. N. Engl.J. Med.357, 266281 (2007).

    36. Ravani, P. et al. Vitamin D levels and patientoutcome in chronic kidney disease. Kidney Int.

    75, 8895 (2009).37. Christiansen, C., Rodbro, P., Christensen, M. S.,

    Hartnack, B. & Transbol, I. Deterioration of renalfunction during treatment of chronic renal failureith 1, 25dihydroxycholecalciferol. Lancet2,700703 (1978).

    38. Scharz, U. et al. Effect of 1, 25 (OH)2vitamin D3 on glomerulosclerosis in subtotallynephrectomized rats. Kidney Int.53,16961705 (1998).

    39. Panichi, V. et al. Effects of 1, 25(OH)2D3 inexperimental mesangial proliferative nephritis inrats. Kidney Int.60, 8795 (2001).

    40. weber, T. J., Liu, S., Indridason, O. S. &Quarles, L. D. Serum FGF23 levels in normal

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    12/13

    688 | DECEMBER 2009 | voluME 5 www.atu.cm/

    and disordered phosphorus homeostasis.J. Bone Miner. Res.18, 12271234 (2003).

    41. Fukagaa, M. & Kazama, J. J. with or ithoutthe kidney: the role of FGF23 in CKD. Nephrol.Dial. Transplant.20, 12951298 (2005).

    42. white, K. E. et al. Autosomal dominanthypophosphataemic rickets is associated ithmutations in FGF23. Nat. Genet.26, 345348(2000).

    43. Jonsson, K. B. et al. Fibroblast groth factor 23in oncogenic osteomalacia and Xlinkedhypophosphatemia. N. Engl. J. Med.348,16561663 (2003).

    44. Shimada, T. et al. Cloning and characterization ofFGF23 as a causative factor of tumorinducedosteomalacia.Proc. Natl Acad. Sci. USA98,65006505 (2001).

    45. Shimada, T. et al. Targeted ablation of Fgf23demonstrates an essential physiological role ofFGF23 in phosphate and vitamin D metabolism.

    J. Clin. Invest.113, 561568 (2004).46. Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast

    groth factor23 relationship to dietaryphosphate and renal phosphate handling inhealthy young men.J. Clin. Endocrinol. Metab.90, 15191524 (2005).

    47. Larsson, T., Nisbeth, U., Ljunggren, O.,Juppner, H. & Jonsson, K. B. Circulatingconcentration of FGF23 increases as renalfunction declines in patients ith chronic kidneydisease, but does not change in response tovariation in phosphate intake in healthyvolunteers. Kidney Int.64, 22722279 (2003).

    48. Imanishi, Y. et al. FGF23 in patients ith endstage renal disease on hemodialysis. Kidney Int.65, 19431946 (2004).

    49. Nagano, N. et al. Effect of manipulating serumphosphorus ith phosphate binder on circulatingPTH and FGF23 in renal failure rats. Kidney Int.69, 531537 (2006).

    50. Gutierrez, O. et al. Fibroblast groth factor23mitigates hyperphosphatemia but accentuatescalcitriol deficiency in chronic kidney disease.

    J. Am. Soc. Nephrol.16, 22052215 (2005).51. Block, G. A., HulbertShearon, T. E., Levin, N. w.

    & Port, F. K. Association of serum phosphorusand calcium x phosphate product ith mortalityrisk in chronic hemodialysis patients: a nationalstudy.Am. J. Kidney Dis.31, 607617 (1998).

    52. Ganesh, S. K., Stack, A. G., Levin, N. w.,HulbertShearon, T. & Port, F. K. Association ofelevated serum PO(4), Ca x PO(4) product, andparathyroid hormone ith cardiac mortality riskin chronic hemodialysis patients.J. Am. Soc.Nephrol.12, 21312138 (2001).

    53. Tonelli, M., Sacks, F., Pfeffer, M., Gao, Z. &Curhan, G. Relation beteen serum phosphatelevel and cardiovascular event rate in peopleith coronary disease. Circulation112,26272633 (2005).

    54. Kusano, K., Saito, H., Segaa, H., Fukushima, N.& Miyamoto, K. Mutant FGF23 prevents theprogression of chronic kidney disease butaggravates renal osteodystrophy in uremic rats.

    J. Nutr. Sci. Vitaminol. (Tokyo)55, 99105 (2009).55. Gutierrez, O. M. et al. Fibroblast groth

    factor 23 and left ventricular hypertrophy inchronic kidney disease. Circulation119,25452552 (2009).

    56. Gutierrez, O. M. et al. Fibroblast groth factor 23and mortality among patients undergoinghemodialysis. N. Engl. J. Med.359, 584592(2008).

    57. Rabin, K. R., Kamari, Y., Avni, I., Grossman, E. &Sharabi, Y. Adiponectin: linking the metabolic

    syndrome to its cardiovascular consequences.Expert Rev. Cardiovasc. Ther.3, 465471(2005).

    58. weyer, C. et al. Hypoadiponectinemia in obesityand type 2 diabetes: close association ithinsulin resistance and hyperinsulinemia.J. Clin.Endocrinol. Metab.86, 19301935 (2001).

    59. Zoccali, C. et al. Adiponectin, metabolic riskfactors, and cardiovascular events among

    patients ith endstage renal disease.J. Am.Soc. Nephrol.13, 134141 (2002).

    60. Menzaghi, C. et al. A haplotype at theadiponectin locus is associated ith obesity andother features of the insulin resistancesyndrome. Diabetes51, 23062312 (2002).

    61. Costacou, T. et al. The prospective associationbeteen adiponectin and coronary arterydisease among individuals ith type 1 diabetes.The Pittsburgh Epidemiology of DiabetesComplications Study. Diabetologia48, 4148(2005).

    62. Schulze, M. B. et al. Adiponectin and futurecoronary heart disease events among men ithtype 2 diabetes. Diabetes54, 534539 (2005).

    63. Pischon, T. et al. Plasma adiponectin levels andrisk of myocardial infarction in men.JAMA291,

    17301737 (2004).64. Becker, B. et al. Renal insulin resistance

    syndrome, adiponectin and cardiovascularevents in patients ith kidney disease: The Mildand Moderate Kidney Disease Study.J. Am. Soc.Nephrol.16, 10911098 (2005).

    65. Kollerits, B. et al. Genderspecific association ofadiponectin as a predictor of progression ofchronic kidney disease: The Mild to ModerateKidney Disease (MMKD) Study. Kidney Int.71,12791286 (2007).

    66. Jorsal, A. et al. Serum adiponectin predicts allcause mortality and end stage renal disease inpatients ith type I diabetes and diabeticnephropathy. Kidney Int.74, 649654 (2008).

    67. Saraheimo, M. et al. Serum adiponectin andprogression of diabetic nephropathy in patients

    ith type 1 diabetes. Diabetes Care31,11651169 (2008).

    68. Shen, Y., Peake, P. w. & Kelly, J. J. Should equantify insulin resistance in patients ith renaldisease? Nephrology (Carlton)10, 599605(2005).

    69. Isobe, T. et al. Influence of gender, age and renalfunction on plasma adiponectin level: the Tannoand Sobetsu study. Eur. J. Endocrinol.153,9198 (2005).

    70. Zoccali, C. et al. Adiponectin is markedlyincreased in patients ith nephrotic syndromeand is related to metabolic risk factors. KidneyInt. Suppl.63(Suppl. 84), S98S102 (2003).

    71. Ishizaa, K. et al. Inhibitory effects ofadiponectin on plateletderived groth factorinduced mesangial cell migration.J. Endocrinol.

    202, 309316 (2009).72. Kadoaki, T. & Yamauchi, T. Adiponectin and

    adiponectin receptors. Endocr. Rev.26,439451 (2005).

    73. Furuhashi, M. et al. Possible impairment oftranscardiac utilization of adiponectin in patientsith type 2 diabetes. Diabetes Care27,22172221 (2004).

    74. Pilz, S. et al. Adiponectin and mortality inpatients undergoing coronary angiography.

    J. Clin. Endocrinol. Metab.91, 42774286(2006).

    75. Menon, V. et al. Adiponectin and mortality inpatients ith chronic kidney disease.J. Am. Soc.Nephrol.17, 25992606 (2006).

    76. Kistorp, C. et al. Plasma adiponectin, body massindex, and mortality in patients ith chronicheart failure. Circulation112, 17561762(2005).

    77. Schalkijk, C. G., Chaturvedi, N., Schram, M. T.,Fuller, J. H. & Stehouer, C. D. Adiponectin isinversely associated ith renal function in type 1diabetic patients.J. Clin. Endocrinol. Metab.91,129135 (2006).

    78. Mori, K. & Nakao, K. Neutrophil gelatinaseassociated lipocalin as the realtime indicator ofactive kidney damage. Kidney Int.71, 967970(2007).

    79. Bolignano, D. et al. Neutrophil gelatinaseassociated lipocalin (NGAL) as a marker ofkidney damage.Am. J. Kidney Dis.52, 595605(2008).

    80. Bolignano, D., Coppolino, G., Lacquaniti, A.,Nicocia, G. & Buemi, M. Pathological andprognostic value of urinary neutrophil gelatinaseassociated lipocalin in macroproteinuric patientsith orsening renal function. Kidney BloodPress. Res.31, 274279 (2008).

    81. Bolignano, D. et al. Neutrophil gelatinaseassociated lipocalin (NGAL) and progression ofchronic kidney disease. Clin. J. Am. Soc. Nephrol.

    4, 337344 (2009).82. Nickolas, T. L., Barasch, J. & Devarajan, P.

    Biomarkers in acute and chronic kidney disease.Curr. Opin. Nephrol. Hypertens.17, 127132(2008).

    83. Kuabara, T. et al. Urinary neutrophil gelatinaseassociated lipocalin levels reflect damage toglomeruli, proximal tubules, and distalnephrons. Kidney Int.75, 285294 (2009).

    84. Bolignano, D. et al. Effect of a single intravenousimmunoglobulin infusion on neutrophilgelatinaseassociated lipocalin levels inproteinuric patients ith normal renal function.

    J. Investig. Med.56, 9971003 (2008).85. Kamijo, A. et al. Urinary excretion of fatty acid

    binding protein reflects stress overload on theproximal tubules.Am. J. Pathol.165,

    12431255 (2004).86. Kamijo, A. et al. Urinary fatty acidbinding protein

    as a ne clinical marker of the progression ofchronic renal disease.J. Lab. Clin. Med.143,2330 (2004).

    87. Ishimitsu, T. et al. Urinary excretion of liver fattyacidbinding protein in healthcheck participants.Clin. Exp. Nephrol.9, 3439 (2005).

    88. Nakamura, T. et al. Effect of pitavastatin onurinary livertype fatty acidbinding protein levelsin patients ith early diabetic nephropathy.Diabetes Care28, 27282732 (2005).

    89. Kamijo, A. et al. Urinary livertype fatty acidbinding protein as a useful biomarker in chronickidney disease. Mol. Cell. Biochem.284,175182 (2006).

    90. Bonventre, J. V. Kidney injury molecule1 (KIM1):

    a urinary biomarker and much more. Nephrol.Dial. Transplant. doi:10.1093/ndt/gfp010

    91. van Timmeren, M. M. et al. Tubular kidney injurymolecule1 (KIM1) in human renal disease.

    J. Pathol.212, 209217 (2007).92. van Timmeren, M. M. et al. High urinary excretion

    of kidney injury molecule1 is an independentpredictor of graft loss in renal transplantrecipients.Transplantation84, 16251630(2007).

    93. waanders, F. et al. Effect of reninangiotensinaldosterone system inhibition, dietary sodiumrestriction, and/or diuretics on urinary kidneyinjury molecule 1 excretion in nondiabeticproteinuric kidney disease: a post hoc analysis

    REVIEwS

    2009 Macmillan Publishers Limited. All rights reserved

  • 8/22/2019 Emerging Risk Factor

    13/13

    nature reviews | nephrology volume 5 | DeCemBer 2009 | 689

    of a randomized controlled trial.Am. J. KidneyDis.53, 1625 (2009).

    94. Utermann, G. & Beisiegel, U.Apolipoprotein AIV: a protein occurring inhuman mesenteric lymph chylomicrons andfree in plasma. Isolation and quantification.Eur. J. Biochem.99, 333343 (1979).

    95. Dieplinger, H., Schoenfeld, P. Y. & Fielding, J.Plasma cholesterol metabolism in endstage

    renal disease: difference beteen treatment byhemodialysis or peritoneal dialysis.J. Clin.Invest.77, 10711083 (1986).

    96. Nestel, P. J., Fide, N. H. & Tan, M. H. Increasedlipoproteinremnant formation in chronic renalfailure. N. Engl. J. Med.307, 329333 (1982).

    97. Kronenberg, F. et al. Multicenter study oflipoprotein(a) and apolipoprotein(a) phenotypesin patients ith endstage renal disease treatedby hemodialysis or continuous ambulatoryperitoneal dialysis.J. Am. Soc. Nephrol.6,110120 (1995).

    98. Kronenberg, F. et al. Apolipoprotein AIV serumconcentrations are elevated in mild andmoderate renal failure.J. Am. Soc. Nephrol.13,461469 (2002).

    99. Haiman, M. et al. Immunohistochemical

    localization of apolipoprotein AIV in humankidney tissue. Kidney Int.68, 11301136(2005).

    100. Lingenhel, A. et al. Role of the kidney in themetabolism of apolipoprotein AIV: influence ofthe type of proteinuria.J. Lipid Res.47,20712079 (2006).

    101. Boes, E. et al. Apolipoprotein AIV predictsprogression of chronic kidney disease: The Mildto Moderate Kidney Disease Study.J. Am. Soc.Nephrol.17, 528536 (2006).

    102. Qin, X., Sertfeger, D. K., Zheng, S., Hui, D. Y. &Tso, P. Apolipoprotein AIV: a potent endogenousinhibitor of lipid oxidation.Am. J. Physiol.274,H1836H1840 (1998).

    103. Kronenberg, F. et al. Lo apolipoprotein AIVplasma concentrations in men ith coronary

    artery disease.J. Am. Coll. Cardiol.36,751757 (2000).

    104. warner, M. M., Guo, J. & Zhao, Y. Therelationship beteen plasma apolipoprotein AIVlevels and coronary heart disease. Chin. Med.

    J. (Engl.)114, 275279 (2001).105. Ronco, C., Haapio, M., House, A. A., Anavekar, N.

    & Bellomo, R. Cardiorenal syndrome.J. Am. Coll.Cardiol.52, 15271539 (2008).

    106. Vesely, D. L. Atrial natriuretic peptides inpathophysiological diseases. Cardiovasc. Res.51, 647658 (2001).

    107. Bunton, D. C., Petrie, M. C., Hillier, C.,Johnston, F. & McMurray, J. J. The clinicalrelevance of adrenomedullin: a promisingprofile? Pharmacol. Ther.103, 179201(2004).

    108. wieczorek, S. J. et al. A rapid Btype natriureticpeptide assay accurately diagnoses leftventricular dysfunction and heart failure:a multicenter evaluation.Am. Heart J.144,834839 (2002).

    109. Lerman, A. et al. Circulating Nterminal atrialnatriuretic peptide as a marker forsymptomless leftventricular dysfunction.Lancet341, 11051109 (1993).

    110. Ishimitsu, T. et al. Plasma levels ofadrenomedullin, a nely identified hypotensive

    peptide, in patients ith hypertension and renalfailure.J. Clin. Invest.94, 21582161 (1994).

    111. Spanaus, K.S. et al. Btype natriuretic peptideconcentrations predict the progression of nondiabetic chronic kidney disease: TheMildtoModerate Kidney Disease Study. Clin.Chem.53, 12641272 (2007).

    112. Dieplinger, B. et al. ProAtype natriuretic peptideand proadrenomedullin predict progression of

    chronic kidney disease: the MMKD Study.Kidney Int.75, 408414 (2009).

    113. Astor, B. C. et al. Nterminal prohormone brainnatriuretic peptide as a predictor ofcardiovascular disease and mortality in blacksith hypertensive kidney disease: the AfricanAmerican Study of Kidney Disease andHypertension (AASK). Circulation117,16851692 (2008).

    114. Carr, S. J., Bavanandan, S., Fentum, B. & Ng, L.Prognostic potential of brain natriuretic peptidein predialysis chronic kidney disease patients.Clin. Sci. (Lond.)109, 7582 (2005).

    115. Prokopenko, I., McCarthy, M. I. & Lindgren, C. M.Type 2 diabetes: ne genes, neunderstanding. Trends Genet.24, 613621(2008).

    116. Davey, S. G. & Ebrahim, S. Mendelianrandomization: can genetic epidemiologycontribute to understanding environmentaldeterminants of disease? Int. J. Epidemiol.32,122 (2003).

    117. Heid, I. M. et al. Genetic architecture of theAPM1 gene and its influence on adiponectinplasma levels and parameters of the metabolicsyndrome in 1,727 healthy Caucasians.Diabetes55, 375384 (2006).

    118. Kttgen, A. et al. Multiple loci associated ithindices of renal function and chronic kidneydisease. Nat. Genet. 41, 712717 (2009).

    119. Rampoldi, L. et al. Allelism of MCKD, FJHN andGCKD caused by impairment of uromodulinexport dynamics. Hum. Mol. Genet.12,33693384 (2003).

    120. Vyletal, P. et al. Alterations of uromodulinbiology: a common denominator of thegenetically heterogeneous FJHN/MCKDsyndrome. Kidney Int.70, 11551169 (2006).

    121. Hart, T. C. et al. Mutations of the UMOD geneare responsible for medullary cystic kidneydisease 2 and familial juvenile hyperuricaemicnephropathy.J. Med. Genet.39, 882892(2002).

    122. Luttropp, K. et al. Understanding the role ofgenetic polymorphisms in chronic kidneydisease. Pediatr. Nephrol.23, 19411949(2008).

    123. Hsu, C. C. et al. Genetic variation of the reninangiotensin system and chronic kidney diseaseprogression in black individuals in theatherosclerosis risk in communities study.

    J. Am. Soc. Nephrol.17, 504512 (2006).124. Ruggenenti, P., Bettinaglio, P., Pinares, F. &

    Remuzzi, G. Angiotensin converting enzymeinsertion/deletion polymorphism andrenoprotection in diabetic and nondiabeticnephropathies. Clin. J. Am. Soc. Nephrol.3,15111525 (2008).

    125. Kttgen, A. et al. TCF7L2 variants associate ithCKD progression and renal function inpopulationbased cohorts.J. Am. Soc. Nephrol.19, 19891999 (2008).

    126. Heid, I. M. et al. Genomeide associationanalysis of highdensity lipoprotein cholesterolin the populationbased KORA Study sheds nelight on intergenic regions. Circ. Cardiovasc.Genetics1, 1020 (2008).

    127. Aulchenko, Y. S. et al. Loci influencing lipid levelsand coronary heart disease risk in 16 Europeanpopulation cohorts. Nat. Genet.41, 4755(2009).

    128. Dring, A. et al. SLC2A9 influences uric acidconcentrations ith pronounced sexspecificeffects. Nat. Genet.40, 430436 (2008).

    129. Lusis, A. J., Attie, A. D. & Reue, K. Metabolicsyndrome: from epidemiology to systemsbiology. Nat. Rev. Genet.9, 819830 (2008).

    130. Nicholson, J. K. & Lindon, J. C. Systems biology:metabonomics.Nature455, 10541056(2008).

    131. Kronenberg, F. Genomeide association studiesin agingrelated processes such as diabetesmellitus, atherosclerosis and cancer. Exp.Gerontol.43, 3943 (2008).

    132. McCarthy, M. I. & Hirschhorn, J. N. Genomeideassociation studies: past, present and future.Hum. Mol. Genet.17, R100R101 (2008).

    133. Gieger, C. et al. Genetics meets metabolomics:

    a genomeide association study of metaboliteprofiles in human serum. PLoS Genet.4,e1000282 (2008).

    134. Heid, I. M. et al. Metaanalysis of the INSIG2association ith obesity including 74,345individuals: does heterogeneity of estimatesrelate to study design? PLoSGenet. (in press).

    135. National Kidney Disease Education Program:Creatinine Standardization Program [online],http://.nkdep.nih.gov/labprofessionals/creatinine_standardization.htm(2008).

    136. Lash, J. P. et al. Chronic Renal InsufficiencyCohort (CRIC) study: baseline characteristicsand associations ith kidney function. Clin.

    J. Am. Soc. Nephrol.4, 13021311(2009).137. Taal, M. w. & Brenner, B. M. Predicting initiation

    and progression of chronic kidney disease:

    developing renal risk scores. Kidney Int.70,16941705 (2006).

    138. Boes, E., Coassin, S., Kollerits, B., Heid, I. M. &Kronenberg, F. Geneticepidemiological evidenceon genes associated ith HDL cholesterollevels: a systematic indepth revie. Exp.Gerontol.44, 136160 (2009).

    139. Kronenberg, F. & Heid, I. M. Genetikintermedirer Phnotypen. Medizinische Genetik19, 304308 (2007).

    Ackwdmts

    The author ould like to thank all collaborators of theMild to Moderate Kidney Disease (MMKD) study hohave continuously contributed to the investigation. Inparticular, he ould like to thank Dr B. Kollerits for hercontributions to the study. Funding from the

    Genomics of Lipidassociated Disorders (GOLD) of theAustrian Genome Research Programme (GENAU),and support from the German Ministry of Educationand Research (BMBF) and the KfH StiftungPrventivmedizin to the German Chronic KidneyDisease (GCKD) study is greatly appreciated.Charles P. Vega, University of Irvine, CA, is the authorof and is solely responsible for the content of thelearning objectives, questions and ansers of theMedscapeCMEaccredited continuing medicaleducation activity associated ith this ar ticle.

    REVIEwS

    http://www.nkdep.nih.gov/labprofessionals/creatinine_standardization.htmhttp://www.nkdep.nih.gov/labprofessionals/creatinine_standardization.htmhttp://www.nkdep.nih.gov/labprofessionals/creatinine_standardization.htmhttp://www.nkdep.nih.gov/labprofessionals/creatinine_standardization.htm